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§ 7. A homogeneous plate. In this case we have to put in (I 7) 
N l =N2=N, Vl=V2=V, hl = I, b1 +b2 =b,Yl = Yo+b l . 

With a simple calculation the formula for W2(X, y) appears in the 
same form as WI(X, y). Hence, we have only to evaluate the ex­
pressions C(~), D(~) and G(~) entering in the first formula (17). 
Csing (14.1) and (15.1) a rather troublesome calculation gives 

C(~) = 2[2 ch b~ + (I - v) b~ sh bn 

D(~) = 2[( I - v)b~ ch b~ + (I + v) sh b~], 

G(~) = - 4 [(I + v)2 sh2 b~ - 4 ch2 b~ - (I - v)2b2~2]. 

Inserting this into the first formula (17) one obtains finally the 
complicated solution 

00 

P f cos (x - s)~ 
w(x,y) = nN j:3rtl ...L.,\2 ,,1,2 ],1:_ A ~h2 J..~ 11 _.1'JI.9,.91 {[2 ch b~+ 

o 
+ (I - v)b~ sh b~] [Hy - YO) ch ~(Y - YO) - sh ~(y - Yo)] -

- [(I - v)b~chb~ + (I + v) sh b~]~(y - YO) sh ~(y - yo)}d~, 

- 00 < x < + 00, Yo::; y::; Yo + b. (I 8) 

For technical purposes the rapidly convergent integral in (18) is to 
be evaluated by numerical methods. 

§ 8. Remarks. 
I. The above solution represents, in the well-known sense, the ba­

sis for solving more complicated problems on composite plates 
(e.g. under the action of generally distributed normal forces and 
twisting moments at the free edge y = Yn). 

2. Our preceding deductions may serve as a kind of guide in 
treating other questions, not only from the statics, but also from 
the dynamics of composite continua. 

3. Generally, the method of matrix analysis is very convenient 
whenever one has to do with problems leading to chains of differen­
tial equations. Of course, the results are usually complicatedl) 2). 
Received 14th July, 1958. 
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THE MACROSCOPIC EQUATIONS FOR 
SIMULTANEOUS HEAT AND MASS TRANSFER IN 
ISOTROPIC, CONTINUOUS AND CLOSED SYSTEMS 

by H.]. MERK 

Koninklijke/Shell-Laboratorium Amstcrdam 
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Summary 
I n the literature concerning the phenomenological theory of heat and mass 

transfer in multicomponent systems various formulations of the macroscopic 
equations are found. In order to decide which formulations are correct, a 
more or less complete survey of the macroscopic equations is given. Since 
no disagreements exist concerning the ultimate formulation of the equation 
of motion, special attention is given to the diffusion equations . and the 
thermal energy equation. The ultimate formulation of the latter equation 
given in the present paper differs in some details from that found in the 
literature, the difference being caused by the effect of the diffusing heat 
capacities and by the dependence of the enthalpy on the concentration. 
In order to find a proper driving force for the mass transfer, use is made of 
formulae taken from the thermodynamics of irreversible processes. It appears 
that for binary systems the barycentric description of the diffusion is the 
most suitable, especially when convection phenomena play an important 
role. For multicomponent systems it seems better to relate the diffusion fluxes 
to the activity. In this case Maxwell's diffusion laws are easily obtained, 
showing that relations, hitherto only derived in a first approximation for 
ideal gases, are generally valid for ideal as well as non-ideal systems. From the 
exact relations simplified descriptions of the diffusion may be derived. If it 
is, for instance, assumed that M ax we l1's dirfusion coefficients are all equal 
and that the system is ideal, then diffusion equations can be derived which 
are analogous to those for binary systems. In addition, a simplified version 
of the thermal energy equation is indicated, which differs somewhat trom 
that given by Spalding and Emmons. 

List of symbols 
ai = activity of component i 
Ci = fractional mass concentration 
Ct· = fractional number concentration 
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e'J = coefficient of diffusion resistance 
ep = specific heat capacity of the system for constant pressure 
Cp •• = partial specific heat capacity of component i for constant pressure 
Cp • = molar heat capacity of the system tor constant pressure 
Cp ,,· = partial molar heat capacity of component i for constant pressure 
d, = vector for binary systems defined by (70) and for multicomponent 

systems defined by (102) 
dl· = vector for binary systems defined by (77) and for multicomponent 

systems defined by (96) 
di" = vector defined by (52) 
DIJ = binary diffusion coefficient 
D,T = thermal diffusion coefficient 
D'J" = multicomponent diffusion coefficient 
DIJ'" = Maxwell's diffusion coefficient 
e = specific internal energy of the system 
F, = exterior force exerted on a unit mass of component i 
h = specific enthalpy of the system 
h, = partial specific enthalpy ot component i 
I = unit tensor ot second order 
J, = barycentric mass flux of component i 
J,. = molar number flux of component i 
J o = barycentric heat flux 
K, = mass of component i created by chemical reactions per unit volume 

and unit time 
K,· = quantity being defined by (18) 
IT" = partial latent heat of component i defined by (32) 
IT = latent heat of the system defined by (35) 
Le = Lewis number 
m = mean molar mass of the system 
ml = molar mass of component i 
n = total number of moles per unit volume 
H, = number of moles of component i per unit volume 
N = number of components 
p = hydrostatic pressure 
q = reduced heat flux 
Qp = heat of reaction for constant pressure, measured per unit time and 

unit volume 
R" = molar gas constant of A v 0 gad r 0 

t = time 
T = absolute temperature 
v = specific volume of the system 
VI = partial specific volume of component 
v = mass velocity 
v· = number velocity 
VI = velocity of component i 
V, = diffusion velocity of component i 

.~ 

·;" i 
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VI' = vector defined by (80) 
XI = thermodynamic force 
Z = function defined by (47) 
Itp = pressUle diffusion factor for binary systems 
Itp.tJ = pressure diffusion factor for multicomponent systems 
itT = thermal diffusion factor for binary systems 
ItT.i} = thermal diffusion tactor for multicomponent systems 
Pi! = phenomenological coefficient 
7} = coefficient of shear viscosity 
K = coefficient of bulk viscosity 
). = coefficient of heat conductivity 
pi = specific chemical potential of component i 
p = density of the system 
Pi = mass concentration of component i 
T = viscous stress tensor 
IPTJ = dissipation function 

Subscripts 
i, i = component 
k, 1 = summation indices 

Superscripts 
( ). = molar quantity 
( )+ = transposed tensor of second order 
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§ 1. Introduction. The calculation of transfer processes involving 
convection and molecular diffusion is based upon a system of partial 
differential equations and boundary conditions. The partial 
differential equations are called here the macroscopic equations and 
are derived from the laws of conservation of matter, momentum and 
energy. In these derivations no fundamental difficulties are encoun­
tered. However, the so-called thermodynamic fluxes (i.e. chemical 
reaction rates, mass or number fluxes of the components, heat 
flux, viscous stresses) introduced during the derivations have to be 
related to the thermodynamic forces . Although the means for finding 
these relations are well known nowadays, various proposals con­
cerning the relations for the mass and number fluxes are found in the 
present literature. Investigation of the various relations proposed 
shows that they are not always consistent with each other. Moreover, 
the ultimate formulations of the diffusion equations and the thermal 
energy equation sometimes differ appreciably. 

The choice of a proper description of diffusion and the driving 
force for the rate of mass transfer has caused much confusion and is 
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in fact a subtle one. Probably Nusselt 1) was one of the first 
authors to investigate convective mass transfer in relation to an 
engineering application. Considering only mass transfer by ordinary 
diffusion, N ussel t 1)2) remarked that under certain circumstances 
the differential equations and the boundary conditions for heat and 
mass transfer respectively are mathematically equivalent, so that 
these processes are similar. If this similarity holds, then the laws 
governing mass transfer may be derived from the laws governing 
heat transfer and vice versa. S c h mid t 3) has formulated the simi­
larity theory of heat and mass transfer for free convection. 
Nusseltl)2) and Schmidt 3) both developed their similarity 
relations on the assumption that the mass flux of a component 
caused by ordinary diffusion is proportional to the negative gradient 
of the mass concentration of the component considered. This means 
that these authors assumed that the diffusion potential of ordinary 
diffusion is given by the mass concentration. This assumption had 
already been introduced many years previously by Fick 4) and is 
sometimes called Fick's diffusion law. It is somewhat surprising 
that N usse It should have introduced the mass concentration as 
the diffusion potential, since he mentions that for gases and vapours 
the partial pressure difference is the driving force in diffusion 
processes. Ackermann 5) tried to show that for simultaneous heat 
and mass transfer it is better to use the partial pressure as diffusion 
potential. This point of view has been accepted by several authors, 
see e.g. Eckert 6) and Jakob 7), although other authors, like 
Sherwood and Pigford 8), defined the number concentration 
as the diffusion potential. 

Spalding 9-12) remarks that simultaneous heat and mass 
transfer may be described in a very convenient way if the fractional 
mass concentration is used as the diffusion potential. However, 
Spalding's derivations are not correct, since he did not interpret 
the barycentric description of the diffusion in the right manner. 
The formulation of the thermal energy equation given by Spalding 
is not correct either, since he did not account for the dependence 
of the enthalpy on the composition of the system or for the diffusion 
of heat capacities, the latter effect having already been mentioned 
by Ackermann 5). In calculating the burning rate of liquid fuel 
Emmons 13) also omitted to account for these effects. 

The diffusion equation given by Berman 14) is not very suitable 
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for application to engineering problems, since it contains the velocity 
of the component considered and not the mass velocity occurring 
in the equation of motion. The thermal energy equation given by 
Kirkwood and Crawford 15) may be transformed further into 
a more suitable equation. 

In recent years mass transfer in gases at high pressure has become 
very important for chemical engineering applications. The pressures 
are generally too high for assuming the gases to be ideal. 0 p fell 
and Sage 16) therefore proposed to use the fugacity as the diffusion 
potential. This proposal is not based upon exact derivations, 
however, but upon a conjectured extension of the formulae given 
by Chapman and Cowlingl7) for ideal gases. It may be remarked 
that Onsager and Fuoss 18) and J ostl9) had already proposed 
introducing the fugacity or activity as the diffusion potential for 
non-ideal gases and liquids. 

The various definitions of the diffusion potential lead to different 
definitions of the diffusion coefficients and mass transfer coefficients. 
It seems therefore worthwhile to discuss the correct formulation 
of the macroscopic equations and the thermodynamic fluxes 
occurring in these equations. For the derivation of the thermo­
dynamic fluxes two general bases are available: the kinetic theory 
of matter and the thermodynamics of irreversible processes. 
Unfortunately the kinetic theory of liquids is not sufficiently 
advanced to be a reliable guide in the treatment of diffusion in 
liquids. Our considerations will therefore be based upon the theory 
of irreversible thermodynamics, si~ce this theory appears to 
furnish a considerable amount of information for gases as well as 
for liquids. It may be remarked that Prigogine 20) has shown that 
for gases the results obtained by the thermodynamics of irreversible 
processes agree with the results obtained in the so-called first 
approximation of the kinetic theory. 

From the thermodynamics of irreversible processes no unique 
definitions of the diffusion potential and diffusion coefficients can 
be derived (see e.g. Ubbelohde 21) and Wirtz 22)). Because a more 
or less arbitrary choice of these quantities seems to be inevitable , 
we shall be guided by the following requirements: 1) the relations 
for the mass fluxes have to be as simple as possible, 2) the diffusion 
coefficients have to be defined in such a way that for ideal gases they 
~gree with the usual definitions given in the kinetic theory. The 
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first-mentioned requirement leads us to define the activity as the 
diffusion potential for multi component systems, while for binary 
systems the most suitable diffusion potential is the fractional mass 
concentration. Moreover, it will be shown that relations, hitherto 
only derived in the first approximation of the kinetic theory of 
gases, may also be derived from the thermodynamics of irreversible 
processes. This means that these relations are more general than 
might be expected from their kinetic derivation. 

§ 2. Laws 01 conservation. 
a. Law of conservation of matter. Let us consider a system 

consisting of N components. The number density of the moles of 
component i is denoted by ni and the molar mass of this component 
by mt. Hence, the mass concentration of component i is given by 

Pi = ntmi, (i= 1,2, ... ,N). (1) 

The statistical mean value of the molar velocity of component i 
measured with respect to a fixed reference system is represented by 
the vector Vt. Now, the law of conservation of matter of component 
i yields 

op~ = _ div (PtVi) + K t , 
ot (2) 

where K, is the mass of component i produced per unit time and unit 
volume by chemical reactions. Since the system is assumed to be 
"closed", no matter is introduced into the system, so that we must 
have .Y 

LK,,=O. 
k-1 

(3) 

Summing in (2) over the index i and making use of (3), the well­
known equation of continuity for closed systems is obtained, viz. 

op . 
- = - d1v (pv), ot (4) 

where P is the total density of the system and v the mass velocity; 
hence .v· 

P = LPk, 
k=e1 

.v 
v = L C"Vk with Ci = pi/po 

k=1 

(5) 

(6) 
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The quantity Ct represents the fractional mass concentration. The 
mass velocity v may be interpreted as the velocity of the centre 
of mass of a volume element of the system. This velocity may be 
us~d to define the barycentric derivative according to 

D 0 
Dt == at + v·grad. (7) 

Using (7), the equation of continuity may also be written as 

Dp 
Dt + P div v = O. (4') 

Furthermore, we introduce the mass flux of component i: 

J i = Pi(Vi - v). (8) 

From (6) and )8) we get 
.. v 
L J k = O. (9) 

k=1 

Making use of (4'), (7) and (8), equation (2) may be written as 

Dc· 
P --' = - div J i + K i . 

Dt 
(10) 

In (8) the mass fluxes are described with respect to the mass 
velocity. We shall therefore call the description of the diffusion by 
means of (8) and (10) the barycentric description (see also de 
Groot 23), pages 108-111). It appears that the barycentric descrip­
tion of the diffusion is the most useful for the treatment of convective 
mass transfer problems. In the literature, however, other descrip­
tions of the diffusion are also given. One which is often applied is 
the so-called molar description, which may be derived as follows: 
we first introduce the number velocity v* and the fractional number 
or molar density Ci* defined by 

.V .v 
v* = ~ c"*v,,, Ci* = nt/n, n = L n". 

k= 1 k= 1 

Further we introduce the number flux defined by 

J i * = ni (Vi - v*). 

( 11) 

(12) 



80 H. J. MERK 

From (II) and (12) we obtain in analogy to (9) 
,. 
L: J/c* = O. 

k=1 

Dividing (2) by mt, we get 

ani . 
-- = - dlv (ntVi) + Kt/mt. 

at 

Summation with respect to the index i leads to 

on S 
- = - div (nv*) + L: Kk/mk. 
& k-l 

( 13) 

(14) 

(IS) 

In analogy to the barycentric derivative we introduce now the 
molar derivative according to 

D* a D _ == - + v*·grad = - + (v* - v)· grad. (16) 
Dt at Dt 

From (12), (14), (IS) and (16) we obtain 

where 

D*Ci* __ div J i* + Kt*, n-lli-

Ki 11" Kk 
K,* = --- Ct* 'L: --. 

mt l'-1 m" 

( 17) 

(18) 

(12) and (17) represent the molar description of the diffusion. In 
the following discussions we restrict ourselves to these barycentric 
and molar descriptions. 

b. Law of conservation of momentum. The law of con­
servation of momentum leads to the following vectorial equation: 

Dv .\' 
p-- = - grad p + L: p"Fk + Div T, 

Dt k - I 

( 19) 

where p is the hydrostatic pressure, Fi the exterior force exerted per 
unit mass upon component i and T the viscous stress tensor *). In 
a continuous and isotropic system the relations expressing the 

0) In equation (19) and the subsequent equations and formulae use is made of 
M i In e's tensor notation, see e.g. C hap III a nand Cow lin g 17) or R 0 sen f e I d it) . 

"l "h; 
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viscous stresses in terms of the thermodynamic forces are well­
known; they can be found in various text books on aerodynamics, 
thermodynamics of irreversible processes and kinetic theory of 
matter. These relations read 

't" = 1) [Grad v + (Grad v)+] + (K - ~1))(div v) I. (20) 

where 1) is the coefficient of shear viscosity, K the coefficient of 
bulk viscosity and I the unit tensor. From the kinetic theory of 
gases it folfows that for ideal gases K = 0, but for liquids it is not 
always permissible to neglect K. If chemical reactions occur in the 
system, then according to the thermodynamics of irreversible 
processes and Curie's theorem the second order tensor't" may also 
depend on the scalar chemical affinities. Cross-effects between 
viscous stresses and chemical reactions do not seem as yet to be 
confirmed by experiments and are, therefore, generally neglected. 

Substituting (20) in (19), we obtain 

D /Ii v . 
P - = - grad p + L: Pk FI.; + Div (TJ Grad v) + 

Dt k-I 

+ grad [(K + !1)) div v] + (grad 1)) . [(Grad v)+ - I div v]. (21) 

For constant values of TJ and K the last equation becomes 

Dv 
P Dt 

s 
= - grad p + L: PkFk + TJ(Llv + t grad div v) + K grad div v. (22) 

k~1 

For K = 0 equation (22) is identical with the well-known equation 
of motion of Navier-Stokes. It may be stressed that in the usual 
formulation of the equation of motion only mass velocities occur 
and no number velocities. 

c. Law of conservation of energy. Application of the law 
of conservation of energy to a volume element moving with the 
mass velocity yields the following energy equation : 

D x 
P -D (e + tv2) = - div J" - div (pv) + L: pVI.;· FI.; + div(.· v). (23) 

t Ie-I 

where e is the specific internal energy of the system and J q the 
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(barycentric) heat flux. Eliminating the barycentric kinetic energy 
from (23) by m{'ans of (19), we obtain 

De .V 

p- = - div J q - P div v + L JJc·FJc + (/)'1' (24) 
Dt k- I 

where (/)'1 is the heat developed by the viscous stresses; hence: 

(/)'1) = 't" : Grad v. (25) 

Equation (24) no longer contains the barycentric kinetic energy 
and will therefore be called the thermal energy equation. For the 
calculation of convective transport processes it is convenient to 
transform (24). For that purpose we introduce the reduced heat 
flux q defined by Prigogine according to 

s 
J q = q + L hkJJc , (26) 

k=l 

where h, is the partial specific enthalpy of component i *). From (4') 
it follows that 

. P Dp Dp D P 
- P dlV V = - - = -' - p '- - . (27) 

p Dt Dt Dt P 

Substituting (26) and (27) in (24), we obtain 

Dh 11' Dp 11' 
P - + div (L hkJk) = - div q + -D + L Jk·Fk + (/)'1)' (28) 

Dt k=l t k=l 

where h is the specific enthalpy of the system; hence 
.V 

h = e + PIp = L Ckhk· (29) 
Ie-I 

In some cases (28) can be applied to the calculation of convective 
transfer processes, but in others it is often convenient to express the 
enthalpy h in terms of the temperature T. This has to be done 
carefully, because at this point many derivations given in the 
literature are not correct. First of all we note that from (29) it 
follows that .v .Y 

dh = L hk dCk + L Ck dhk. (30) 
k-I k=I 

.) As is done in most textbooks on thermodynamics, Prigogine and Defay 2$) 

introduce partial molar quantities, but for our purpose it is more convenient to introduce 
partial specific quantities. 
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We now assume that ht depends explicitly only on p, T and the 
composition of the system. (In the thermodynamics of irreversible' 
processes this is a conventional assumption.) Hence, we get 

.v (aht ) 
dht = L -a- dpk + Cp,t dT + (iT,i + Vi) dp, (31) 

k=1 Pk p,T 

where Vt is the partial specific volume of component i and 

. ( a!zi ) ( oki ) 
Cp,i = aT ,iT,i = ap I. - Vi· 

P.po 1 ,po 
(32) 

Cp,t represents the partial specific heat of component i for constant 
pressure and composition, while IT,i is a sort of partial latent heat. 
Because the enthalpy is an extensive thermodynamic variable, we 
have (see e.g. Prigogine and Defay25)) 

.\' (ahk) = o. 
L Pk apt p,T k-I 

(33) 

From (30), (31) and (33) it follows that 

N 

dh = L hk dCk + Cp dT + (iT + v) dp, (34) 
k=I 

where 
.\' .V .\' 

Cp = L CkCp,k, 1,1' = L CklT ,k, V = IIp = L CkVk. (35) 
k=l k=l k=1 

With the use of (10) and (34), the thermal energy equation (28) 
may be written as 

DT Y Dp.\' 
pCp - + LJk'gradhk=-divq-piT - +Qp+ LJk·Fk+(/)'I)' (36) 

Dt k=l Dt "=1 

where Qp is the heat developed for constant pressure by the chemical 
reactions per unit time and unit volume; hence 

.\' 

Qp = - L hkKk. 
k=l 

(37) 

The thermal energy equation (36) is often applied in the literature, 
but mostly the sum at the left -hand side is left out. Furthermore, we 
note that Qp occurs only in (36) and not in (28). Spaldingl0) 
and Emmons 13) have given an equation analogous to (28) con-
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taining the heat of reaction. These authors derived this equation 
from (36) (without the sum at its left hand side) by writing dh = 
= Cp dT; i.e. they did not account for the concentration dependence 
of the enthalpy. 

For ideal systems (36) may be somewhat simplified. In that caSe 
we have 

Vi = I/(nmi) and p = nRAT = RAT/(mtVi), (38) 

RA being the universal constant of Avogadro. For ideal gases we 
have furthermore 

dhi = Cp,i dT, (39) 

where Cp,t is a constant. From (32) and (39) follows 

IT,i = - Vi · 

By means of these relations (36) becomes 

DT x Dp x 
pCp -+ ~Cp,kJk'grad T=- divq+-+Qp+ ~Jk'Fk+CPT/' (40) 

Dt k-I Dt k-I 

The existence of the sum at the left-hand side of (40) has already 
been mentioned by Ackermann 5). This author called this sum the 
"effect of the diffusing heat capacities". Since Ackermann's 
publication this effect has been ignored in the literature, probably 
because Ackermann's derivation was not exact. 

If the molar heats of the components are all equal, then the left­
hand side of (40) may be transformed further . Writing 

Cp,,* = mtCp,i = C p* for all i, 

we obtain from (6), (8), (11) and (35) 

x 
~ Cp,kJk = nCp*(v* - v) = pCp(v* - v). 

k-I 

Making use of this relation and (16), equation (40) becomes 

D*T Dp .\" 
pCp -- = - div q + - + ~ Jk·Fk + Qp + CPT/' (41) 

Dt Dt /;=1 

The left-hand side of this equation is analogous to that of (17). 
From its derivation it follows that (41) is only valid under restrictive 
conditions. We remark further that (41) may be obtained directly 
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from the energy equations given by Chapman and Cowling 17). 
This must be so since these authors consider ideal gases for which 
Cp,t* = ~RA for all values of i. This demonstrates that equations 
derived from the conventional kinetic theory of gases have only 
restricted validity. 

§ 3. Vectorial transport processes. In the macroscopic equations 
derived in the foregoing section we have to relate the diffusion 
fluxes and the heat flux to the thermodynamic forces. For that 
purpose we use the results given by the thermodynamics of irre­
versible processes, which may be found in text books and articles on 
this subject (see e.g. de Groot 23) or Hirschfelder, Curtiss and 
Bird 26), pages 694-720) . According to the thermodynamics of 
irreversible processes we have 

.v 
q = {looXo + ~ {3okX k, (a) l k-I (42) .V 

J i = {ltoXO + ~ {likXk, (b) 
k=1 

where the coefficients {lij (i, i = 0, 1,2, ... , N) are the so-called 
phenomenological coefficients, while the vectors Xi are the thermo­
dynamic forces which are given by 

Xo = - (grad T)/T, (a) } 
(43) 

X t = - [T grad (Il-t/T) + hi (grad T)/T - Fd, (b) 

Il-i being the partial specific chemical potential of component i . For 
the coefficients {lij the following relations exist: 

{ltj = {lji, (i, i = 0, 1,2, . . . , N) (44) 
and N 

~ {lik = 0, (i=O,I,2, ... ,N). (45) 
k-I 

Relations (44) are Onsager's reciprocal relations, while (45) are 
derived from (9) and from the fact that the production of entropy by 
heat conduction and diffusion has to be positive. From (44) and (45) 
it follows that there are tN(N + I) independent phenomenological 
coefficients. 

Introducing the activity at of component i, the specific chemical 
potential of that component may be written as (see e.g . Prigogine 
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and Defray 25), page 153) 

RAT Ili = lliO(T, P) + -- In ai. m, (46) 

For ideal gases we have ai = c,*, but for non-ideal systems ai is 
a thermodynamic function~ding on p, T and the composition 
of the system. The thermal equation of state is written as 

p = nRATZ, (47) 

where Z generally depends on p, T and the composition of the 
system; for ideal systems Z = I, while for small deviations from 
the ideal state Z may be expressed in terms of the vi rial coefficients. 

From (46) it follows that Ili depends only on the composition by 
way of ai, so that 

Td (Ilt) = RAT (dat)P,T + ( Ollt) dp + T ( OlldT ) dT 
T mi at op T ,c,- aT P,c.-

or, introducing the well-known thermodynamic formulae for the 
partial derivatives of the chemical potential, 

Td (!:!...) = RA~ (dat)P,T + Vi dp _ hi dT . 
T mt ai T 

(48) 

From (42b) , (43) and (48) we obtain 

k Pile (grad ak) p T gradT 
J t=- L -[RAT ' +mkvkgradp-mkFkJ-DtT--, (49) 

k-Imk ak T 

where the thermal (multicomponent) diffussion coefficients are 
introduced according to 

DiT = PiO, (i = 1,2, ... , N). (50) 

From (44), (45) and (50) it follows that 

,\" 

L DkT = 0, (51 ) 
k~ 1 

so that there are apparently N - I independent thermal diffusion 
coefficients. In order to write (.49).in a I]1prc.coIlvenient manner, we 

~
i>ntm:~ - gcad P "Z -----:-- -----;; 

d ia= - (gradai)P,T+CtZ(pVi-1) -- - -- (pFi - L PkFk). (52) 
at p p 1.- = 1 . 

.. / 
.. _ _ __ ._.~ ... __ ._' __ .. _0-

- . -' 1-
l-~ I f". ~ 'f)t ()",' ...,-: 

.; 
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This definition is chosen such that 

II.' 

L dka = O. (53) 
k - I 

It is easily seen that after summation the terms on the right­
hand side of (52) cancel out, except for the first term, which disap­
pears by virtue of the relation of Gi b bs-D uhem. This relation may 
be written as IV 

L nk1nk (dllk)p,T = 0 
k - I 

or with (46) 

.\' nk IV Ck* 
L - (dak)p,T = 0 or L - (daA')p,T = O. (54) 

k - I ak k = 1 ak 

From (54) relation (53) follows directly. From the definitions of 
the fractional mass and number concentrations given by (6) and (II) 
respectively it follows that 

Ci = m,ci* /1n, (55) 

where m is the mean molar mass of the system given by 
N N 

m = pin = L Ck*mk = (L Ck/mk)-l. (56) 
k=1 k=1 

Making use of (47), (55) and (56). we derive from (49) and (52) : 

P N {Jtk d T J i = - - ~ - d a _ D T gra 
Z
~ k t--

k - l Pk T 
(57) 

In this relation the diffusion by thermal effects is separated from 
the diffusion by mechanical effects, the latter being represented by 
the vectors d ta. The mechanical diffusion consists of three parts, 
namely ordinary diffusion (terms with grad at), pressure or baric 
diffusion (terms with grad P) and diffusion by external forces. The 
multic~~.p?~~~! . diffusiQlLC.OOf.fu;i€nt-s-aH~. now-defin~~ 

~ n2 N gradT 
( J, = + - L mtmkDikadka - DiT .---- . 
\ P k-l T ' 

(58) 

'-...... k>Fi ~.--

From (53).-~~d (58) it Tolfows·--t11at --

Dija = _ ~_ ((3i j _ (3it) 
n2mt1njZ Pi Pi' 

(59) 

~} '\ D'1.r· ) [., {; 
~ : 

!.-tl"'-\ 
i-l.l' ---0, 
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so that Dtta = o. (60) 

Apparently we have introduced N(N - I) multicomponent 
diffusion coefficients. These coefficients, however, are not indepen­
dent. In order to find the relations between them, (59) is solved for 
Ptj. The result reads 

n2njmimj .v 
Pii = ---Z(-pmjDija + ~ p"m"Di"a). (61) 

pp2 k=l 

From (44) and (61) it follows that 
.v 

p(pjDtja - PiDjja) = ~ p"m,,(1ljDika - niDj"a), (62) 
k=l 

representing tN(N - I) relations, so that we have IN(N - I) in­
dependent multicomponent diffusion coefficients. From (61) other 
relations may also be obtained. Combining (61) with (44) and (45), 
we get 

.\' .\" (Pp·v P "" ) mt ~ m"D"ta = mj ~ m"D"ja = --2 ~ -- . 
k-1 "~1 Zn k=l PIc 

(63) 

This relation may also be obtained from (62). Hirschfelder, 
Curtiss and Bird 26) have derived (63) from the kinetic theory of 
gases, so that this relation would appear to be valid only in the first­
order approximation for ideal gases. From its derivation above, 
however, it follows that (63) is generally valid for ideal and non­
ideal systems, provided that the activity is considered as the 
diffusion potential. 

Ourfurther considerations are based upon (58), while relations for 
the reduced heat flux are given in § 4 for binary systems and in § 5 
for multicomponent systems. 

§ 4. Vectorial transport processes in binary systems. Let us now 
consider binary systems with the components i and f. From (53) 
and (58) we obtain 

n2 grad T 
J t = - -1nt1n"Dtjadia - DtT (64) 

p T 

For binary systems (52) may be written as 

Ct* [grad p Pi - Pj ] 
d ia = - (grad ai)P,T + pCtCjZ(Vt - Vj) - --- . (65) 

at . -- p P(Vi - Vj) 
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From (55) and (56) we obtain 

m 2 

dc,,* = --- dc", (k = i, f). (66) 
mimj 

Since Ct* + cj* = I, we may consider ai as a function of p,T and 
Ct*. In (65) the gradient of at has to be calculated for constant p and 
T, so that 

Ci (0 In at) m 2 (Oln ai ) -(gradai)p,T= -1-- gradci*= -- --- gradci, (67) 
ai 0 nCt* p,T mimj olnci* p,T 

where (55) and (66) have also been used. Combining (64), (65) 
and (67). we obtain 

grad T 
J i = - pDijdi - DiT - T- , (68) 

where 

( 
0 In at ) PPij Dtj = --- Dija = - --'---'--. 
o In Ci* p, T n2mtmjctcjZ ( 

0 In at ) 
o In Ci* p,T 

(69) 

and 

[
grad p Pi - P j ] 

d t = grad Ct + txpCiCj -p.- - P(Vi _ Vj) , (70) 

IXp being defined by 

txp = p(Vt - Vj)mimjZ / (~ ai ) . 
m 2 olnci*'P,T 

(71) 

IXp may be called the pressure diffusion factor; for ideal systems 
this factor becomes 

txp = (mj - mi)/m, (72) 

showing that txp depends on the composition of the system by way 
of m. The pressure diffusion factor is analogous to the thermal 
diffusion factor, the latter being defined by 

DiT/(pDij) = l1wnjCi*Cj* txT/m2 = CiCjtxT. (73) 

Introduction of IXT in (68) leads to 

(
grad T ) 

J i = - pDij di + txTCiCj - y- . (74) 
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It should be noted that Green 27) in dealing with liquids also 
introduced pressure diffusion coefficients. The definition of the 
binary coefficient of ordinary diffusion is chosen such that for ideal 
systems it agrees with that introduced by Cha pman and Cow Ii ng 17) 
and Hirschfelder, Curtiss and Bird 26). The definition of the 
thermal diffusion coefficient differs from that given by Chapman 
and Cowling, but agrees with the definition given by Hirsch­
felder, Curfiss and Bird. 

For the barycentric description of the diffusion (74) represents a 
useful relation. Substitution of (74) in (10) yields a differential 
equation for Ct, the barycentric diffusion equation. For the molar 
description of the diffusion (74) is less adequate, since it would then 
be necessary to relate the mass concentration to the number 
concentration. \Ye shall therefore now derive a relation for the 
diffusion flux more suitable for the molar description of the diffusion. 
For that purpose we derive from (8), (12) and (55) the following 
relation: 

J i* = ninj(vi - vj)ln = nm2Jil(pmimj). (75) 

After a simple calculation we obtain from (55). (66). (74) and (75) 

J i* = -nDij(di * + a.TCi*Cj* grad TIT), (76) 

where 

[
grad P Fi - Fj ] 

d i* = grad Ct* + rJ.pCi*Cj* --- - . 
P P(Vi - Vj) 

(77) 

Substitution of (76) in (17) now yields a differential equation for 
Ct*, the molar diffusion equation. We may call (74) Fick's bary­
centric diffusion law and (76) Fick's molar diffusion law. 

From the formulae derived in this section it appears that in the 
barycentric description of the diffusion the fractional mass concen­
tration is the most useful potential of the ordinary diffusion, but 
in the molar description of the diffusion it seems more convenient 
to define the fractional number concentration as the diffusion 
potential. In the latter case we may also introduce PilP as the 
diffusion potential, since the partial pressure Pt may be defined by 
Pi = Ci*P (see e.g. Prigogine and Defay25)). The various 
proposals concerning the diffusion potential mentioned in § 1 may 
therefore be right, provided that they are consistent with the chosen 
description of the diffusion. Much confusion, however, has been 
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caused by the fact that several authors did not account for the 
differences in the various descriptions of the diffusion. 

For the calculation of convective transfer phenomena the bary­
centric description of the diffusion has a formal advantage. If this 
description is chosen, then the macroscopic equations contain only 
mass velocities, while in the molar description of the diffusion the 
equation of motion contains mass velocities and the diffusion 
equation number velocities. If the difference between the mass and 
number ·velocities is overlooked, the results are only valid when all 
the components of the system have the same molar mass. 

The physical results have, of course, to be independent of the 
chosen description of the diffusion, so that the advantage of the 
barycentric description can only be formal. SpaldinglO) rema.rked 
that the barycentric description of the diffusion yields better 
results than the molar description . This cannot be true if both 
descriptions are applied in the correct manner. The differences put 
forward by Spalding are caused by the fact that it makes adifferen­
ce whether the fluid properties are assumed to be constant in the 
barycentric or in the molar description. In the barycentric descrip­
tion SpaldinglO) puts p = constant, for example, while in the 
molar description Sherwood and Pigford 8) put n = constant, 
etc. It may happen that the former approximation yields better 
results than the latter, but this can only be proved experimentally 
or theoretically when it is known how the fluid properties depend 
on P, T and the composition of the fluid. For many gases the fluid 
properties have been calculated (see e.g. H'irschfelder, Bird, 
and Spotz 28) 29)), but investigation of the fluid properties is 
beyond the scope of this paper. In taking the barycentric to be the 
most suitable description of the diffusion, our choice is guided 
solely by the formal advantage it displays, especially when con­
vection phenomena play an important role. 

A relation for the reduced heat flux is easily derived from (42) 

and (43). Making use also of (44) and (45), \-ve get 

q = - A grad T +.p (Vi - Vj) a.TJi/a.p, 

where i. is the thermal conductivity given by 

A = j300(3ii - POi2 

PHT 

(78) 
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The second term at the right-hand side of (78) represents the Dufour 
effect. For gases this effect is of the same order of magnitude as the 
Soret effect (effect of the thermal diffusion), while for liquids the 
Dufour effect is mostly negligible. (For gases, Smith 30) accounts 
only for the Soret effect, but not for the Dufour effect. In so doing 
he apparently does not make a consistent approximation). 

§ 5. Maxwell's diffusion laws tor multicomponent systems. For 
multicomponent systems it is not in general possible to derive 
relations for the diffusion fluxes containing the gradient of one 
component only. In many investigations the mass fluxes given by 
(58) are not completely adequate and Maxwell's description of 
the diffusion is more attractive. We shall now show how Maxwell's 
description can be derived in a straightforward manner from (58) . 
For that purpose we introduce the diffusion velocity 

Vi = v, - v. 

For a convenient notation we further introduce 

Vt' = Vi + Di
T 

grad T 
Pi -i'-

From (8), (58) and (80) we obtain 

nj .V 

c,*Cj*Vt' = - :.E mkD ikad,;a. 
P k-l 

(79) 

(80) 

(81) 

We now introduce the coefficients of diffusion resistance Cij and 
derive from (81) 

L C,kC,*Ck*(Vk' - Vt') = 
k,.i 

I 
= - L L Cik(n,mIDkla - nkmlDila + nkmkD'ka) d 1a. (82) 

P k,.i,,.k 

The coefficients Cij are determined in such a way that the follow­
ing relations are satisfied 

.\' 

L Cik(ni1nj D kja - nkmjDija + nkmkDika) = pOij. (83) 
1< - 1 

In the sum at the left-hand side the terms with k = i cancel because 
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of (60), if it is assumed that Cft is finite. Substitution of (83) in (82) 
yields 

II' 

d ia = L CikCi*Ck*(Vk ' - Vi') . 
k-l 

(84) 

These relations may be considered as Maxwell's diffusion laws, 
since Maxwell 31) formulated these laws in a form analogous to 
(84). The reciprocal values of the coefficients of diffusion resistance 
may be called Maxwell's diffusion coefficients 

Dijm = l/Cij for i #- i- (85) 

Curtiss and Hirschfelder 32) have shown that for ideal gases 
in a first approximation Maxwell's diffusion coefficients are equal 
to the binary diffusion coefficients; hence 

D'jm ~ Dij for ideal gases. (86) 

Because the binary diffusion coefficients are mostly better known 
than the "multicomponent diffusion coefficients, (86) is a very 
important relation, which cannot be derived from the thermo­
dynamics of irreversible processes. 

By means of (80) and (85) Maxwell's diffusion laws (84) may 
be written as 

Ci*Ck* grad T Ci*Ck* (DkT DiT ) L (Vk- Vi) =di
a --- :.E-- --- . (87) 

k,.i D'km T k,.i Dum Pk Pi 

For ideal gases (87) is equal to the equations derived by Curtiss and 
Hirschfelder 32). If no exterior forces are present and if pressure 
and thermal diffusion are neglected, it follows from (52) and (87) 
that 

Ck* 
grad at + at L -- (Vi - V k) = a. 

k,.i Dikm 
(88) 

These equations should be equivalent to' those given by Opfell and 
Sage 16). This is not the case, so that the more or less conjectural 
diffusion laws proposed by Opfell and Sage are not correct in all 
their details . 

We shall now show that for ideal gases the diffusion coefficients 
introduced above are indeed the same as those introduced by 
Curtiss and Hirschfelder 32) and Hirschfelder, Curtiss and 
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Bird 26). (83) represents N2 equations for the N(N - I) coefficients 
G,j. Since the equations (83) are not independent, it is easy to derive 
N(N - I) equations from (83). Putting j = i in (83) and subtracting 
(83). when i =1= i, from the equation obtained, we get 

Z Gtk(nkmjD,ja - ntmjDkja + ntmtDkta) = p(1 - t5 i j). (89) 
k-Fi 

Since for i = i (89) is identically satisfied, we have indeed obtained 
N(N - I) equations. For ideal gases Curtiss and Hirschfelder 32) 

have shown that (89) exists at least to a first approximation. Since 
for ideal gases the multicomponent diffusion coefficients are the 
same as those introduced by Curtiss and Hirschfelder, (63). 
(85) and (89) show that Maxwell's diffusion coefficients are also 
equivalent to these and thus (86) is indeed valid. 

From the derivation of (89) given above it appears that this 
relation is generally valid for ideal as well as nori-ideal systems. 
Putting i = h in (89) and subtracting (89) from the obtained 
equation, we get 

ZG'k( ntmhD u a -ntmjD kja- nkmhD'ha+ nkmjDija) =p( t5'h - btj). (90) 
k"'i 

These equations have been given by Hirschfelder, Curtiss and 
Bird 26) as a first approximation for ideal gases. Making use of (63). 
we may solve (90) for Dtja and obtain relations which are also found 
in the book of Hirschfelder, Curtiss and Bird, so that for 
further details we refer the reader to these authors. It is only 
stressed that from the thermodynamics of irreversible processes it 
follows that the relevant relations are exact and not approximative. 

In § 3 we introduced tN(N - 1) independent multicomponent 
diffusion coefficients. It is to be expected that we shall also have the 
same number of independent Maxwell diffusion coefficients. From 
(89) or (90) it seems to follow that there are N(N - 1) coefficients Gij. 
However, (89) and (90) do not represent independent equations 
either, but have to be combined with (63). We are therefore left 
indeed with tN(N - I) independent equations. The relations (85) 
and (86) suggest that at least for ideal gases the coefficients Gij and 
Dtjm are symmetrical because the binary diffusion coefficients are 
symmetrical. If this symmetry holds also for the general case, then 
the number of independent coefficients Gij and corresponding 
Maxwell diffusion coefficients should be iN(N - I) . However, we 
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have not succeeded in proving the symmetry for the general case, 
although there is strong evidence for it. From (63) and (90) it is, for 
instance, easy to prove that for ternary systems the symmetry of 
e'j has to exist for ideal as well as for non-ideal systems. 

Finally the reduced heat flux for multicomponent systems may 
be calculated from (42a) , (43), (45), (48) and (52). The result is 

given by 

grad T _:L f {JOk dka. 
q = - {JOO T Z k = 1 PI.; 

Making use of (44). (50). (85) and (87), the last relation becomes 

RAT nl DkT 
q = - ;'grad T + -- Z - - -- (VI.; - VI), (91) 

1t k,l Dlcl tn mlc 

where;' is given by 

;. = {Joo _ RA Z nkn~ DkT (D~ _ DIT). 
. T n k,l Dklm Pic Pic PI 

For ideal gases (91) agrees with the equivalent relation given by 
Hirschfelder, Curtiss and Bird 26) . 

§ 6. Simplified description of the diffusion for multicomponent 
systems. The formulae developed in the foregoing sections show 
that the calculation of convective transfer phenomena in multi­
component systems is generally very complicated. In order to make 
these problems tractable, drastic simplification of the equations 
and formulae is needed. Such a simplification has been proposed by 
Spalding 9) 10), but his derivations are not correct. We shall now 
try to derive Spalding's equations from those given in the fore­
going sections. As a first and important simplification we assume 
that all Maxwell diffusion coefficients are equal; hence 

Dtr = Dm for i, i = 1,2, ... , N. (92) 

On this assumption (87) becomes 

Dm ( grad T ) 2: Clc* (Vic - Vi) = -*- d i
a + 2: CiT ,ilcCt*CIc* - , (93) 

k c, k T 

where CiT ,ij is the thermal diffusion factor for a multicomponent 
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system defined by 

aT,tf = (DtT _ DfT) I Dm. 
Pi Pf I 

(94) 

For binary systems (94) is equivalent to (73). For a further simplifi­
cation of (93) we derive from (II) and (79) . 

.\" 

V* = V + L Ck*Vk. 
k=1 

Hence, making use also of (12). we get 

.\" 

L Ck* (Vk - Vt) = V* - Vi = - Jt*/ni. 
k=1 

Introducing this relation into (93), we obtain 

(
X grad T ) 

J t* = - nDTlI d ia + L aT,ikci*Ck* . 
k=1 T 

(95) 

This shows that for multicomponent systems assumption (92) leads 
to a diffusion law which is equivalent to that for binary systems 
(compare (95) with (76)). This analogy may be completed if we 
consider ideal systems, for which 

Z = I, at = Ci*, Vt = I/nmt. 

Assuming furthermore that the external forces are the same for all 
components (this assumption is for instance satisfied in gravita­
tional fields), then (52) becomes 

N grad p 
d ia = d i* = grad Ct* + L ap,ikCt*Ck* (96) 

k=1 P 
where 

ap,tf = (mf - mi)/m. (97) 

The coefficient ap,tf is clearly equivalent to the coefficient ap 

for binary systems (compare (97) with (72)). Together with equation 
(17), (95) and (96) represent the formulation of the molar description 
of the diffusion. \Ve shall now indicate how the barycentric descrip­
tion of the diffusion may be obtained from (95) and (96). For that 
purpose we derive first from (6), (8), (11), (12) and (55) 

mi S 
J i = - L mk(ck*Ji* - Ct*Jk*). 

m k=1 

(98) 
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From (55) and (56) we obtain 

P mi N 
- dCi = -- L mk(ck* dCt* - Ci* dCk*)· (99) 
n m k=1 

Furthermore we remark that from (94) it follows that 

aT,ik - aT,fk = aT,if· (100) 

Making use of (55), (96) and (100), substitution of (95) in (98) leads 

to the following relation: 

( 
.\'. grad T ) 

J i = - pDm d i + L. aT,tkCiCk ,(101) 
k=1 T 

where 
12 nti N 

d i = - - L 11Lk(Ck* d i* - Ci* d k*), 
p m k=1 

or, making use of (96) and (99), 

. S grad p 
d i = grad Ct + L ap,ikCtCk --. 

k=1 P 
(102) 

From (10), (10 1) and (102) the barycentric diffusion eq ua tion is 
obtained which is, as a result of assumption (92). analogous to the 
barycentric diffusion equation for binary systems. The most simple 
formula for the mass flux is apparently 

J i = - pDm grad Ct· 

Substitution of (103) in (10) leads to 

Dc· 
p __ t = div (pDm grad Ci) + K t . 

Dt 

(103) 

(104) 

This represents the diffusion equation upon which Spalding's 
calculations are based. From the derivation of (104) it follows that 
the assumptions underlying this equation may be summarized as 

follows: 

1) all Maxwell diffusion coefficients are equal, 
2) the system is ideal, 
3) the exterior forces exerted on the components are equal, 
4) the pressure diffusion is negligible, 
5) the thermal diffusion is negligible. 

Appl. sci. Res. A 8 
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The first assumption differs from that of Spalding, who is also 
forced to assume that the molar masses of the components are equal. 
The latter assumption is not necessary if the derivation of (104) is 
based upon assumption I. 

If chemical reactions occur in the system, the source term K, 
occurring in (104) may be eliminated in a manner indicated by 
Spalding9) 10). Straightforward calculation of the mass transfer 
is then possible without the use of chemical kinetics. 

The thermal energy equation is also considerably simplified if the 
five assumptions named above are accepted. In that case we obtain 
from (28), (91) and (103) 

N N ~ 
p- = div[pDm(CpLegrad T + ~hkgradck)] + -D + <l>T/' (105) 

Dt k-l t 

where Le represents the Lewis number, here defined by Le = .' 
= A.j(pCpDm). For gases Le is in most cases approximately equal 
to I and we thus introduce as a 6th assumption: Le = 1. Further­
more, making use of (30), (35) and (39), equation (105) becomes 

Dh Dp 
p - = div (pDm grad h) + -D + <l>T/' 

Dt t 
(106) 

This equation is also very simple and does not contain the heat of 
reaction. Its absence is not in accordance with Spalding and 
Emmons for reasons mentioned in § 2c. 

In the literature other simplifications are also proposed. These 
may be verified in a manner indicated in this section. In this 
connection we mention for instance the simplifications given by 
Wilke 33), who considered the diffusion of one component through 
stagnant layers consisting of several components. For ideal systems 
the transformation from the molar to the barycentric description 
:>f the diffusion may again be performed by means of (98) and (99). 

The author wishes to express his thanks to Prof. Dr. J. A. Prins 
of the Technological University at Delft for his valuable discussions 
and suggestions. 
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