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• AIAA Guide (AIAA G-077), originally published in 1998, was the first 
engineering standards document available to engineering community for 
verification and validation (V&V) of simulations. 

• AIAA Committee on Standards in CFD is currently updating the AIAA Guide 
to describe the V&V concepts, methods, and practices in the broader 
context of predictive capability and uncertainty quantification (UQ) 

• The goal of the updated AIAA Guide (Guide Update) is to provide a 
foundation for understanding and addressing major issues and concepts in 
predictive CFD. 

• In practice, it is envisioned that the AIAA Guide Update will educate and 
inform software and methods developers, analysts, technical management 
and decision-makers on the value of and the need to conduct V&V and UQ 
for modeling and simulation. 



Motivation 
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• Modeling and simulation (M&S) are rapidly increasing because of: 
- Reduced design time and time to new product introduction 
- Stunning reduction in cost of computing resources, including cloud computing 
- Increasing access to M&S – M&S delivered as a service 
- Ability to optimize our systems for a wide range of operating conditions 
- Ability of simulation to reduce required tests for certification 
- Reliance on simulation when testing is not possible 

• We are in the midst of a revolution in practice of engineering: 
- M&S are increasingly relied on for predictive performance, reliability and safety of 

engineering systems. 
- Analysts, designers, project managers, decision makers, who must depend on 

simulation, need practical techniques and methods for assessing simulation 
credibility 

How can we determine if the simulation results can be trusted? 



Background 
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• How can one determine if simulation results can be trusted? 
- Education and training of the technical staff 
- Development and implementation of quality control process for simulation activities, e.g., 

simulation governance 
- Use of verification and validation (V&V) and uncertainty quantification (UQ) procedures 

• There are different types of verification and validation 
- System V&V 
- Software V&V 
- Simulation V&V 

• All have similar concepts: 
- Verification: Am I building the product correctly? 
- Validation: Am I building the correct product? 

In the AIAA Guide Update and this presentation, we will focus on Simulation V&V, 
UQ and Predictive Capability 



Conceptual Framework of Simulation 
Verification, Validation and Predictive Capability 

5 

• Verification and validation are built on the philosophy of skepticism 
- The fundamental procedure of V&V is testing 
- Gathering of the evidence to show that the software and the mathematical 

models are working properly 

• Predictive capability is foretelling the state of the system for 
conditions where no experimental data are available: 

- The approach is built on: 
• The fidelity of the physics modeling embodied in the mathematical model 
• The identification and estimation of all sources of uncertainty for the system conditions 

of interest 

- The procedure is built on uncertainty quantification using non-deterministic 
simulation 

Predictive Capability is the primary reason for simulation 



Formal Definition of Verification 
(U.S. DoD, AIAA, ASME, ASCE) 
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Verification: The process of determining that a computational model 
accurately represents the underlying mathematical model and its solution. 



Two Types of Verification: 
Code Verification 
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• Code verification activities are directed toward: 
- Finding and removing errors in the source code 
- Finding and removing errors in the numerical algorithms 
Primary Result: determination of the observed order of numerical convergence in 
space and time 

• Responsibility for code verification activities: 
- Primary: software developers, whether commercial or within an organization 
- Secondary: simulation analysts, i.e., customers of software developers 

• Status of code verification 
- Commercial software: very few (if any) document the observed order of accuracy of 

their solutions 
- Organizational software: some organizations document the observed order of 

accuracy of their solutions 



Two Types of Verification: 
Solution Verification 
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• Solution verification activities are directed toward: 
- Assuring the correctness of input and output data for the problem of interest 
- Estimating the numerical solution error caused by iteration, discretization, 

statistical sampling, response surface, etc. 
Primary Result: estimation of the discretization error in system response 
quantities (SRQs) of interest 

• Responsibility for solution verification activities: 
- Primary: simulation analysts 
- Secondary: software developers (for implementing estimation tools) 

• Status of solution verification 
- Very few analysts estimate solution error 
- Very few managers/decision makers ask about solution verification 



Formal Definition of Validation 
(U.S. DoD, AIAA, ASME, ASCE) 
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Validation: The process of determining the degree to which a model is 
an accurate representation of the real world from the perspective of 
the intended use of the model. 

(Ref: ASME Guide, 2006) 



Validation Hierarchy 

10 (Ref: AIAA Guide, 1998) 



Contrasting Validation, 
Prediction, and Model Adequacy 

11 (Ref: Oberkampf and Trucano, 2008) 

Model  
Accuracy Assessment  

Model  
Prediction  

(Extrapolation)  

Model  
Adequacy Assessment  



Model Accuracy Assessment, 
Calibration and Prediction 

12 (Ref: Oberkampf and Barone, 2006) 

AIAA Guide Update will recommend 
independence between the 
calibration data and the validation 
data 



Model Accuracy Assessment Relative 
to Experimental Data 

13 (Ref: Oberkampf, Trucano, and Hirsch, 2003) 

• Typical relationship between 
application domain and 
validation domain 

• Typically application domain 
much larger than validation 
domain 

• Model prediction: 
- Model extrapolation to 

intended application 
conditions (outside of the 
validation domain) 



Prediction Far From the Validation Domain: 
Extrapolation 

14 (Ref: Oberkampf and Roy, 2010) 

• Extrapolation can occur in 
terms of: 

- Input parameters 
- Higher levels in validation 

hierarchy 
• Large extrapolations 

commonly involve large 
changes in physics coupling 

• Large extrapolations should be 
based on physics inference, 
not statistical inference 

• Large extrapolations should 
result in large increases in 
uncertainty 



Predictive Capability 
and Uncertainty Quantification 
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(Ref: Oberkampf and Roy, 2010) 



Sources of Uncertainty 
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• Uncertainty in input parameters (model and numerical): 
- Input parameters from the system and surroundings (independently measurable 

versus those that can only be determined by calibration using the model) 
- Uncertainty modeling parameters, e.g., mean and standard deviation 
- Numerical algorithm parameters, e.g., numerical damping parameter 

• Numerical solution error: 
- Round-off error 
- Iterative error 
- Spatial, temporal, and energy partition discretization error 

• Model form uncertainty: 
- Estimated at the conditions for validation experiments 
- Estimated or extrapolated to the application conditions of interest 



Types of Uncertainties 
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• Aleatory uncertainty: uncertainty due to inherent randomness 
- Also referred to as variability and stochastic uncertainty 
 Aleatory uncertainty is a characteristic of the system of interest 
- Examples: 

• Variability in weather conditions, e.g., wind speed, rain fall, temperature 
• Variability in properties of natural and man-made materials 
• Variability in excitation, e.g., frequency and amplitude due to earthquakes 

• Epistemic uncertainty: uncertainty due to lack of knowledge 
- Also referred to as reducible uncertainty, knowledge uncertainty, and subjective 

uncertainty 
 Epistemic uncertainty is characteristic of our knowledge of the system 
- Examples: 

• Poor understanding of physical phenomena, e.g., fracture in composites 
• Poor understanding of accident scenarios and event/failure trees 
• Model form uncertainty, e.g., two-phase flow model closures 

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006) 



Approaches to Predictive Uncertainty 
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• Bayesian inference (after Kennedy and O’Hagan): 
- Every uncertainty is assumed to be random variable characterized as probability 

distribution 
- If little information is available for an uncertainty, a probability density function (PDF) 

is assumed 
- Emphasis is on: 

• Updating uncertain input parameters using available experimental data 
• Estimating model bias errors, i.e., model form uncertainty 

• Imprecise probability theory: 
- Characterize epistemic uncertainty as an interval-valued quantity 
- Emphasis is on segregating aleatory and epistemic uncertainty 
- Evidence (Dempster-Shafer) theory and probability bounds analysis 

• Use of competing models and model teams 
- Used in Waste Isolation Pilot Plant and Yucca Mountain performance assessments 
- Weather and hurricane tracking models 



Example of a p-Box 
with Various Sources of Uncertainty 

19 (Ref: Roy and Balch, 2012) 

• Prediction of thrust from a 
small rocket motor 

• Uncertain inputs to the 
mathematical model: 

- Total pressure in the 
motor  

- Expansion ratio of the 
nozzle 

• Epistemic uncertainties in the 
simulations are: 

- Model form uncertainty 
- Numerical solution error 



Predictive CFD: Verification, Validation, and 
Uncertainty Quantification of CFD 
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Three components to 
uncertainty 
quantification (UQ) in 
CFD: 
• Numerical 

errors/uncertainty  
(verification) 

• Modeling 
errors/uncertainty 
(validation) 

• Propagation of 
input uncertainty 
 (Ref: Roy and Balch, 2012) 



Concluding Remarks 
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• Code and solution verification must be practiced and improved to ensure 
we are building on solid foundation for simulation 

• Validation is focused on assessing the accuracy of mathematical model vis-
a’-vis experimental measurements 

- Validation experiments are commonly expensive, and they are not easy to conduct 
(even by experienced experimentalists) 

• Predictive capability 
- Is focused on what we have never seen before 
- When we make predictions far from our validation database, we should concentrate 

on capturing total uncertainty 
- We should more widely embrace non-deterministic simulations: 

• This will be computationally expensive 
• Nondeterministic simulations will be at the expense of more complex models of physics 

None of this will be easily accepted (by analysts or decision makers), nor 
will it be inexpensive 


