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Motivation and Background

Reactive systems induce a
wide range of spatial and
temporal scales, and
subsequently severe stiffness

DNS resolves all ranges of
continuum physical scales
present

Under-resolved simulations
attempt to account for missed
physical phenomena with
modeling

Fully resolved simulations are
expensive to compute

Direct numerical

simulation

Large eddy
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“Research needs for future internal combustion
engines,” Physics Today, Nov. 2008, pp 47-52.
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Motivation and Background

Manifold methods provide
potential savings

Most methods are for spatially
homogeneous systems

We employ the slow invariant
manifold (SIM) model of
Al-Khateeb, et al.
(2009, Journal of Chemical Physics)

SIM

z3 Fast

Slow

Fast

Slow

z
1

z
2

We adjust for the dynamics of
diffusion in the presence of
weak spatial heterogeneity

This is valid when diffusion is
fast relative to reaction, i.e.
thin regions of flames
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Assumptions

Model a system of N species reacting in J reactions with diffusion in
one spatial dimension

Ideal mixture

Calorically perfect

Ideal gases

Negligible advection

Constant specific heat

Single constant mass
diffusivity

Constant thermal
conductivity
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Balance Laws

Evolution of species and energy

ρ
∂Yi

∂t
+

∂jm
i

∂x
= Miω̇i(Yn, T ), for i, n ∈ [1, N ]

ρ
∂h

∂t
+

∂jq

∂x
= 0

Boundary conditions

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i ∈ [1, N ]

∂T

∂x

∣
∣
∣
∣
x=0

=
∂T

∂x

∣
∣
∣
∣
x=ℓ

= 0

Initial conditions

Yi(x, t = 0) = Ỹi(x), for i ∈ [1, N ]

T (x, t = 0) = T̃ (x)
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Constitutive Equations

Simple diffusive flux terms

jm
i = −ρD

∂Yi

∂x
, for i ∈ [1, N ]

jq = −k
∂T

∂x
+

N∑

i=1

hf
i jm

i

Caloric equation of state

h =

N∑

i=1

Yi

(

cPi(T − T o) + hf
i

)

Ideal gas equation of state

P =
ρR̄T

∑N
i=1

Mi

Yi
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Constitutive Equations

Molar production rate

ω̇i =

J∑

j=1

νijrj , for i ∈ [1, N ]

rj = kj

(
N∏

i=1

(
ρYi

Mi

)ν′

ij

−
1

Kc
j

N∏

i=1

(
ρYi

Mi

)ν′′

ij

)

, for j ∈ [1, J ]

kj = ajT
βj exp

(
−Ēj

R̄T

)

, for j ∈ [1, J ]

Kc
j = exp

(

−
∑N

i=1 ḡo
i νij

R̄T

)

, for j ∈ [1, J ]
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Generalized Shvab-Zel’dovich

Certain linear combinations of molar production rate sum to zero,

∂

∂t

(
N∑

i=1

ϕli

Yi

Mi

)

= D
∂2

∂x2

(
N∑

i=1

ϕli

Yi

Mi

)

, for l ∈ [1, L]

In adiabatic systems, when the Lewis number is unity

∂

∂t

(

cP (T − T o) +

N∑

i=1

hf
i Yi

)

︸ ︷︷ ︸

h

= D
∂2

∂x2

(

cP (T − T o) +

N∑

i=1

hf
i Yi

)

︸ ︷︷ ︸

h

If initially spatially homogeneous, these PDEs can be integrated

N∑

i=1

ϕli

Yi

Mi

=

N∑

i=1

ϕli

Ỹi

Mi

, for l ∈ [1, L]

cP (T − T o) +

N∑

i=1

hf
i Yi = cP (T̃ − T o) +

N∑

i=1

hf
i Ỹi
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Reduced Variables

Transform to specific mole concentrations

zi =
Yi

Mi

, for i ∈ [1, N − L]

Evolution of remaining L species and temperature are coupled to
these reduced variables by the algebraic constraints

∂zi

∂t
=

ω̇(zn, T )

ρ
+ D

∂2zi

∂x2
, for i, n ∈ [1, N − L]

T =







T̃ , if isothermal

h −
∑N

i=1 ẑi(zn)h̄f
i

∑N
i=1 ẑi(zn)c̄Pi

+ T o, if adiabatic
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Galerkin Reduction to ODEs

Assume a spectral decomposition

zi(x, t) =

∞∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L]

Orthogonal basis functions, φm(x), are eigenfunctions of diffusion
operator that match boundary conditions

φm(x) = cos
(mπx

ℓ

)

, for m ∈ [0,∞)

Finite system of ODEs for amplitude evolution are recovered by
taking the inner product with φn, and truncated at M

dzi,m

dt
=

〈φm, ω̇i (
∑

∞

m=0 zi,nφn)〉

〈φm, φm〉
−

m2π2D

ℓ2
zi,m,

for i ∈ [1, N − L],
and m ∈ [0,M ]

Diffusion time scale identified, τD =
ℓ2

π2D
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Oxygen Dissociation

O + O + M ⇌ O2 + M

N = 2 species

J = 1 reactions

L = 1 constraints

N − L = 1 reduced variables
z = zO

Isochoric,
ρ = 1.6 × 10−4 g/cm3

Isothermal, T = 5000 K

Partial differential equation governing evolution

∂z

∂t
= 249.84130 − 74734.78 z2 − 172406.48 z3 + D

∂2z

∂x2
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Oxygen Dissociation

O + O + M ⇌ O2 + M

N = 2 species

J = 1 reactions

L = 1 constraints

N − L = 1 reduced variables
z = zO

Isochoric,
ρ = 1.6 × 10−4 g/cm3

Isothermal, T = 5000 K

Spatially homogeneous evolution equation

dz0

dt
= 249.84130 − 74734.78 z2

0 − 172406.48 z3
0
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Diffusion-Correction – Galerkin Projection

One spatial mode (M = 1) evolution equation

dz0

dt
= 249.84130 − 74734.78

(

z2
0 +

z2
1

2

)

− 172406.48

(

z3
0 +

3z0z
2
1

2

)

dz1

dt
= −74734.78 (2z0z1) − 172406.48

(

3z2
0z1 +

3z3
1

4

)

−
π2D

ℓ2
z1

Spatially homogeneous
evolution when z1 = 0

Spatially homogeneous
equilibria retained

Eigenvalues about these
equilibria are modified

λ1 = λ0 −
π2D

ℓ2
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Bifurcation

Change in sign of modified eigenvalue, λ1 = λ0 −
π2D

ℓ2
, identifies a

critical length where SIM origin changes character

Bifurcation occurs at R2

equilibrium

π2D

ℓ2
= λ0 = 7321.5 s−1

ℓ = 1.04 mm

Diffusion-corrected SIM origin
shifts to bifurcated branches
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Locus of roots near R2

Bold branches are saddles; dashed branch is source
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

η0 =
αz0

√

1 + α2z2
0 + α2z2

1

η1 =
αz1

√

1 + α2z2
0 + α2z2

1
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

η0 =
αz0

√

1 + α2z2
0 + α2z2
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Zel’dovich Mechanism – Isothermal

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

N = 5 species

J = 2 reactions

L = 3 constraints

N − L = 2 reduced variables
z1 = zNO, z2 = zN

Isochoric, ρ = 1.2002 g/cm3

Isothermal, T = 4000 K

Bimolecular, isobaric,
P = 1.6629 × 106 dyne/cm2 =
1.64 atm

Partial differential equation governing evolution

∂z1

∂t
= 250−9.97×104z1+1.16×107z2−3.22×109z1z2+6.99×108z2

2 + D
∂2z1

∂x2

∂z2

∂t
= 250+8.47×104z1−1.17×107z2−1.84×109z1z2−6.98×108z2

2 + D
∂2z2

∂x2
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Zel’dovich Mechanism – Isothermal

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

N = 5 species

J = 2 reactions

L = 3 constraints

N − L = 2 reduced variables
z1 = zNO, z2 = zN

Isochoric, ρ = 1.2002 g/cm3

Isothermal, T = 4000 K

Bimolecular, isobaric,
P = 1.6629 × 106 dyne/cm2 =
1.64 atm

Spatially homogeneous evolution equations – second order polynomials.

dz1,0

dt
= 250−9.97×104z1,0+1.16×107z2,0−3.22×109z1,0z2,0+6.99×108z2

2,0

dz2,0

dt
= 250+8.47×104z1,0−1.17×107z2,0−1.84×109z1,0z2,0−6.98×108z2

2,0
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Spatially Homogeneous Isothermal Phase Space

Identify equilibria

Characterize equilibria
by eigenvalues of their
Jacobian matrix

Classify time scales as
fast and slow

Identify SIM as a
heteroclinic orbit from
saddle to sink
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Spatially Homogeneous Isothermal Phase Space

Identify equilibria

Characterize equilibria
by eigenvalues of their
Jacobian matrix

Classify time scales as
fast and slow

Identify SIM as a
heteroclinic orbit from
saddle to sink
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Diffusion-Correction – Galerkin Projection

First diffusion mode adds
modified time scale

Positive eigenvalue identifies
critical length scale
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Bifurcation occurs at this
length scale

Let us examine a length below
this critical length scale,
ℓ = 17 µm

J. Mengers Notre Dame SIM Reactive-Diffusive July 21, 2011 18 / 26



Diffusion-Correction Isothermal Phase Space
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Diffusion-Correction Isothermal Evolution
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Two additional fast time scales from diffusion

Spatially inhomogeneous amplitudes decay earlier than either
reaction time scale
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Zel’dovich Mechanism – Adiabatic

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

N = 5 species

J = 2 reactions

L = 3 constraints

N − L = 2 reduced variables
z1 = zNO, z2 = zN

T = T (z1, z2)

Isobaric,
P = 1.6629 × 106 dyne/cm2

= 1.64 atm

Adiabatic,
h = 9.0376 × 10−10 erg/g
chosen to keep chemical
equilibrium at same point

Evolution equations highly nonlinear due to temperature-dependance
in exponentials
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Isothermal Equilibria as a Function of Temperature

Equilibria of adiabatic system
difficult to identify

Find isothermal equilibria for
various temperatures
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Adiabatic equilibria where
enthalpy constraint is met

Method is not exhaustive
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Spatially Homogeneous Adiabatic Phase Space
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Equilibria and dynamics remain similar to isothermal case

SIM is heteroclinic orbit connecting analogous points
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Spatially Homogeneous Adiabatic Phase Space
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Spatially Homogeneous Adiabatic Phase Space
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Spatially Homogeneous Adiabatic Evolution
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Species and temperature evolution exhibit fast and slow time
scales, consistent with equilibrium eigenvalues

Adiabatic reactive-diffusive systems have yet to be analyzed
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Conclusions

The SIM isolates the slowest dynamics, making it ideal for a
reduction technique

A critical length scale has been identified where the diffusion time
scale matches a reaction time scale; at this length a bifurcation
occurs that affects the slow dynamics of the system

For sufficiently short length scales, diffusion time scales are faster
than reaction time scales, and the system dynamics are dominated
by reaction

When lengths are near or above the critical length, diffusion plays
a more important role

Extension of SIM to spatially homogeneous adiabatic systems is
shown to be feasible

J. Mengers Notre Dame SIM Reactive-Diffusive July 21, 2011 25 / 26



Acknowledgments

Partial support provided by NSF Grant No. CBET-0650843,

Notre Dame ACMS Department Fellowship, and SIAM travel grant

J. Mengers Notre Dame SIM Reactive-Diffusive July 21, 2011 26 / 26


	Outline
	Motivation and Background
	Model
	Results
	Oxygen Dissociation
	Zel'dovich Mechanism

	Conclusions

