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Motivation and background

Detailed kinetics are essential for accurate modeling of reactive
systems.

Reactive systems induce a wide range of spatial and temporal scales,
and subsequently severe stiffness occurs.

The spatial and temporal scales are coupled by the underlying physics
of the problem, ℓD =

√DτR .

Computational cost for reactive flow simulations increases with the
range of scales present, the number of reactions and species, and the
size of the spatial domain.

Manifold methods provide a potential for computational savings.
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Motivation and background

Manifold methods are typically spatially homogeneous, yet most
engineering applications require spatial variation.

Diffusion is often modeled with a correction to the spatially
homogeneous methods in the long wavelength limit.

However, for thin regions of flames, diffusion is fast relative to
reaction and the short wavelength limit is more appropriate.

This analysis considers the short wavelength limit by the use of a
Galerkin projection.
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Mathematical model

Spatially homogeneous system,

dz

dt
= f(z).

Simple mass diffusion,

∂z

∂t
= f(z) + D ∂2z

∂x2
.

Boundary conditions,
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Galerkin projection

Assume infinite series solution,

z = zi =

∞
∑

m=0

zi ,m(t)φm(x), i = 1, . . . ,R .

Complete set of basis functions, with eigenvalues µn = −(n π/L)2,

φn = cos
(nπ

L
x
)

, n = 0, . . . ,N , . . . ,∞.

Inner product of governing PDE with basis functions,

dzi ,n

dt
=

〈φn, fi (
∑

∞

m=0 zi ,mφm)〉
〈φn, φn〉

+ µnDzi ,n.

Truncate series at sufficiently large N .
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Example problem

Zel’dovich mechanism

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

Isothermal and isochoric,
T = 3500 K .

Bimolecular, isobaric,
P = 1.455 bar .

5 species, 3 constraints,

Reduces to 2 free variables,
z1 = zNO , z2 = zN .

J. Mengers (Notre Dame) Diffusion Effects on SIMs 7 / 20



Example problem

Zel’dovich mechanism

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

Isothermal and isochoric,
T = 3500 K .

Bimolecular, isobaric,
P = 1.455 bar .

5 species, 3 constraints,

Reduces to 2 free variables,
z1 = zNO , z2 = zN .

Spatially homogeneous (N = 0)

−2 0 2

x 10
−9

−1

0

1

x 10
−11

SIM

z1,0 (mol/g)

z 2
,
0

(m
o
l/

g
)

e0

e1

Results similar to Al-Khateeb et al., J. Chem. Phys., 2009.
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Jacobian and time scales

Jacobian matrix,

J =
∂f

∂z
.

Eigenvalues of Jacobian at
equilibrium, λ.

Classification of equilibria:

e0 – Sink (Physical),
e1 – Saddle (+,−).

Timescales,

τ = 1/λ.
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Short wavelength limit

Short, finite length scale, N = 1,

dzi ,0

dt
= fi(zj ,0),

dzi ,1

dt
= fi ,1(zj ,0, zj ,1) −

π2D
L2

zi ,1.

Analysis for longer lengths with larger N is consistent with N = 1.

Spatially homogeneous phase space is zi ,0 subspace.

The Jacobian of spatially homogenous equilibria retain original
eigenvalues and gain additional diffusion-modified eigenvalues.
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Diffusion-modified eigenvalues

Eigenvalues of N = 1 system,

λi ,0 = λi ,

λi ,1 = λi −
π2D
L2

.

Character of e0 remains a sink.

Character of e1 saddle changes (+,−,−,−) / (+,+,−,−).

This change is indicative of a bifurcation in the system.
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Additional equilibria bifurcation

When L is increased, e1 changes from 1 to 2 positive eigenvalues.

Where this change occurs, 2 additional equilibria converge from the
complex domain through e1 and emerge in real space.

These 2 additional equilibria have heteroclinic orbits that connect to
e0 and are (+,−,−,−).

For this system with the given parameters this occurs at
L = 0.2745 mm.
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Time scales as a function of length
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Evolution at L = 10 µm
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Evolution at L = 0.2745 mm
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Phase space diagrams

L = 10 µm
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Conclusions

For long wavelengths, reaction governs the time scales.

For short wavelengths, diffusion dictates the fast time scales; however,
slower reaction time scales are still present.

The boundary between short and long wavelengths is identified by this
method.

This method isolates the slowest dynamics making it ideal for
reduction technique.

It is easily extended to larger N to evaluate systems with longer
domain lengths.

This technique provides a framework for further evaluation of the
coupling of spatial and temporal scales.
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