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The flow behind the detonation front of an explosive contained in a tube strong enough to 
confine the motion to one dimension is shown to be a progressive wave of finite amplitude of 
the type studied by Riemann. The wave is similar at all stages of its progress if the initiation 
of the explosion is instantaneous, the linear scale of the whole field of flow increasing at a 
uniform rate. If the products of combustion obey the law pp-7 = constant the distribution of 
gas velocity along the tube is linear. If the initiation end of the tube is closed a fixed pro- 
portion of the whole detonating column is at rest. 

This last case has an analogy in three dimensions. The dynamics of spherical detonation 
from a point in an explosive is analyzed. As in the one-dimensional case, a fixed proportion of 
the whole volume of burnt gas is at rest. The radial rate of change of the variables, velocity, 
pressure and density become infinite at the detonation front, but it is unlikely that this result 
would be true in a real explosive where the time of reaction is not zero. 

The results are applied in both linear and spherical cases to the detonation of T.N.T., 
using data given by Jones & Miller (1948). 

INTRODUCTION 

The existing hydrodynamical and chemical theory of detonation has been developed 
by supposing that the whole chemical reaction in the explosive takes place within 
a narrow region, the explosive being at rest before this thin detonation front reaches 
it. The equations of continuity, momentum and energy when applied to the two 
sides of the front, together with an equation of state for the products of decom- 
position, do not suffice to determine the five unknowns: U, u1, Pl, Pl, T1. Here U is 
the velocity of the detonation front, ul, Pl, Pi and T1, are the velocity, the pressure, 
density and temperature of the gas close behind the front. A fifth equation is needed, 
and it is clear that this equation must in some way represent the reaction of the gas 
streaming away behind the front on the gas immediately behind it. That this must 
be so can be seen by imagining the case where a rigid plane moves forward behind 
the detonation front confining the burnt gas between it and the front. If this plane 
were to move fast enough it must be able to increase the value of U beyond the value 
found when the burnt gas can escape freely. 

The Chapman-Jouget condition 

To determine the fifth condition, therefore, it might be thought that it would be 
necessary to study the movement behind the detonation wave. The necessity for 
doing this, however, has been avoided by making the hypothesis that small dis- 
turbances in the gas immediately behind the detonation front travel at the same 

speed, U, as the front itself. The equation representing this hypothesis is 

U =- 1+C1, (1 ) 

where cl is the velocity of sound in the gas immediately behind the front. 
[ 235 ] 



236 Sir Geoffrey Taylor 

The progress%ive wave behind the detonation front 

Though this hypothesis, which was applied in the first instance in different forms 
by Chapman (I899) and Jouguet (1905-6), has been confirmed indirectly by experi- 
ment, and has formed the basis of much fruitful work on explosives, no one before 
the late war seems to have discussed the hydrodynamics of the burnt gas and the 
distribution of pressure behind the detonation front. Consider the detonation of 
explosive contained in a tube so strong that the motion is confined to one dimension. 
The motion of a gas for which p is a function of p only has been completely analyzed 
by Riemann, so that if u and p are known at all points at one instant they are known 
at all other times. Riemann's analysis is a generalization to disturbances of finite 
amplitude of the simple analysis of arbitrary small disturbances in one dimension 
into two sound waves moving in opposite directions. When only one wave is present* 
the analysis is very simple and u is found to be a function of p only, as it is in the 
limiting case of a progressive sound wave, which moves in one direction only. In 
fact, a progressive wave of finite 'amplitude may be regarded as being composed of 
an infinite number of superposed infinitesimal progressive sound waves. Each of 
these sound waves changes p, p and u, so that 

&p = pc6u = c2Sp, (2) 

where c is the velocity of sound through the gas when its density is p. Since the sound 
waves are superposed, a change in u is always associated with the change in p given 
by (2), and since c also is a function of p only, u is found by integrating (2). Thus 

SPi dp ff - v1 - J c (3) 

Since small disturbances are propagated relative to fixed axes with velocity u + c 
it will be seen that if p, p and u are known at one point P at one instant, they will 
have the same value at time t later at a point distant (u + c) t from P. It will be seen 
therefore that a progressive wave of finite amplitude can exist behind a detonation 
front provided that the Chapman-Jouguet condition (1) is satisfied and the condi- 
tions behind the detonation front remain constant as the front progresses. Except 
for the point immediately behind the detonation front where the velocity and density 
are fixed by the detonation conditions, u can have any arbitrary distribution at one 
given instant, and the Riemann analysis will determine the motion at all subsequent 
times till a shock wave appears somewhere in the field. On the other hand, when 
the wave has progressed a distance which is large compared with the initial length 
in which detonation is being built up, it will tend to a definite limiting form. This 
may most conveniently be illustrated by plotting u against r/R or rlUt, where r is 
the distance from the point of initiation. The limiting ordinates in this curve are 
0 and 1, and the initial portion where the steady detonation conditions had not been 
attained continually shrinks into the region near r/R = 0 as t increases. The limiting 
form to which the disturbance tends as it increases is that which occurs at all times 
if the explosive is at rest and detonation starts instantaneously at time t 0 at 
a point r = 0. This form will be discussed in two cases. 

* This case was investigated as early as 1858 by Earnshaw (I86o). 
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Case of gas for which pp-y is constant 

In this case c = c( Pi) (4) 

Inserting (4) in (3) and integrating 

U y -1 
- 

(P1) (5) 

It will be noticed that u and c are linearly related, so also are u and u + c, in fact 

7+1 
+c= Ui+C-i 2 (u1-u). (6} 
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FIGURE 1. Distribution of velocity behind a plane detonation 
front when pp-1-3 = constant. 

If the distribution of u or c in space at any time is plotted against r = (u + c) t a 
straight line will result. Figure 1 shows a particular case in which the conditions at 
the detonation front were such that u1= U andcXU. If the detonation starts 
at one end r = 0 of a tube the gas velocity, ?#2 at this end is found by setting u + c 0 
in (6), hence 

2 
'U2 = Ul) + 1 (it, + cl), (7) 

and since y> 1, u2 must be negative, so that the gas flows backwards from the ignition 
point as would be expected. u2 is represented in figure 1 by the point C. In this 
discussion it has been assumed that the gas can flow freely backwards through the 
.end of the tube. It may happen that the pressure in the atmosphere outside the 
tube is greater than that calculated using the equation pp-y = plpy. In that case 
a solution of the problem is found by assuming that u and p decrease with distance 
from the detonation front in accordance with the calculation for a Riemann pro- 
gressive wave. At the point, D, in the tube where the outside atmospheric pressure 
is reached, the velocity becomes constant and remains constant between D and the 
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end of the tube. A special case of some interest is when the rear end of the tube is 
blocked up so that u = 0. In that case the gas is at rest between the end and the 

point A, figure 1, where the line BAGC cuts the axis u = 0. To find the ratio of the 
length of the portion where the gas is at rest to the whole column, i.e. OA/OE in 

figure 1, set u = 0 in (6). The ratio is 

U1+c1 y+1 ___ u 

c _ ttt U 2U 1=1 2 ( U (8) 

In the particular case when u 3 U it is 1 - -1(y + 1), which is 0Q616 when y 1 3. 

This is the case shown in figure 1. 
It is worth noticing that when the end of the tube is open the condition u + c = 0 

which has been applied there is the same as Reynold's condition when air at high 
pressures flows through a constriction in a tube. The speed at this point is equal to 

the speed of sound there. 

Determination of detonation velocity 

In the hydrodynamical theory of detonation, a detonation front is assumed to 

move with uniform velocity U into a stationary explosive. The equations which 
represent the conservation of mass, momentum and energy are 

p1(U -u1) = po U (mass), (9) 

P1+p1(U-u1)2 = p0+p0U2 (momentum), (10) 

P1 + 2(U- 1)2 El = PO + 1U2-Eo (energy). (11) 
PIL 

2 ~Po 2 

EO and E1 are the chemical plus heat energies per unit mass, Pi, Pl, u1 and po, po, 0, 

are the pressures, densities and velocities on the two sides before and after passing 
the shock wave. 

Eliminating U and u1 between (9), (10) and (11) the Rankine-Hugoniot equation 
is obtained, namely, 

(pi + Po) E) -El- (12) 

E1-Eo may be regarded as known if p1, P, and T1 the temperature, are known. 

Tj can be eliminated by using the equation of state, thus (12) may be regarded as 

a single equation between p1 and P, . If this relationship between p1 and P, is exhibited 

as a curve on a diagram for which p, is the ordinate and 1 /Pi the abscissa the curve so 

formed is called the Rankine-Hugoniot curve. The initial condition of the explosive 
is represented by the point (po / lpo). The Chapman-Jouguet condition is satisfied 

by the point on the Rankine-Hugoniot curve where the tangent from the point 

(po l/po) touches it. Eliminating ul from (9) and (10) it is found that 

U2 Pi-Po (13) 
1/POl-I/PI' 

and this is equal to tan 0, where 0 is the angle which the tangent line described above 

makes with the abscissa axis. The velocity, U, which corresponds with the point on 
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the Rankine-Hugoniot curve which satisfies the Chapman-Jouguet condition is 
therefore the minimum of all the velocities which are possible. The computation of 
the Rankine-Hugoniot curve in any particular case is complicated because the 
relationships between energy, temperature, pressure and density depend on the 
chemical composition of the constituents of the burnt gas. If these are in chemical 
equilibrium the composition of the mixture depends on temperature which is only 
known when the problem has been solved. It is therefore necessary to make a number 
of subsidiary calculations to find the compositions corresponding with a number of 
points on the Rankine-HIugoniot curve. In the case of certain mixtures (see Lewis 
& Friauf 1930) of oxygen and hydrogen with excess oxygen, hydrogen or nitrogen 
the calculations have been carried out, and the velocity of detonation found. The 
observed velocities agree well with those so calculated. 

Application to T.N.T. 

The calculations for the products of detonation of T.N.T. packed to density 

Po = 1.51 have been performed by Jones & Miller (I948), who found U = 6380 m./sec., 
u1/U = 02424, Pi = 200. Jones also calculated the succession of equilibrium com- 
positions and energies and also p and p as they change during an isentropic expansion 
after detonation. His results* are here given in the first three columns of table 1 
and in columns 4, 7 and 8 of table 2. The data are therefore available for calculating 
the pressure distribution and gas flow in a tube sufficiently strong to withstand 
detonation of T.N.T. 

TABLE 1. MOTION BEHIND PLANE DETONATION WAVE 

IN T.N.T. IN A CLOSED TUBE 

p x 10-10 v (= l/p) 
(dynes/sq.cm.) (Om.3/g.) c/U u/U r/R 

15 0 5 0-757 0.242 1.00 
14 0*513 0 735 0*225 0 960 
12 0.542 0 715 0*187 0*902 
10 0 574 0*705 0 147 0.852 

9 0.591 0*700 0-129 0.829 
7 0.629 0*687 0.085 0*772 
5 0 676 0*625 0.034 0.659 
4 0*710 0.571 0.006 0 577 
3.8 - 0.550 0 0 577 
3.8 0.550 0 0.550 

U = 6380 m./sec. Density of T.N.T. 1*51. 

The results of using Jones's data in integrating (3) numerically to find u are given 
in column 4 of table 2 and the corresponding value of c = (dp/dp)l are given in 
column 3 of table 1. If R is the total distance through which the detonation has 

* The figures given in columns 4, 7 and 8 of table 2 and in columns 1 and 2 of table 1 
are taken from an unpublished report by HI. Jones to the Ministry of Home Security. They 
are not identical with the revised figures published by Jones & Miller in table 3, p. 497 of 
their 1948 paper but the difference was not thought to be sufficiently great to warrant the 
recalculation of the spherical detonation wave. 
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travelled since it was initiated, we have seen that p, p and u are functions at any time of 
u+c (u +c) t 

(u + c) only. At all times, therefore, they are functions of ?u = - or r/R only. 

The values of r/R are given in column 5 of table 1. 
These results are plotted in figure 2. The broken curve representing the calculated 

values of u/ U is no longer straight, as it was for a gas in which pp-7 is constant, but 
the curve has the characteristic that u = 0 at a value of r/R which in this case is 
0-550. The calculations have not been carried beyond this point though this could 
easily be done. The results- therefore represent those for a closed tube and they show 
that in such a tube the pressure is uniform from the point of detonation to rlR = 0 550 
and that it has a value of about 3 8 x 1010 dynes or 250 tons/sq.in. Beyond that point 
the pressure rises to that behind the detonation front, namely the value given in 
Jones's calculations of about 1000 tons/sq.in. 
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FIGURE 2. Plane detonation wave in T.N.T. (p expressed in dynes/sq.cm.). 

Comparison with previous work 

In his original paper (I899) Chapman recognized that when detonation occurs in 
a tube so that the motion is confined to one dimension the detonation wave must be 
followed by a region of forward-moving gas and that the length of this region must, 
continually increase. The only attempt which has been made to calculate this length 
seems to be that of Langweiler (1938) who assumed that the burnt gases preserve 
the velocity u1 which they acquire at the detonation front until the passage of a 
rarefaction shock wave reduces the velocity to zero. Langweiler's distribution of 
velocity is shown in figure 2 for comparison with the correct distribution. If W is 
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the velocity of the assumed rarefaction shock wave and P2 the pressure behind it, 
Langweiler uses equations which are identical with the equations (9) to (11) to 
determine W and P2. He recognizes that a rarefaction shock wave cannot occur and 
he tries to overcome this difficulty by saying that the region of transition where the 
velocity is reduced from ul to 0 may be assumed small compared with the distances 
travelled by the detonation and rarefaction waves. That this assumption is untrue 
can be seen by inspection of figure 2, where the transition is shown extending through 
the whole of the forward-moving column of gas. It has been remarked by many 
writers that though the Rankine-Hugoniot relation appears at first sight to be 
applicable both to waves of condensation and to waves of rarefaction, the energy 
and momentum conditions being satisfied in both cases, yet the fact that there is an 
irreversible rise in temperature in a condensation wave precludes the possibility of 
reversing the motion. 

Langweiler applied his calculations to T.N.T. of density 1-59. His results are 
shown in figure 2 for comparison with the present calculations for T.N.T. of 
density 1-51. 

Langweiler considers also the effect of reduction in pressure at the end of the tube 
below P2, the pressure which reduces the motion behind the wave to rest and there- 
fore corresponds with a closed end. He states that the effect of this reduction would 
be to increase the speed of the rarefaction wave, thus reducing the thickness of the 
forward-moving gas which he calls the detonation head. It will be seen from figure 2 
and the discussion which figure 2 illustrates that this is a mistake. Reduction of 
pressure behind the wave below the value P2 leaves the forward-moving part of the 
detonation head unchanged but increases the total thickness of the transition layer 
till, when the pressure is reduced to a certain calculable value, the transition layer 
fills the whole tube right back to the point at which the detonation was initiated. 

SPHERICAL DETONATION WAVES 

Detonation conditions in which the burnt gases are constrained to move in one 
dimension only can be realized experimentally in the case of a gaseous mixture which 
can be contained in a tube strong enough to resist the bursting pressure. It cannot 
be completely realized with a high explosive which exerts a pressure so high that 
any containing tube will burst. If spherical detonation starting from a point inside 
an explosive is dynamically possible it should be realizable experimentally. 

If the arguments so far advanced by writers on the subject to justify the Chapman- 
Jouguet condition are valid, they should apply to a spherical detonation front pro- 
vided the hydrodynamic flow conditions are capable of permitting a flow to exist 
for which u1 + cl = U at a sphere which is expanding with radial velocity U. Pro- 
gressive spherical waves of finite amplitude analogous to progressive Riemann waves 
do not exist. To find out whether spherical detonation waves might be expected it 
is therefore necessary to find out whether it is possible to construct and solve the 
hydrodynamic equations for radial motion which satisfy the boundary condition 
u + c = U at a sphere of radius R = Ut. 
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If this could be done, the Chapman-Jouguet condition would apply at the detona- 
tion front and the radial velocity U would be identical with that found using equation 
(12). The maximum pressure and speed of propagation would be the same as those 
occurring in a plane detonation, but the radial distribution of velocity and pressure 
would differ from those in the plane case. 

The flow behind a spherical detonation wave will in general depend on the manner 
in which the detonation is set up, but if it could be assumed that detonation starts 
when the explosion has extended only a short distance from the point of initiation, 
then a steadily expanding regime would be set up analogous to the one-dimensional 
wave described in figure 1. In that case the radial velocity u and also p, p and c 
would be functions of r/t only. The equation of motion is 

au au I ap -+ -= (14) at a% r =-p a3r'>(4 

and the condition that u, p and p depend only on x = r/t is 

a 
+-a )(U P P) = 0, (15) 

so that (14) becomes (u-x) du--IdP* (16) 

The equation of continuity is 

+ p + =0, (17) at + far aP(r +r)?'(7 
which in view of (15) may be written 

u -x dp du 2u ff-z dp + dg + 2Xt = 
0. (18) 

p dx dx x 

Writing C2 = dp/dp, where c is the velocity of sound, dp/dx = c2dp/dx so that dp/dx 
may be eliminated between (16) and (18). Hence 

d6 1( =x- 2U (19) 
dx c ,I x 

At this stage it is of interest to compare (19) with the equivalent equation for 
detonation waves in one dimension. Equations (15) and (16) are identical in the two 
cases, the continuity equation differs only from (17) in that the term 2u/r is absent 
in the one-dimensional case. The equation equivalent to (19) is therefore 

dTX (1(z-)2) = 0. (20) 

Hence either du/dx = 0 or x = u + c. The condition du/dx = 0, i.e. u = constant, 
applies over the ranges represented in figure 1 by OA. The condition x = u + c is 
identical with Riemann's condition in a one-dimensional wave. It applies to the 
region represented by AB in figure 1. 

The adiabatic equation of state gives c as a function of p or conversely p as a 

function of c2, thus in (18) -d-may be written ! dp d2, since 1dp ay be regarded p dx p dC2dx' - W-2~ mabergdd 
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as a function of c2. Equations (18) and (19) determine ut and c as functions of x when 
the appropriate boundary conditions are satisfied. 

These equations may be expressed in non-dimensional form in several ways. 
One method is to write 

6 = u/x, y = c2/x2, Z = logex. 

The resulting equations are 

d,j1 2,qq - (1_ 6)2 +f6(j -6) (21) 
d6 6 3,q- (I -6)2-'() 

dZ 1 y-(1I-)2 

d6 6 3y-(1 -)2' (22) 

where p dC2 (23) 

This form is convenient when the burnt gases behave like a perfect gas. In that case 

p dc2 
c2dp2- 1, 

so that (21) determines y as a function of 6. 
Another non-dimensional form is obtained by substituting y =2/3/r2 so that 

if = u/c. The equations are then 

d fr _ y {26-(1-6) 3fr2f}, (24) 

d6 362 -(I - )2 lr2 

dZ = 6 (1_-6)2#f2_62 *(25) 

Boundary conditions 

To solve these equations in any particular case it is necessary to know the adiabatic 
p, p relationship in the burnt gases. C2 = dp/dp and dc2/dp are then calculated in 
terms of p so that f can be tabulated as a function of c. 

The Chapman-Jouguet condition, together with the Rankine-Hugoniot equation, 
determines the detonation velocity U and also the value of u/U = 1- /,u at the 
wave front. If R is the radius of the wave at any time R = Ut and x r/t so that 

X r 
U R< (26) 

Since Z only enters into equations (24) and (25) as a differential its value may be 
taken as zero at r = R so that 

Z = loge(r/R), (27) 

u/U = 6r/R, (28) 

c/U = 6r/(#fR). (29) 

If ,u is the ratio of the density behind the detonation wave to the density of the 
explosive then at r = R 

6- 1-=/I1. (30) 
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The Chapman-Jouguet condition, namely u/U + c/U = 1, gives 

u,u 
Vf = C - = l. (31) c U 

As an example of the application of these equations the complete description of 
detonation initiated at a point in the interior of a mass of T.N.T. of density 1.51 
has been worked out. The values of It and U calculated by Dr H. Jones for T.N.T. 
of this density are t = 1-32, U = 6380 m./sec. 

The calculated adiabatic relationship between p and p, together with the corre- 
sponding values of f and c/U, are given in table 2* and the relationship between 
f and c/ U is shown in figure 3. 
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FIGURiE 3 

Equations (24) and (25) can only be integrated numerically step by step, starting 
from the spherical detonation surface and proceeding inwards. When the initial 
values 6 = 1 - l/,a, #f = ,u- 1 are inserted in equations (24) and (25) it will be seen 
that both dVrldZ and d6/dZ are initially infinite because (1 - 6)2 2 - 62= 0. df/d6 
is, however, finite. The solution of (25) in the neighbourhood of g = 1-l/,u is 

z =- 1 (2+? )(,u- ). (32) 

This solution may be used to find values of Z corresponding with values of 3f 
and 6 neat9 the detonation surface. Using (27) to cover the region r/R = 1 0 to 0 9986 
the solution was carried step by step back to the centre by means of equations (19) 
and (20). At each stage the values of dE/dZ and d#/dZ were calculated and the 
increments in 6 and Vt corresponding with a small finite decrement in Z were taken, 
as first approximation, to be 6'f4 = (dVt/dZ)o AZ, 860 = (d6/dZ)o 6Z, where (dVt/dZ)O, 
(d6/dZ)o represent the values calculated at the beginning of the interval 8Z. The 
values (dVt/dZ)1, (d6/dZ)1 at the end of the interval were then calculated using the 

* The range covered in table 2 is limited to values which occur in and behind the detonation 
wave. 
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approximate values of 6 and 3/ thus found. A second approximation to 3f and 6 was 
then found using the formulae 

- '{(d*4jdZ)o + (d*4/dZ)1} 6Z, 6- 1{(d6/dZ)o + (d6/dZ)j} 8Z. 

The second approximations to Vt and 6 at the end of the interval were then used 
in equation (20) to calculate new values of dVt/dZ and d6/dZ and these again were 
used to calculate a third approximation to ?'3 and 6 at the end of the interval. This 
process was repeated till the changes in #/ and 6 at the end of the interval due to 
proceeding to one further stage of approximation were negligible. The results of the 
calculations are given in table 2. The distribution of gas velocity is shown in figure 4 
and for comparison the distribution in the one-dimensional case is shown in the same 

TABLE 2. SPHERICAL DETONATION WAVE IN T.N.T. 

r/R V ?r c/U f u/U p x l(-'0 p 
1.0 0.2424 0320 07575 2.60 02424 1500 2000 
099904 0230 03084 0742 2.06 0230 14-45 1.972 
099632 0220 02986 0 733 1.80 0219 13-90 1X942 
0X99271 0210 0.2874 0.724 1.20 0.208 13-34 1.928 
0X9885 0X20 0X2748 0X719 1.00 0-1977 12X68 1X880 
0X9821 0X19 0X2612 0X714 0X70 0X1866 12X11 1X850 
0X9744 0.18 0X2469 0X710 0X60 0X1754 11X09 1X797 
0X9656 0X17 0X2323 0X708 0i60 0.16415 10-59 1773 
0.9557 0.16 0.2177 0.702 0.60 0.1529 9.44 1P709 
0.9448 0.15 0.2028 0.700 0.62 0.14172 8591 1683 
0X9320 0.14 01879 0.694 0*80 0.1305 7.94 1P639 
0X9178 0X13 0X1737 0X688 1X45 0X1193 7X08 1X595 
0X8997 0.12 0.1601 0X675 1X97 0*1080 6.46 1562 
058804 0.11 0.1468 0.659 2.52 0.09684 5.875 1.531 
0.8577 0.10 0 1337 0.641 3.00 0.08577 5.433 1506 
0.8275 0.09 0.1205 0.618 3.40 0.07448 4.84 1P468 
0.7960 0*08 0.1071 0.596 3.88 0.06368 4.416 1440 
0X7584 0.07 0.09350 0.568 4.22 0.05309 3.98 1P407 
0X7148 0X06 0X07966 0.538 4.50 0*04289 3.565 1372 
0.6668 0.05 0*06514 0.512 4.65 0.03334 3.23,6 1342 
0.6166 0.04 0.05084 0.487 4.72 0.02466 2.951 1316 
0.5672 0.03 0.03673 0.461 4.74 0.01702 2.66 1.285 
0.5186 0.02 0.02327 0.446 4.70 0.01037 2.48 2.265 
0.4950 0.015 0.01695 0.441 4.70 0.00741 2.43 1259 
0X4723 0-010 0-01096 0-430 4-66 0.00472 2.34 1-249 
0.4474 0.005 0*00527 0.425 4.64 0*00224 2.29 1244 
0.418 0 0 0.418 4.60 0 2.19 1233 

figure. Figure 5 shows the distribution of pressure in the spherical and the one- 
dimensional cases. It will be seen that the pressure and velocity drop very rapidly 
behind the detonation front. The pressure in fact drops to half its maximum value 
at a distance behind the front which is only 71 % of its radius. In this connexion 
it is worth noticing that photographs taken with a rotating mirror camera of the 
detonation of a cylindrical charge of T.N.T. show a narrow highly luminous band 
behind the detonation front, while similar photographs of the detonation of gases 
in tubes show a much broader luminous region. 
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The fact that the velocity drops to zero at some point between the detonation 
surface and the centre shows that a spherical detonation wave can maintain itself 
in the particular case investigated. It is not obvious whether this is true in all cases 
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FIGuRE 4. Velocity distribution (T.N.T.). Curve 1, plane detonation wave; 
curve 2, spherical wave. 
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because the equations for the flow behind a spherical wave do not admit of a simple 
solution of the type obtained by Riemann for a plane wave. 

Previouts work on spherical detonation waves 

The view here put forward is contrary to that expressed by Jouguet (1907) that 
spherical detonation waves moving with constant speed probably cannot exist. 
It seems that this view is founded partly on an expression connecting U with ul + c1 
which shows that if the pressure and velocity decrease with distance behind the 
detonation front then U must be greater than ul + cl. Jouguet rejects all detonation 
waves for which U > ul + cl as being impossible to produce. This rejection, however, 
is based only on an unproved 'postulate', for which I see no adequate reason. In 
the present analysis (19) leads to the same conclusion that U > ul + cl for, if duldx 

in (19) is positive, I - c) must be negative so that c < x - u, and, since at the 

detonation surface x = U, c = c1, u = Uf , therefore U>u1 + c1. Jouguet states also 
that his equation, which is analogous to (19), is not consistent with U = u1 + c1. It 
will be noticed that (19) might have been interpreted in this sense if the possibility 
that an infinite value of du/dx may occur is rejected. It is true that infinite values of 
du/dx cannot actually occur in real materials, and in this sense infinitely thin shock 
waves are not physically possible. The effects predicted by analysis which assumes 
infinitely thin shock waves are in fact observed, so that it seems probable that the 
spherical detonation wave calculated in the present paper can be propagated if it 
can be started. It seems likely that the peak pressure may not be attained though the 
predicted detonation velocity will be realized in a spherical wave. 

The only worker who has experimented with spherical detonation waves seems 
to be Lafitte (1925) who found that ignition by a spark at the centre of a spherical 
glass bulb 24 cm. diameter, containing an explosive mixture of CS2 with 302 did not 
produce detonation. When the same mixture was fired by means of a detonator 
containing 1 g. of fulminate of mercury a spherical detonation wave was produced. 
This wave travelled at the same speed as that found when the same mixture was 
exploded in a tube. 

This paper was circulated under the title 'Detonation waves' in the Ministry of 
Home Security in January 1941. It has now been declassified. 
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