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Abstract— We illustrate the construction of a Slow Attrac-
tive Canonical Invariant Manifold (SACIM) by connection
of equilibria by heteroclinic orbits for a model system of
hydrogen-air kinetics. The SACIM is guaranteed invariant by
virtue of its construction technique. For the case illustrated, a
posteriori stretching- and rotation-based diagnostic methods
show it is also slow and attractive. However, in that 1)
manifolds so constructed need not be slow or attractive, and
2) no a priori method is yet available to construct a SACIM,
the utility of the construction technique may be limited.

I. I NTRODUCTION

We highlight here some of our recent results that are more
fully described in [1]. Spatially homogeneous chemical
reactions are described by dynamical systems of the form

dz

dt
= f(z), z(0) = zo, z, zo, f ∈ R

N . (1)

Here, z is a vector of lengthN containing the species
concentrations, assuming that linear constraints representing
element conservation have been removed,t is time, andf
is a non-linear function ofz representing the law of mass
action with Arrhenius kinetics.

We take a Slow Attractive Canonical Invariant Manifold
(SACIM) to be an invariant manifold (IM) on which slow
dynamics are confined and to which nearby trajectories are
attracted. We identify an IM to be a CIM when it is a
heteroclinic connection of equilibria. The potential identi-
fication of one-dimensional SACIMs by CIM construction
has gained attention since its introduction [2] and extension
by others,e.g. [3], [4], [5]. The essence of the fundamental
hypothesis is illustrated in Fig. 1. That hypothesis is that
SACIMs may be constructed by 1) identifying equilibria of
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Fig. 1. Sketch of SACIM envisioned as the invariant manifold connecting
equilibria.
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Fig. 2. Sketch of failure of the method of heteroclinic orbit construction
for SACIM identifcation.

Eq. (1), i.e. pointsz wheref(z) = 0, and 2) connecting by
trajectories from appropriate non-physical saddle equilibria
(those with at most one positive eigenvalue) to the unique
physical equilibrium, which is a sink. Near the equilibria,
the CIM is guaranteed to be attractive; moreover, for many
reactive systems the CIM appears to be attractive in regions
far from equilibrium.

However, nothing in the construction algorithm precludes
the scenario sketched in Fig. 2. Certainly, equilibria can be
identified and connected via heteroclinic orbits to construct
a CIM. But for a genericf(z), one has no guarantee that
trajectories near the CIM are in fact attracted to it. In this
study, we summarize the method and discuss an example
given by Powers,et al. [1] for the model hydrogen-air
problem introduced by Ren,et al. [6]. Our example will
demonstrate a SACIM, while [1] gives another example
where the method fails.

II. SUMMARY OF ANALYSIS

With the local JacobianJ = ∂f/∂z, defined throughout
the entire phase space, one can analyzeJ in the neigh-
borhood of any IM, such as a CIM connecting equilibria.
At the physical equilibrium, all of the eigenvalues ofJ are
guaranteed to be negative and real, and all nearby points
will be drawn to the physical equilibrium. Away from the
physical equilibrium, it is possible for some eigenvalues to
be positive, and this can lead to certain trajectories being
drawn away from a CIM. It is well known that tr(J) is
proportional to the rate of change of a local volume in
phase space. However, even if tr(J) < 0, the existence
of a positive eigenvalue can induce a local repulsion of an
individual trajectory from a CIM.



It is possible, see [1], [3], to identify a unit tangent vector
to the CIM,αt, and a set of unit normal vectors,αn,i, i =
1, . . . , N − 1. These vectors can be used to identify the
tangential and normal stretching rates,σt andσn,i:

σt = α
T
t ·Js ·αt, σn,i = α

T
n,i ·Js ·αn,i, i = 1, . . . , N −1.

(2)
HereJs = (J + JT )/2 is the symmetric part ofJ. Along
the CIM, αt is uniquely defined, up to its sign. However,
there are an infinite set ofαn,i whenN > 2. Certainly if all
possibleσn,i < 0 and mini|σn,i| ≫ |σt|, the CIM will be
a SACIM; however, it is easy to construct cases for which
these criteria are not met.

We can better understand the dynamics normal to the
CIM by constructing

Qn =





| |
αn,1 · · · αn,N−1

| |



 , (3)

where Qn is an N × (N − 1) rectangular matrix with
orthonormal columns. Then, the normal Jacobian,Jn is
found by projectingJ onto this basis:

Jn = QT
n · J · Qn. (4)

As shown in [1], the eigenvalues/eigenvectors associated
with the symmetric part ofJn describe the stretching
dynamics; forN = 3, rotation dynamics are associated with
the anti-symmetric part ofJn.

III. H YDROGEN-A IR EXAMPLE

We apply our method to a simple hydrogen-air combus-
tion model [5], [6]. This model considers the six species
H2, O, H2O, H, OH, andN2. The six evolution equations
for each species are reduced by elemental constraints to a
system ofN = 3 ordinary differential equations. We take
then as dependent variables,z1, z2, and z3, the specific
moles of H2, O, and H2O. Algebraic analysis reveals
seven finite equilibria that we labelRi, i = 1, . . . , 7. The
equilibrium R7 is the unique physical equilibrium, and
we can construct a CIM by connectingR7 to R1 and
R6. Stretching-based diagnostics reveal that on the path
R1 → R7, one of the extremal normal stretching rates is
positive, for which the CIM could then be repulsive. This
local repulsion is overcome however by fast local rotation
of trajectories into regions of attraction. Figure 3 shows the
SACIM for this system, and Fig. 4 shows how the local
rotation of individual trajectories allows the CIM to be a
SACIM.

IV. CONCLUSION

Construction of canonical invariant manifolds via connec-
tion of equilibria by heteroclinic orbits is possible for model
hydrogen-air systems; it is possible to diagnose a posteriori
if such manifolds are slow and attractive, but one has no a
priori guarantee that manifolds so constructed are slow and
attractive.
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Fig. 3. The SACIMs for the simple hydrogen-air system are colored
based on the relative slowness. The solid dots are finite critical points;R7

represents the system’s physical equilibrium state,R1 and R6 represent
the starting points of the SACIMs, and the dashed simplex represents the
physical domain.
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Fig. 4. Illustration exhibiting how the SACIMs for the simplehydrogen-
air system attract nearby trajectories for bothR1 → R7 andR6 → R7.
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