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Model Reduction for Reaction-Diffusion Systems:

Bifurcations in Slow Invariant Manifolds

Joshua D. Mengers∗ and Joseph M. Powers†

University of Notre Dame, Notre Dame, Indiana 46556, USA

Slow invariant manifolds (SIM) are calculated for spatially inhomogeneous closed reac-
tive systems to obtain a model reduction. A simple oxygen dissociation reaction-diffusion
system is evaluated. SIMs are calculated using a robust method of finding the system’s
equilibria and integrating to find heteroclinic orbits. Diffusion effects are obtained by us-
ing a Galerkin method to project the infinite dimensional dynamical system onto a low
dimensional approximate inertial manifold. This projection rigorously accounts for the
coupling of reaction and diffusion processes. An analytic coupling between reaction and
diffusion time scales is shown to be a function of length scale. A critical length scale is
identified where reaction and diffusion time scales are equal. At this critical length scale,
a supercritical pitchfork bifurcation occurs which changes the SIM.

I. Introduction

Accurate modeling of gas phase combustion phenomena is critical in many aerospace applications. These
problems are known to display multi-scale phenomena that cause challenges in their numerical simulation
known as stiffness. Verification requires grid resolution that captures the full range of scales in both space and
time. Large disparity in scales induces simulations that require significant computational effort. A disparity
in temporal scales can be caused by the reaction mechanism alone; the addition of diffusion introduces
additional time scales. Recently, effort has been expended in identification of model reduction techniques
for reactive flows in order to reduce the computational cost, while maintaining as much consistency with the
underlying reactive flow physics as possible. The reviews of Griffiths1 and Lu and Law2 are useful. Most of
the methods described therein address only reaction mechanisms. Some current research that extends these
methods to systems with diffusion is detailed in Singh et al.,3 Ren and Pope,4 Davis,5, 6 Bykov and Maas,7

Lam,8 Adrover et al.,9 and Goussis et al.10

The study of Davis and Skodje11 is particularly relevant. In their study, which was performed on spatially
homogeneous reactive systems, the authors calculate a one-dimensional slow invariant manifold (SIM) by
integrating a heteroclinic orbit between the system’s physical and non-physical equilibria. This technique
has recently been refined by Al-Khateeb et al.12 to examine realistic systems with a larger number of species.
The SIM is a unique trajectory of the dynamical system that describes the long time dynamics of the system’s
evolution efficiently. The SIM has almost exclusively been used for spatially homogeneous isothermal systems.

The present work extends the SIM to reaction-diffusion systems. We first present the governing partial
differential equations (PDEs). We then give reductions via a Galerkin projection method for the system
of PDEs to reduce it onto an approximate inertial manifold (AIM) similar to the technique describe by
Robinson.13 The result is a system of non-linear ordinary differential equations (ODEs). In the limit of small
length scales, these ODEs reduce to the spatially homogeneous problem. For small, finite length scales, we
find correction terms to account for diffusion. We then give results for a simple oxygen dissociation reaction
with diffusion. Our analysis identifies a critical length scale at which a supercritical pitchfork bifurcation
occurs. This bifurcation is shown to change the slow dynamics of the system, and therefore, the SIM.
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II. Model

We model a system of detailed reaction kinetics of N species reacting in J reactions with diffusion in
one spatial dimension. The key assumptions in our model include an ideal mixture of ideal gases, negligible
advection, constant volume, constant temperature, and a single constant mass diffusivity.

II.A. Balance Laws

Our governing species evolution equation is

ρ
∂Yi

∂t
+

∂jm
i

∂x
= Miω̇i(Yn), for i, n ∈ [1, N ], (1)

where for i = 1, . . . , N , Yi, jm
i , ω̇i, and Mi, are mass fraction, diffusive mass flux, molar production rate,

and molecular mass of species i, respectively; ρ is the constant density, and T is the constant temperature.
Our model is on a domain of x ∈ [0, ℓ] and t ∈ [0,∞). The initial conditions are

Yi(x, t = 0) = Ỹi(x), for i ∈ [1, N ], (2)

where the˜denotes the initial state. We select homogeneous Neumann boundary conditions:

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i ∈ [1, N ]. (3)

II.B. Constitutive Equations

To complete the system, a set of constitutive equations is specified. The mass flux is given by a simple Fick’s
law of diffusion,

jm
i = −ρD∂Yi

∂x
, (4)

where D is the constant mass diffusivity. Thus, our homogeneous boundary conditions result in no diffusive
mass flux at either boundary. The pressure, P , is given by the ideal gas equation of state for a mixture
which obeys Dalton’s law:

P = ρR̄T

(
N∑

i=1

Mi

Yi

)−1

, (5)

where R̄ = 8.314× 107 erg/(mol K) is the universal gas constant. The reaction source terms are

ω̇i =

J∑

j=1

νijrj , for i ∈ [1, N ], (6)

rj = kj

(
N∏

i=1

(
ρYi

Mi

)ν′

ij

− 1

Kc
j

N∏

i=1

(
ρYi

Mi

)ν′′

ij

)

, for j ∈ [1, J ], (7)

kj = ajT
βj exp

(−Ēj

R̄T

)

, for j ∈ [1, J ], (8)

Kc
j =

(
Po

R̄T

)P

N
i=1

νij

exp

(

−
∑N

i=1 ḡo
i νij

R̄T

)

, for j ∈ [1, J ], (9)

where for j = 1, . . . , J , rj , kj , and Kc
j are the reaction rate, Arrhenius rate, and equilibrium constant of

reaction j, respectively. The reaction-species coefficient matrix, νij ≡ ν′′

ij − ν′

ij , is of dimension N × J and
is segregated into forward, ν′

ij , and reverse, ν′′

ij , reactions. Eqs. (1-9) form a complete set of equations.

II.C. Model Reduction

Here we describe a series of reductions of Eqs. (1-9).
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II.C.1. Generalized Shvab-Zel’dovich

We can further simplify the system using reductions similar to those described by Lam and Bellan,14 who
label them as generalized Shvab-Zel’dovich relations. We construct a matrix ϕli of dimension L× N , where
the L row vectors span the left null space of matrix νij :

N∑

i=1

ϕliνij = 0, for l ∈ [1, L], and j ∈ [1, J ]. (10)

A good choice for ϕli is the stoichiometric coefficient matrix because the stoichiometric constraints reflect
the linear dependencies on the system. Operating on Eq. (6) with ϕli and summing on i, we get

N∑

i=1

ϕli

J∑

j=1

νijrj =

J∑

j=1

rj

N∑

i=1

ϕliνij

︸ ︷︷ ︸

=0

, for l ∈ [1, L], (11)

therefore
N∑

i=1

ϕliω̇i = 0, for l ∈ [1, L]. (12)

With this simplification, we can apply the operator ϕli on Eq. (1), use the diffusive mass flux from Eq. (4),
and sum over all species to obtain

∂

∂t

(
N∑

i=1

ϕli

Yi

Mi

)

−D ∂2

∂x2

(
N∑

i=1

ϕli

Yi

Mi

)

= 0, for l ∈ [1, L]. (13)

If the initial conditions are spatially homogeneous in the quantity

N∑

i=1

ϕli

Yi

Mi

, for l ∈ [1, L], (14)

and there are no perturbations from the boundary conditions, then Eq. (13) can be integrated to yield

N∑

i=1

ϕli

Yi

Mi

=

N∑

i=1

ϕli

Ỹi

Mi

, for l ∈ [1, L], (15)

which is a set of L algebraic relations for Yi. This suggests that we need not solve for the nonlinear dynamics
of all N species, but can focus attention on N − L species and use Eq. (15) to determine the dynamics of
the remaining ones. Note that each individual Yi(x) need not be spatially homogeneous, only the values of
the constraints defined in Eq. (14). Each row vector of ϕli can be correlated to a physical constraint on our
system (i.e. the conservation of elements).

II.C.2. Transformation to Reduced Variables

Let us now transform the mass fractions into specific mole concentrations, ẑi, where

ẑi ≡
Yi

Mi

, for i ∈ [1, N ]. (16)

We can use the constraints in Eq. (15) to obtain a set of reduced variables. We choose the first N −L species
as our reduced variables,

zi = ẑi, for i ∈ [1, N − L]. (17)

We then couple the values of ẑi for i ∈ [1, N ] to the values of zi by the linear relation

ẑi(x, t) = ži + ν̂inzn(x, t), for i ∈ [1, N ] and n ∈ [1, N − L], (18)
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where ži are the values of specific mole concentration when zn = 0 for all n ∈ [1, N − L], and ν̂in is a
coefficient matrix of dimension N × (N −L) that couples the variations in zn to ẑi. We define ν̂in to be a full

rank matrix that spans the column space of νij , where νij need not be full rank. Therefore,
∑N

i=1 ϕliν̂in = 0
for l ∈ [1, L], and n ∈ [1, N − L]. This reduction is not unique, and the following is a technique to obtain
ν̂in: reduce the transpose of the νij matrix to a row-echelon form, truncate the final J − (N − L) rows of
zeros in this echelon form, and take the transpose of this truncation to form ν̂in. In this construction of ν̂in,
the first N − L rows form a sub-matrix which is an (N − L) × (N − L) identity matrix, indicating that the
reduced variables are the first N − L species.

Operating ϕli on Eq. (1), substituting Eq. (16) for mass fraction, and summing on i species, yields the
same L constraints given in Eq. (15). The remaining N −L ODEs are the governing equations in the reduced
variables, which are

∂zi

∂t
=

ω̇i(zn)

ρ
+ D∂2zi

∂x2
, for i, n ∈ [1, N − L], (19)

where ω̇i is now only a function of the reduced variables. For this system we admit spatial variations in each
reduced variable; however the species constraints given in Eq. (15) remain spatially homogeneous.

II.C.3. Galerkin Reduction to ODEs

To analyze Eq. (19), we apply a Galerkin projection onto an AIM.13 To accomplish this, we assume a spectral
decomposition of

zi(x, t) =

∞∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L], (20)

where zi,m(t) is the mth time-dependent amplitude associated with species i, and φm(x) are corresponding
basis functions which we select. This projection is only in the reduced variables; our constraints, which must
be constant in space, govern the evolution of the remaining species. We choose φm(x) as the eigenfunctions
of the diffusion operator that match the boundary conditions. This reduces to the eigenvalue problem,
∂2/∂x2 φm = −µ2

m φm, whose solution is the complete basis

φm = cos
(mπx

ℓ

)

, for m ∈ [0,∞). (21)

These basis functions are orthogonal, <φm, φn> = 0, n 6= m, and their eigenvalues are real, given by
µm = mπ/ℓ. By substituting Eq. (20) into Eq. (19), taking the inner product with each basis function, φn,
and taking advantage of the orthogonality of the basis functions, we obtain an infinite system of ODEs for
the evolution of the amplitudes:

dzi,m

dt
=

<φm, ω̇i(
∑∞

n=0 zi,nφn)/ρ>

<φm, φm>
−Dµ2

mzi,m, for i ∈ [1, N − L], and m ∈ [0,∞), (22)

where the initial conditions of the amplitudes are given by

z̃i,m =
<φm, Ỹi/Mi>

<φm, φm>
, for i ∈ [1, N − L], and m ∈ [0,∞). (23)
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For our choice of basis functions, <φ0, φ0> = ℓ and <φm, φm> = ℓ/2 for m ≥ 1. This leaves the system of
ODEs as

dzi,0

dt
=

1

ℓ

∫ ℓ

0

ω̇i(zn(x, t))

ρ
dx

︸ ︷︷ ︸

≡ω̇i,0

, for i, n ∈ [1, N − L], (24)

zi,0(0) = z̃i,0 =
1

ℓMi

∫ ℓ

0

Ỹi(x) dx, for i ∈ [1, N − L], (25)

dzi,m

dt
=

2

ℓ

∫ ℓ

0

ω̇(zn(x, t))

ρ
cos
(mπx

ℓ

)

dx

︸ ︷︷ ︸

≡ω̇i,m

−π2m2D
ℓ2

zi,m,

for i, n ∈ [1, N − L], and m ∈ [1,∞), (26)

zi,m(0) = z̃i,m =
2

ℓMi

∫ ℓ

0

Ỹi(x) cos
(mπx

ℓ

)

dx, for i ∈ [1, N − L], and m ∈ [1,∞). (27)

For small ℓ and m ≥ 1, the diffusion term dominates the reaction term, which makes the m ≥ 1 amplitudes
decay rapidly. The integration of the ω̇i,m terms from Eqs. (24) and (26) can be performed analytically using
trigonometric identities since our molar production rates are polynomial and our basis functions are cosines.

Truncating at a finite M reduces the infinite system of ODEs in Eqs. (24) and (26) to the system of
(M + 1)(N − L) ODEs,

dzi,m

dt
= ω̇i,m − m2π2D

ℓ2
zi,m, for i ∈ [1, N − L], and m ∈ [0, M ], (28)

zi,m(0) = z̃i,m, for i ∈ [1, N − L], and m ∈ [0, M ]. (29)

For very small ℓ, a truncation at M = 0 is appropriate in which case Eqs. (28) and (29) reduce to a spatially
homogeneous system,

dzi

dt
= ω̇i(zn, T ), for i, n ∈ [1, N − L], (30)

zi(0) = z̃i, for i, n ∈ [1, N − L]. (31)

For this case π2D/ℓ2 is large, meaning that the diffusion term will dominate the reaction term for any m > 0.
This will make the diffusion much faster than reaction, all spatial inhomogeneities equilibrate quickly, and a
spatially homogeneous system will be recovered.

III. Oxygen Dissociation Reaction Mechanism

We evaluate the oxygen dissociation reaction mechanism,

O2 + M ⇌ O + O + M, (32)

which is extracted from Miller et al.,15 whose Arrhenius rate constants are a = 1.85×1011 cm3/(mol s
√

K),
β = 0.5, and Ē = 4.0009× 1012 erg/mol. This system has N = 2 species and J = 1 reactions. Conservation
of elements yields L = 1 algebraic constraint that allows the system to be reduced to N − L = 1 reduced
variable; we choose to evaluate the specific moles of O as z; the evolution of O2, identified as ẑ2, is coupled
to the evolution of z by the algebraic constraint. Note here that we have dropped the i subscript in our z
notation for simplicity. This leaves us with the reaction-species coefficient, species constraint, and species
reduction matrices as

νij =

[

2

−1

]

, ϕli =
[

1 2
]

, ν̂ij =

[

1

− 1
2

]

, (33)

respectively. For this system νij , dimension N ×J , happens to be full rank and therefore the same dimension
as ν̂ij , dimension N × (N − L); this is not generally the case. The system is taken to be isochoric at
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ρ = 1.6×10−4 g/cm3 and isothermal at T = 5000 K. The species’ Gibbs free energy is obtained directly from
the polynomial fit in the CHEMKIN thermodynamics database16 which yields ḡo

O = −7.53951× 1012 erg/mol,
and ḡo

O2
= −1.34636× 1013 erg/mol. The constraints form the following algebraic relationships for the full

species concentrations as functions of reduced species

[

ẑ1(x, t)

ẑ2(x, t)

]

=

[

0

3.125 × 10−2

]

mol/g +

[

1

− 1
2

]

z(x, t). (34)

IV. Results and Discussion

IV.A. Spatially Homogeneous

We start by examining the spatially homogeneous (M = 0) system, which is governed by the equation

dz

dt
=
(

249.841
g

mol s

)

−
(

74734.8
mol

g s

)

z2 −
(

172406
mol2

g2 s

)

z3. (35)

The SIM analysis is trivial because the spatially homogeneous system is one-dimensional; nevertheless, we
proceed to find the degenerate one-dimensional SIM for this system as it proves useful to the spatially
inhomogeneous analysis. To identify the branches of the SIM, we first must find the system’s equilibria via
an algebraic method and then characterize these equilibria as sources or sinks using a local linear analysis.
We identify three finite equilibria, listed here with the eigenvalue of their Jacobian, which is the slope for
our one-dimensional example,

zR1 = 0.054495 mol/g,

zR2 = −0.0625 mol/g,

zR3 = −0.425475 mol/g,

λR1 = −9681.33 s−1, (36)

λR2 = 7321.46 s−1, (37)

λR3 = −30036.2 s−1. (38)

Here we note that only a portion of the domain, z ∈ [0 mol/g, 0.0625 mol/g], is physically realizable. The
equilibrium R1 is the physical equilibrium sink, while the nonphysical R2 and R3 are a source and a sink,
respectively. The SIM is calculated by integrating a heteroclinic orbit between a nonphysical equilibrium
with one positive eigenvalue and the physical sink equilibrium. One branch of the SIM is the portion of
the domain between R2 and R1, while the other branch is located between R1 and an equilibrium source
located at z = +∞;11, 12 the remainder of our analysis will focus on the former branch. A plot of ω̇(z) in
Fig. 1 shows these equilibria and their slopes (eigenvalues of their Jacobian) as well as the branch of the
SIM, shown in red.

-0.4 -0.3 -0.2 -0.1 0.1

-1500

-1000

-500

500

SIM

R3
R2 R1

ω̇ (mol/g/s)

z
(m

ol
/
g
)

Figure 1. Spatially homogeneous molar production rate as a function of specific moles.

IV.B. Diffusion Correction

We next examine a spatially inhomogeneous system to evaluate changes in the SIM for systems with small
length scale, therefore fast diffusion time scale. Because our length scale is small, we can maintain full
resolution of the spatio-temporal dynamics and still truncate at M = 1. Under this truncation, the evolution
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equations, Eq. (28), for the oxygen dissociation system become

dz0

dt
=

(

249.841
g

mol s

)

−
(

74734.8
mol

g s

)(

z2
0 +

z2
1

2

)

−
(

172406
mol2

g2 s

)(

z3
0 +

3z0z
2
1

2

)

, (39)

dz1

dt
= −

(

74734.8
mol

g s

)

2z0z1 −
(

172406
mol2

g2 s

)(

3z2
0z1 +

3z3
1

4

)

− π2D
ℓ2

z1, (40)

where the diffusion coefficient D = 8.1 cm2/s is approximated from an average of the ordinary multicom-
ponent diffusion coefficients in the CHEMKIN TRANSPORT database,17 and the length scale, ℓ, is left as a free
parameter at this stage.

We note that the time evolution of the z0 term, Eq. (39), remains identical to the spatially homogeneous
evolution when z1 = 0, and the time evolution of the z1 term, Eq. (40), is zero when z1 = 0. This means that
the entire spatially homogeneous phase space, including the spatially homogeneous equilibria, remains as a
subspace in the diffusion-modified system’s phase space. We note here that because of a physical symmetry
in the system (cos(πx/ℓ) behaves the same as − cos(πx/ℓ)) the dynamics of −z1 are the mirror image of z1.

The eigenvalues of the Jacobian linearized about these spatially homogeneous equilibria are modified in
the reaction-diffusion system such that they can be described analytically. The original spatially homoge-
neous eigenvalue is retained and an additional diffusion-modified eigenvalue is given by

λ1 = λ0 −
π2D
ℓ2

, (41)

where λ0 is the eigenvalue of the spatially homogeneous equilibria. This means that the additional diffusion-
modified modes at the spatially homogeneous equilibria are always more negative, or more stable.

We now define local time scales as the reciprocal of the eigenvalues,

τm =
1

λm

, for m ∈ [0, 1], (42)

and a diffusion time scale is given by

τD =
ℓ2

π2D . (43)

The spatially homogeneous time scale and eigenvalue, τ0 and λ0, correlate to the dynamics of reaction only,
while the diffusion-modified time scale and eigenvalue, τ1 and λ1, correlate to the coupled reaction-diffusion
dynamics.

In Fig. 2, we see the time scale for the spatially homogeneous equilibria R1 and R2 as a function of ℓ.
We see that the reaction-only time scales (solid lines) remain constant, independent of ℓ, while the diffusion-

0.02 0.05 0.1 0.2

10
- 5

10
- 4

0.001

2

1

λ0 R1

λ0 R2

λ1 R1

λ1 R2

π2
D

ℓ2

τ (s)

ℓ (cm)

Figure 2. Local time scales in the neighborhood of the equilibria.
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modified time scales (dashed lines) approach the reaction time scale for long length scales and the diffusion
time scale (dotted line) for short length scales. There is a transition region over the length scales where the
reaction and diffusion time scales are approximately the same value, which occurs for ℓ ∼

√
Dτ0. For R1, since

the reaction eigenvalue is negative, the diffusion-modified time scale gradually shifts between reaction and
diffusion; however, for R2 there is a sign change in the diffusion-modified time scale. This sign change occurs
at a critical length scale ℓ = ℓc = 0.104495 cm, where a supercritical pitchfork bifurcation of equilibrium
R2 occurs. This is shown in Fig. 3 where the solid lines indicate branches with saddle characters, and the

0.1035 0.1040 0.1045 0.1050 0.1055 0.1060 0.1065
- 0.03

- 0.02

- 0.01

0.00

0.01

0.02

0.03

z 1
(m

ol
/
g
)

ℓ (cm)

Figure 3. Locus of equilibria near R2.

dashed line indicates a branch with source character. We name the new equilibrium from this bifurcation R′

2

This bifurcation affects the slow dynamics of the system. For ℓ < ℓc the SIM is the spatially homogeneous
axis from R2 to R3; for ℓ > ℓc the SIM is the heteroclinic orbit from the unstable eigenvector of R′

2 to R3.
We now choose to evaluate this system for three length scales: ℓ = {0.0334, 0.105, 0.334} cm. To better

visualize the changes in the dynamics of the entire system, we transform into Poincaré sphere, by the change
of coordinates

η0 =
z0

√

α + z2
0 + z2

1

, (44)

η1 =
z1

√

α + z2
0 + z2

1

, (45)

where α is a scaling parameter to facilitate visualization. This coordinate transform has two inverse trans-
formations; we choose the transformation with positive roots,

z0 =
α η0

√

1 − η2
0 − η2

1

, (46)

z1 =
α η1

√

1 − η2
0 − η2

1

. (47)

Infinity in the z coordinates transforms to the unit circle in the η coordinates. The evolution equations, Eqs.
(39) and (40), transform to

dη0

dt
=

∂η0

∂z0

dz0

dt
+

∂η0

∂z1

dz1

dt
, (48)

dη1

dt
=

∂η1

∂z0

dz0

dt
+

∂η1

∂z1

dz1

dt
. (49)

Because the dynamics of the system are symmetric about the z0 axis, they are subsequently symmetric about
the η0 axis. For this reason we only display η1 ≥ 0.
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We see in Fig. 4 the Poincaré phase space (α = 0.0625) for the three length scales. In this figure the black
dots are equilibria, the gray triangle is the physical domain (where the concentrations of both species are
positive) and the hashed region in the left of the of the plots are outside of the physical equilibrium’s basin of
attraction. In Fig. 4a we see the dynamics for ℓ = 0.0334 cm < ℓc; here we see the green dashed trajectories

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SIM

η0

η 1

(a) ℓ = 0.0334 cm

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

SIM

η0

η 1

(b) ℓ = 0.105 cm

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SIM

η0

η 1

(c) ℓ = 0.334 cm

Figure 4. Poincaré sphere map for positive η1 at various length scales.

collapse to the red SIM, which is the spatially homogeneous axis. This displays the fact that the diffusion
time scale for this length is faster than the reaction time scale; therefore, the spatial inhomogeneities decay
rapidly due to diffusion, and the reaction governs the slow dynamics. In Fig. 4b we see the dynamics for
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ℓ = 0.105 cm, which is marginally larger than ℓc. For this length we see the effects of the bifurcation, and
now the SIM emanates from the unstable eigenvector of R′

2. The green trajectories now do not collapse to
the spatially homogeneous axis, instead the similar reaction and diffusion time scales bring the trajectories
to the equilibrium with η0 and η1 decaying at approximately equal rates. We also note that in Fig. 4b
the trajectories do not collapse to the SIM as they did in Fig. 4a. In Fig. 4c we see the dynamics for
ℓ = 0.334 cm > ℓc; here the SIM still emanates from the unstable eigenvector of R′

2 and the bifurcation has
progressed further from the spatially homogeneous axis. The green trajectories now actually diverge from
the spatially homogeneous axis. This is caused by the nonlinear effects of fast reaction; the slower diffusion
doesn’t play a large roll in the evolution of this system. We note that in Fig. 4c the trajectories again collapse
onto the SIM more than they did in Fig. 4b, but still not as much as they did in Fig. 4a.

V. Conclusions

Our evaluation of the dynamics of reaction-diffusion systems has identified an analytic scaling between
reaction and diffusion time scales that is a function of length scale. This scaling identified a critical length
scale, where the reaction and diffusion time scales are equal. The slow dynamics of the system for length scales
smaller than the critical length are governed by spatially homogeneous reaction dynamics. At the critical
length scale a supercritical pitchfork bifurcation occurs. For length scales longer than the critical length,
this bifurcation changes the slow dynamics of the system, and a new SIM is identified that emanates from
the unstable eigenvector of the bifurcated equilibrium. Finally, the present results, though limited to highly
restricted reaction-diffusion models, demonstrate some of the daunting challenges facing the combustion
modeling community who wish to use models which have been rationally reduced. At this point, it is likely
that insights can be gained for low-dimensional systems; extension to higher dimension systems, be it via
addition of more detailed reactions or more spatially inhomogeneous modes, will rapidly overwhelm most
present analysis strategies.
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