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Application of the Slow Invariant Manifold Correction

for Diffusion

Joshua D. Mengers∗ and Joseph M. Powers†

University of Notre Dame, Notre Dame, Indiana 46556, USA

Slow invariant manifolds (SIM) are calculated for spatially inhomogeneous closed re-
active systems to obtain a model reduction. A robust method of constructing a one-
dimensional SIM by calculating equilibria and then integrating along heteroclinic orbits
is extended to two new cases: i) adiabatic systems, and ii) spatially inhomogeneous sys-
tems with simple diffusion. The adiabatic condition can be modeled as a new algebraic
constraint in the limit of unity Lewis number. Diffusion effects on the SIM are exam-
ined for systems with small characteristic lengths. A diffusion correction is obtained by
using a Galerkin method to project the infinite dimensional dynamical system onto a low
dimensional approximate inertial manifold. This projection rigorously accounts for the
coupling of reaction and diffusion processes, and an analytic length and time scale coupling
is shown. An example is demonstrated on a system of NO production which highlights the
correlation between an established isothermal spatially homogeneous technique and the
new techniques.

I. Introduction

Reactive flow problems are known to display multi-scale phenomena that cause challenges in numerical
simulations. Verification requires grid resolution that captures the full range of scales in both space and
time. Large disparity in scales induces simulations that require significant computational effort. A disparity
in temporal scales can be caused by the reaction mechanism alone; the addition of diffusion introduces
additional time scales. Recently, effort has been expended in identification of model reduction techniques
for reactive flows in order to reduce the computational cost, while maintaining as much consistency with the
underlying reactive flow physics as possible. The reviews of Griffiths1 and Lu and Law2 are useful. Most of
the methods described therein address only reaction mechanisms. Some current research that extends these
methods to systems with diffusion are Singh et al.,3 Ren and Pope,4 Davis,5, 6 Bykov and Maas,7 Lam,8

Adrover et al.,9 and Goussis et al.10

The study of Davis and Skodje11 is particularly relevant. In their study, which was performed on spatially
homogeneous reactive systems, the authors calculate a one-dimensional slow invariant manifold (SIM) by
integrating a heteroclinic orbit between the system’s physical and non-physical equilibria. This technique
has recently been refined by Al-Khateeb et al.12 to examine realistic systems with a larger number of species.
The SIM is a unique trajectory of the dynamical system that describes the long time dynamics of the system’s
evolution efficiently. The SIM has almost exclusively been used for spatially homogeneous isothermal systems.

The present work contains two key extensions in which we examine: i) adiabatic systems, and ii) spatially
inhomogeneous systems. We first present the governing partial differential equations (PDEs) for adiabatic
systems with diffusion. We then give reductions via a Galerkin projection method for the system of PDEs
to reduce it to a small system of non-linear ordinary differential equations (ODEs). In the limit of small
length scales these ODEs reduce to the spatially homogeneous problem. For small, finite length scales, we
find correction terms to account for diffusion. We then give results for the spatially homogeneous limit of
isothermal and adiabatic cases. These are followed by spatially inhomogeneous isothermal results. Each of
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these are shown for the same Zel’dovich reaction mechanism of NO production studied by Al-Khateeb et
al.12

II. Model

We model a system of detailed reaction kinetics of N species reacting in J reactions with diffusion in one
spatial dimension. The key assumptions in our model include an ideal mixture of calorically perfect ideal
gases, constant specific heat, negligible advection, constant pressure, a single constant mass diffusivity, and
a constant thermal conductivity.

II.A. Balance Laws

Our governing species evolution equation is

ρ
∂Yi

∂t
+

∂jm
i

∂x
= Miω̇i(Yn, T ), for i, n ∈ [1, N ], (1)

where for i = 1, . . . , N , Yi, jm
i , ω̇i, and Mi, are mass fraction, diffusive mass flux, molar production rate, and

molecular mass of species i, respectively; ρ is the density, and T is the temperature. The energy equation is

ρ
∂h

∂t
+

∂jq

∂x
= 0, (2)

where h is the enthalpy, and jq is the diffusive energy flux. Our model is on a domain of x ∈ [0, ℓ] and
t ∈ [0,∞). The initial conditions are

Yi(x, t = 0) = Ỹi(x), for i ∈ [1, N ], and T (x, t = 0) = T̃ (x), (3)

where the˜denotes the initial state. We select homogeneous Neumann boundary conditions:

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i ∈ [1, N ], and
∂T

∂x

∣
∣
∣
∣
x=0

=
∂T

∂x

∣
∣
∣
∣
x=ℓ

= 0. (4)

II.B. Constitutive Equations

To complete the system, a set of constitutive equations is specified. The diffusive fluxes are

jm
i = −ρD

∂Yi

∂x
, (5)

jq = −k
∂T

∂x
+

N∑

i=1

hf
i jm

i , (6)

where D is the constant mass diffusivity, k is the constant thermal conductivity, and hf
i is the enthalpy of

formation of species i. Thus, our homogeneous boundary conditions result in no diffusive mass or energy
flux at either boundary. The enthalpy is given by the caloric equation of state,

h =

N∑

i=1

Yi

(

cPi(T − T o) + hf
i

)

, (7)

where cPi is the constant specific heat at constant pressure of species i, and T o = 300 K is the reference
temperature. The density is given by the ideal gas equation of state for a mixture which obeys Dalton’s law:

ρ =
Po

R̄T

N∑

i=1

Mi

Yi
, (8)

where Po is the constant pressure, and R̄ = 8.314 × 107 erg/(mol K) is the universal gas constant.
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The reaction source terms are

ω̇i =

J∑

j=1

νijrj , for i ∈ [1, N ], (9)

rj = kj

(
N∏

i=1

(
ρYi

Mi

)ν′

ij

−
1

Kc
j

N∏

i=1

(
ρYi

Mi

)ν′′

ij

)

, for j ∈ [1, J ], (10)

kj = ajT
βj exp

(
−Ēj

R̄T

)

, for j ∈ [1, J ], (11)

Kc
j = exp

(

−
∑N

i=1 ḡo
i νij

R̄T

)

, for j ∈ [1, J ], (12)

where for j = 1, . . . , J , rj , kj , and Kc
j are the reaction rate, Arrhenius rate, and equilibrium constant of

reaction j, respectively. The reaction-species coefficient matrix, νij ≡ ν′′

ij − ν′

ij , is of dimension N × J and
is segregated into forward, ν′

ij , and reverse, ν′′

ij , reactions. Eqs. (1-12) form a complete set of equations.

II.C. Model Reduction

Here we describe a series of reductions of Eqs. (1-12).

II.C.1. Generalized Shvab-Zel’dovich

We can further simplify the system using reductions similar to those in Lam and Bellan,13 who label them
as generalized Shvab-Zel’dovich relations. We construct a matrix ϕli of dimension L × N , where the L row
vectors span the left null space of matrix νij :

N∑

i=1

ϕliνij = 0, for l ∈ [1, L], and j ∈ [1, J ]. (13)

Operating on Eq. (9) with ϕli and summing on i, we get

N∑

i=1

ϕli

J∑

j=1

νijrj =
J∑

j=1

rj

N∑

i=1

ϕliνij

︸ ︷︷ ︸

=0

, for l ∈ [1, L], (14)

therefore
N∑

i=1

ϕliω̇i = 0, for l ∈ [1, L]. (15)

With this simplification, we can apply the operator ϕli on Eq. (1), use the diffusive mass flux from Eq. (5),
and sum over all species to obtain

∂

∂t

(
N∑

i=1

ϕli
Yi

Mi

)

−D
∂2

∂x2

(
N∑

i=1

ϕli
Yi

Mi

)

= 0, for l ∈ [1, L]. (16)

If the initial conditions are spatially homogeneous in the quantity

N∑

i=1

ϕli
Yi

Mi
, for l ∈ [1, L], (17)

and there are no perturbations from the boundary conditions, then Eq. (16) can be integrated to yield

N∑

i=1

ϕli
Yi

Mi
=

N∑

i=1

ϕli
Ỹi

Mi
, for l ∈ [1, L], (18)
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which is a set of L algebraic relations for Yi. This suggests that we need not solve for the nonlinear dynamics
of all N species, but can focus attention on N −L species and use Eq. (18) to determine the remaining ones.
Note that each individual Yi(x) need not be spatially homogeneous, only the values of the constraints defined
in Eq. (17). Each row vector of ϕli can be correlated to a physical constraint on our system such as the
conservation of elements or the conservation of total moles for systems with purely bimolecular reactions.

We can further simplify the system by casting the energy equation in a related Shvab-Zel’dovich form.
We assume our system has a constant mixture specific heat,

cP =

N∑

i=1

YicPi. (19)

A constant mixture specific heat is typically the result of the assumption of a single temperature-independent
constant specific heat for all species; however, in systems with only bimolecular reactions, a constant mixture
specific heat can also be realized. We evaluate the limit where the Lewis number is unity,

Le ≡
k

ρcPD
= 1. (20)

This demands that mass and energy diffuse at the same rate, which is a reasonable assumption since both
are driven by molecular collisions in gas flames.

Evaluating the time derivative of enthalpy from Eq. (7) yields

ρ
∂h

∂t
= ρcP

∂T

∂t
+ ρ

N∑

i=1

hf
i

∂Yi

∂t
, (21)

and taking the spatial derivative of the diffusive energy flux term from Eq. (6) gives

∂jq

∂x
= −k

∂2T

∂x2
− ρD

N∑

i=1

hf
i

∂2Yi

∂x2
. (22)

We can insert Eqs. (21) and (22) into Eq. (2), cancel like terms, substitute D = k/(ρcP ), and collect the
spatial and temporal derivatives to reduce the energy equation to a heat equation in enthalpy:

∂

∂t

(

cP (T − T o) +
N∑

i=1

hf
i Yi

)

︸ ︷︷ ︸

h

= D
∂2

∂x2

(

cP (T − T o) +
N∑

i=1

hf
i Ti

)

︸ ︷︷ ︸

h

. (23)

If the enthalpy is initially spatially homogeneous, and there are no perturbations at the boundary, then
Eq. (23) can be integrated to form an algebraic relation where enthalpy remains constant in both space
and time. This constraint can be simplified to yield temperature as a function of the mass fractions of the
species,

T =
h −

∑N
i=1 Yih

f
i

cP
+ T o. (24)

II.C.2. Transformation to Reduced Variables

Let us now transform the mass fractions into specific mole concentrations, ẑi, with

ẑi ≡
Yi

Mi
, for i ∈ [1, N ]. (25)

In specific mole variables it becomes more convenient to consider species thermodynamic properties in a
molar basis, denoted by an overbar, while the mixture properties will remain in a mass basis. We can use
the constraints in Eq. (18) to obtain a set of reduced variables. We choose the first N − L species as our
reduced variables,

zi = ẑi, for i ∈ [1, N − L]. (26)
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We then couple the values of ẑi for i ∈ [1, N ] to the values of zi by the linear relation

ẑi(x, t) = ži + ν̂inzn(x, t), for i ∈ [1, N ] and n ∈ [1, N − L], (27)

where ži are the values of specific mole concentration when zn = 0 for all n ∈ [1, N − L], and ν̂in is a
coefficient matrix of dimension N × (N −L) that couples the variations in zn to ẑi. We define ν̂in to be a full

rank matrix that spans the column space of νij , where νij need not be full rank. Therefore,
∑N

i=1 ϕliν̂in = 0
for l ∈ [1, L], and n ∈ [1, N − L]. This reduction is not unique, and the following is a technique to obtain
ν̂in: reduce the transpose of the νij matrix to a row-echelon form, truncate the final J − (N − L) rows of
zeros in this echelon form, and take the transpose of this truncation to form ν̂in. In this construction of ν̂in,
the first N − L rows form a sub-matrix which is an (N − L) × (N − L) identity matrix, indicating that the
reduced variables are the first N − L species.

In this work we will consider two cases: i) the isothermal case, and ii) the adiabatic case. The enthalpy
constraint in Eq. (7) reduces temperature to a rational function of polynomials of the reduced specific moles.
Operating ϕli on Eq. (1), substituting Eq. (25) for mass fraction, and summing on i species, yields the same
L constraints given in Eq. (18). The remaining N − L ODEs are the governing equations in the reduced
variables, which are

∂zi

∂t
=

ω̇i(zn, T )

ρ
+ D

∂2zi

∂x2
, for i, n ∈ [1, N − L], (28)

T =







T̃ , if isothermal,

h −
∑N

i=1 ẑi(zn)h̄f
i

∑N
i=1 ẑi(zn)c̄Pi

+ T o, if adiabatic,
(29)

where there are no spatial variations in the species constraints as well as the temperature or enthalpy. Notice
that ω̇i is now only a function of the reduced variables and temperature.

II.C.3. Galerkin Reduction to ODEs

To analyze Eq. (28), we apply a Galerkin projection onto an approximate inertial manifold (AIM).14 To
accomplish this, we assume a spectral decomposition of

zi(x, t) =
∞∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L], (30)

where zi,m(t) is the mth time-dependent amplitude associated with species i, and φm(x) are the corresponding
basis functions. This projection is only in the reduced variables; our constraints, which must be constant in
space, govern the evolution of the remaining species and temperature. We choose φm as the eigenfunctions
of the diffusion operator, ∂2/∂x2 φm = −µ2

m φm, that match the boundary conditions, which gives us the
complete basis

φm = cos
(mπx

ℓ

)

, for m ∈ [0,∞). (31)

These basis functions are orthogonal, <φm, φn> = 0, n 6= m, and their eigenvalues are real, given by
µm = mπ/ℓ. By substituting Eq. (30) into Eq. (28), taking the inner product with each basis function, φn,
and taking advantage of the orthogonality of the basis functions, we obtain an infinite system of ODEs for
the evolution of the amplitudes

dzi,m

dt
=

<φm, ω̇i(
∑

∞

n=0 zi,nφn)/ρ>

<φm, φm>
−Dµ2

mzi,m, for i ∈ [1, N − L], and m ∈ [0,∞), (32)

where the initial conditions of the amplitudes are given by

z̃i,m =
<φm, Ỹi/Mi>

<φm, φm>
, for i ∈ [1, N − L], and m ∈ [0,∞). (33)
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For our choice of basis functions, <φm, φm> = ℓ for m = 0 and <φm, φm> = ℓ/2 for m ≥ 1. This leaves the
system of ODEs as

dzi,0

dt
=

1

ℓ

∫ ℓ

0

ω̇i(zn(x, t))

ρ
dx

︸ ︷︷ ︸

≡ω̇i,0

, for i, n ∈ [1, N − L], (34)

zi,0(0) = z̃i,0 =
1

ℓMi

∫ ℓ

0

Ỹi(x) dx, for i ∈ [1, N − L], (35)

dzi,m

dt
=

2

ℓ

∫ ℓ

0

ω̇(zn(x, t))

ρ
cos
(mπx

ℓ

)

dx

︸ ︷︷ ︸

≡ω̇i,m

−
π2m2D

ℓ2
zi,m,

for i, n ∈ [1, N − L], and m ∈ [1,∞), (36)

zi,m(0) = z̃i,m =
2

ℓMi

∫ ℓ

0

Ỹi(x) cos
(mπx

ℓ

)

dx, for i ∈ [1, N − L], and m ∈ [1,∞). (37)

For small ℓ and m ≥ 1, the diffusion term dominates the reaction term, which makes the m ≥ 1 amplitudes
decay rapidly. The integration of the ω̇i,m terms from Eqs. (34) and (36) can be performed analytically in
the isothermal case for our simple choice of basis functions; however, for the adiabatic case or more complex
basis functions this integration must be calculated at every time step using numerical quadrature.

We define a diffusion time scale,

τD ≡
ℓ2

π2D
. (38)

Truncating at a finite M reduces the infinite system of ODEs in Eqs. (34) and (36) to the system of
(M + 1)(N − L) ODEs,

dzi,m

dt
= ω̇i,m −

m2

τD
zi,m, for i ∈ [1, N − L], and m ∈ [0, M ], (39)

zi,m(0) = z̃i,m, for i ∈ [1, N − L], and m ∈ [0, M ]. (40)

For very small ℓ, a truncation at M = 0 is appropriate in which case Eq. (28) reduces to a spatially
homogeneous system,

dzi

dt
= ω̇i(zn, T ), for i, n ∈ [1, N − L], (41)

zi(0) = z̃i, for i, n ∈ [1, N − L]. (42)

For this case τD is very small; therefore, the diffusion term will dominate the reaction term. This will make
the diffusion infinitely fast, all spatial inhomogeneities equilibrate in an infinitesimal time, and a spatially
homogeneous system will be recovered.

III. Zel’dovich Reaction Mechanism

We evaluate the Zel’dovich mechanism of NO production similar to the system studied by Al-Khateeb
et al.12 (see Table 1). This system has N = 5 species and J = 2 reactions. Conservation of atomic elements

j Reaction aj βj Ēj

1 N + NO ⇌ N2 + O 2.107 × 1013 0.00 0.0

2 N + O2 ⇌ NO + O 5.839 × 109 1.01 6196

Table 1. The Zel’dovich mechanism for NO production. The units for a are mol/(cm s K), Ē are cal/mol, and β is

dimensionless.
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yields two algebraic constraints, while a third algebraic constraint for conservation of molecules is obtained
since the system is comprised of exclusively bimolecular reactions. This leaves L = 3 species constraints that
allow the system to be reduced to N − L = 2 reduced variables; we choose to evaluate the specific moles of
NO and N as z1 and z2, respectively. The evolution of the three remaining species N2, O, and O2, identified
as ẑ3, ẑ4 and ẑ5, respectively, are coupled to the evolution of z1 and z2 by algebraic constraints. This leaves
us with the reaction-species coefficient, species constraint, and species reduction matrices as

νij =










−1 1

−1 −1

1 0

1 1

0 −1










, ϕli =






1 1 1 1 1

1 1 2 0 0

1 0 0 1 2




 , ν̂ij =










1 0

0 1

− 1
2 − 1

2

0 −1

− 1
2

1
2










, (43)

respectively. For this system νij , dimension N ×J , happens to be full rank and therefore the same dimension
as ν̂ij , dimension N × (N − L); this is not generally the case. For all cases, the system is taken to be
isobaric at Po = 1.6629 bar. The system constraints given by Eq. (18) are set uniform in space with values
that correspond to when all five species consist of 10−3 mol. The constraints form the following algebraic
relationships for the full species concentrations as functions of reduced species










ẑ1(x, t)

ẑ2(x, t)

ẑ3(x, t)

ẑ4(x, t)

ẑ5(x, t)










=










0

0

1.6663 × 10−2

1.6663 × 10−2

8.3317 × 10−3










mol/g +










1 0

0 1

− 1
2 − 1

2

0 −1

− 1
2

1
2










·

[

z1(x, t)

z2(x, t)

]

. (44)

For the isothermal case the temperature is taken to be T = 4000 K; this case also yields an isochoric reaction
with a fixed volume of V = 103 cm3. The species’ Gibbs free energy is obtained directly from the polynomial
fit in the CHEMKIN thermodynamics database.15

For the adiabatic case we shift to a model for Gibbs free energy with a constant specific heat assumption,

ḡo
i = h̄f

i + c̄Pi(T − T o)
︸ ︷︷ ︸

h̄i

−

(

s̄f
i + c̄Pi log

(
T

T o

))

︸ ︷︷ ︸

s̄o
i

T, (45)

where for i = 1, . . . , N , h̄i, s̄f
i , and s̄o

i are the enthalpy, entropy at reference temperature and pressure,
and the entropy at reference pressure for species i, respectively. This change was made in order to maintain
linear thermodynamic properties outside of the temperature range of the CHEMKIN polynomial fit. The values
of c̄Pi, h̄f

i and s̄f
i are calculated using a least squares fit of the CHEMKIN polynomial fits and are listed in

Table 2. For the adiabatic case the enthalpy is chosen to be h = 9.0376× 1010 erg/g, such that the physical
equilibrium remains at T = 4000 K and V = 103 cm3; however, this system is not isochoric, and the volume
changes as the system evolves.

Isothermal Adiabatic

i ḡo
i c̄Pi h̄f

i s̄f
i

1 −9.7276× 1012 3.6774× 108 8.6712× 1011 2.0399× 109

2 −2.7915× 1012 2.1120× 108 4.7223× 1012 1.5274× 109

3 −9.8012× 1012 3.6167× 108 −4.0402× 1010 1.8421× 109

4 −5.3580× 1012 2.1002× 108 2.4922× 1012 1.6130× 109

5 −1.0455× 1012 3.8825× 108 −5.1316× 1010 1.9599× 109

Table 2. Thermodynamic data for the Zel’dovich mechanism. The units for c̄P and s̄f are erg/(mol K), and ḡo and h̄f

are erg/mol.
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IV. Results and Discussion

IV.A. Spatially Homogeneous

IV.A.1. Isothermal System

We start by examining the isothermal system for the spatially homogeneous, M = 0, case, which is governed
by the equations

dz1

dt
= α1 + α2 z1 + α3 z2 + α4 z1 z2 + α5 z2

2 , (46)

dz2

dt
= α6 + α7 z1 + α8 z2 + α9 z1 z2 + α10 z2

2 , (47)

where the system’s coefficients are given in Table 3. To identify the branches of the SIM, we first must

α1 α2 α3 α4 α5

250.5 mol/(g s) −99730 1/s 1.1611× 107 1/s −3.2210× 109 g/(mol s) 6.986 × 108 g/(mol s)

α6 α7 α8 α9 α10

250.5 mol/(g s) 84700 1/s −1.1656× 107 1/s −1.8359× 109 g/(mol s) −6.977× 108 g/(mol s)

Table 3. Coefficients of the isothermal spatially homogeneous Zel’dovich mechanism.

find the system’s equilibria via an algebraic method. Using a local linear analysis, we characterize these
equilibria as sources, saddles, and sinks. Then, we search for heteroclinic orbits that connect the unstable
eigenvector of a saddle equilibrium that has only one positive eigenvalue to the physical equilibrium sink
along the eigenvector associated with its slowest eigenvalue. The saddle equilibria can also be located at
infinity; they can be found using projective space or Poincaré sphere mappings.11, 12

We see from Eqs. (46) and (47) that the isothermal systems’ reaction source terms, ω̇i, are polynomials.
This allows one to use a homotopy continuation technique to identify all of the equilibria of the polynomial
system.16, 17 We find that our system has three finite equilibria, shown as black dots in Fig. 1, including the

SIM

−0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

z1 (mol/g)

z 2
(m

ol
/
g
)

R3R2

R1

I1

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x 10
−5

SIM

x 10
−3

z1 (mol/g)

z 2
(m

ol
/
g
)

R3

R2

(a) (b)

Figure 1. The spatially homogeneous SIM for the isothermal Zel’dovich mechanism.

physical equilibrium sink, labeled R3, at

zi,R3
=
{
3.0474× 10−3, 2.9446× 10−5

}
mol/g. (48)

The Jacobian of the linearized system about this equilibrium has eigenvalues

λi,R3
=
{
−1.7295× 107,−1.9129× 105

}
1/s. (49)
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We associate the reciprocal of each eigenvalue with a timescale of the system, τi = |1/λi|, and therefore label
the first eigenvalue “fast” with τ1 = 5.78 × 10−8 s and the second one “slow” with τ2 = 5.23 × 10−6 s.

To calculate the SIM, we search for a non-physical equilibrium with a saddle character. This system’s
other equilibria include the source, R1, and the saddle, R2. The saddle has a heteroclinic orbit emanating
parallel to its unstable eigenvector that connects to the slow eigenvector of the physical equilibrium; this
trajectory is one branch of the SIM, and is shown in thick red in Fig. 1. The other branch of the SIM
originates at an equilibrium at infinity, labeled I1. Infinite equilibria are beyond the scope of this paper;
more details are available in Davis and Skodje11 and Al-Khateeb et al.12 Fig. 1a shows the entirety of the
physical domain, bounded by a blue dashed line. The gray arrows indicate the magnitude and direction
of change of the state variables in phase space, and the green lines show various trajectories. The thin
black dashed line shows the boundaries of the detailed view in Fig. 1b which shows the branch of the SIM
connecting R2 to R3. The selected trajectories show why the SIM is important as a reduction technique; as
the trajectories evolve, they converge to become exponentially close to the SIM in a finite amount of time.
The brown line in Fig. 1a shows the trajectory associated with the time evolution of species for the case
shown in the time domain in Fig. 2. This case has the initial conditions of z1 = z2 = 8.3317× 10−3 mol/g.
Two time scales are evident in Fig. 2; the fast, which occurs at approximately 10−7 s, is the evolution
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Figure 2. Spatially homogeneous isothermal system evolution of species.

toward the SIM, while the slow, which occurs at approximately 10−5 s, is the evolution along the SIM
toward equilibrium. Notice that these time scales correspond closely to the time scales at equilibrium.

IV.A.2. Adiabatic System

To evaluate an adiabatic system, the technique is the same, except ω̇i now has a variable temperature.
The reaction source term can be shown to be a polynomial of infinite degree, which admits an infinite
number of equilibria and renders the homotopy continuation techniques unable to find the roots of the
system. This presents a problem, since in order to construct the SIM, we must find the saddle equilibria
that connect by heteroclinic orbit to the physical equilibrium sink. The physical equilibrium can be located
by a minimization of thermodynamic potentials, among other methods; the system’s other equilibria are
more difficult to find. The method we employ is to vary the temperature incrementally and solve for the
equilibrium of the isothermal system at each temperature. We then check the enthalpy at each isothermal
equilibrium to see if it matches the adiabatic constraint. This technique does not yield all equilibria of the
system; however, for the systems we have examined, the saddle equilibria from which the SIM originates
migrates only a small distance in phase space.

For our system the physical equilibrium is located at

zi,R′

3
=
{
3.0054× 10−3, 2.9862× 10−5

}
mol/g. (50)

There is a shift of approximately 1.4% in the location of the physical equilibrium from the isothermal case.
This is due to the change in the modeling of the Gibbs free energy.
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The dynamics in the near neighborhood of the equilibrium also change slightly. This can be seen by
evaluating the eigenvalues of the Jacobian matrix, which are now

λi,R′

3
=
{
−1.7628× 107,−2.2181× 105

}
1/s. (51)

Again, we label the first eigenvalue “fast” with τ1 = 5.67 × 10−8 s and the second one “slow” with τ2 =
4.51 × 10−6 s.

To find the SIM of the adiabatic system, we must locate the saddle equilibria from which the SIM origi-
nates. We do this by tracking the three finite equilibria for an isothermal system with varying temperatures
and track the enthalpy of those equilibria. When the enthalpy of the isothermal equilibria matches the
enthalpy constraint on the adiabatic system, the adiabatic system will have an equilibrium at that location
and temperature. This is shown graphically in Fig. 3. Fig. 3a shows the locus of the isothermal equilibria in
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Figure 3. Isothermal equilibria for varying temperatures.

phase space, while Fig. 3b shows the enthalpy of each equilibrium as a function of specified system temper-
ature. We see from Fig. 3a that the equilibria R′

1 and R′

2 shift from their locations in the isothermal system
to new locations in the adiabatic system. Notice in Fig. 3b that the enthalpy of the isothermal equilibria
does not monotonically increase with temperature. This highlights the fact that additional equilibria are
admitted, because the path of each isothermal equilibria could cross the specified enthalpy many more times
as the temperature is varied, yielding additional adiabatic equilibria.

When we evaluate the eigenvalues of the Jacobian of the shifted equilibria, we find that R′

1 and R′

2 retain
their characters as source and saddle, respectively. Also, the heteroclinic orbit from R′

2 along the unstable
eigenvector still connects to R3 along its slow eigenvector, making it one branch of the SIM. The other
branch of the SIM now no longer originates at infinity, but has shifted to originate at the pole P ′

1, which can
be shown to be a first order pole. This pole is located where the line z2 = 0 crosses the line T = 0.

The phase space of the adiabatic system is shown in Fig. 4. In Fig. 4a we see the phase space that
includes the entire physical domain. Here we see the shifted equilibria and both SIM branches, which are
the heteroclinic orbits that connect R′

2 and P ′
1 to R3. Notice the line identified as T = 0 in the upper right

hand corner of the phase space. This is the location in phase space where the enthalpy constraint yields
a zero temperature. To the upper right past this line, the temperatures are negative, and the time rate of
change of the species mole fraction becomes imaginary; because of this we restrict our evaluation to regions
of phase space where T ≥ 0. In Fig. 4b we see an expanded view of the branch of the SIM that connects R′

2

to R3.
An example of the time evolution of species for the adiabatic case, which corresponds to the brown

trajectory in Fig. 4a, is shown in Fig. 5. Again, the initial conditions are z1 = z2 = 8.3317 × 10−3 mol/g,
which now corresponds to a temperature of T = 2156.8 K. The species evolution is shown in Fig. 5a,
while the temperature is shown in Fig. 5b. Again, two time scales are evident in Fig. 5; the evolution
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Figure 4. The spatially homogeneous SIM for the adiabatic Zel’dovich mechanism.
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ẑNO
ẑN
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Figure 5. Evolution of the spatially homogeneous adiabatic system.
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toward the SIM occurs around 10−7 s, which correlates with the fast time scale, and the evolution along the
SIM toward equilibrium, which occurs around 10−5 s, correlates with the slow time scale. The adiabatic
results are compared with the isothermal case, shown in Fig. 2, where each case shows the same initial
species concentrations and equilibria. While there are no major differences in this evolution, we do see that
changing the constraint from isothermal to adiabatic has changed the dynamics, and therefore changed the
paths through phase space.

IV.B. Diffusion Correction

We next examine an isothermal spatially inhomogeneous system to evaluate changes in the SIM for systems
with small correction for fast finite diffusion. To maintain full resolution of the spatio-temporal dynamics
for this choice of M , we restrict our analysis to a sufficiently fast diffusion time scale, or short length scale.

Here we note that the time evolution of the zi,0 term remains identical to the spatially homogeneous
system when zi,m = 0 for all i and all m ≥ 1. This means that the entire spatially homogeneous phase space,
including the spatially homogeneous equilibria, remains as a subspace in the diffusion-modified system’s
phase space. The eigenvalues of the Jacobian linearized about these spatially homogeneous equilibria are
modified in the diffusion-corrected space such that they can be described analytically. The phase space
has increased in dimension from N − L to (M + 1)(N − L), meaning that there are M + 1 times as many
eigenvalues as in the spatially homogeneous case. The modified eigenvalues are given by

λi,m = λi −
m2

τD
, for i ∈ [1, N − L], and m ∈ [0, M ], (52)

where λi are the eigenvalues of the spatially homogeneous equilibria. This means that the additional modes
of the spatially homogeneous equilibria for the diffusion-correction are always more negative, or more stable.

For the present analysis, we truncate this series at M = 1 and choose a diffusion time scale, τD =
2×10−8 s, to be somewhat faster than the fast spatially homogeneous reaction time scale in the neighborhood
of R3. This justifies our truncation at M = 1 and will display the effects of a small amount of diffusion in our
system. Since D = 14 cm2/s for this mechanism, our choice of τD gives a length scale of ℓ = 17 µm. The value
of D is approximated from an average of the ordinary multicomponent diffusion coefficients in the CHEMKIN

TRANSPORT database.18 In Fig. 6 we show the reaction (solid lines) and first correction for diffusion (dashed
lines) time scales in the neighborhood of R3, where the time scales are defined as τi,m = |1/λi,m|. From this
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Figure 6. The time scales of the Galerkin projection of the Zel’dovich mechanism as a function of diffusion time scale.

diagram we can evaluate the limits of τD. In the limit of τD → 0, which idealizes systems where ℓ → 0,
diffusion is infinitely fast. This makes all variations in space diffuse instantaneously, and the system behaves
as spatially homogeneous globally. For systems in the limit of ℓ → ∞ our current analysis is insufficient. For
these systems our current definition of τD → ∞ indicates infinitely slow diffusion, which is only accurate for
the fundamental mode. A truncation at M = 1 for systems with long length would neglect the modes where
diffusion is important. To fully resolve systems with long length, additional modes must be considered.
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In Fig. 7 we see a three dimensional projection of the four dimensional phase space for this problem.
The vertical axis shows the z1,1 concentration, while the horizontal axes show the two spatially homogeneous
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Figure 7. The diffusion correction SIM for the isothermal Zel’dovich mechanism.

concentrations; z2,1 is not depicted in this figure, but decays in a similar fashion to z1,1. The z1,0 and z2,0 axis
are scaled similar to Fig. 1b; in fact the two dimensional projection of the z1,0-z2,0 plane is almost identical
to that figure. Fig. 7 shows R3, which is the physical equilibrium sink, and R2, which is a saddle equilibrium
with one positive eigenvalue. Both of these equilibria are spatially homogeneous (zi,m = 0 for all i and
m ≥ 1), and there is a heteroclinic orbit that connects the unstable eigenvector of R2 to the slow eigenvector
of R3, making it a branch of the one-dimensional SIM. The other branch of the SIM still originates at the
spatially homogeneous equilibrium I1 at infinity. The SIM we have calculated for this diffusion correction
system is identical to the SIM for the spatially homogeneous isothermal system. For our choice of a fast
τD, the slow dynamics, and therefore the SIM, exist entirely in the spatially homogeneous subspace of the
system. This is seen since the equilibria from which the SIM branches originate, as well as the eigenvectors
along which the SIM branches initially propagate, all exist in the spatially homogeneous subspace. Notice
in Fig. 7 that the diffusion correction amplitudes decay faster than the spatially homogeneous (reaction
only) amplitudes. In fact, the spatially homogeneous subspace, the z1,0-z2,0 plane, is a two-dimensional
SIM for this problem, meaning only the fastest dynamics involve diffusion processes. We can again see this
by examining the evolution of the amplitudes, which is shown in Fig. 8a. In Fig. 8a we see the solid lines
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Figure 8. Evolution of isothermal diffusion correction system.

depicting the spatially homogeneous amplitudes and the dashed lines the diffusion correction amplitudes.
The initial conditions are zi,m = 8.3317× 10−3 (mol/g) for all i and m; these initial conditions are atypical.
An actual initial value problem is more likely to have initial amplitudes whose values are set by Fourier
decomposition of the initial conditions and will likely contain information at all frequencies. For the initial
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conditions in Fig. 8a, the spatially homogeneous amplitudes evolve almost identically to their corresponding
values in Fig. 2. The diffusion correction amplitudes begin to decay spectrally to machine precision zero
before the reaction begins to affect the amplitudes. This is because of our choice of a fast τD. Considering
slower values of τD, there is a threshold where the spatially homogeneous subspace of the system no longer is a
two-dimensional SIM. Beyond this threshold the fast dynamics will involve a stronger coupling of reaction and
diffusion dynamics. For slower yet values of τD, the SIM itself will bifurcate out of the spatially homogeneous
subspace, and all dynamics, including the slow dynamics, will involve a coupling of reaction and diffusion
processes. In Fig. 8b we see the reconstructed spatio-temporal evolution of the species zNO for the initial
conditions in Fig. 8a. The spatial variations decay at a faster time scale than the spatially homogeneous or
reaction kinetics occur.

V. Conclusions

We have implemented two important extensions by developing SIMs for: i) adiabatic systems, and ii)
spatially inhomogeneous systems with a simple diffusion model. We have successfully identified a SIM for an
adiabatic spatially homogeneous system. In doing so, we have displayed a technique to track non-isothermal
equilibria by varying the temperature of isothermal system to satisfy system constraints. The adiabatic
system examined displayed similarities to its analogous isothermal system, but showed different dynamics
that are important to capture in a reduction technique.

For the diffusion correction example, when the length scales are small enough to make the diffusion
time scale faster than the fast reaction time scale, the effects of diffusion on a reactive system are minimal,
allowing for a global analysis of the system. When lengths are near or above a critical length where the
diffusion time scale is on the same order as the slow reaction time scale, diffusion will play a more important
role. Because of our choice of a small length scale and a fast diffusion time scale, we could examine a global
scale diffusion correction. This allowed us to maintain spatial resolution with a truncation that included a
single correction for diffusion. In the limit of large length scales, the present analysis that only models the
fundamental mode is inadequate; the system would require an inclusion of additional modes to fully resolve
the dynamics.
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