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Motivation and Background

Detailed kinetics are essential for accurate modeling of reactive
systems.

Reactive systems induce a wide range of spatial and temporal
scales, and subsequently severe stiffness occurs.

The spatial and temporal scales are coupled by the underlying
physics of the problem.

Computational cost for reactive flow simulations increases with the
range of scales present, the number of reactions and species, and
the size of the spatial domain.

Manifold methods provide a potential for computational savings.
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Motivation and Background

Manifold methods are typically spatially homogeneous, yet most
engineering applications require spatial variation.

Diffusion is often modeled with a correction to the spatially
homogeneous methods in the long wavelength limit.

However, for thin regions of flames, reaction is fast relative to
diffusion, and the short wavelength limit is more appropriate.

Al-Khateeb, et al. 2009, Journal of Chemical Physics, studied an
isothermal spatially homogeneous Zel’dovich mechanism and
identified a SIM.

We will employ their model with two key extensions,

Adiabatic, spatially homogeneous system, and
Isothermal system with diffusion.
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Assumptions

Model a system of N species reacting in J reactions with diffusion in
one spatial dimension

Ideal mixture

Calorically perfect

Ideal gases

Constant pressure

Negligible advection

Constant specific heat

Single constant mass
diffusivity

Constant thermal
conductivity
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Balance Laws

Evolution of species and energy

ρ
∂Yi

∂t
+

∂jmi
∂x

= Miω̇i(Yn, T ), for i, n ∈ [1, N ]

ρ
∂h

∂t
+

∂jq

∂x
= 0

Boundary conditions

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ
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∂T
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∣
∣
∣
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=
∂T
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∣
∣
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Initial conditions

Yi(x, t = 0) = Ỹi(x), for i ∈ [1, N ]

T (x, t = 0) = T̃ (x)
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Constitutive Equations

Simple diffusive flux terms

jmi = −ρD
∂Yi

∂x
, for i ∈ [1, N ]

jq = −k
∂T

∂x
+

N∑

i=1

hfi j
m
i

Caloric equation of state

h =
N∑

i=1

Yi

(

cPi(T − T o) + hfi

)

Ideal gas equation of state

ρ =
Po

R̄T

N∑

i=1

Mi

Yi
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Constitutive Equations

Molar production rate

ω̇i =

J∑

j=1

νijrj , for i ∈ [1, N ]

rj = kj

(
N∏

i=1

(
ρYi

Mi

)ν′ij

−
1

Kc
j

N∏

i=1

(
ρYi

Mi

)ν′′ij
)

, for j ∈ [1, J ]

kj = ajT
βj exp

(
−Ēj

R̄T

)

, for j ∈ [1, J ]

Kc
j = exp

(

−
∑N

i=1 ḡ
o
i νij

R̄T

)

, for j ∈ [1, J ]
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Generalized Shvab-Zel’dovich

Certain linear combinations of molar production rate sum to zero,

∂

∂t

(
N∑

i=1

ϕli

Yi

Mi

)

= D
∂2

∂x2

(
N∑

i=1

ϕli

Yi

Mi

)

, for l ∈ [1, L]

In adiabatic systems, when the Lewis number is unity

∂

∂t

(

cP (T − T o) +

N∑

i=1

hfi Yi

)

︸ ︷︷ ︸

h

= D
∂2

∂x2

(

cP (T − T o) +

N∑

i=1

hfi Yi

)

︸ ︷︷ ︸

h

If initially spatially homogeneous, these PDEs can be integrated

N∑

i=1

ϕli

Yi

Mi

=

N∑

i=1

ϕli

Ỹi

Mi

, for l ∈ [1, L]

cP (T − T o) +

N∑

i=1

hfi Yi = cP (T̃ − T o) +

N∑

i=1

hfi Ỹi
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Reduced Variables

The L species algebraic constraints can be used to reduce N PDEs
to N − L PDEs

Transform to specific mole concentrations

zi =
Yi

Mi

, for i ∈ [1, N − L]

Evolution of remaining L species and temperature are coupled to
these reduced variables by the algebraic constraints

∂zi
∂t

=
ω̇(zn, T )

ρ
+D

∂2zi
∂x2

, for i, n ∈ [1, N − L]

T =







T̃ , if isothermal

h−
∑N

i=1 ẑi(zn)h̄
f
i

∑N
i=1 ẑi(zn)c̄Pi

+ T o, if adiabatic
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Galerkin Reduction to ODEs

Assume a spectral decomposition

zi(x, t) =
∞∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L]

Orthogonal basis functions, φm(x), are eigenfunctions of diffusive
operator that match boundary conditions

φm(x) = cos
(mπx

ℓ

)

, for m ∈ [0,∞)

Finite system of ODEs for amplitude evolution are recovered by
taking the inner product with φn, and truncated at M

dzi,m
dt

=
〈φm, ω̇i (

∑
∞

m=0 zi,nφn)〉

〈φm, φm〉
︸ ︷︷ ︸

ω̇i,m

−
m2π2D

ℓ2
︸ ︷︷ ︸

m2

τD

zi,m,
for i ∈ [1, N − L],
and m ∈ [0,M ]

Diffusion time scale defined as τD ≡
ℓ2

π2D
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Example Problem

Zel’dovich reaction mechanism

N +NO ⇌ N2 +O

N +O2 ⇌ NO +O

N = 5 species

J = 2 reactions

L = 3 constraints

N − L = 2 reduced variables
z1 = zNO, z2 = zN

Isobaric, P = 1.6629 bar

We examine two limits:

Isothermal

T = 4000 K
Bimolecular, isochoric

Adiabatic

h = 9.0376× 1010 erg/g
Enthalpy chosen such that
physical equilibrium is at
T = 4000 K
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Spatially Homogeneous Isothermal Phase Space

Identify equilibria

Characterize equilibria
by eigenvalues of their
Jacobian matrix
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∂zj
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reciprocal of
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Spatially Homogeneous Isothermal Phase Space
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Spatially Homogeneous Isothermal Phase Space
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Spatially Homogeneous Isothermal Phase Space
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Spatially Homogeneous Isothermal Evolution

Fast and slow time
scales apparent

Observed time
scales correspond to
reciprocal of
equilibrium
eigenvalues

Fast – evolution
toward SIM

Slow – evolution
along SIM toward
equilibrium
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Spatially Homogeneous Adiabatic Phase Space
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Spatially Homogeneous Adiabatic Phase Space
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Spatially Homogeneous Adiabatic Evolution
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Again, the fast and slow time scales are consistent with
equilibrium eigenvalues

Now, they are apparent in temperature as well as species evolution
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Spatially Homogeneous Adiabatic Evolution

Adiabatic Isothermal
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Again, the fast and slow time scales are consistent with
equilibrium eigenvalues

Now, they are apparent in temperature as well as species evolution
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Isothermal Diffusion Correction – Galerkin Projection

We now examine the spatially inhomogeneous isothermal case

In the Galerkin projection we find an infinite spectrum of diffusion
modified eigenvalues

λi,m = λi −
m2

τD
, for i ∈ [1, N − L], and m ∈ [0,∞)

Recall that the diffusion time scale is related to the length scale

τD =
ℓ2

π2D

For any given τD, truncation at a sufficiently large M is necessary
to fully resolve the spatial and temporal scale coupling
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Galerkin Projection – Time Scales

Infinite spectrum of
diffusion modified
eigenvalues

For fast diffusion
time scales truncate
at M = 1 is
adequate
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Galerkin Projection – Time Scales

Infinite spectrum of
diffusion modified
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Diffusion Correction Isothermal Phase Space
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Diffusion Correction Isothermal Evolution
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Two additional fast time scales from diffusion

Spatially inhomogeneous amplitudes decay earlier than either
reaction time scale

Our τD choice with D = 14 cm2/s yields length scale ℓ = 17 µm.
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Conclusions

The SIM isolates the slowest dynamics making it ideal for a
reduction technique.

The SIM is found for a spatially homogeneous adiabatic system,
providing a framework for finding SIMs on other non-isothermal
systems.

For sufficiently short length scales, diffusion time scales are faster
than reaction time scales, and the system dynamics are dominated
by reaction.

When lengths are near or above a critical length where the
diffusion time scale is on the same order as reaction time scales,
diffusion will play a more important role.

In the limit of large length scales, a truncation at M = 1 is
insufficient, and more terms are required to fully resolve the
dynamics.
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