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Abstract— We illustrate the construction of a Slow Attrac-
tive Canonical Invariant Manifold (SACIM) by connection
of equilibria by heteroclinic orbits for a model system of
hydrogen-air kinetics. The SACIM is guaranteed invariant by
virtue of its construction technique. For the case illustrated, a
posteriori stretching- and rotation-based diagnostic methods
show it is also slow and attractive. However, in that 1)
manifolds so constructed need not be slow or attractive, and Saddle
2) no a priori method is yet available to construct a SACIM,
the utility of the construction technique may be limited.

Fig. 2. Sketch of failure of the method of heteroclinic orlwnstruction
. INTRODUCTION for SACIM identifcation.

We highlight here some of our recent results that are more
fully _descnbed in [1]. Spatially homogeneous chemlcaIEq_ (1),i.e. pointsz wheref(z) = 0, and 2) connecting by
reactions are described by dynamical systems of the formtrajectories from appropriate non-physical saddle elopii
dz N (those with at most one positive eigenvalue) to the unique
i f(z), 2(0) = 2o, z,20,f €R™. (1) physical equilibrium, which is a sink. Near the equilibria,
Here, z is a vector of lengthN containing the species the ?IM N gtuarar;:]eeglt,\ol be attraczlv%; motreO\t/'er, for many
concentrations, assuming that linear constraints reptiese reactive systems the appears 1o be atlractive In regions

element conservation have been removet, time, andf faerrom equmbt;:.um.. th fructi lqorith lud
is a non-linear function of representing the law of mass owever, nothing In the construction aigorithm preciudes

action with Arrhenius kinetics. the scenario sketched in Fig. 2. Certainly, equilibria can b

We take a Slow Attractive Canonical Invariant Manifold identified and connecteo via heteroclinic orbits to cortitru
a CIM. But for a generid(z), one has no guarantee that

(SACIM) to be an invariant manifold (IM) on which slow téajectories near the CIM are in fact attracted to it. In this

dynamics are confined and to which nearby trajectories arStud we summarize the method and discuss an example
attracted. We identify an IM to be a CIM when it is a Y. P

heteroclinic connection of equilibria. The potential itlen given by Powerset al. [1] for the model hydrogen-air

fication of one-dimensional SACIMs by CIM construction groblemt In:rodugefmbl\)ﬂl Rer:.elt al.l [6]. Our ex?r:nple will I
has gained attention since its introduction [2] and extamsi (;montshrae ?h | fails. while [1] gives another example
by others.eg. [3], [4], [5]. The essence of the fundamental V€' € MENOA Talls.

hypothesis is illustrated in Fig. 1. That hypothesis is that Il. SUMMARY OF ANALYSIS

SACIMs may be constructed by 1) identifying equilibria of With the local Jacobiad — 0f /92, defined throughout

the entire phase space, one can analyzm the neigh-
borhood of any IM, such as a CIM connecting equilibria.
At the physical equilibrium, all of the eigenvalues bfire
guaranteed to be negative and real, and all nearby points
Sink will be drawn to the physical equilibrium. Away from the
physical equilibrium, it is possible for some eigenvalues t
be positive, and this can lead to certain trajectories being
drawn away from a CIM. It is well known that ¢d) is
proportional to the rate of change of a local volume in
phase space. However, even ifld) < 0, the existence
Fig. 1. Sketch of SACIM envisioned as the invariant manifadrecting ~ Of @ positive eigenvalue can induce a local repulsion of an
equilibria. individual trajectory from a CIM.

Saddle



Itis possible, see [1], [3], to identify a unit tangent vecto
to the CIM, o;, and a set of unit normal vectors,, ;,i =

1,...,N — 1. These vectors can be used to identify the N ”
tangential and normal stretching rates,and o, ;: ig” , o
at:oz,fTJs-at7 Unﬁi:az,i-.]s-an’i, i=1,...,N—1. ?«“ 10t

) "
HereJ, = (J +J7)/2 is the symmetric part off. Along 07 o
the CIM, o, is uniquely defined, up to its sign. However, “,," .
there are an infinite set ef,, ; whenN > 2. Certainly if all gt

possibles,, ; < 0 and min|o,, ;| > |o¢|, the CIM will be

. i i~nFig. 3. The SACIMs for the simple hydrogen-air system are remlo
a SACIM; however, it is easy to construct cases for Whldﬁased on the relative slowness. The solid dots are finitearjpoints; R7

these criteria are not met. _ represents the system’s physical equilibrium stae,and Rg represent
We can better understand the dynamics normal to thene starting points of the SACIMs, and the dashed simplexeszmts the
CIM by constructing physical domain.
| |
Q.= | ap1 - annN-1 |, (3) 7‘ 0.08 @O//
| | \ , K
where Q,, is an N x (N — 1) rectangular matrix with
orthonormal columns. Then, the normal Jacobidp, is 0.06
found by projecting onto this basis:
J,=Ql'.J.Q,. (4)
As shown in [1], the eigenvalues/eigenvectors associated 0.04
with the symmetric part ofJ, describe the stretching ®
dynamics; forN = 3, rotation dynamics are associated with S
the anti-symmetric part af,,. 0.02 ~
. [N

Ill. HYDROGEN-AIR EXAMPLE

We apply our method to a simple hydrogen-air combus-
tion model [5], [6]. This model considers the six species
H,, O, H,0, H, OH, andN,. The six evolution equations 0.1 -0.05 0
for each species are reduced by elemental constraints to a z, (mol/g)
system of N = 3 ordinary differential equations. We take
then as dependent variables,, z,, and z3, the specific Fig. 4. lllustration exhibiting how the SACIMs for the simpiydrogen-
moles of H,, O, and H,O. Algebraic analysis reveals air system attract nearby trajectories for béth — R7 and R — Ry7.
seven finite equilibria that we labédt;, : = 1,...,7. The
equilibrium R; is the unique physical equilibrium, and
we can construct a CIM by connecting; to R; and _
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