CHEMKIN

A SOFTWARE PACKAGE FOR THE ANALYSIS OF GAS-PHASE CHEMICAL AND PLASMA KINETICS.

Licensing:

For licensing information, please contact Reaction Design.
(858) 550-1920 (USA) or CHEMKIN@ ReactionDesign.com

Technical Support:

Reaction Design provides an allotment of technical support to its Licensees free of charge. To request technical support, please include your license number along with input or output files, and any error messages pertaining to your question or problem. Requests may be directed in the following manner: E-Mail: Support@ ReactionDesign.com, Fax: (858) 550-1925, Phone: (858) 550-1920.
Technical support may also be purchased. Please contact Reaction Design for the technical support hourly rates at Support@ ReactionDesign.com or (858) 550-1920 (USA).

Copyright:

Copyright© 2000 Reaction Design. All rights reserved. No part of this book may be reproduced in any form or by any means without express written permission from Reaction Design.

Trademark:

Aurora, Chemkin, The Chemkin Collection, Conp, Creslaf, Equil, Equilib, Oppdif, Plug, Premix, Reaction Design, SENKIN, Shock, Spin, SURFACE CHEMKIN, SURFTHERM, TrANSPORT, TwOPNT are all trademarks of Reaction Design or Sandia National Laboratories.

Limitation of Warranty:

The software is provided "as is" by Reaction Design, without warranty of any kind including without limitation, any warranty against infringement of third party property rights, fitness or merchantability, or fitness for a particular purpose, even if Reaction Design has been informed of such purpose. Furthermore, Reaction Design does not warrant, guarantee, or make any representations regarding the use or the results of the use, of the software or documentation in terms of correctness, accuracy, reliability or otherwise. No agent of Reaction Design is authorized to alter or exceed the warranty obligations of Reaction Design as set forth herein.
Any liability of Reaction Design, its officers, agents or employees with respect to the software or the performance thereof under any warranty, contract, negligence, strict liability, vicarious liability or other theory will be limited exclusively to product replacement or, if replacement is inadequate as a remedy or in Reaction Design's opinion impractical, to a credit of amounts paid to Reaction Design for the license of the software.

Literature Citation for CHEMKIN:

The Chemkin program and subroutine library are part of the ChEMKIN Collection.
R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. DixonLewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, and O. Adigun, CheMKin Collection, Release 3.6, Reaction Design, Inc., San Diego, CA (2000).

Acknowledgements:

This document is based on the Sandia National Laboratories Report SAND96-8216, authored by Robert J. Kee, Fran M. Rupley, Ellen Meeks, and James A. Miller. ${ }^{1}$

Reaction Design cautions that some of the material in this manual may be out of date. Updates will be available periodically on Reaction Design's web site. In addition, on-line help is available on the program CD. Sample problem files can also be found on the CD and on our web site at www.ReactionDesign.com.

CHEMKIN: A SOFTWARE PACKAGE FOR THE ANALYSIS OF GAS-PHASE CHEMICAL AND PLASMA KINETICS

Abstract

CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The CHEMKIN Gas-phase Utility package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of a user-specified chemical reaction mechanism. The mechanism includes species information, as well as reaction path and rate descriptions. Output from the Interpreter forms a link to the Gas-Phase Subroutine Library, which may then be accessed from a CHEMKIN Application. The subroutine library is a collection of more than 100 modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-based simulations are used widely in the development and optimization of combustion and other chemical processing systems. In addition, CHEMKIN includes capabilities for treating systems that are not in thermal equilibrium, such as plasmas, where reactions may depend on multi-fluid temperatures associated with electrons or ions.

CONTENTS

Page
LIST OF FIGURES 7
UIST OF TABLES. 8
NOMENCLATURE 9

1. INTRODUCTION 11
1.1 Historical Background 11
1.2 New Features 12
1.3 Structure and Use of CHEMKIN 13
1.4 Example for a Single-Temperature Neutral Gas: Hydrogen Oxidation 13
1.5 Example for a Multi-Temperature Plasma 15
1.6 Organization of this Manual 18
2. THERMODYNAMICS AND CHEMICAL RATE EXPRESSIONS 20
2.1 Choice of Variables 20
2.2 Equation of State and Conversion Formulas 20
2.2.1 Mass fraction to mole fraction 21
2.2.2 Mass fraction to molar concentration: 21
2.2.3 Mole fraction to mass fraction: 22
2.2.4 Mole fraction to molar concentration: 22
2.2.5 Molar concentration to mass fraction: 22
2.2.6 Molar concentration to mole fraction: 22
2.3 Standard-State Thermodynamic Properties 23
2.4 Chemical Reaction Rate Expressions 27
2.4.1 Arbitrary Reaction Order 29
2.4.2 Three-Body Reactions. 30
2.4.3 Pressure-Dependent Reactions. 31
2.4.3.1 Unimolecular/Recombination Fall-off Reactions 31
2.4.3.2 Chemically Activated Bimolecular Reactions. 34
2.4.4 Landau-Teller Formulation of the Rate Expressions 35
2.4.5 Other Allowable Rate Constant Fitting Options 36
2.4.6 Special Forms of the Rate Expressions 37
3. THE MECHANICS OF USING CHEMKIN 39
3.1 Structure of CHEMKIN 39
4. 2 Job Control 41
5. USING THE INTERPRETER 42
4.1 Element Data. 42
4.2 Species Data 45
4.3 Thermodynamic Data 46
4.4 Reaction Mechanism Description 50
4.4.1 Reaction Data 51
4.4.2 Auxiliary Information Data 55
4.4.2.1 Neutral Third Body and Pressure Dependent Reaction Parameters 55
4.4.2.2 Landau-Teller reactions 56
4.4.2.3 Optional Rate Fit Expressions. 56
4.4.2.4 Radiation Wavelength Parameter 56
4.4.2.5 Species Temperature Dependence. 56
4.4.2.6 \quad Energy Loss Parameter 57
4.4.2.7 Plasma Momentum-Transfer Collision Frequency Options 57
4.4.2.8 Reverse Rate Parameters 57
4.4.2.9 Reaction Order Parameters 57
4.4.2.10 Reaction Units 58
4.4.2.11 Duplicate Reaction Descriptions 58
4.4.3 Problems Having No Reactions 59
4.4.4 Error Checks 62
4.4.4.1 Element Data. 62
4.4.4.2 Species Data 62
4.4.4.3 Thermodynamic Data 62
4.4.4.4 Reaction Data 62
4.4.4.5 Auxiliary Data 63
6. QUICK REFERENCE GUIDE TO THE GAS-PHASE SUBROUTINE LIBRARY 64
5.1 Mnemonics 64
7. 2 Initialization 65
5.3 Information About Elements 65
5.4 Information About Species 66
5.5 Information About Reactions. 66
5.6 Gas Constants and Units 68
5.7 Equations of State and Mole-Mass Conversions 68
5.8 Thermodynamic Properties (Nondimensional) 69
8. 9 Thermodynamic Properties (Mass Units) 70
5.10 Thermodynamic Properties (Molar Units) 70
5.11 Mean Thermodynamic Properties (Mass Units) 71
5.12 Mean Thermodynamic Properties (Molar Units) 71
5.13 Chemical Production Rates 72
5.14 Equilibrium Constants and Rate of Progress Variables 73
5.15 Utilities. 74
9. ALPHABETICAL LISTING OF THE GAS-PHASE SUBROUTINE LIBRARY WITH DETAILED DESCRIPTIONS OF THE CALL LISTS 78
10. SAMPLE PROBLEM 157
7.1 Sample Input to the Interpreter. 158
11. 2 Output from the Interpreter for the Sample Input 159
7.3 Sample User's FORTRAN Application: CONP 161
12. 4 Input to the Sample FORTRAN Application, CONP 166
7.5 Output from the Sample FORTRAN Application, CONP 167
7.6 Summary of VODE Math Library Usage 169
13. REFERENCES 173
APPENDIX A. STORAGE ALLOCATION FOR THE WORK ARRAYS 174

LIST OF FIGURES

Page
Figure 1. Sample Neutral Reaction Mechanism as Read by the CHEMKIN Interpreter. 14
Figure 2. Sample Plasma Reaction Mechanism as Read by the CHEMKIN Interpreter. 17
Figure 3. Rate constant as a function of pressure at fixed temperature for the unimolecular fall-off reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+M) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(+M)$. The Troe and Lindemann forms are
illustrated as are the low- and high-pressure limiting forms. 33
Figure 4. Energy versus reaction coordinate diagram that illustrates the competition between a three-body recombination reaction, $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(+\mathrm{M})$, and a chemically activated bimolecular reaction, $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}(+\mathrm{M})$. 34
Figure 5. Rate constant as a function of pressure at fixed temperature for the chemically activated reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}(+\mathrm{M})$. The SRI and Lindemann forms are illustrated as are the low- and high-pressure limiting forms. 35
Figure 6. Schematic diagram showing the structure of the CHEMKIN package and its relationship to an Application Program. 40
Figure 7. A sample UNIX command procedure showing the steps required to compile and run a user's program with the CHEMKIN package. 41
Figure 8. Equivalent Ways to Describe Element Information 43
Figure 9. Equivalent Ways to Describe Species Information 45
Figure 10. Examples of Thermodynamic Data Input. 49
Figure 11. Examples of Reaction Data. 53
Figure 12. Examples of Auxiliary Information Definitions. 60

LIST OF TABLES

Table 1. Summary of the Rules for Element Data ... 44
Table 2. Summary of the Rules for Species Data... 46
Table 3. Summary of the Rules for Thermodynamic Data .. 48
Table 4. Summary of the Rules for Reaction Data .. 54
Table 5. Summary of the Rules for Auxiliary Information Data..

NOMENCLATURE

$a_{n k}$	Coefficients of fits to thermodynamic data	depends on n
a_{n}^{o}	Standard state specific Helmholtz free energy of the kth species	ergs / g
\bar{a}	Mean specific Helmholtz free energy of a mixture	ergs / g
A_{k}^{o}	Standard state molar Helmholtz free energy of the kth species	ergs / mole
\bar{A}	Mean molar Helmholtz free energy of a mixture	ergs / mole
A_{i}	Pre-exponential factor in the rate constant of the ith reaction	depends on reaction
$c_{p k}$	Specific heat capacity at constant pressure of the kth species	ergs / (g K)
\bar{c}_{p}	Mean specific heat capacity at constant pressure	ergs / (g K)
$C_{p k}^{o}$	Standard state molar heat capacity at constant pressure of the kth species	ergs / (mole K)
$C_{p k}$	Molar heat capacity at constant pressure of the kth species	ergs / (mole K)
\bar{C}_{p}	Mean molar heat capacity at constant pressure	ergs / (mole K)
$c_{v k}$	Specific heat capacity at constant volume of the kth species	ergs / (g K)
\bar{c}_{v}	Mean specific heat capacity at constant volume	ergs / (g K)
$C_{v k}$	Molar heat capacity at constant volume of the kth species	ergs / (mole K)
\bar{C}_{v}	Mean molar heat capacity at constant volume	ergs / (mole K)
\dot{C}_{k}	Chemical creation rate of the kth species	moles / ($\mathrm{cm}^{3} \mathrm{sec}$)
\dot{D}_{k}	Chemical destruction rate of the kth species	moles / ($\left.\mathrm{cm}^{3} \mathrm{sec}\right)$
E_{i}	Activation energy in the rate constant of the ith reaction	[cal / mole] ${ }^{*}$
g_{k}^{o}	Standard state specific Gibbs free energy for the kth species	ergs / g
\bar{g}	Mean specific Gibbs free energy of a mixture	ergs / g
G_{k}^{o}	Standard state molar Gibbs free energy for the kth species	ergs / mole
\bar{G}	Mean molar Gibbs free energy of a mixture	ergs / mole
h_{k}	Specific enthalpy of the kth species	ergs / g
\bar{h}	Mean specific enthalpy of a mixture	ergs / g
H_{k}^{o}	Standard state molar enthalpy of the kth species	ergs / mole
H_{k}	Molar enthalpy of the kth species	ergs / mole
\bar{H}	Mean molar enthalpy of a mixture	ergs / mole
i	Reaction index	
I	Total number of reactions	
k	Species index	
$k_{f i}$	Forward rate constant of the ith reaction	depends on reaction

[^0]$k_{r i} \quad$ Reverse rate constant of the ith reaction
$K \quad$ Total number of species
$K_{c i} \quad$ Equilibrium constant in concentration units for the ith reaction
$K_{p i} \quad$ Equilibrium constant in pressure units for the ith reaction
[M] Total molar concentration of a mixture
depends on reaction
$N \quad$ Number of coefficients in polynomial fits to C_{p}^{o} / R
$P \quad$ Pressure
$P_{\text {atm }} \quad$ Pressure of one standard atmosphere
$q_{i} \quad$ Rate of progress of the ith reaction
$R \quad$ Universal gas constant
$R_{c} \quad$ Universal gas constant, in same units as activation energy
$s_{k}^{o} \quad$ Standard state specific entropy of the k th species
$\bar{s} \quad$ Mean specific entropy of a mixture
$S_{k}^{o} \quad$ Standard state molar entropy of the k th species
$S_{k} \quad$ Molar entropy of the kth species
$\bar{S} \quad$ Mean molar entropy of a mixture
dynes / cm ${ }^{2}$
dynes / cm ${ }^{2}$
moles / ($\mathrm{cm}^{3} \mathrm{sec}$)
ergs / (mole K)
[cal / (mole K)]
ergs / (g K)
ergs / (g K)
ergs / (mole K)
ergs / (mole K)
ergs / (mole K)
$T \quad$ Temperature
$u_{k} \quad$ Specific internal energy of the k th species
K
ergs / g
$\bar{u} \quad$ Mean specific internal energy of a mixture
ergs / g
$U_{k} \quad$ Molar internal energy of the kth species
$\bar{U} \quad$ Mean molar internal energy of a mixture
$Y_{k} \quad$ Mass fraction of the k th species
$X_{k} \quad$ Mole fraction of the kth species
[$\left.X_{k}\right]$ Molar concentration of the kth species
moles / cm^{3}
$W_{k} \quad$ Molecular weight of the k th species
g / mole
$\bar{W} \quad$ Mean molecular weight of a mixture
g / mole

GREEK

$\alpha_{k i} \quad$ Enhanced third-body efficiency of the k th species in the ith reaction
$\beta_{i} \quad$ Temperature exponent in the rate constant of the ith reaction
$\rho \quad$ Mass density
$\mathrm{g} / \mathrm{cm}^{3}$
$\tau_{k} \quad$ Characteristic chemical destruction time of the kth species sec
$v_{k i} \quad$ Stoichiometric coefficient of the kth species in the ith reaction; $v_{k i}=v_{k i}^{\prime}-v_{k i}^{\prime \prime}$
$v_{k i}^{\prime} \quad$ Stoichiometric coefficient of the $k t h$ reactant species in the ith reaction
$v_{k i}^{\prime \prime} \quad$ Stoichiometric coefficient of the kth product species in the ith reaction
$\dot{\omega}_{k} \quad$ Chemical production rate of the k th species
mole / $\left(\mathrm{cm}^{3} \mathrm{sec}\right)$

1. INTRODUCTION

The CHEMKIN Gas-phase Utility package is one of three basic elements in the CHEMKIN Collection, designed to facilitate simulations of elementary chemical reactions in flowing systems. The other basic elements are the TRANSPORT property package and the surface chemistry package, SURFACE CHEMKIN. These building-block utilities should not be considered "programs" in the ordinary sense. That is, they are not designed to accept input, solve a particular problem, and report the answer. Instead, they are software tools intended to help a user work efficiently with large systems of chemical reactions and develop representations of systems of equations that define a particular problem. The CHEMKIN Collection also includes Applications that build on these basic elements to solve specific reacting-flow problems. In addition, the user may use the CHEMKIN utilities to write their own Application programs.

An important advantage of the general-purpose and problem-independent structure of CHEMKIN is that it allows the analyst to work with the same chemical input regardless of the particular problem. Thus there is no need to remember a different input protocol for different problems, and consequently, the time required to switch between problems or to develop a new application is minimized. Additionally, the CHEMKIN input standard for describing chemistry reaction mechanisms helps facilitate the exchange of data between different organizations.

1.1 Historical Background

CHEMKIN represents many years of development and generalization of methods and algorithms used in describing chemically reacting flow systems. The original CHEMKIN was published in 1980. ${ }^{2}$ A later version, known as CHEMKIN II, ${ }^{3}$ expanded these capabilities, with inclusion of an accurate and efficient means of describing pressure-dependent reactions. The rate laws for reactions of this type do not follow the modified Arrhenius form that was required in the original CHEMKIN. Other added capabilities in CHEMKIN II included a Landau-Teller form of the rate expression for vibrational energy transfer processes, a capability for specifying more than one rate expression for a reaction, and a capability for explicitly specifying an Arrhenius expression for the reverse rate of a reversible reaction.

The first commercial version, originally called CHEMKIN-III, greatly expanded the applicability of CHEMKIN through inclusion of global reaction kinetics. The new options allowed user specification of reaction orders for each species and the acceptance of non-integer stoichiometric coefficients. This
capability is useful both for plasma systems and also for describing thermal systems where information about detailed kinetics is not well known.

The other major advance of CHEMKIN-III allowed for treatment of non-equilibrium multi-fluid systems. Multi-fluid systems are systems in which the momentum or energy for one or more species in a gas mixture differs significantly from that of the bulk mixture. In a plasma system, for example, ions and electrons may be subject to electric fields that do not affect the neutral species transport. To track the motion of these species, a separate momentum equation must be solved that includes the force exerted by the electric field on the charged species. Similarly, electrons are subject to Joule-heating as they move along applied electric fields, requiring solution of a separate electron energy equation. Species momentum and energy equations can be derived as second and third moments about the Boltzmann equation, just as the species conservation equation results from the first moment of the Boltzmann equation. When all species are in thermal equilibrium and none are subject to special external forces, these equations can be summed over all species in the gas mixture to give the traditional equations of motion for a thermal system. In the CHEMKIN formulations, we allow for different species temperatures to control reaction dynamics and to determine species thermodynamic properties. For systems that are in thermal equilibrium, however, these relations collapse back to the original CHEMKIN formulations.

1.2 New Features

Several enhancements have been made to allow more flexibility in the treatment of the species thermodynamic data. These features are described more completely in the Thermodynamic Data manual, but are briefly listed here:

1. Ability to input species composition for species that include more than 5 elements. The current capability allows up to 9 elements.
2. Ability to include polynomial fit coefficients for thermodynamic data for more than two temperature ranges. The alternative format allows more flexibility in providing good fits to temperature for complicated thermodynamic functions.
3. New fitting procedure that accepts user-specified keywords and free-format input to describe temperatures, specific heats, enthalpies, and entropies used in producing CHEMKIN -compatible fit coefficients.

In addition, we have added many new utility functions for parsing and manipulating data from within CHEMKIN Applications. These utilities are described in detail in Chapter

1.3 Structure and Use of CHEMKIN

The CHEMKIN Gas-phase Utility is composed of the following:

- the Interpreter (a program)
- the Gas-Phase Subroutine Library (a set of FORTRAN subroutines)
- the Thermodynamic Database (a file)
- the Linking File (a file).

To apply CHEMKIN to a problem, the user first selects an Application from the CHEMKIN Collection that best describes a particular reactor geometry or set of flow conditions. Alternatively, the user may write his or her own application program that describes a particular set of governing equations. The programming required to write a CHEMKIN application is highly leveraged, since the user need only call CHEMKIN subroutines to define the terms in the governing equations that relate to equations of state, chemical production, and thermodynamics, and combine the result to define the problem of interest.

Next, the user runs the Interpreter, which first reads the symbolic description of the reaction mechanism and then extracts the appropriate thermodynamic information for the species involved from the Thermodynamic Database. The database has essentially the same format as that used by the original NASA complex chemical equilibrium code by Gordon and McBride. ${ }^{4}$ The output of the Interpreter is the Linking File, which contains all the pertinent information on the elements, species, and reactions in the mechanism.

The Linking File is read by an initialization subroutine that is called from the user's program. The purpose of the initialization is to create three data arrays (one integer, one floating point, and one character data type) for use internally by the other subroutines in the Gas-Phase Subroutine Library.

The Gas-Phase Subroutine Library has over 100 subroutines that return information on elements, species, reactions, equations of state, thermodynamic properties, and chemical production rates. Generally, the input to these routines will be the state of the gas - pressure or density, temperature(s), and species composition.

1.4 Example for a Single-Temperature Neutral Gas: Hydrogen Oxidation

The input file to the CHEMKIN Interpreter for a hydrogen-oxidation process is shown in Eigure 1 First, the file specifies the elements and species that appear in the mechanism, and then includes the reaction mechanism description. The input is essentially format free. The elements and species names need only be separated by blank spaces. The character string that describes the reaction appears on the left and is followed by the three Arrhenius coefficients (pre-exponential factor, temperature exponent, and
activation energy). Enhanced third body efficiencies for selected species are specified in the line following that for a reaction which contains an arbitrary third body, M. Exclamation marks signify the beginning of comments and the remainder of the line is ignored.

```
ELEMENTS H O N END 
ELEMENTS H O N END 
REACTIONS
    H2+O2=2OH 0.170E+14 0.00 47780
    OH+H2=H2O+H
    O}+\textrm{OH}=\textrm{O}2+\textrm{H
    0.117E+10 1.30 3626
    0.400E+15 -0.50 0 !JAM 1986
    O+H2=OH+H
    H+O2+M=HO2+M 0.361E+18 -0.72 0 !DIXON-LEWIS
                H2O/18.6/ H2/2.86/ N2/1.26/
    OH+HO2=H2O+O2 0.750E+13 0.00 0 !D-L
    H+HO2=2OH
    O+HO2=O2+OH 0.140E+14 0.00 1073 !D-L
    2OH=O+H2O 0.600E+09 1.30 0 !COHEN-WEST
    H+H+M=H2+M 0.100E+19 -1.00 0 !D-L
            H2O/O.O/ H2/O.O/
    H+H+H2=H2+H2 0.920E+17 -0.60 0
    H+H+H2O=H2+H2O 0.600E+20 -1.25 0
    H+OH+M=H2O+M 0.160E+23 -2.00 0 !D-L
            H2O/5/
    H+O+M=OH+M
    0.620E+17 -0.60 0 !D-L
            H2O/5/
    O+O+M=O2+M 0.189E+14 0.00 -1788 !NBS
    H+HO2=H2+O2 <rem
    HO2+HO2=H2O2+O2
    0.200E+13 0.00 0
    H2O2+M=OH+OH+M
    0.130E+18 0.00
    0.160E+13 0.00 
    H2O2+H=HO2+H2
    H2O2+OH=H2O+HO2
    0.160E+13 
    3800
    O+N2=NO+N
    0.140\textrm{E}+15
    N+O2=NO+O
    OH+N=NO+H
END
    H2+O2=2OH 0.170E+14 0.00 47780
    0.400E+15 -0.50
    !D-L&W
    0.140E+14 0.00
    0.100E+19 -1.00
!D-L
        D
    0.189E+14 0.00 -1788
    45500
    1800
    0.640E+10 1.00
    6280
    0.400E+14 0.00
```

Figure 1. Sample Neutral Reaction Mechanism as Read by the CHEM KIN Interpreter

Assume the governing equation we wish to study is the energy conservation equation for a constantpressure environment:

$$
\frac{d T}{d t}=-\frac{1}{\rho \bar{c}_{p}} \sum_{k=1}^{K} H_{k} \dot{\omega}_{k},
$$

where T is the temperature, ρ the mass density, \bar{c}_{p} the mean specific heat, H_{k} the molar species enthalpies, and $\dot{\omega}_{k}$ the species molar production rates. The representation of this equation begins with CHEMKIN subroutine calls (the output variables are underlined to help distinguish them):

```
CALL CKINIT(LENIWK, LENRWK, LENCWK, LINKCK, LOUT, ICKWRK, RCKWRK, CCKWRK, IFLAG)
CALL CKINDX(ICKWRK, RCKWRK, MM, KK, II, NFIT)
CALL CKRHOY(P, T, Y, ICKWRK, RCKWRK, RHO)
CALL CKCPBS(T, Y, ICKWRK, RCKWRK, CPB)
CALL CKHML(T, ICKWRK, RCKWRK, HML)
CALL CKWYP(P, T, Y, ICKWRK, RCKWRK, WDOT)
```

The complete details for these calls are explained in later sections of this document, with the object here being to illustrate the relative simplicity of a CHEMKIN application. Briefly, the first call is to the initialization subroutine CKINIT, which reads the Linking File created by the Interpreter and fills the three work arrays. LENIWK, LENRWK and LENCWK are dimensions provided by the user for the data arrays ICKWRK, RCKWRK, and CCKWRK. IFLAG is an error flag that is returned with a zero value if no errors occur. LINKCK is the logical file number of the Linking File, chem.asc, and LOUT is the logical file number for printed diagnostic and error messages. The call to CKINDX provides index information about the reaction mechanism: MM is the number of elements contained in the species, KK is the number of gas-phase species, II is the number of reactions, and NFIT is the number of coefficients in the thermodynamic fits. In the remaining calls, P, T, and Y are the pressure, temperature, and vector of species mass fractions, respectively. The output variables correspond to the various terms for describing the equation, i.e., $\mathrm{RHO}=\rho, \mathrm{CPB}=\bar{c}_{p}, \mathrm{HML}=H_{k}$, and $\mathrm{WDOT}=\dot{\omega}_{k}$.

The FORTRAN representation of the governing equation, given by combining the results of the above subroutine calls, is simply

```
    SUM=0.0
    DO 100 K=1,KK
    SUM = SUM + HML (K)*WDOT (K)
100 CONTINUE
    DTDT = -SUM/ (RHO*CPB)
```

One can see from this example that relatively little programming effort is required to form a conservation equation for an arbitrary reaction mechanism.

1.5 Example for a Multi-Temperature Plasma

The application of CHEMKIN to non-equilibrium plasma systems requires that the kinetics coefficients can be specified independent of the problem or application. For example, some assumption must be made a priori about the electron-energy distribution function (EEDF) when specifying electron-impact kinetics. In reality the EEDF will depend on the reactor conditions, such as the local electric field magnitude or the degree of dissociation of a molecular gas. These conditions are problem-dependent, such that including these effects requires coupling between the kinetics-rate determination and the EEDF determination.

While we foresee a need in future CHEMKIN development for treatment of fundamental reaction crosssection data, there are many systems where application of problem-independent kinetics in plasma modeling is reasonable. Such applications include plasma conditions where the EEDF is nearly Maxwellian, such as near-thermal atmospheric-pressure plasma jets, or very low-pressure, high-electrondensity systems for microelectronics processing.

The input file to the CHEMKIN Interpreter for a chlorine-plasma excitation process is shown in Eigure 2 As with the previous hydrogen-oxidation example, the file first specifies the elements and species that appear in the mechanism and then describes the reaction mechanism. Here, electrons must be specified both as an element and as a species. The elemental composition of a unipositive ion is that of the corresponding neutral minus one electron. This information is given in the species thermodynamic data and will be described further in the next section. As in the thermal system, three Arrhenius coefficients are used by default to describe reaction rates for electron-impact kinetics. The auxiliary keyword 'TDEP' on a line following the reaction statement indicates that the reaction rate is a function of the temperature of the species specified in the slashes following the TDEP keyword.

As shown in Eigure2 most of the plasma reactions require some auxiliary information beyond the Arrhenius coefficients to distinguish the reaction description from the default thermal reactions. TDEP is one example of an auxiliary keyword that specifies the temperature dependence of the reaction. EXCI is used typically to indicate an excitation reaction. Such "reactions" are often included to allow calculation of inelastic energy loss rates for electrons, without requiring the user to include all excited states as new species in the reaction mechanism. The auxiliary information following the keyword EXCI represents the energy-loss per collision in electron volts. The keyword DUP is included to allow multiple occurrences of reaction statements that have different rate coefficients or different auxiliary information, but otherwise appear identical. This is frequently necessary in the specification of multiple excitation reactions from the same ground-state species. The use of auxiliary keywords is described in greater detail in Section 4.4.2

Another important aspect of the plasma reactions shown in Eigure 2 is that they are all specified as irreversible reactions. This is in contrast to thermal reactions, which are usually reversible and reverse rates can be calculated directly from species thermodynamic properties. In the case of electron kinetics, the interactions between electrons and neutral species can be intrinsically irreversible. While detailed balancing may be appropriate for near-thermal plasmas, the use of CHEMKIN thermodynamics is not appropriate for determining reverse rates. In such cases, the user should explicitly supply reverse kinetic parameters, or specify a reverse path as an additional irreversible reaction.

```
ELEMENTS E CL END
SPECIES E CL+ CL2+ CL- CL* CL CL2 END
REACTIONS KELVIN MOLECULES
! reaction rates from Maxwellian EEDF
    E + CL2 => E + CL2 2.5141E-02 -1.4443E+00 1.6650E+04
        TDEP/E/ !vibrational excitation
        EXCI/ 0.07/
        DUP
    E + CL2 => CL- + CL 5.8901E-09 -2.5619E-01 1.5834E+04
        TDEP/E/ !dissociative attachment
    E + CL2 => 2CL + E 1.5356E-06 -3.4642E-01 7.0850E+04
        TDEP/E/ !dissociation
    E + CL2 => E + CL2 6.3477E-06 -5.3987E-01 1.3920E+05
        TDEP/E/ !electronic excitation
        EXCI/ 9.25/
        DUP
    E + CL2 => CL2+ + 2E 1.1227E-04 -6.0067E-01 1.8070E+05
        TDEP/E/ !ionization
    E + CL- => CL + 2E 3.1197E-06 -2.8757E-01 7.2058E+04
        TDEP/E/ !detachment
    E + CL => E + CL* 1.2363E-05 -6.1356E-01 1.3297E+05
        TDEP/E/ !4s excitation
    E + CL => E + CL 1.2363E-05 -6.1356E-01 1.3297E+05
        TDEP/E/ !4s excitation energy loss
        EXCI/ 9.55/
        DUP
    E CL => E + CL 9.4444E-05 -7.3093E-01 1.5413E+05
        TDEP/E/ !3d excitation
        EXCI/11.65/
        DUP
    E + CL => CL+ + 2E 2.3736E-04 -7.0894E-01 1.8374E+05
        TDEP/E/ !ionization (
    E + CL* => CL+ + 2E 2.6471E-05 -4.3906E-01 6.3670E+04
        TDEP/E/ !Cl* ionization
    CL- + CL2+ => CL + CL2 5.00E-08 0.0 0
    CL- + CL+ => 2CL 5.00E-08 0.0 0
END
```

Figure 2. Sample Plasma Reaction Mechanism as Read by the CHEMKIN Interpreter.

Consider a simple form of the electron conservation equation for a closed system:

$$
\frac{d\left[X_{e}\right]}{d t}=\dot{\omega}_{e}
$$

where $\left[X_{e}\right]$ is the electron molar concentration and $\dot{\omega}_{e}$ the electron molar production rate. The representation of this equation begins with CHEMKIN subroutine calls:

```
CALL CKINIT(LENIWK, LENRWK, LENCWK, LINKCK, LOUT, ICKWRK, RCKWRK, CCKWRK, IFLAG)
CALL CKINDX(ICKWRK, RCKWRK, MM, KK, II, NFIT)
CALL PKINDX(ICKWRK, KEL, KKION)
CALL CKKTFL(ICKWRK, KTFL)
CALL CKWC(T, C, ICKWRK, RCKWRK, WDOT)
```

As in the hydrogen-oxidation example, the first call is to the initialization subroutine CKINIT. CKINDX provides general chemistry indices, while PKINDX provides plasma-specific index information. In this case, we call PKINDX to get KEL, the location in the species array of the electron. In other words, there is no requirement for the species ' E ' to be in any particular order in the mechanism species list. KKION is the number of positive and negative ions in the chemistry mechanism. The call to CKKTFL initializes the species temperature flag array in the CHEMKIN workspace. Without this call, it is assumed that all species share a common temperature, which is always the first entry in the temperature array passed to CHEMKIN in all subsequent calls. KTFL is a user-defined vector that defines the locations in the temperature array that correspond to each species temperature. This allows the application program to define a different number of temperatures in the system than the total number of species. For example, in a two-temperature plasma, where $T(1)$ is the gas temperature and $T(2)$ is the electron temperature, the user sets $\mathrm{KTFL}(\mathrm{KEL})=2$, and all other entries are set to ' 1 '. Finally, in the call to CKWC, T is the temperature array, and C is the vector of species molar concentrations. The output variable, WDOT, is the $\dot{\omega}_{k}$ vector, where $\dot{\omega}_{e}$ is the KELth entry.

1.6 Organization of this Manual

Chapter $\sqrt{ }$ is a compendium of the important equations in gas-phase chemical kinetics. Many of the equations are simply definitions; but, in any case, derivations are either sketchy or not given. Although most readers will find all of the equations quite familiar, we find it useful to have these equations stated concisely in one document. For most of the equations, the package contains a subroutine that, when given the variables on the right-hand side, returns the variable on the left. For example, Eq. (3) in Chapter 2 gives mean molecular weight in terms of the mass fractions. Subroutine CKMMWY would be called to return this information.

Chapter 3 explains the mechanics of using CHEMKIN and describes the job control logic for running a problem. Chapter 4 explains the CHEMKIN Interpreter and how to set up the required symbolic input to define a reaction mechanism. Chapters 5 and 5 describe the Gas-Phase Subroutine Library, Chapter 5 being composed of short descriptions for quick reference and Chapter 6 (an alphabetical listing) explaining the input and output in the call sequence as well as cross referencing each subroutine to equation numbers in Chapter 2 To demonstrate CHEMKIN explicitly, Chapter Z goes through a sample problem in detail.

Appendix A defines the allocation of three work arrays that are created from the Linking File. With this information, a user can create new subroutines for the library to suit a specialized need that was not anticipated in the current library.

2. THERMODYNAMICS AND CHEMICAL RATE EXPRESSIONS

The purpose of this chapter is to list expressions and equations that are useful in formulating a chemically reacting flow problem. For each expression/equation, the subroutine(s) that evaluates it is named to the right, below the equation number.

2.1 Choice of Variables

The formulation of any problem requires that a set of state variables be chosen. Unfortunately there is no clear choice that is generally superior for all problems. In the CHEMKIN Collection, we allow the user to select either pressure or density, temperature(s), and either mass fraction, mole fraction, or molar concentration. In other words, to define the state of a gas, one variable must be selected from each column of the array below.

$$
\left(\begin{array}{ccc}
P & T_{k} & Y_{k} \\
\rho & & X_{k} \\
& & {\left[X_{k}\right]}
\end{array}\right)
$$

In making these options available from among the many possible, we provide combinations of variables that are natural ones for a wide class of problems. For example, pressure is a natural choice in situations where pressure is fixed, and density is a natural variable where volume is fixed. Moreover, density is a natural variable in many problems involving fluid mechanics because it is determined directly from the mass continuity equation. Temperature is always taken as a natural variable because the thermodynamic properties and the chemical rate constants both depend directly on temperature. Mass fraction and mole fraction are convenient variables for describing the composition of a gas. Molar concentration is sometimes a convenient variable because the rate of progress of chemical reactions depends directly on the molar concentration of the reactants and products.

2.2 Equation of State and Conversion Formulas

The equation of state used is that of a ideal, multi-fluid gas, which allows for a temperature to be specified for each species, T_{k}. The reader who is more familiar with thermal systems may not immediately recognize these formulations as representing the traditional ideal gas law. However, the formulations do collapse to the more usual thermal relations in the case where all species temperatures, T_{k}, are equal to the gas temperature. The general equation of state is given by:

$$
\begin{equation*}
P=\sum_{k=1}^{K}\left[X_{k}\right] R T_{k}, \tag{1}
\end{equation*}
$$

[СКРY, СКРХ, СКРС]
while the mean mass density is defined by:

$$
\begin{equation*}
\rho=\sum_{k=1}^{K}\left[X_{k}\right] W_{k} . \tag{2}
\end{equation*}
$$

[CKRHOY, CKRHOX, CKRHOC]

The mean molecular weight \bar{W} may be defined variously as

$$
\begin{align*}
\bar{W} & =\frac{1}{\sum_{k=1}^{K} Y_{k} / W_{k}}, \tag{3}\\
\bar{W} & =\sum_{k=1}^{K} X_{k} W_{k} \tag{4}
\end{align*}
$$

[CKMMWY]
[CKMMWX]
or

$$
\begin{equation*}
\bar{W}=\frac{\sum_{k=1}^{K}\left[X_{k}\right] W_{k}}{\sum_{k=1}^{K}\left[X_{k}\right]} . \tag{5}
\end{equation*}
$$

[CKMMWC]

It is often convenient to represent a gas-mixture species composition variously as either mass fraction, mole fraction, or molar concentration. Here we state the conversion formulas between these ways of describing the mixture composition.

2.2.1 MASS FRACTION TO MOLE FRACTION:

$$
\begin{equation*}
X_{k}=\frac{Y_{k}}{W_{k} \sum_{j=1}^{K} Y_{j} / W_{j}}=\frac{Y_{k} \bar{W}}{W_{k}} \tag{6}
\end{equation*}
$$

[CKYTX]

2.2.2 MASS FRACTION TO MOLAR CONCENTRATION:

$$
\begin{gather*}
{\left[X_{k}\right]=\frac{P\left(Y_{k} / W_{k}\right)}{R \sum_{j=1}^{K} Y_{j} T_{j} / W_{j}}} \tag{7}\\
{\left[X_{k}\right]=\rho \frac{Y_{k}}{W_{k}}} \tag{8}
\end{gather*}
$$

[CKYTCR]

2.2.3 MOLE FRACTION TO MASS FRACTION:

$$
\begin{equation*}
Y_{k}=\frac{X_{k} W_{k}}{\sum_{j=1}^{K} X_{j} W_{j}}=\frac{X_{k} W_{k}}{\bar{W}} \tag{9}
\end{equation*}
$$

2.2.4 MOLE FRACTION TO MOLAR CONCENTRATION:

$$
\begin{gather*}
{\left[X_{k}\right]=X_{k} \frac{P}{R \sum X_{k} T_{k}}} \tag{10}\\
{\left[X_{k}\right]=X_{k} \frac{\rho}{\bar{W}}} \tag{11}
\end{gather*}
$$

2.2.5 MOLAR CONCENTRATION TO MASS FRACTION:

$$
\begin{equation*}
Y_{k}=\frac{\left[X_{k}\right] W_{k}}{\sum_{j=1}^{K}\left[X_{j}\right] W_{j}} \tag{12}
\end{equation*}
$$

[CKCTY]
2.2.6 MOLAR CONCENTRATION TO MOLE FRACTION:

$$
\begin{equation*}
X_{k}=\frac{\left[X_{k}\right]}{\sum_{j=1}^{K}\left[X_{j}\right]} \tag{13}
\end{equation*}
$$

[CKСТХ]

2.3 Standard-State Thermodynamic Properties

CHEMKIN presumes that the standard-state thermodynamic properties are thermally "perfect", in that they are only functions of temperature and are given in terms of polynomial fits to the molar heat capacities at constant pressure:

$$
\begin{equation*}
\frac{C_{p k}^{o}}{R}=\sum_{n=1}^{N} a_{n k} T_{k}^{(n-1)} \tag{14}
\end{equation*}
$$

The superscript o refers to the standard-state 1 atmosphere. For perfect gases, however, the heat capacities are independent of pressure, and the standard-state values are the actual values. Other thermodynamic properties are given in terms of integrals of the molar heat capacities. First, the standardstate molar enthalpy is given by

$$
\begin{equation*}
H_{k}^{o}=\int_{0}^{T_{k}} C_{p k}^{o} d T \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{H_{k}^{o}}{R T_{k}}=\sum_{n=1}^{N} \frac{a_{n k} T_{k}^{(n-1)}}{n}+\frac{a_{N+1, k}}{T_{k}} \tag{16}
\end{equation*}
$$

where the constant of integration, $a_{N+1, k} R$, is the standard heat of formation at 0 K . Normally, however, this constant is evaluated from knowledge of the standard heat of formation at 298 K , since the polynomial representations are usually not valid down to 0 K .

The standard-state molar entropy is written as

$$
\begin{equation*}
S_{k}^{o}=\int_{298}^{T_{k}} \frac{C_{p}^{o} k}{T} d T+S_{k}^{o}(298) \tag{17}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{S_{k}^{o}}{R}=a_{1 k} \ln T_{k}+\sum_{n=2}^{N} \frac{a_{n k} T_{k}^{(n-1)}}{(n-1)}+a_{N+2, k} \tag{18}
\end{equation*}
$$

where the constant of integration $a_{N+2, k} R$ is evaluated from knowledge of the standard-state entropy at 298 K.

The above equations are stated for an arbitrary-order polynomial, but the CHEMKIN package is designed to work with thermodynamic data in the form used in the NASA chemical equilibrium code. ${ }^{4}$ In this
case, seven coefficients are needed for each of two temperature ranges. ${ }^{\square}$ These fits take the following form, where the temperatures are in Kelvin:

$$
\begin{gather*}
\frac{C_{p_{k}}^{o}}{R}=a_{1 k}+a_{2 k} T_{k}+a_{3 k} T_{k}^{2}+a_{4 k} T_{k}^{3}+a_{5 k} T_{k}^{4}, \tag{19}\\
\frac{H_{k}^{o}}{R T_{k}}=a_{1 k}+\frac{a_{2 k}}{2} T_{k}+\frac{a_{3 k}}{3} T_{k}^{2}+\frac{a_{4 k}}{4} T_{k}^{3}+\frac{a_{5 k}}{5} T_{k}^{4}+\frac{a_{6 k}}{T_{k}}, \tag{20}\\
\frac{S_{k}^{o}}{R}=a_{1 k} \ln T_{k}+a_{2 k} T_{k}+\frac{a_{3 k}}{2} T_{k}^{2}+\frac{a_{4 k}}{3} T_{k}^{3}+\frac{a_{5 k}}{4} T_{k}^{4}+a_{7 k} . \tag{21}
\end{gather*}
$$

Other thermodynamic properties are easily given in terms of C_{p}^{o}, H^{o}, and S^{o}. The specific heat capacity at constant volume $C_{v k}^{o}$ is

$$
\begin{equation*}
C_{v_{k}}^{o}=C_{p_{k}}^{o}-R, \tag{22}
\end{equation*}
$$

[CKCVML]
the internal energy U_{k}^{o} is

$$
\begin{equation*}
U_{k}^{o}=H_{k}^{o}-R T_{k}, \tag{23}
\end{equation*}
$$

[CKUML]
the standard-state Gibbs free energy G_{k}^{o} is

$$
\begin{equation*}
G_{k}^{o}=H_{k}^{o}-T_{k} S_{k}^{o}, \tag{24}
\end{equation*}
$$

and the standard-state Helmholtz free energy A_{k}^{o} is

$$
\begin{equation*}
A_{k}^{o}=U_{k}^{o}-T_{k} S_{k}^{o} . \tag{25}
\end{equation*}
$$

For a perfect gas, the standard-state specific heats, enthalpies, and internal energies are also the actual values. Therefore, we drop the superscript 0 on those quantities.

Often, specific thermodynamic properties are needed in mass units (per gram) rather than in molar units (per mole). The conversion is made by dividing the property in molar units by the molecular weight. The specific properties are thus

[^1]\[

$$
\begin{gather*}
c_{p_{k}}=\frac{C_{p_{k}}}{W_{k}}, \tag{26}\\
h_{k}=\frac{H_{k}}{W_{k}}, \tag{27}\\
s_{k}^{o}=\frac{S_{k}^{o}}{W_{k}}, \tag{28}\\
c_{v_{k}}=\frac{C_{v_{k}}}{W_{k}} \tag{29}\\
u_{k}=\frac{U_{k}}{W_{k}}, \tag{30}\\
g_{k}^{o}=\frac{G_{k}^{o}}{W_{k}}
\end{gather*}
$$
\]

[CKCPMS]
[CKGMS]
and

$$
\begin{equation*}
a_{k}^{o}=\frac{A_{k}^{o}}{W_{k}} \tag{32}
\end{equation*}
$$

[CKCAMS]

One also often needs mixture-averaged thermodynamic properties. As with the pure-species properties, the CHEMKIN thermodynamics subroutines return properties in either mass or molar units. The mixtureaveraged specific heats are

$$
\begin{gather*}
\bar{C}_{p}=\sum_{k=1}^{K} C_{p_{k}} X_{k}, \tag{33}\\
\bar{c}_{p}=\sum_{k=1}^{K} c_{p_{k}} Y_{k}=\bar{C}_{p} / \bar{W} \tag{34}\\
\bar{C}_{v}=\sum_{k=1}^{K} C_{v_{k}} X_{k} \tag{35}
\end{gather*}
$$

[CKCPBL]
[CKCPBS]
and

$$
\begin{equation*}
\bar{c}_{v}=\sum_{k=1}^{K} c_{v_{k}} Y_{k}=\bar{C}_{v} / \bar{W} \tag{36}
\end{equation*}
$$

[CKCVBS]
the enthalpies are

$$
\begin{equation*}
\bar{H}=\sum_{k=1}^{K} H_{k} X_{k} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}=\sum_{k=1}^{K} h_{k} Y_{k}=\bar{H} / \bar{W} \tag{38}
\end{equation*}
$$

[CKHBMS]
and the internal energies are

$$
\begin{equation*}
\bar{U}=\sum_{k=1}^{K} U_{k} X_{k} \tag{39}
\end{equation*}
$$

and

$$
\bar{u}=\sum_{k=1}^{K} u_{k} Y_{k}=\bar{U} / \bar{W} .
$$

[CKUBMS

The mixture properties are more complex for the entropies and the Gibbs and Helmholtz free energies. Here the actual values are not the same as the standard-state values and we must account for the appropriate pressure and entropy-of-mixing terms. The entropy is then

$$
\begin{equation*}
S_{k}=S_{k}^{o}-R \ln X_{k}-R \ln \left(P / P_{\mathrm{atm}}\right) \tag{41}
\end{equation*}
$$

Thus the mixture-averaged entropies are

$$
\begin{equation*}
\bar{S}=\sum_{k=1}^{K}\left(S_{k}^{o}-R \ln X_{k}-R \ln \left(P / P_{\text {atm }}\right)\right) X_{k}, \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}=\bar{S} / \bar{W} \tag{43}
\end{equation*}
$$

[CKSBMS]
Similarly, the mixture-averaged Gibbs and Helmholtz free energies are

$$
\begin{gather*}
\bar{G}=\sum_{k=1}^{K}\left[H_{k}-T_{k}\left(S_{k}^{o}-R \ln X_{k}-R \ln \left(P / P_{\text {atm }}\right)\right)\right] X_{k}, \\
\bar{g}=\bar{G} / \bar{W}, \tag{45}
\end{gather*}
$$

$$
\begin{equation*}
\bar{A}=\sum_{k=1}^{K}\left[U_{k}-T_{k}\left(S_{k}^{o}-R \ln X_{k}-R \ln \left(P / P_{a t m}\right)\right)\right] X_{k}, \tag{46}
\end{equation*}
$$

[CKABML]
and

$$
\begin{equation*}
\bar{a}=\bar{A} / \bar{W} . \tag{47}
\end{equation*}
$$

[CKABMS]

2.4 Chemical Reaction Rate Expressions

Consider elementary reversible (or irreversible) reactions involving K chemical species that can be represented in the general form

$$
\begin{equation*}
\sum_{k=1}^{K} v_{k i}^{\prime} \chi_{k} \Leftrightarrow \sum_{k=1}^{K} v_{k i}^{\prime \prime} \chi_{k} \quad(i=1, \ldots, I) \tag{48}
\end{equation*}
$$

The stoichiometric coefficients $v_{k i}$ are integer numbers and χ_{k} is the chemical symbol for the kth species. The superscript ' indicates forward stoichiometric coefficients, while " indicates reverse stoichiometric coefficients. Normally, an elementary reaction involves only three or four species; hence the $v_{k i}$ matrix is quite sparse for a large set of reactions. For non-elementary reactions, Eq. (48) also represents the reaction expression, but the stoichiometric coefficients may be non-integers.

The production rate $\dot{\omega}_{k}$ of the kth species can be written as a summation of the rate-of-progress variables for all reactions involving the k th species:

$$
\begin{equation*}
\dot{\omega}_{k}=\sum_{i=1}^{I} v_{k i} q_{i} \quad(k=1, \ldots, K) \tag{49}
\end{equation*}
$$

[CKWYP, CKWYR, CKWXP, CKWXR, CKWC, CKCONT]
where

$$
\begin{equation*}
v_{k i}=v_{k i}^{\prime \prime}-v_{k i}^{\prime} . \tag{50}
\end{equation*}
$$

[CKNU]
The rate of progress variable q_{i} for the ith reaction is given by the difference of the forward and reverse rates as

$$
\begin{equation*}
q_{i}=k_{f_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{v_{k i}^{\prime}}-k_{r_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{v_{k i}^{\prime}}, \tag{51}
\end{equation*}
$$

[CKQYP, CKQYR, CKQXP, CKQXR, CKQC, CKCONT]
where $\left[X_{k}\right]$ is the molar concentration of the kth species and $k_{f_{i}}$ and $k_{r_{i}}$ are the forward and reverse rate constants of the ith reaction. As indicated in Eq. (51), the rate-of-progress of a reaction is evaluated, by default, using the concentration of each reactant or product species raised to the power of its stoichiometric coefficient. Thus, the rate-of-progress of a reaction that includes species A with a coefficient of 2 will be second-order with respect to the concentration of A. Equation (51) is always valid when mass-action kinetics are obeyed, and when the mechanism is written in terms of elementary reactions. As it is often difficult to obtain elementary reaction kinetics, CHEMKIN includes the option for the user to define an arbitrary reaction order for a species in a reaction in place of the coefficients used in Eq. (33). This option is described further below.

The forward rate constants for the I reactions are generally assumed to have the following Arrhenius temperature dependence:

$$
\begin{equation*}
k_{f_{i}}=A_{i} T^{\beta_{i}} \exp \left(\frac{-E_{i}}{R_{c} T}\right) \tag{52}
\end{equation*}
$$

where the pre-exponential factor A_{i}, the temperature exponent β_{i}, and the activation energy E_{i} are specified.* These three parameters are required input to the CHEMKIN package for each reaction. In Eqs. (52-57), T refers to the gas temperature, unless auxiliary reaction information is provided to indicate that the reaction depends on a temperature associated with a particular species. Such information would be specified using the auxiliary keyword, TDEP, which is described further in Section 4.4.2.5 In the case where the TDEP keyword is included for reaction i, T represents the temperature of the species whose name follows the TDEP keyword.

In thermal systems, the reverse rate constants $k_{r_{i}}$ are related to the forward rate constants through the equilibrium constants by

$$
\begin{equation*}
k_{r_{i}}=\frac{k_{f_{i}}}{K_{c_{i}}} \tag{53}
\end{equation*}
$$

Although $K_{c_{i}}$ is given in concentration units, the equilibrium constants are more easily determined from the thermodynamic properties in pressure units; they are related by

$$
\begin{equation*}
K_{c_{i}}=K_{p_{i}}\left(\frac{P_{a t m}}{R T}\right)^{\sum_{k=1}^{K} v_{k i}} \tag{54}
\end{equation*}
$$

[CKEQYP, CKEQYR, CKEQXP, CKEQXR, CKEQC]

The equilibrium constants $K_{p_{i}}$ are obtained with the relationship

$$
\begin{equation*}
K_{p_{i}}=\exp \left(\frac{\Delta S_{i}^{o}}{R}-\frac{\Delta H_{i}^{o}}{R T}\right) \tag{55}
\end{equation*}
$$

The Δ refers to the change that occurs in passing completely from reactants to products in the ith reaction; specifically,

$$
\begin{gather*}
\frac{\Delta S_{i}^{o}}{R}=\sum_{k=1}^{K} v_{k_{i}} \frac{S_{k}^{o}}{R} \tag{56}\\
\frac{\Delta H_{i}^{o}}{R T}=\sum_{k=1}^{K} v_{k_{i}} \frac{H_{k}^{0}}{R T} \tag{57}
\end{gather*}
$$

[^2]For reactions involving electrons, the use of equilibrium constants to determine reverse rates is usually not appropriate. In some cases, detailed balancing on electron-driven reactions can be applied using the Saha equation (see, for example, Mitchner and Kruger ${ }^{5}$) that relates the ionization and electron-thirdbody recombination reactions to the species partition functions. While such relations can be used to calculate explicitly reverse rates from forward rates, they are not part of the built-in features of CHEMKIN. To avoid erroneous results, it is therefore required that all reactions involving electron species must either be specified as forward reactions only, or must include the reverse rate parameters explicitly stated using auxiliary keywords. The specification of reverse-rate parameters is described in more detail in Section 4428

2.4.1 ARBITRARYREACTION ORDER

Often in real-world applications the elementary kinetics are not known. In some cases, an experimental measurement finds that the rate of reaction is proportional to the concentration of a species raised to a some arbitrary power (different from its stoichiometric coefficient). CHEMKIN allows the user to declare that the rate-of-progress of a reaction is proportional to the concentration of any species (regardless of whether that species even appears as a reactant or a product in the reaction) raised to any specified power. To modify the reaction order for the reaction in the forward or reverse direction, the user must declare the FORD or RORD auxiliary keywords, respectively, in the Interpreter input file. (These keywords are discussed in Section 4.4.2.9)

When the reaction-order-dependence of reaction i is changed via the FORD or RORD keywords, the rate-of-progress variable q_{i} for the reaction is evaluated by:

$$
\begin{equation*}
q_{i}=k_{f_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{F_{k i}}-k_{r_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{R_{k i}} \tag{58}
\end{equation*}
$$

where $F_{k i}$ is the reaction order specified through the FORD keyword and $R_{k i}$ is the reaction order specified through the RORD keyword for species k. The default for species participating in reaction i is the normal mass-action kinetics values:

$$
\begin{equation*}
F_{k i}=v_{k i}^{\prime} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{k i}=v_{k i}^{\prime \prime} \tag{60}
\end{equation*}
$$

if an order-change parameter is not given for species k.

The user should exercise caution when specifying a change of reaction order, as such a change may produce unexpected and unphysical results in a kinetic simulation. For example, the user should consider the kinetics of the reverse reaction when changing reaction-orders for the forward reaction. Such a reaction may no longer satisfy microscopic reversibility. At equilibrium, elementary kinetics ensure that

$$
\begin{equation*}
k_{r_{i}} / k_{f_{i}}=\prod_{k=1}^{K}\left[X_{k}\right]^{]_{k i}^{\prime}} / \prod_{k=1}^{K}\left[X_{k}\right]^{v_{k i}^{\prime}}=\prod_{k=1}^{K}\left[X_{k}\right]^{]_{k i}^{\prime}-v_{k i}^{\prime \prime}} . \tag{61}
\end{equation*}
$$

A reaction for which one has specified a change in reaction order will not have the proper equilibrium behavior unless

$$
\begin{equation*}
F_{k i}-R_{k i}=v_{k i}^{\prime}-v_{k i}^{\prime \prime},(k=1, \ldots, K) . \tag{62}
\end{equation*}
$$

The user specifying $F_{k i}$ may also wish to adjust $R_{k i}$ such that Eq. (62) is satisfied; CHEMKIN does not do this automatically. Another alternative would be to simply specify that the reaction is irreversible.

2.4.2 THREE-BODY REACTIONS

In some reactions a "third body" is required for the reaction to proceed; this is often the case in dissociation or recombination reactions, such as

$$
\mathrm{H}+\mathrm{O}_{2}+\mathrm{M} \Leftrightarrow \mathrm{HO}_{2}+\mathrm{M} .
$$

When a third body is needed, the concentration of the effective third body must appear in the expression for the rate-of-progress variable. Accordingly, the rate-of-progress variable is different from Eq. (51) by the first factor in the equation:

$$
\begin{equation*}
q_{i}=\left(\sum_{k=1}^{K}\left(\alpha_{k i}\right)\left[X_{k}\right]\right)\left(k_{f_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{v_{k i}^{\prime}}-k_{r_{i}} \prod_{k=1}^{K}\left[X_{k}\right]^{v_{k i}^{\prime \prime}}\right) \tag{63}
\end{equation*}
$$

[CKQYP, CKQYR, CKQXP, CKQXR, CKQC, CKTHB]

If all species in the mixture contribute equally as third bodies, then $\alpha_{k i}=1$ for all k, and the first factor is the total concentration of the mixture,

$$
\begin{equation*}
[M]=\sum_{k=1}^{K}\left[X_{k}\right] . \tag{64}
\end{equation*}
$$

However, it is often the case that some species act more efficiently as third bodies than do others. The $\alpha_{k i}$ that differ from 1 must be specified by input to the CHEMKIN Interpreter.

2.4.3 PRESSURE-DEPENDENT REACTIONS

Under certain conditions, some reaction rate expressions depend on pressure as well as temperature. CHEMKIN provides for two kinds of such reactions: unimolecular/recombination fall-off reactions and chemically activated bimolecular reactions. Generally speaking, the rate for unimolecular/recombination fall-off reactions increases with increasing pressure, while the rate for chemically activated bimolecular reactions decreases with increasing pressure. In both cases, CHEMKIN makes available various expressions that blend smoothly between high- and low-pressure limiting rate expressions.

2.4.3.1 Unimolecular/Recombination Fall-off Reactions

As an example of a unimolecular/recombination fall-off reaction, consider methyl recombination. In the high-pressure limit, the appropriate description of the reaction is $\mathrm{CH}_{3}+\mathrm{CH}_{3} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}$. In the lowpressure limit, a third-body collision is required to provide the energy necessary for the reaction to proceed, i.e., the appropriate description is $\mathrm{CH}_{3}+\mathrm{CH}_{3}+\mathrm{M} \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{M}$. When such a reaction is at either limit, the (solely temperature-dependent) rate expressions discussed in the preceding paragraphs are applicable. However, when the pressure and temperature are such that the reaction is between the limits, the rate expressions are more complicated. To denote a reaction that is in this "fall-off" region, we write the reaction with the +M enclosed in parentheses,

$$
\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(+\mathrm{M}) .
$$

There are several methods of representing the rate expressions in this fall-off region. The simplest one is due to Lindemann. ${ }^{6}$ There are also now two other (and related) methods that provide a more accurate description of the fall-off region than does the simple Lindemann form. The CHEMKIN package handles all three of these forms as options.

We begin first with the Lindemann approach. Arrhenius rate parameters are required for both the highand low-pressure limiting cases, and the Lindemann form for the rate coefficient blends them to produce a pressure-dependent rate expression. In Arrhenius form, the parameters are given for the high-pressure limit $\left(k_{\infty}\right)$ and the low-pressure limit $\left(k_{0}\right)$ as follows:

$$
\begin{align*}
& k_{0}=A_{0} T^{\beta 0} \exp \left(-E_{0} / R_{c} T\right), \tag{65}\\
& k_{\infty}=A_{\infty} T^{\beta \infty} \exp \left(-E_{\infty} / R_{c} T\right) . \tag{66}
\end{align*}
$$

The rate constant at any pressure is then taken to be

$$
\begin{equation*}
k=k_{\infty}\left(\frac{P_{r}}{1+P_{r}}\right) F \tag{67}
\end{equation*}
$$

where the reduced pressure P_{r} is given by

$$
\begin{equation*}
P_{r}=\frac{k_{0}[M]}{k_{\infty}} \tag{68}
\end{equation*}
$$

and $[M]$ is the concentration of the mixture, possibly including enhanced third-body efficiencies. ${ }^{\dagger}$ (For this example, note that the units for k are $1 / \mathrm{sec}, k_{0}$ are $\mathrm{cm}^{3} /$ moles-sec, and k_{∞} are $1 /$ sec.) If the F in Eq. (67) is unity, then this is the Lindemann form. The other descriptions involve more complex expressions for the function F.

In the Troe form, ${ }^{7} F$ is given by

$$
\begin{equation*}
\log F=\left[1+\left[\frac{\log P_{r}+c}{n-d\left(\log P_{r}+c\right)}\right]^{2}\right]^{-1} \log F_{\text {cent }} \tag{69}
\end{equation*}
$$

The constants in Eq. (69) are

$$
\begin{align*}
& c=-0.4-0.67 \log F_{\text {cent }} \tag{70}\\
& n=0.75-1.27 \log F_{\text {cent }} \tag{71}\\
& d=0.14 \tag{72}
\end{align*}
$$

and

$$
\begin{equation*}
F_{\text {cent }}=(1-\alpha) \exp \left(-T / T^{* * *}\right)+\alpha \exp \left(-T / T^{*}\right)+\exp \left(-T^{* *} / T\right) . \tag{73}
\end{equation*}
$$

The four parameters $\alpha, T^{* * *}, T^{*}$, and $T^{* *}$ must be specified as input to the CHEMKIN Interpreter. (It is often the case that the parameter $T^{* * *}$ is not used. Thus CHEMKIN provides for the use of either three or four parameters.)

The approach taken at SRI International by Stewart et al. ${ }^{8}$ is in many ways similar to that taken by Troe, but the blending function F is approximated differently. Here, F is given by

$$
\begin{equation*}
F=d\left[a \exp \left(\frac{-b}{T}\right)+\exp \left(\frac{-T}{c}\right)\right]^{X} T^{e} \tag{74}
\end{equation*}
$$

[^3] case, the concentration of nitrogen $\left[N_{2}\right]$ would replace the total concentration in the mixture $[M]$ in these equations.
where
\[

$$
\begin{equation*}
X=\frac{1}{1+\log ^{2} P_{r}} \tag{75}
\end{equation*}
$$

\]

In addition to the six Arrhenius parameters - three each for the low-pressure limit $\left(k_{0}\right)$ and highpressure limit $\left(k_{\infty}\right)$ expressions - the user must supply the parameters a, b, and c in the F expression. The parameters d and e were not discussed by Stewart et al., but we have included them as additional optional parameters to increase flexibility. If one wishes, d and e can be considered parameters that define a weak-collision efficiency factor, in the event that one wants to compute strong-collision rate parameters and correct them with such a factor.

Figure 3. Rate constant as a function of pressure at fixed temperature for the unimolecular fall-off reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+M) \Leftrightarrow \mathbf{C}_{2} \mathbf{H}_{6}(+M)$. The Troe and Lindemann forms are illustrated as are the low- and high-pressure limiting forms.

Figure 3 illustrates the pressure dependence of rate expressions for the example reaction, $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(+\mathrm{M})$, evaluated at a fixed temperature of 1000 K . Both the Lindemann and the Troe forms are shown, as well as the low- and high-pressure limits. The specific constants in fits to the Troe form ($A_{0}=1.135 \mathrm{E} 36, \beta_{0}=-5.246, E_{0}=1704.8 \mathrm{cal} / \mathrm{mole}, A_{\infty}=6.22 \mathrm{E} 16, \beta_{\infty}=-1.174, E_{\infty}=635.8$ cal/mole, $\alpha=0.405, T^{* * *}=1120 \mathrm{~K}, T^{*}=69.6 \mathrm{~K}$) are taken from Wagner and Wardlaw. ${ }^{9}$ For the relatively simple Lindemann case ($\mathrm{F}=1$), the behavior of the limiting behavior is apparent. In the low-pressure limit, $[\mathrm{M}] \rightarrow 0$, the denominator in Eq. (67) approaches unity and the rate expression becomes $k \rightarrow k_{0}[\mathrm{M}]$. In the high-pressure limit, $[M] \rightarrow \infty$, the pressure-ratio factor approaches one and the rate expression
becomes $k \rightarrow k_{\infty}$, i.e., a constant. For both the Troe and SRI forms, F approaches unity for both high and low pressures. Thus, all expressions recover the correct limiting behavior.

2.4.3.2 Chemically Activated Bimolecular Reactions

As an example of a chemically activated bimolecular reaction, consider the reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}(+\mathrm{M})$. This reaction, which is endothermic, occurs through the same chemically activated $\mathrm{C}_{2} \mathrm{H}_{6}{ }^{*}$ adduct as does the recombination reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(+\mathrm{M})$. Figure 4 helps to illustrate the competition between these alternative channels using a reaction-energy diagram. As the pressure increases, deactivating collisions of $\mathrm{C}_{2} \mathrm{H}_{6}$ * with other molecules cause the rate coefficient for $\mathrm{C}_{2} \mathrm{H}_{6}$ formation to increase. At the same time, these deactivating collisions preclude the dissociation of $\mathrm{C}_{2} \mathrm{H}_{6}{ }^{*}$ into $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$, thus causing this rate coefficient to decrease with increasing pressure.

Figure 4. Energy versus reaction coordinate diagram that illustrates the competition between a three-body recombination reaction, $\mathbf{C H}_{3}+\mathbf{C H}_{3}(+M) \Leftrightarrow \mathbf{C}_{2} \mathbf{H}_{6}(+M)$, and a chemically activated bimolecular reaction, $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}(+\mathrm{M})$.

We assume the rate coefficient for a chemically activated bimolecular reaction to be described by the following function:

$$
\begin{equation*}
k=k_{0}\left(\frac{1}{1+P_{r}}\right) F \tag{76}
\end{equation*}
$$

where $1 /\left(1+P_{r}\right)$ is analogous to the Lindemann form of Eq. (67). Note that in Eq. (76) k_{0} is the pressureindependent factor, whereas in Eq. (67) it is k_{∞}. The three choices for the F function are exactly the same as for the unimolecular fall-off reactions, i.e., the Lindemann ($F=1$), Troe, or SRI forms.

Figure 5 illustrates the rate-expression behavior for the example chemically activated reaction, $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+\mathrm{M}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}(+\mathrm{M})$. Both the Lindemann and the SRI formulations are shown, as well as the high- and low-pressure limiting cases. The specific constants for the SRI form $\left(A_{0}=10^{12.698}\right.$, $\beta_{0}=0.099, E_{0}=10,600 \mathrm{cal} / \mathrm{mole}, A_{\infty}=10^{-6.42}, \quad \beta_{\infty}=4.838, \quad E_{\infty}=7710 \mathrm{cal} / \mathrm{mole}, a=1.641, \quad b=4334$, $c=2725$) are taken from Stewart, Larson, and Golden ${ }^{8}$. (For this example, note that the units for k are $\mathrm{cm}^{3} /$ moles-sec, k_{0} are $\mathrm{cm}^{3} /$ moles-sec, and k_{∞} are $1 / \mathrm{sec}$.) The limiting cases are recognized easily from the behavior of Eq. (76). In the low-pressure limit, $[M] \rightarrow 0, P_{r} \ll 1$, causing the pressure-ratio factor in Eq. (76) to approach unity. Hence, $k \rightarrow k_{0}$, i.e., a pressure-independent function. In the high-pressure limit, $[M] \rightarrow \infty, P_{r} \gg 1$ and $k \rightarrow k_{0} / P_{r} \rightarrow k_{\infty} /[M]$.

Figure 5. Rate constant as a function of pressure at fixed temperature for the chemically activated reaction $\mathrm{CH}_{3}+\mathrm{CH}_{3}(+M) \Leftrightarrow \mathbf{C}_{2} \mathrm{H}_{5}+\mathbf{H}(+M)$. The SRI and Lindemann forms are illustrated as are the low- and high-pressure limiting forms.

2.4.4 LANDAU-TELLER FORMULATION OF THE RATE EXPRESSIONS

For reactions such as vibrational energy transfer processes, the Arrhenius form of the rate expression (Eq. 52) is often not used. Instead, it is common to use the Landau-Teller expression,

$$
\begin{equation*}
k_{f_{i}}=A_{i} \exp \left(\frac{B_{i}}{T^{1 / 3}}+\frac{C_{i}}{T^{2 / 3}}\right) \tag{77}
\end{equation*}
$$

In CHEMKIN, we have provided the possibility to blend the Arrhenius expression with the Landau-Teller expression in the general expression, as follows:

$$
\begin{equation*}
k_{f_{i}}=A_{i} T^{\beta_{i}} \exp \left(\frac{-E_{i}}{R_{c} T}+\frac{B_{i}}{T^{1 / 3}}+\frac{C_{i}}{T^{2 / 3}}\right) . \tag{78}
\end{equation*}
$$

Clearly, by setting B_{i} and C_{i} to zero, the Arrhenius expression is recovered, and by setting β_{i} and E_{i} to zero, the standard Landau-Teller expression is recovered. If appropriate, however, all the parameters can be used together to provide more flexibility in the reaction-rate expression than could be afforded by one of the forms alone.

2.4 .5

 OTHER ALLOWABLE RATE CONSTANT FITTING OPTIONSIn the accommodation of plasma reactions, we have included two new rate-expression forms in CHEMKIN. These fits require auxiliary keywords to specify additional parameters and to distinguish the expression from CHEMKIN's default of a modified Arrhenius form.

One form includes a polynomial fit to the logarithm of the temperature on which the reaction depends, as follows:

$$
\begin{equation*}
k_{f_{i}}=A_{i} T^{\beta_{i}} \exp \left(\frac{E_{i}}{T}+\sum_{n=1}^{9} b_{n i}(\ln T)^{n-1}\right) \tag{79}
\end{equation*}
$$

This form is consistent with the rate-constant fits for electron-hydrogen and electron-helium processes in a publication by Janev, Langer, Evans, and Post, ${ }^{10}$, when the Arrhenius parameters β_{i} and E_{i} are zero. The user can specify this rate-constant fit option using the auxiliary keyword JAN.

A second form introduces a power series within the exponential of a modified Arrhenius expression, as follows:

$$
\begin{equation*}
k_{f_{i}}=A_{i} T^{\beta_{i}} \exp \sum_{n=1}^{4} \frac{b_{n i}}{T^{n}} \tag{80}
\end{equation*}
$$

The user may specify this rate-constant expression using the auxiliary keyword FIT1. The use of auxiliary keywords are described in more detail in the Section4423

2.4.6

It is often convenient to separate the species chemical production rates into creation and destruction rates. Furthermore, some numerical approaches take advantage of this separation. Therefore, we provide subroutines that return the chemical rates in the following form:

$$
\begin{equation*}
\dot{\omega}_{k}=\dot{C}_{k}-\dot{D}_{k} \tag{81}
\end{equation*}
$$

[CKCDYP, CKCDYR, CKCDXP, CKCDXR, CKCDC]
where, for non-three-body reactions,

$$
\begin{equation*}
\dot{C}_{k}=\sum_{i=1}^{I} v_{k i}^{\prime} k_{r_{i}} \prod_{j=1}^{K}\left[X_{j}\right]^{b^{\prime \prime}}+\sum_{i=1}^{I} v_{k i}^{\prime \prime} k_{f_{i}} \prod_{j=1}^{K}\left[X_{j}\right]^{b^{\prime}} \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{D}_{k}=\sum_{i=1}^{I} v_{k i}^{\prime} k_{f_{i}} \prod_{j=1}^{K}\left[X_{j}\right]^{v_{j i}^{\prime}}+\sum_{i=1}^{I} v_{k i}^{\prime \prime} k_{r_{i}} \prod_{j=1}^{K}\left[X_{j}\right]^{b_{j i}^{\prime \prime}} \tag{83}
\end{equation*}
$$

When third body reactions are involved, each sum in the above equations is multiplied by the third-body concentration

$$
[M]=\sum_{k=1}^{K} \alpha_{k i}\left[X_{k}\right] .
$$

Another useful form for the chemical production rates is found by defining a creation rate and characteristic time for the destruction rate, i.e.,

$$
\begin{equation*}
\dot{\omega}_{k}=\dot{C}_{k}-\frac{\left[X_{k}\right]}{\tau_{k}} . \tag{84}
\end{equation*}
$$

[СКСТРР, СКСТҮR, CКСТХР, СКСТХR, СКСТС]

Here the characteristic time is given simply in terms of \dot{D}_{k} as

$$
\begin{equation*}
\tau_{k}=\frac{\left[X_{k}\right]}{\dot{D}_{k}} . \tag{85}
\end{equation*}
$$

As a precaution against $\left[X_{k}\right]$ and \dot{D}_{k} simultaneously approaching zero, the CHEMKIN implementation of the destruction time is written as

$$
\begin{equation*}
\tau_{k}=\frac{\left[X_{k}\right]}{\dot{D}_{k}+\varepsilon} . \tag{86}
\end{equation*}
$$

[CКСТҮР, СКСТҮR, СКСТХР, СКСТХR, СКСТС]
where ε is an arbitrary small number," say 10^{-50}.

In some numerical solution algorithms for chemically reacting flow, it is a significant computational savings to separate the temperature-dependent part of the rate expressions (i.e. the rate constants in most cases) from the concentration-dependent contribution. In particular, evaluation of Jacobian matrix elements through perturbation of solution variables often relies on numerous function evaluations and hence numerous calls to CHEMKIN to evaluate rate expressions. The temperature-dependent portion of the rate expression contains an exponential, which is computationally expensive to evaluate. When the temperature variable is not being perturbed, it is unnecessary to repeat this evaluation. To this end we have provided additional subroutines that either provide the temperature-dependent rate coefficients or, given the rate coefficients, return the species' net rates of production. The subroutine for evaluating the temperature-dependent rate constant for each reaction is called CKKFRT, while the subroutine that takes the rate constant as input and returns the species net rates of production is called CKWYPK. The use of these subroutines is described in more detail in Sections 5.13 and 6

[^4]
3. THE MECHANICS OF USING CHEMKIN

CHEMKIN is a highly structured and modular package that requires the manipulation of a number of programs, subroutines, and data files. This chapter describes the structure of the CHEMKIN Gas-phase Utility package and the requirements for using it in user-written Application programs.

3.1 Structure of CHEMKIN

The general structure of the CHEMKIN package is shown in Figure 6 The Interpreter is a program that reads a symbolic description of a reaction mechanism and then extracts the needed thermodynamic data for each species involved from the Thermodynamic Database. The primary output from the Interpreter is the Linking File. This file contains information that contains all required information about the elements, species, and reactions in the user's mechanism.

The Linking File is a formatted file called chem.asc. This file must be opened in the Application program and the logical file unit number LINCK must be specified and passed to the CHEMKIN initialization routine (so that the file can be read by the initialization subroutine).

In addition to the Linking File, three other files are needed by the Interpreter: an input file, an output file, and a Thermodynamic Database file (e.g., therm.dat). The input to the Interpreter is may be read on FORTRAN's standard input unit and printed output may be directed to FORTRAN's standard output unit. User-specified filenames can thereby be directed to and from the Interpreter on the Interpreter command line for both PC and UNIX computer operating systems. The printed output contains a listing of the elements, species, and the reaction mechanism, and it provides diagnostic error messages if errors should occur during interpretation of the mechanism input.

The Thermodynamic Database can be a large file with information on many species, most of which are not needed for any given problem. Thermodynamic data can also be read from the input file; these data can replace or add to those in the Thermodynamic Database.

Once the Interpreter has been executed and the Linking File created, the user is ready to use the GasPhase Subroutine Library. Subroutines from this library are called from the Application program. The Application's first step must be to dimension three storage arrays (one integer, one floating point, and one character data type ${ }^{x}$) and then call the initialization subroutine CKINIT to create the storage arrays from

[^5]the Linking File. ${ }^{\square}$ One or more of these arrays is required input to nearly every other subroutine in the CHEMKIN Package.

Figure 6. Schematic diagram showing the structure of the CHEM KIN package and its relationship to an Application Program.

Selection of CHEMKIN subroutines for any given problem begins by finding the appropriate equations in Chapter 2 Most equations give a reference to a subroutine name, for which the input and output lists are described in Chapters ${ }^{6}$ and Normally only a few of the subroutines in the package would be called for any one problem.

[^6]By example we show here how to compile and run a user-written CHEMKIN Application. Figure 7is an annotated UNIX command procedure that outlines the important steps. Even though the example is specific to UNIX systems, the same functionality must be invoked on a PC. The CHEMKIN Subroutine Library (chemkin.a on UNIX systems and chemkin.lib on PC's) will be located in the "lib" subdirectory of the CHEMKIN installation, while the CHEMKIN Interpreter (chem on UNIX; chem.exe on PCs) will be installed in the "bin" subdirectory of the CHEMKIN home directory. N ote: more detailed instructions and complete makefile script examples are included for each computer platform, with the standard CHEMKIN distribution.

Unix Commands			Meaning
f77	-c sample.f		Compile the user's FORTRAN program.
f77	-o sample	sample.o chemkin.a	Link the user's FORTRAN program with the CHEMKIN Gas-Phase Subroutine Library.
chem	< chem.inp	>chem.out	Execute the interpreter, which is named chem. The interpreter will try to open the mechanism file chem.inp, as well as the Thermodynamic Database. The interpreter creates the linking file chem.asc and the output file chem.out. The chem.inp and chem.out files correspond to the standard input (unit 5) and standard output (unit 6) units, respectively.
sample	< sample.inp	> sample.out	Execute the user's program, reading 'sample.inp' as unit 5 for the user's input and creating 'sample.out' on unit 6 for the user's output.

Figure 7. A sample UNIX command procedure showing the steps required to compile and run a user's program with the CHEMKIN package.

4. USING THE INTERPRETER

The interpreter is used to read (from the Interpreter Input File) a symbolic description of an elementary chemical reaction mechanism and create a Linking File (chem.asc) of pertinent information about that mechanism. The information in the Linking File is subsequently accessed by various subroutines to provide information on equation of state, thermodynamic properties, and chemical production rates.

The Interpreter Input File includes information on elements, species, thermodynamic data, and the reaction mechanism. Input information in the Interpreter Input File is given in 100-column format. Element data are read first, species data are second, followed by optional thermodynamic data, with reactions specified last. The thermodynamic data for the species may come from Interpreter Input File and/or from a Thermodynamic Database (file therm.dat). The syntax for the four types of input is described below.

With the exception of the thermodynamic data, all input is format free. For the thermodynamic data, we have chosen to use a compatible format to that used in the original NASA Chemical Equilibrium code by Gordon and McBride. ${ }^{4}$

4.1 Element Data

All chemical species in the reaction mechanism must be composed of chemical elements or isotopes of chemical elements. Each element and isotope must be declared as a one- or two-character symbol. The purpose of the element data is to associate atomic weights of the elements with their character symbol representations and to identify the order in which arrays of element information in the Gas-Phase Subroutine Library are referenced. For example, a FORTRAN array of atomic weights for the elements is in exactly the same order in which the elements were declared in the element data. In other words, if the atomic weights are stored in an array AWT, then $\mathrm{AWT}(3)$ is the atomic weight of the third element declared in the element data.

For the elements appearing on the periodic chart, the Interpreter has the atomic weight (in grams per mole) stored internally. For isotopes, a one- or two- character symbol must be input to the Interpreter to identify each isotope, and a symbol and an atomic weight (in grams per mole) for each must be defined. The same symbol must be used in the thermodynamic data to identify the elemental composition of species involving the isotope. Once an isotope has been so defined, it is treated exactly as a new element. If an ionic species is used in the reaction mechanism (i.e., $\mathrm{OH}+$), an electron must be declared as the element E .

Element data must start with the word ELEMENTS (or ELEM), followed by any number of element symbols on any number of lines. Element symbols may appear anywhere on a line, but those on the same line must be separated by blanks. Any line or portion of a line starting with an exclamation mark (!) is considered a comment and will be ignored. Blank lines are ignored.

If an element is on the periodic chart, ${ }^{\text {, }}$ then only the symbol identifying the element need appear in the element data. For an isotope, the atomic weight must follow the identifying symbol and be delimited by slashes (/). The atomic weight may be in integer, floating-point, or E format (e.g., 2, 2.0, 0.2E1), but internally it will be converted to a floating point number. For example, the isotope deuterium may be defined as $\mathrm{D} / 2.014$ / . If desired, the atomic weight of an element in the periodic chart may be altered by including the atomic weight as input just as though the element were an isotope.

Figure 8 shows several equivalent ways to describe element information. In this example the elements are hydrogen, oxygen, nitrogen, and the isotope deuterium. Table 1 summarizes the rules for element data.

```
ELEMENTS H D /2.014/ O N END
ELEM ! ELEM is equivalent to ELEMENTS
    / 2.014 /
    O
    N
END
ELEM H
ELEM D/2.014/
ELEM O
ELEM
```

Figure 8. Equivalent Ways to Describe Element Information

[^7]
Table 1. Summary of the Rules for Element D ata

1. The first element line must start with the word ELEMENTS (or ELEM).
2. Element or isotope names are either one- or two-character symbols.
3. An isotope name (i.e., a name not on the periodic chart) must be followed by its atomic weight (in grams per mole) delimited by slashes.
4. Each element or isotope should be declared only once; however, duplicated element symbols will be ignored.
5. An element or isotope name may appear anywhere on the line.
6. Any number of element or isotope names may appear on a line, and more than one line may be used.
7. Element or isotope names that appear on the same line must be separated by at least one blank space.
8. An element or isotope name that begins on one line may not continue to the next line.
9. Any blank spaces between an element or isotope name and the first slash are ignored and any blank spaces between slashes and an atomic weight are also ignored. However, no blank spaces are allowed within an element name or an atomic weight.
10. There may be more than one ELEMENT statement.
11. All characters following an exclamation mark are comments.

4.2 Species Data

Each chemical species in a problem must be identified on one or more species line(s). Any set of up to 16 upper or lower case characters ${ }^{*}$ can be used as a species name. In addition each species must be composed of elements that have been identified in the element data. As for the element data, one of the primary purposes of the species data is to identify the order in which FORTRAN arrays of species information are referenced in the Gas-Phase Subroutine Library.

Species data must start with the word SPECIES (or SPEC), followed by any number of species symbols on any number of lines. Species symbols may appear anywhere on a line, but those on the same line must be separated by blank spaces. Any line or portion of a line starting with an exclamation mark (!) is considered to be a comment and will be ignored. Blank lines are ignored. Figure 9 shows several equivalent ways to describe species information. The rules for species data are summarized in Table 2.

```
SPECIES H2 O2 H O OH
SPEC ! SPEC is equivalent to SPECIES
    H2 O2
    H O OH HO2 N2 N NO
END
SPEC H2
spec O2
```

Figure 9. Equivalent Ways to D escribe Species Information

[^8]Table 2. Summary of the Rules for Species D ata

1. Species data must start with the word SPECIES (or SPEC).
2. Species names are composed of up to 16-character upper- or lower- case symbols. The names cannot begin with the characters + , $=$, or a number; an ionic species name may end with one or more +'s or -'s.
3. Each species should be declared only once; however, duplicated species symbols will be ignored.
4. Each species that subsequently appears in a reaction must be declared.
5. A species name may appear anywhere on the line.
6. Any number of species names may appear on a line, and more than one line may be used.
7. Species named on the same line must be separated by at least one blank space.
8. A species name that begins on one line may not continue to the next line.
9. There may be more than one SPECIES statement.
10. All characters following an exclamation mark are comments.

4.3 Thermodynamic Data

Any chemical species that appears in a problem must have thermodynamic data associated with it. The data may be extracted from a database (e.g. therm.dat) and/or read from the Interpreter Input File. If all the thermodynamic data are to be extracted from a database file, then no thermodynamic data input is required. However, if the user wishes to override information in the database or to provide data on species not in the database, then Interpreter input is needed. In any case, the format for the information is the same.

The format (see Table 3) is a minor modification of that used by Gordon and McBride ${ }^{4}$ for the Thermodynamic Database in the NASA Chemical Equilibrium code. Our modification allows for a different midpoint temperature for the fits to the properties of each chemical species. We also allow a species to be composed of a maximum of nine elements, not four. However, the formatting is such that the CHEMKIN Interpreter can use the NASA database directly without any modification.

As indicated in Table 3, the pertinent information includes the species name, the elemental composition of the species, and the temperature ranges over which the polynomial fits to thermodynamic data are valid. The fits to $C_{p}^{o} / R, H^{o} / R T$, and S^{o} / R consist of seven coefficients for each of two temperature ranges [see Eqs. (19) - (21)]. Further information about the fitting procedure and data for many species can be found in the Thermodynamic Database manual.

An alternative input data format allows specification of more than two temperature ranges. Use of this format is not backwards-compatible with the old NASA format, but does provide more flexibility in describing the thermodynamic data for complex functions of temperature. This alternative approach is summarized at the end of Table 3. The alternative lines $7-9$ can be used in place of lines $4-6$. Lines 7 specifies all of the temperature values that define the temperature intervals. Lines 8-9 are then repeated for each specified temperature interval, in descending order of temperature ranges.

Table 3. Summary of the Rules for Thermodynamic D ata

Line			
Number	Contents	Format	Column
$\begin{aligned} & 1 \\ & { }_{2} \square \end{aligned}$	THERMO (or THERMO ALL ${ }^{\text {a }}$)	Free	Any
	Temperature ranges for 2 sets of coefficients: lowest T , common T , and highest T	3F10.0	1 to 30
3	Species name (must start in Column 1)	18A1	1 to 18
	Date (not used)	6A1	19 to 24
	Atomic symbols and formula	4(2A1,I3)	25 to 44
	Phase of species (S, L, or G for solid, liquid, or gas, respectively)	A1	45
	Low temperature	E10.0	46 to 55
	High temperature	E10.0	56 to 65
	Common temperature (if needed, else blank)	E8.0	66 to 73
	Atomic symbols and formula (if needed, else blank)	2A1,I3	74 to 78
	The integer 1	I1	80
4	Atomic symbols and formula (if needed, else blank)	4(2A1,I3)	81 to 100
	Coefficients a_{1} - a a_{5} in Eqs. (19) - (21), for upper temperature interval	5(E15.8)	1 to 75
5	The integer 2	I1	80
	Coefficients a_{6}, a7 for upper temperature interval, and a_{1}, a_{2}, and a3 for lower	5(E15.8)	1 to 75
6		I1	80
	Coefficients $\mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}$, a_{7} for lower temperature interval	4(E15.8)	1 to 60
	The integer 4	I1	80
	Repeat lines 3-6 for each species.		
last	END (Optional, end of thermodynamic data.)	Free	Any

Alternative lines for more than $\mathbf{2}$ temperature intervals (in place of Lines 4-6 above):

7	TEMP followed by space-delimited minimum fit temperature, common temperatures in increasing order, and maximum fit temperature	A4, Free	1 to 80
8	Coefficients $\mathrm{a}_{1}-\mathrm{a}_{5}$ for a temperature interval	5(E15.8)	1 to 75
9	Coefficients a_{6}, a7 for a temperature interval	2(E15.8)	1 to 30

[^9]When thermodynamic data input is required, it must immediately follow species data. $\square^{\text {The first }}$ thermodynamic data line must start with the word THERMO (or THER). If all the thermodynamic data are input directly to the Interpreter, then the first line must read THERMO ALL and the program will not expect a Thermodynamic Database from file LTHRM; for this option the next line must be line 2 of Table 3. For either option, the subsequent thermodynamic data lines must be in the format of lines 3-6 of Table 3. (For the THERMO option the midpoint temperature is taken from line 2 information already in the Thermodynamic Database.) As many species as needed can be included as THERMO input.

Figure 10 shows some examples of thermodynamic property input. In these examples for $\mathrm{OH}, \mathrm{OH}+$, and $\mathrm{OH}-$, it is seen from columns $25-34$ that the elemental composition of each molecule is one O atom and one H atom. In addition, columns $35-39$ indicate that two of the species, $\mathrm{OH}+$, and $\mathrm{OH}-$, are ionic since they contain -1 and +1 electrons (E), respectively. The G in column 45 indicates that all three species are gaseous. (This phase information is ignored by CHEMKIN.) The 1000.00 in columns $66-73$ for OH indicates that the common temperature between the high- and low-temperature fits is 1000.00 K . If columns 66-73 are left blank, as they are for $\mathrm{OH}+$ and $\mathrm{OH}-$, then the common temperature is that given in columns 21-31 of line 2 in Table 3, which in this example is in the Thermodynamic Database. An alternative format is shown for OH if more than two temperature ranges are required. In this case we've given the molecule a different name, " MyOH^{\prime}, but the elemental composition is the same as for OH . The line after the elemental composition contains the TEMP description of minimum, common, and maximum temperatures, and a set of coefficients for each temperature range, ordered from highest to lowest.

Figure 10. Examples of Thermodynamic D ata Input.
The following is a summary of the possibilities for specifying thermodynamic data:

* In the original CHEMKIN, the thermodynamic data preceded the species data.

Case 1: All thermodynamic data from database file

1. The database file is therm.dat.
2. No THERMO data required as input.

Case 2: Thermodynamic data from database and input files

1. The database file is therm.dat
2. Include the following lines in the Interpreter Input File, after the species data:

THERMO
Data in Table 3 format (lines 3-6 repeated) for each species not in the database or to override species in database END

Case 3: All thermodynamic data from input file

1. No therm.dat file required
2. Include the following lines in the Interpreter Input File, after the species data: THERMO ALL Data in Table 3 format (lines 3-6 repeated) for at least all species named in the species data
END

4.4 Reaction Mechanism Description

The reaction mechanism may consist of any number of chemical reactions involving the species named in the species data. A reaction may be reversible or irreversible; it may be a three-body reaction with an arbitrary third body and/or enhanced third body efficiencies; it may have a Lindemann, ${ }^{6}$ Troe, ${ }^{7}$ or SRI ${ }^{*}$ fall-off formulation ${ }^{\dagger}$; it may involve a photon; it may depend on a species temperature other than that of the bulk gas.

Reaction data must start with the word REACTIONS (or REAC). On the same line, the user may specify units of the Arrhenius rate coefficients [Eq. (52)] to follow by including the word CAL/MOLE, KCAL/MOLE, JOULES/MOLE, KELVINS, or EVOLTS for E_{i}, and/or MOLES or MOLECULES for A_{i}. If MOLECULES is specified, then the units for A_{i} are cm-molecules-sec-K. If units are not specified, A_{i} and E_{i} must be in cm-mole-sec-K and cal/mole, respectively. Note that T is always in Kelvin. The lines following the REACTION line contain reaction descriptions together with their Arrhenius rate coefficients. The reaction description is composed of reaction data and perhaps auxiliary information data.

[^10]
4.4.1 REACTION DATA

Each reaction line is divided into two fields. The first contains the symbolic description of the reaction while the second contains the Arrhenius rate coefficients. Both fields are format free and blank spaces are ignored. Any line or portion of a line starting with an exclamation mark (!) is considered a comment and is ignored. Blank lines are ignored.

The reaction description, given in the first field, must be composed of the species symbols, coefficients, delimiters, and special symbols.

Species Symbols: Each species in a reaction is described with the unique sequence of characters as they appear in the species data and the thermodynamic data.

Coefficients: A species symbol may be preceded by an integer or real coefficient. The coefficient has the meaning that there are that many moles of the particular species present as either reactants or products; e.g., 2 OH is equivalent to $\mathrm{OH}+\mathrm{OH}$. Note: non-integer coefficients are allowed in CHEMKIN, but the element balance in the reaction must still be maintained.

Delimiters:

$+\quad$ A plus sign is the delimiter between each reactant species and each product species.
$=\quad$ An equality sign is the delimiter between the last reactant and the first product in a reversible reaction.
<=> An equality sign enclosed by angle brackets can also be used as the delimiter between the last reactant and the first product in a reversible reaction.
=> An equality sign with an angle bracket on the right is the delimiter between the last reactant and the first product in an irreversible reaction

Special Symbols:

+M An M as a reactant and/or product stands for an arbitrary third body. Normally it would appear as both a reactant and a product. However, it has the identical meaning even if it appears only as a reactant or a product. In other words, an M anywhere in the reaction description indicates that a third body is participating in the reaction. In a reaction containing an M , species can be specified to have enhanced third body efficiencies, in which case auxiliary information data (described below) must follow the reaction line. If no enhanced third body efficiencies are specified, then all species act equally as third bodies and the effective concentration of the third body is the total concentration of the mixture.
(+M) An M as a reactant and/or product surrounded by parentheses indicates that the reaction is a pressure-dependent reaction, in which case auxiliary information line(s) (described below) must follow the reaction to identify the fall-off formulation and parameters. A species may also be enclosed in parenthesis. Here, for example, (+H2O) indicates that water is acting as the third body in the fall-off region, not the total concentration M .

HV The symbol HV as a reactant and/or product indicates that photon radiation (hv) is present. If HV appears in a reaction description, the wavelength of the radiation may be specified on the auxiliary information line (described below). Although this information is not used internally in the CHEMKIN routines, it is available to the user through a subroutine call.

E The symbol E as a reactant and/or product is used to represent an electron. An electron is treated just like any other species, and is composed of the element E , which must be declared as element data. If an E appears in any reaction, then it must also be declared as a species in the species data and thermodynamic data must be supplied for it.
! An exclamation mark means that all following characters are comments on the reaction. For example, the comment may be used to give a reference to the source of the reaction and rate data.

The second field of the reaction line is used to define the Arrhenius rate coefficients A_{i}, β_{i}, and E_{i}, in that order, as given by Eq. (52). At least one blank space must separate the first number and the last
symbol in the reaction. The three numbers must be separated by at least one blank space, be stated in either integer, floating point, or E format (e.g., 123 or 123.0 or 12.3E1), and have units associated with them. Unless modified by the REACTION line, the default units for A_{i} are in cgs ($\mathrm{cm}, \mathrm{sec}, \mathrm{K}$, mole), the exact units depending on the reaction. The factor β_{i} is dimensionless. The default units for the activation energies are cal/mole.

Examples of reaction data are shown in Figure 11 and Table 4 is a summary of the reaction data rules.

```
REACTIONS
H2 + O2 = 2OH
! H2 + O2 = OH + H
H + O2 + M = HO2 + M
! H + O2 + M = HO2
! H + O2 = HO2 + M
OH+ + H + E = H2O
O + HV = O(*)
0.5H2 + 0.5O2 = OH
END
```

Figure 11. Examples of Reaction D ata.

Table 4. Summary of the Rules for Reaction D ata

1. The first reaction line must start with the word REACTIONS (or REAC), and may include units definition(s).
2. The reaction description can begin anywhere on the line. All blank spaces, except those between Arrhenius coefficients, are ignored.
3. Each reaction description must have $=,<=>$ or $=>$ between the last reactant and the first product.
4. Each reaction description must be contained on one line.
5. Three Arrhenius coefficients must appear in order $\left(A_{i}, \beta_{i}\right.$, and $\left.E_{i}\right)$ on each Reaction line, separated from each other and from the reaction description by at least one blank space; no blanks are allowed within the numbers themselves.
6. There cannot be more than six reactants or six products in a reaction.
7. Comments are any and all characters following an exclamation mark.

4.4.2 AUXILIARY INFORMATION DATA

The format of an auxiliary information line is a character-string keyword followed by a slash-delimited (/) field containing an appropriate number of parameters (either integer, floating point, or E format).

4.4.2.1 Neutral Third Body and Pressure D ependent Reaction Parameters

If a reaction contains M as a reactant and/or product, auxiliary information lines may follow the reaction line to specify enhanced third body efficiencies of certain species [i.e., $\alpha_{k i}$, Eq. (63)]. To define an enhanced third body efficiency, the keyword is the species name of the third body, and its one parameter is its enhanced efficiency factor. A species that acts as an enhanced third body must be declared as a species.

If a pressure-dependent reaction is indicated by a (+M) or by a species contained in parentheses, say $(+\mathrm{H} 2 \mathrm{O})$, then one or more auxiliary information lines must follow to define the pressure-dependence parameters. The Arrhenius coefficients on the reaction line are for the high-pressure limit ($A_{\infty}, \beta_{\infty}$, and E_{∞}) for unimolecular fall-off reactions and represent the low-pressure limit (A_{o}, β_{0}, and E_{0}) for chemically activated bimolecular reactions (see the description of these reaction types in Section 2.4.3.2). For all pressure-dependent reactions an auxiliary information line must follow to specify either the lowpressure limit Arrhenius parameters (for fall-off reactions) or the high-pressure limit Arrhenius parameters (for chemically activated reactions). For fall-off reactions, the keyword LOW must appear on the auxiliary information line, with three rate parameters A_{o}, β_{0}, and E_{0} [Eq. (65)]. For chemically activated bimolecular reactions, the keyword HIGH must appear on the auxiliary information line, with the three rate parameters $A_{\infty}, \beta_{\infty}$, and E_{∞} [Eq. (66)]. There are then three possible interpretations of the pressure-dependent reaction:

1) To define the Lindemann ${ }^{6}$ formulation of a pressure-dependent reaction, no additional parameters are defined.
2) To define a Troe ${ }^{7}$ pressure-dependent reaction, in addition to the LOW or HIGH parameters, the keyword TROE followed by three or four parameters must be included in the following order: $a, T^{* * *}, T^{*}$, and $T^{* *}$ [Eq. (73)]. The fourth parameter is optional and if omitted, the last term in Eq. (73) is not used.
3) To define an SRI pressure-dependent reaction, in addition to the LOW or HIGH parameters, the keyword SRI followed by three or five parameters must be included in the following order: a, b, c, d, and e [Eq. (74)]. The fourth and fifth parameters are options. If only the first three are stated, then by default $d=1$ and $e=0$.
[^11]
4.4.2.2 Landau-Teller reactions

To specify Landau-Teller parameters, the keyword LT must be followed by two parameters - the coefficients B_{i} and C_{i} from Eq. (77). The Arrhenius parameters A_{i}, β_{i}, and E_{i} are taken from the numbers specified on the reaction line itself. If reverse parameters are specified in a Landau-Teller reaction by REV (see below under "Reverse Rate Parameters"), the reverse Landau-Teller parameters must also be defined, with the keyword RLT and two coefficients B_{i} and C_{i} for the reverse rate.

4.4.2.3 Optional Rate Fit Expressions

To specify the optional rate-constant fit expression described by Eq. (79), the keyword JAN must be followed by nine parameters - the coefficients $b_{n i}$ from Eq. (79). The Arrhenius parameters A_{i}, β_{i}, and E_{i} are taken from the numbers specified on the reaction line itself. If fewer than nine parameters are required for the fit, the user must provide zeros for the remainder of the parameters in the auxiliary parameter list.

To specify the optional rate-constant fit expression described by Eq. (80), the keyword FIT1 must be followed by four parameters - the coefficients $b_{n i}$ from Eq. (80). Again, the Arrhenius parameters A_{i}, β_{i}, and E_{i} are read from the reaction line.

4.4.2.4 Radiation Wavelength Parameter

If a reaction contains HV as a reactant and/or product, an auxiliary information line may follow the reaction to specify radiation wavelength. For the wavelength specification, the keyword is HV and its one parameter is the wavelength in angstroms. This information is not used in the Gas-Phase Subroutine Library, but it is available to the user through a subroutine call.

4.4.2.5 Species Temperature D ependence

When solving multi-fluid problems that involve multiple temperatures (for example, electron temperature and neutral gas temperature), the auxiliary information data may follow the reaction to specify the species on whose temperature the reaction depends. Here the species name follows the auxiliary keyword TDEP. This option causes the reaction rate constant to be evaluated using the specified species temperature and the rate parameters given in the reaction data. In the case when there is more than one temperature defined in the system, the Application must call the CHEMKIN subroutine CKKTFL to indicate which temperature in the temperature array corresponds to each species.

4.4.2.6 Energy Loss Parameter

Auxiliary data may be used to specify the energy loss per reaction event by specifying the keyword EXCI, followed by the value of the energy loss per event, in units of electron volts. This option overrides the calculation of energy loss from the change in enthalpy determined by the reaction description and the thermodynamic data of the reactants and products. The option is useful in describing electron-impact excitation reactions, for example, where the user does not wish to keep track of the excited-species density, but wants to include the energy loss to the electrons due to the excitation process.

4.4.2.7 Plasma M omentum-Transfer Collision Frequency Options

To indicate that the reaction parameters describe the momentum-transfer collision frequency for electrons, the auxiliary keyword MOME may be used. This keyword requires no supplemental data, but changes the treatment of the reaction-rate coefficients. The option causes the reaction to be flagged as an electron momentum-transfer reaction, and assumes that the reaction rate constant is in units of cm^{3} /mole-s or cm^{3} / molecule-s, depending on the units specified in the REACTION statement. These reactions are treated as special cases when CHEMKIN subroutines evaluate reaction rates-of-progress, as described in Section 2.4 .6

Auxiliary data may also be used to flag a reaction as representing collision cross-section information for the determination of ion momentum-transfer collision frequencies in a plasma simulation. Here the auxiliary keyword is XSMI, and no auxiliary parameters are required. In this case the units of the evaluated rate-constant are assumed to be in cm^{2}, and are left as such when CHEMKIN subroutines evaluate rates of progress for other reactions. Again, the use of this option is described in more detail in Section 2.4.6

4.4.2.8 Reverse Rate Parameters

For a reversible reaction, auxiliary information data may follow the reaction to specify Arrhenius parameters for the reverse-rate expression. Here, the three Arrhenius parameters (A_{i}, β_{i}, and E_{i}) for the reverse rate must follow the keyword REV. This option overrides the reverse rates that would be normally computed by satisfying microscopic reversibility through the equilibrium constant, Eq. (53).

4.4.2.9 Reaction O rder Parameters

Auxiliary data may be included to override the reaction order for a species, using the auxiliary keywords FORD or RORD, for forward and reverse reaction descriptions, respectively. Each occurrence of these
keywords must be followed by the species name and the new reaction order. This option overrides the values of $v_{k i}^{\prime}$ and $v_{k i}^{\prime \prime}$ in Eq. (51), for the species included in the auxiliary data.

4.4.2.10 Reaction Units

It is sometimes convenient to specify the units for a particular reaction rate fit that may differ from the default units specified for other reaction expressions in the chemistry mechanism. In this case, the user employs the auxiliary keyword UNITS. This keyword must be followed by one or more of the following unit descriptors: MOLE(CULE), CAL, KCAL, JOUL, KJOU, KELV(IN), or EVOL(TS), where the letters in parentheses are optional. The inclusion of MOLE(CULE) would indicate that the reaction rate expression is in units of molecules $/ \mathrm{cm}^{3}$ rather than moles $/ \mathrm{cm}^{3}$. The remaining unit descriptors specify the units of the energy E_{i} in the rate expression. Note that the units of T in the rate expression are always in Kelvin.

4.4.2.11 D uplicate Reaction D escriptions

It sometime happens that two or more reactions can involve the same set of reactants and products, but proceed through distinctly different processes. In these cases, it may be appropriate to state a reaction mechanism that has two or more reactions that are the same, but have different rate parameters. However, duplicate reactions are normally considered errors by the Interpreter. If the user requires duplication (e.g., the same reactants and products with different Arrhenius parameters), an auxiliary information statement containing the keyword DUP (with no parameters) must follow the reaction line of each duplicate reaction (including the first occurrence of the reaction that is duplicated). For example, if the user wishes to specify different rate expressions for each of three identical reactions, there must be three occurrences of the DUP keyword, one following each of the reactions.

Any number of auxiliary information lines may follow a reaction line, in any order, and any number of keywords or enhanced third bodies ${ }^{*}$ may appear on an auxiliary information line; however, a keyword and its parameter(s) must appear on the same line.

Examples of equivalent ways to state auxiliary information are shown in Figure 12 The above rules are summarized in Table 5.

[^12]
4.4.3

In some problems only information about the elements and species is needed (e.g., chemical equilibrium computations). For these it is not necessary to include reaction data. The Interpreter will create the chem.asc file, but it will not contain any reaction information. Therefore, no subroutines in the Gas-Phase Subroutine Library that deal with chemical reactions (e.g., chemical production rates) may be used.

```
    HCO+M=H+CO+M 0.250E+15 0.000 16802.000 ! Warnatz
    CO/1.87/ H2/1.87 CH4/2.81/ CO2/3./ H2O/5./
H+C2H4(+M)=C2H5(+M) 0.221E+14 0.000 2066.000 ! Michael
    LOW / 6.369E27 -2.76 -54.0 / !Lindemann fall-off reaction
    H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies
CH3+CH3 (+M) =C2H6 (+M) 9.03E16 -1.18 654.
    LOW / 3.18E41 -7.03 2762 /
    TROE / 0.6041 6927. 132. / ! TROE fall-off reaction, with 3 parameters
    H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies
CH3+H(+M)=CH4(+M) 6.0E16 -1.0 0.0
    LOW / 8.0E26 -3.0 0.0/
    SRI / 0.45 797. 979. / ! SRI fall-off reaction
    H2/2/ CO/2/ CO2/3/ H2O/5/ ! enhanced third-body efficiencies
CH3+CH3 (+M) = H + C2H5 (+M) 4.989E12 0.099 10600.0 ! Stewart
    HIGH/ 3.80E-7 4.838 7710. / ! Chemically activated reaction
    SRI / 1.641 4334 2725 / ! SRI pressure dependence
CH4+H=CH3+H2 1.25E14 0 1.190E4 ! Westbrook
    REV / 4.80E12 0 1.143E4 /
! The following two reactions are acceptable duplicates:
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{H} 2+\mathrm{O} 2=2 \mathrm{OH}\) & 1.7E13 & 0 & 47780 \\
\hline DUPLICATE & & & \\
\hline \(\mathrm{H} 2+\mathrm{O} 2=2 \mathrm{H}\) & 1.0E13 & 0 & 47000 \\
\hline
\end{tabular}
        DUPLICATE
H2(1)+H2O(000)=H2(0)+H2O(001)
    2.89E15 0 0
    LT / -67 62.1/ ! Landau-Teller reaction
! The following reactions allow plasma kinetics descriptions
E + E + AR+ <=> AR + E 1.414E+39 -4.500 0.00 ! Mansbach & Keck
    TDEP/E/ REV/6.807E+31 -3.0 364218./ !electron temperature dependence
E + AR => AR + E 4.9E-7 0.162 8.7634E3
    TDEP/E/ MOME
AR+ + AR => AR+ + AR 1.E-16 0.0 0.0 !units of cm^2
    XSMI
E + AR => AR + E
    2.235E16 0.0 3.47E5
    TDEP/E/ EXCI/11.60/ ! metastable excitation reaction
    DUP
END
!END line is optional
```

Figure 12. Examples of Auxiliary Information Definitions.

Table 5. Summary of the Rules for A uxiliary Information D ata

1. Auxiliary information lines may follow reaction lines that contain an M to specify enhanced thirdbody efficiencies, a reaction that contains an HV to specify the radiation wavelength, a reversible reaction to specify the reverse rate parameters explicitly, or any reaction that specifies LandauTeller parameters. Auxiliary information must follow any duplicate reactions as well as all reactions that indicate pressure-dependent behavior by $(+\mathrm{M})$ (i.e., provide fall-off parameters).
2. A species may have only one enhanced third body efficiency associated with it in any one reaction.
3. Only one radiation wavelength may be declared in a reaction.
4. The order in which the enhanced third body declarations are given is the order in which arrays of enhanced third body information are referenced in the subroutine package.
5. There cannot be more than ten enhanced third bodies in a reaction.
6. Keyword declarations may appear anywhere on the line, in any order.
7. Any number of keywords may appear on a line and more than one line may be used; however, a keyword and its parameter(s) must appear on the same line.
8. Keyword declarations that appear on the same line must be separated by at least one blank space.
9. Any blank spaces between a keyword and the first slash are ignored and any blanks between the slashes and parameter(s) are also ignored. However, no blank spaces are allowed within a keyword or a parameter.
10. All characters following an exclamation mark are comments.
11. In ion momentum-transfer collision cross-section reactions there must be exactly two reactant species, one of which must be an ion.
12. In electron momentum-transfer collision frequency reactions, there must be exactly two reactant species, one of which must be the electron.

The Interpreter checks each input line for proper syntax and writes diagnostic messages on logical file LOUT if errors are encountered. If an error condition occurs, the Interpreter continues to read and diagnose the input, but an error flag is written to the Linking file and CHEMKIN subroutine CKINIT will not initialize the work arrays. Therefore, the input must be error free before any of the CHEMKIN subroutines can be called. The possibilities for an error condition are listed below:

4.4.4.1 Element D ata

- Atomic weight for an element or isotope is not declared, and the element is not found in the Interpreter's database.
- Atomic weight has been declared, but not enclosed by two slashes (/).
- If an element is declared twice, a diagnostic message is printed, but the duplicate is simply eliminated from consideration and is not considered a fatal error.
- There are more elements than the corresponding dimension in the Interpreter.

4.4.4.2 Species D ata

- If a species is declared twice, a diagnostic message is printed, but the duplicate is eliminated from consideration and is not considered a fatal error.
- No thermodynamic data have been found for a declared species.
- There are more species than the corresponding dimension in the Interpreter.

4.4.4.3 Thermodynamic D ata

- Thermodynamic data are format sensitive and therefore provide possibilities for error if not formatted exactly as described by Table 3.
- An element in the thermodynamic data for a declared species has not been included in the element data.
- With the THERMO ALL option, line 2 (Table 3) is not found.

4.4.4.4 Reaction D ata

- A delimiter $=>,<=>$, or = between the reactants and the products is not found.
- Three Arrhenius parameters are not found.
- Reactants and/or products have not been properly delineated by a plus sign $(+)$.
- A species as a reactant or product has not been declared in the species data.
- The reaction does not balance.
- The charge of the reaction does not balance.
- A reaction is a duplicate not declared by the auxiliary data keyword DUP.
- A third-body species enclosed in parentheses in a fall-off reaction appears as reactant or product, but not both.
- The third-body reactant is not the same as the third-body product in a fall-off reaction.
- A species is a third-body in a fall-off reaction, and +M also appears in the reaction.
- More than one +M or third body appear as reactants and/or products.
- HV declared as a reactant and as a product.
- There are more reactions than the corresponding dimension in the Interpreter.
- There are more than six reactants or six products.

4.4.4.5 Auxiliary D ata

- There is an unknown or misspelled keyword or enhanced third-body species name.
- Parameters for a keyword are not enclosed in slashes.
- The wrong number of parameters appear for a keyword.
- There are duplicate keywords for a reaction.
- LOW, HIGH, TROE, OR SRI are found after a reaction that did not have a species or M in parentheses.
- LOW or HIGH is not found after a pressure-dependent reaction.
- TROE and SRI are both found.
- LT and REV are found for a Landau-Teller reaction, but RLT is not found.
- LT or REV are given for a fall-off reaction.
- There are more than ten enhanced third bodies.
- There are more than or less than two reactants specified with XSMI or MOME keywords.
- An ionic species is not specified as a reactant with the XSMI keyword.
- The electron is not a reactant when using the MOME keyword.

5. QUICK REFERENCE GUIDE TO THE GAS-PHASE SUBROUTINE LIBRARY

This chapter is arranged by topical area to provide a quick reference to each of the Gas-Phase Library Subroutines. In addition to the subroutine call list itself, the purpose of the subroutine is briefly described. Where appropriate, the description refers to an equation number in Chapter 2 Detailed descriptions of the subroutines are included alphabetically in Chapter 6

5.1 Mnemonics

There are some good rules of thumb that explain the subroutine naming conventions. All subroutine names (with the exception of PKINDX) begin with the letters CK so that CHEMKIN subroutines are easily recognized and so that they are likely different from any user subroutine names. The four remaining letters identify the purpose of the subroutine: The first one or two usually refer to the variable that is being computed; the last letters refer to either the input variables or the units.

State variables are denoted by P (pressure), T (temperature), Y (mass fraction), X (mole fraction), and C (molar concentration). Thermodynamic properties are referred to by CP and CV (Specific heats), H (enthalpy), S (entropy), U (internal energy), G (Gibbs free energy), and A (Helmholtz free energy). The thermodynamic property subroutines may be called to return properties in mass units, denoted by MS or S as the last letter(s), or in molar units, denoted by ML or L as the last letter(s). The letter B (for the bar as in C_{p}) in a thermodynamic property subroutine name indicates that it returns mean mixture properties.

Subroutines that return net chemical production rates have a W (for $\dot{\omega}_{k}$) following the CK, and routines that return creation and destruction rates or creation rates and destruction times have a CD or a CT, respectively, following the CK. Rate-of-progress variables are denoted by Q and equilibrium constants by EQ.

The mnemonics for the input and output variable names in the subroutine calls are roughly the same as for the subroutine names. However, because six letters can be used (only four are available in the subroutine names because CK occupies two), the mnemonics can be more explicit.

In most cases the subroutines are backwards compatible with the original version of CHEMKIN. However, there are some cases where either the functionality is different or the call list has changed, but we have kept the same subroutine name. All routines for which the call list or functionality may have changed from original versions of CHEM KIN are identified by an asterisk. Subroutines whose call lists have changed since later versions, known as CHEM KIN II, are indicated by a double asterisk.

5.2 Initialization

SUBROUTINE CKINDX (ICKWRK, RCKWRK, MM, KK, II, NFIT)*
Returns a group of indices defining the size of the particular reaction mechanism.
SUBROUTINE CKINIT (LENICK, LENRCK, LENCCK, LINC, LOUT, ICKWRK, RCKWRK, CCKWRK, IFLAG)**
Reads the linkfile and creates the internal work arrays ICKWRK, RCKWRK and CCKWRK. CKINIT must be called before any other CHEMKIN subroutine can be used, as the work arrays must be available as their input.

SUBROUTINE CKKTFL (ICKWRK, KTFL)
Allows the user to assign a location in the temperature array to use for each gas-phase species.

SUBROUTINE CKLEN (LINC, LOUT, LENI, LENR, LENC, IFLAG)
Returns the lengths required for work arrays.
SUBROUTINE CKLEN2 (LINC, LOUT, LI, LR, LC, MM, KK, II, MAXSP, MAXTP, MAXTB, MAXORD, KKI, IFLAG)
Returns the lengths required for work arrays, as well as mechanism size information for memory allocation.

SUBROUTINE CKPNT (LSAVE, LOUT, NPOINT, VERS, PREC, LENI, LENR, LENC, KERR)
Reads from a file information about a CHEMKIN linkfile, and pointers for work arrays.
SUBROUTINE CKREWR (LINC, LOUT, ICKWRK, RCKWRK, CCKWRK, IFLAG)
Rewrites a new linkfile from the data stored in ICKWRK, RCKWRK and CCKWRK.
SUBROUTINE CKSAVE (LOUT, LSAVE, ICKWRK, RCKWRK, CCKWRK)
Writes to a binary file information about a CHEMKIN linkfile, pointers for the CHEMKIN Library, and CHEMKIN work arrays.

SUBROUTINE PKINDX (ICKWRK, KELECT, KKION)
Returns plasma indices for the particular reaction mechanism.

5.3 Information About Elements

REAL FUNCTION CKATOM (ENAME)

Returns atomic weight, given character-string element name.
SUBROUTINE CKAWT (ICKWRK, RCKWRK, AWT)
Returns the atomic weights of the elements
SUBROUTINE CKCOMP (IST, IRAY, II, I)*
Returns the index of an element of a reference character string array which corresponds to a character string; leading and trailing blanks are ignored.

SUBROUTINE CKSYME (CCKWRK, LOUT, ENAME, KERR)*
Returns the character strings of element names.

5.4 Information About Species

SUBROUTINE CKCHRG (ICKWRK, RCKWRK, KCHARG)
Returns the electronic charges of the species.
SUBROUTINE CKCOMP (IST, IRAY, II, I)*
Returns the index of an element of a reference character string array which corresponds to a character string; leading and trailing blanks are ignored.

SUBROUTINE CKION (ICKWRK, KION)
Returns the ion species indices.
SUBROUTINE CKNCF (MDIM, ICKWRK, RCKWRK, NCF)
Returns the elemental composition of the species.
SUBROUTINE CKPHAZ (ICKWRK, RCKWRK, KPHASE)
Returns a set of flags indicating phases of the species
SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR)*
Returns the character strings of species names.
SUBROUTINE CKWT (ICKWRK, RCKWRK, WT)
Returns the molecular weights of the species.

5.5 Information About Reactions

SUBROUTINE CKABE (ICKWRK, RCKWRK, RA, RB, RE)
Returns the Arrhenius coefficients of the reactions; see Eq. (52).
SUBROUTINE CKFAL (NDIM, ICKWRK, RCKWRK, IFOP, IFLO, KFAL, FPAR)
Returns a set of flags indicating whether a reaction has pressure-
dependent behavior and an array of parameters.
SUBROUTINE CKFALP (P, T, X, ICKWRK, RCKWRK, I, RKLOW, CTB, PR, FC, PCOR)
Returns details concerning the reaction rate constant for pressure-dependent reactions.
SUBROUTINE CKHRX (I, HML, ICKWRK, RCKWRK, HRXI)
Returns the molar heat of reaction I.
SUBROUTINE CKIEXC (ICKWRK, RCKWRK, IEXC, EEXC)
Returns a set of flags indicating whether the reactions are
excitation reactions and, if so, the energy loss per event in eV .

SUBROUTINE CKIMOM (ICKWRK, IMOM)
Returns a set of flags indicating whether the reactions are electron momentum-transfer collision frequencies and, if so, the index of the species with which the electron collides.

SUBROUTINE CKINU (I, NDIM, ICKWRK, RCKWRK, NSPEC, KI, NU)
Returns a count of species in a reaction, and their indices and stoichiometric coefficients; see Eq. (50).

SUBROUTINE CKIORD (IDIM, KDIM, ICKWRK, RCKWRK, NIORD, IORD, FORD, RORD)
Returns the count and indices of reactions with modified species order and the order values for the species.

SUBROUTINE CKIREV (IR, ICKWRK, RCKWRK, IREV, RAR, RBR, RER)
Returns an integer flag to indicate whether reaction IR has an explicitly assigned reverse rate constant. It also returns the reverse Arrhenius expression values for reaction IR, if it was explicitly assigned in the CHEMKIN interpreter.
If reverse Arrhenius values were not explicitly assigned, RAR, RBR and RER will be zero.

SUBROUTINE CKIRNU (IDIM, NDIM, ICKWRK, RCKWRK, NIRNU, IRNU, NSPEC, KI, RNU)

Returns the count and indices of reactions with real stoichiometric coefficients, counts of species in the reactions, and the species indices and coefficients; see Eq. (50).

SUBROUTINE CKITDE (ICKWRK, RCKWRK, ITDE)
Returns a set of flags indicating whether the reactions are non-thermal, and if so, returns the index of the species on which the reaction depends.

SUBROUTINE CKITR (ICKWRK, RCKWRK, ITHB, IREV)
Returns a set of flags indicating whether the reactions are reversible or whether they contain arbitrary third bodies.

SUBROUTINE CKIXSM (ICKWRK, IXSM, IXSK)
Returns a set of flags indicating whether the reactions are ion momentum-transfer cross sections.

SUBROUTINE CKNU (KDIM, ICKWRK, RCKWRK, NUKI)
Returns the stoichiometric coefficients of the reactions; see Eq. (50).

SUBROUTINE CKNUF (KDIM, ICKWRK, RCKWRK, NUFKI)

Returns the forward stoichiometric coefficients for reactions; by definition, reactants' coefficients are negative; see Eq. (50). Contrast this subroutine with subroutine CKNU, which returns the net stoichiometric coefficients for a reaction.

SUBROUTINE CKRAEX (I, RCKWRK, RA)* Get/put the Pre-exponential coefficient of the Ith reaction

SUBROUTINE CKSYMR (I, LOUT, ICKWRK, RCKWRK, CCKWRK, LT, ISTR, KERR)*
Returns a character string which describes the Ith reaction, and the effective length of the character string.

SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI)
Returns matrix of enhanced third body coefficients; see Eq. (58).
SUBROUTINE CKWL (ICKWRK, RCKWRK, WL)
Returns a set of flags providing information on the wave length of photon radiation.

5.6 Gas Constants and Units

SUBROUTINE CKRP (ICKWRK, RCKWRK, RU, RUC, PA)
Returns universal gas constants and the pressure of one standard atmosphere.

5.7 Equations of State and Mole-Mass Conversions

SUBROUTINE CKMMWC (C, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given molar concentrations; see Eq. (5).
SUBROUTINE CKMMWX (X, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given mole fractions; see Eq. (4).
SUBROUTINE CKMMWY (Y, ICKWRK, RCKWRK, WTM)
Returns the mean molecular weight of the gas mixture given mass fractions; see Eq. (3).
SUBROUTINE CKPC (RHO, T, C, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given mass density, temperature(s) and molar concentrations; see Eq. (1).

SUBROUTINE CKPX (RHO, T, X, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given mass density, temperature(s) and mole fractions; see Eq. (1).

SUBROUTINE CKPY (RHO, T, Y, ICKWRK, RCKWRK, P)
Returns the pressure of the gas mixture given mass density, temperature(s) and mass fractions; see Eq. (1).

SUBROUTINE CKRHOC (P, T, C, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given pressure, temperature(s) and molar concentrations; see Eq. (2).

SUBROUTINE CKRHOX (P, T, X, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given pressure, temperature(s) and mole fractions; see Eq. (2).

SUBROUTINE CKRHOY (P, T, Y, ICKWRK, RCKWRK, RHO)
Returns the mass density of the gas mixture given pressure, temperature(s) and mass fractions; see Eq. (2).

SUBROUTINE CKCTX (C, ICKWRK, RCKWRK, X)

Returns the mole fractions given molar concentrations; see Eq. (13).

SUBROUTINE CKCTY (C, ICKWRK, RCKWRK, Y)
Returns the mass fractions given molar concentrations; see Eq. (12).
SUBROUTINE CKXTCP (P, T, X, ICKWRK, RCKWRK, C)
Returns the molar concentrations given pressure, temperature(s) and mole fractions; see Eq. (10).

SUBROUTINE CKXTCR (RHO, T, X, ICKWRK, RCKWRK, C)
Returns the molar concentrations given mass density, temperature(s), and mole fractions; see Eq. (11).

SUBROUTINE CKXTY (X, ICKWRK, RCKWRK, Y)
Returns the mass fractions given mole fractions; see Eq. (9).
SUBROUTINE CKYTCP (P, T, Y, ICKWRK, RCKWRK, C)
Returns the molar concentrations given pressure, temperature(s)
and mass fractions; see Eq. (7).
SUBROUTINE CKYTCR (RHO,T, Y, ICKWRK, RCKWRK, C)
Returns the molar concentrations given mass density, temperature(s), and mass fractions; see Eq. (8).

SUBROUTINE CKYTX (Y, ICKWRK, RCKWRK, X)
Returns the mole fractions given mass fractions; see Eq. (6).

5.8 Thermodynamic Properties (Nondimensional)

SUBROUTINE CKATHM (NDIM1, NDIM2, ICKWRK, RCKWRK, MAXTP, NT, TMP, A)
Returns the coefficients of the fits for thermodynamic properties of species; see Eqns. (19)-(21).
SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR)
Returns the nondimensional specific heats at constant pressure; see Eq. (19).
SUBROUTINE CKHORT (T, ICKWRK, RCKWRK, HORT)
Returns the nondimensional enthalpies; see Eq. (20).
SUBROUTINE CKMXTP (ICKWRK, MAXTP)
Returns the maximum number of temperatures used in fitting the thermodynamic properties of the species.

SUBROUTINE CKRHEX (K, RCKWRK, A6)
Returns an array of the sixth thermodynamic polynomial coefficients for a species, or changes their value, depending on the sign of K.

SUBROUTINE CKSMH (T, ICKWRK, RCKWRK, SMH)*
Returns the array of entropies minus enthalpies for species. It is normally not called directly by the user.

SUBROUTINE CKSOR (T, ICKWRK, RCKWRK, SOR)
Returns the nondimensional entropies; see Eq. (21).

5.9 Thermodynamic Properties (Mass Units)

SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS)
Returns the standard state Helmholtz free energies in mass units; see Eq. (32).
SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS)
Returns the specific heats at constant pressure in mass units; see Eq. (26).
SUBROUTINE CKCVMS (T, ICKWRK, RCKWRK, CVMS)
Returns the specific heats at constant volume in mass units; see Eq. (29).
SUBROUTINE CKGMS (T, ICKWRK, RCKWRK, GMS)
Returns the standard state Gibbs free energies in mass units; see Eq. (31).
SUBROUTINE CKHMS (T, ICKWRK, RCKWRK, HMS)
Returns the enthalpies in mass units; see Eq. (27).
SUBROUTINE CKSMS (T, ICKWRK, RCKWRK, SMS)
Returns the standard state entropies in mass units; see Eq. (28).
SUBROUTINE CKUMS (T, ICKWRK, RCKWRK, UMS)
Returns the internal energies in mass units; see Eq. (30).

5.10 Thermodynamic Properties (Molar Units)

SUBROUTINE CKAML (T, ICKWRK, RCKWRK, AML)
Returns the standard state Helmholtz free energies in molar units; see Eq. (25).
SUBROUTINE CKCPML (T, ICKWRK, RCKWRK, CPML)
Returns the specific heats at constant pressure in molar units.
SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML)
Returns the specific heats in constant volume in molar units; see Eq. (22).
SUBROUTINE CKGML (T, ICKWRK, RCKWRK, GML)
Returns the standard state Gibbs free energies in molar units; see Eq. (24).
SUBROUTINE CKHML (T, ICKWRK, RCKWRK, HML)
Returns the enthalpies in molar units.
SUBROUTINE CKSML (T, ICKWRK, RCKWRK, SML)
Returns the standard state entropies in molar units.
SUBROUTINE CKUML (T, ICKWRK, RCKWRK, UML)
Returns the internal energies in molar units; see Eq. (23).

5.11 Mean Thermodynamic Properties (Mass Units)

SUBROUTINE CKABMS (P, T, Y, ICKWRK, RCKWRK, ABMS)*

Returns the mean Helmholtz free energy of the mixture in mass units given pressure, temperature(s) and mass fractions; see Eq. (47).

SUBROUTINE CKCPBS (T, Y, ICKWRK, RCKWRK, CPBMS)
Returns the mean specific heat at constant pressure; see Eq. (34).
SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS)
Returns the mean specific heat at constant volume in mass units; see Eq. (36).
SUBROUTINE CKGBMS (P, T, Y, ICKWRK, RCKWRK, GBMS)*
Returns the mean Gibbs free energy of the mixture in mass units given pressure, temperature(s), and mass fractions; see Eq. (45).

SUBROUTINE CKHBMS (T, Y, ICKWRK, RCKWRK, HBMS)
Returns the mean enthalpy of the mixture in mass units; see Eq. (38).
SUBROUTINE CKSBMS (P, T, Y, ICKWRK, RCKWRK, SBMS)*
Returns the mean entropy of the mixture in mass units given pressure, temperature(s) and mass fractions; see Eq. (43).

SUBROUTINE CKUBMS (T, Y, ICKWRK, RCKWRK, UBMS)
Returns the mean internal energy of the mixture in mass units; see Eq. (40).

5.12 Mean Thermodynamic Properties (Molar Units)

SUBROUTINE CKABML (P, T, X, ICKWRK, RCKWRK, ABML)*
Returns the Helmholtz free energy of the mixture in molar units given pressure, temperature(s), and mole fractions; see Eq. (46).

SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML)
Returns the mean specific heat at constant pressure in molar units; see Eq. (33).
SUBROUTINE CKCVBL (T, X, ICKWRK, RCKWRK, CVBML)
Returns the mean specific heat at constant volume in molar units; see Eq. (35).
SUBROUTINE CKGBML (P, T, X, ICKWRK, RCKWRK, GBML)*
Returns the mean Gibbs free energy of the mixture in molar units given pressure, temperature(s) and mole fractions; see Eq. (44).

SUBROUTINE CKHBML (T, X, ICKWRK, RCKWRK, HBML)
Returns the mean enthalpy of the mixture in molar units; see Eq. (37).
SUBROUTINE CKSBML (P, T, X, ICKWRK, RCKWRK, SBML)*
Returns the mean entropy of the mixture in molar units given pressure, temperature(s) and mole fractions; see Eq. (42).

SUBROUTINE CKUBML (T, X, ICKWRK, RCKWRK, UBML)
Returns the mean internal energy of the mixture in molar units; see Eq. (39).

5.13 Chemical Production Rates

SUBROUTINE CKCDC (T, C, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species given temperature(s) and molar concentrations; see Eq. (76).

SUBROUTINE CKDOT (RKF, RKR, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species given reactions' rates of progress.

SUBROUTINE CKCDXP (P, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species given pressure, temperature(s) and mole fractions; see Eq. (76).

SUBROUTINE CKCDXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species given mass density, temperature(s) and mole fractions; see Eq. (76).

SUBROUTINE CKCDYP (P, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species given pressure, temperature(s) and mass fractions; see Eq. (76).

SUBROUTINE CKCDYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, DDOT)
Returns the molar creation and destruction rates of the species
given mass density, temperature(s) and mass fractions; see Eq. (76).
SUBROUTINE CKCONT (K, Q, ICKWRK, RCKWRK, CIK)
Returns the contributions of the reactions to the molar production rate of a species; see Eqs. (49) and (51).

SUBROUTINE CKCTC (T, C, ICKWRK, RCKWRK, CDOT, TAU)
Returns the molar creation rates and characteristic destruction times of the species given temperature(s) and molar concentrations; see Eqs. (79) and (81).

SUBROUTINE CKCTXP (P, T, X, ICKWRK, RCKWRK, CDOT, TAU)
Returns the molar creation rates and characteristic destruction times of the species given pressure, temperature(s) and mole fractions; see Eqs. (79) and (81).

SUBROUTINE CKCTXR (RHO, T, X, ICKWRK, RCKWRK, CDOT, TAU)
Returns the molar creation rates and characteristic destruction times of the species given mass density, temperature(s) and mole fractions; see Eqs. (79) and (81).

SUBROUTINE CKCTYP (P, T, Y, ICKWRK, RCKWRK, CDOT, TAU)

Returns the molar creation rates and characteristic destruction times of the species given mass density, temperature(s) and mass fractions; see Eqs. (79) and (81).

SUBROUTINE CKCTYR (RHO, T, Y, ICKWRK, RCKWRK, CDOT, TAU)
Returns the molar creation rates and characteristic destruction times of the species given mass density, temperature(s) and mass fractions; see Eqs. (79) and (81).

SUBROUTINE CKKFKR (P, T, X, ICKWRK, RCKWRK, FWDK, REVK)
Returns the forward and reverse reaction rates for reactions given pressure, temperature(s) and mole fractions.

SUBROUTINE CKKFRT (P, T, ICKWRK, RCKWRK, RKFT, RKRT)
Returns the forward and reverse reaction rates for reactions given pressure and temperature(s).

SUBROUTINE CKRCXP (P, T, X, ICKWRK, RCKWRK, RCFT, RCRT)
Returns the forward and reverse rate constants for all reactions given pressure, temperature and mole fractions; see Eqs. (51) and (58). Note this subroutine will calculate a value for the reverse rate constant irrespective of whether the reaction was deemed reversible in the interpreter file. Also note that the concentration of third bodies for third body reactions is included in the returned rate constant. The units for the rate constant will depend on the number of reactants.

SUBROUTINE CKRDEX (I, RCKWRK, RD)*

Get/put the perturbation factor of the Ith reaction
SUBROUTINE CKWC (T, C, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given temperature(s) and molar concentrations; see Eq. (49).

SUBROUTINE CKWXP (P, T, X, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given pressure, temperature(s) and mole fractions; see Eq. (49).

SUBROUTINE CKWXR (RHO, T, X, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given mass density, temperature(s) and mole fractions; see Eq. (49).

SUBROUTINE CKWYP (P, T, Y, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given pressure, temperature(s) and mass fractions; see Eq. (49).

SUBROUTINE CKWYPK (P, T, Y, RKFT, RKRT, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given pressure, temperature(s) and mass fractions; see Eq. (49).

SUBROUTINE CKWYR (RHO, T, Y, ICKWRK, RCKWRK, WDOT)
Returns the molar production rates of the species given mass density, temperature and mass fractions; see Eq. (49).

5.14 Equilibrium Constants and Rate of Progress Variables

SUBROUTINE CKEQC (T, C, ICKWRK, RCKWRK, EQKC)
Returns temperature(s) and molar concentrations; see Eq. (54).
SUBROUTINE CKEQXP (P, T, X, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants for reactions given pressure, temperature(s) and mole fractions; see Eq. (54).

SUBROUTINE CKEQXR (RHO, T, X, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants of the reactions given mass density, temperature(s) and mole fractions; see Eq. (54).

SUBROUTINE CKEQYP (P, T, Y, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants for reactions given pressure temperature(s) and mass fractions; see Eq. (54).

SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants of the reactions given mass density, temperature(s) and mass fractions; see Eq. (54).

SUBROUTINE CKQC (T, C, ICKWRK, RCKWRK, Q)
Returns the rates of progress for reactions given temperature(s) and molar concentrations; see Eqs. (51) and (58).

SUBROUTINE CKQXP (P, T, X, ICKWRK, RCKWRK, Q)
Returns the rates of progress for reactions given pressure, temperature(s) and mole fractions; see Eqs. (51) and (58).

SUBROUTINE CKQYP (P, T, Y, ICKWRK, RCKWRK, Q)
Returns the rates of progress for reactions given pressure, temperature(s) and mass fractions; see Eqs. (51) and (58).

SUBROUTINE CKQYR (RHO, T, Y, ICKWRK, RCKWRK, Q)
Returns the rates of progress for reactions given mass density, temperature(s) and mass fractions; see Eqs. (51) and (58).

5.15 Utilities

SUBROUTINE CKAVG (NN, S1, S2, SAVG)
For arrays of length $n n, \operatorname{SAVG}(\mathrm{n})$ is the average value of $\mathrm{S} 1(\mathrm{n})$ and $\mathrm{S} 2(\mathrm{n})$.
REAL FUNCTION CKBSEC (NPTS, X, XX, TT)
Interpolate $f(X)$ using bisection, given X and other pairs of X and $f(X)$.
CHARACTER FUNCTION CKCHUP (ISTR, ILEN)
Convert characters of a character string to upper case.
CHARACTER FUNCTION CKCHLO (ISTR, ILEN)
Convert ILEN characters in a character string to lower-case.
SUBROUTINE CKCOMP (IST, IRAY, II, I)
Returns the index of an element of a reference character string array which corresponds to a character string;
leading and trailing blanks are ignored.
SUBROUTINE CKCOPY (NN, X1, X2)
Copy $\mathrm{X} 1\left(^{*}\right)$ array members into $\mathrm{X} 2\left({ }^{*}\right)$ array.

SUBROUTINE CKCRAY (LINE, NN, KRAY, LOUT, NDIM, NRAY, NF, KERR)
Searches a character string, LINE, and compares the space-delimited substrings in LINE, to an array of character strings, KRAY; if a substring in LINE is located in KRAY, the index of its location in KRAY is stored in the integer array NRAY. For example, the subroutine might be called to assign CHEMKIN species indices to a given list of species names. This application is illustrated in the following example:

```
input: LINE = "OH N2 NO"
    KRAY(*) = "H2" "O2" "N2" "H" "O" "N" "OH" "H2O" "NO"
    NN =9, the number of entries in KRAY(*)
        LOUT =6, a logical unit number on which to write diagnostic messages.
        NDIM = 10, the dimension of array NRAY(*)
output: NRAY(*)=7,3,9, the index numbers of the entries
                in KRAY(*) corresponding to the substrings in LINE
            NF = 3, the number of correspondences found.
        KERR =.FALSE.
```

SUBROUTINE CKDLIM (STRING, DELIM, I1, I2)
Returns pointers into a character string of the first and second occurrences of a particular character.

SUBROUTINE CKDTAB (STRING)
Replaces any tab character in a character string with one space.
INTEGER FUNCTION CKFRCH (STR)
Returns the index of the first non-blank, non-tab character in a string.
INTEGER FUNCTION CKLSCH (STR)
Returns the index of the final non-blank, non-tab character in a string.
SUBROUTINE CKI2CH (NUM, STR, I, KERR)
Returns a character string representation of an integer and the
character count of the string.
INTEGER FUNCTION CKLKUP (ITEM, LIST, NLIST)
Looks up an item in an integer list. If an item is found, it returns the first position of the item in the list. If an item is not found, this routine returns the value 0 .

SUBROUTINE CKNCMP (STR, IRAY, II, I, NF)
Returns the first index of the character string STR if it occurs in the character string IRAY, and returns the total number of times STR occurs in IRAY.

SUBROUTINE CKNORM (ARRAY, NN)
Utility to normalize the real members of an array.

SUBROUTINE CKNPAR (LINE, NPAR, LOUT, IPAR, ISTART, KERR)
Searches a character string LINE from last to first character, to create a substring IPAR containing NPAR blank-delimited numbers; ISTART is the column of LINE containing IPAR. This allows formatfree input of combined alpha-numeric data. For example,

```
input: LINE*80 = "t1 t2 dt 300.0 3.0E3 50"
    NPAR = 3, the number of substrings requested
    LOUT = 6, a logical unit number on which to write diagnostic messages.
output: IPAR*80= "300.0 3.0E3 50"
    ISTART = 13, the starting column in LINE of the NPAR substrings
    KERR = .FALSE
```

SUBROUTINE CKR2CH (RNUM, STR, I, KERR)
Returns a character string representation of a real number and the effective length of the string.

SUBROUTINE CKSCAL (ARRAY, NN, SCAL)
Utility to scale the real members of an array.

INTEGER FUNCTION CKSLEN (LINE)

Returns the effective length of a character string, i.e., the index
of the last character before an exclamation mark (!) indicating a comment.

```
SUBROUTINE CKSNUM (LINE, NEXP, LOUT, KRAY, NN, KNUM, NVAL, RVAL, KERR)
Search a character string, LINE, for (1) a character substring which may also appear in an array of character substrings KRAY, and (2) some number of character substrings representing numbers. In the case of (1), if the character substring appears in KRAY, KNUM is its index position.
In the case of (2), the character substrings are converted to NVAL real numbers and stored in RVAL, until NEXP are converted.
```

This allows format-free input of combined alpha-numeric data.
For example, the subroutine might be called to find a CHEMKIN species index and convert the other substrings to real values:

```
input: LINE = "N2 1.2"
    NEXP = 1, the number of values expected
    LOUT = 6, a logical unit number on which to write diagnostic messages.
    KRAY(*) = "H2" "O2" "N2" "H" "O" "N" "OH" "H2O" "NO"
    NN = 9, the number of entries in KRAY(*)
output: KNUM = 3, the index number of the substring in KRAY(*)
            which corresponds to the first substring in LINE
    NVAL = 1, the number of values found in LINE
            following the first substring
    RVAL(*) = 1.200E+00, the substring converted to a number
    KERR =.FALSE.
```

SUBROUTINE CKSUBS (LINE, LOUT, NDIM, SUB, NFOUND, KERR)
Returns an array of substrings in a character string with blanks or tabs as delimiters.

REAL FUNCTION CKSUM (ARRAY, NN)
Return the sum of entries in a real array.
SUBROUTINE CKXMIN (X, NN, XMIN, IMIN)
Returns the minimum value in an array and its location in the array.

SUBROUTINE CKXMAX (X, NN, XMAX, IMAX)

Returns the maximum value in an array and its location in the array.
SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR)
Searches a character string, LINE, for NEXP space-delimited
substrings representing numbers, until NVAL real values are converted and stored in the array, RVAL.
This allows format-free input of numerical data. For example:

```
input: LINE = " 0.170E+14 0 47780.0"
    NEXP =3, the number of values requested
    LOUT = 6, a logical unit number on which to write diagnostic messages.
output: NVAL = 3, the number of values found
    RVAL(*) = 1.700E+13, 0.000E+00, 4.778E+04
    KERR =.FALSE.
```

SUBROUTINE CKXTND (NDIM, NPTS, XSTR, XEND, X, F, IFLAG)
Ensure that XSTR $<=X(N)<=X E N D$.
NPTS may be increased to add XSTR $<X(1)$ or XEND $>X(N P T S)$.
NPTS may be decreased to drop $X(\mathrm{~N})<$ XSTR or $X(\mathrm{~N})>$ XEND.
If NDIM does not allow adding a new endpoint,
CKXTND replaces the endpoint and sets IFLAG=1 if new XSTR,
IFLAG=2 if new XEND.

6. ALPHABETICAL LISTING OF THE GAS-PHASE SUBROUTINE LIBRARY WITH DETAILED DESCRIPTIONS OF THE CALL LISTS

Each subroutine in the Gas-Phase Subroutine Library is described in this chapter, together with a detailed description of the variables in the call lists. For all arrays, information is given on the required dimensioning in the calling program. For all variables having units, the cgs units are stated. In many cases a reference to the most applicable equation in Chapter $]_{\text {is also given. }}$

In most cases the subroutines are backwards compatible with the original version of CHEMKIN. However, there are some cases where either the functionality is different or the call list has changed, but we have kept the same subroutine name. All routines for which the call list or functionality may have changed from original versions of CHEMKIN are identified by an asterisk. Subroutines whose call lists have changed since later versions, known as CHEM KIN II, are indicated by a double asterisk.


```
CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS CKAMS
    **********************************************
    **************************
                            ******
SUBROUTINE CKAMS (T, ICKWRK, RCKWRK, AMS)
Returns the standard state Helmholtz free energies in mass units;
see Eq. (32).
INPUT
T(*) - Real array, temperature(s); dimension is determined by
    the application program to be the total number of
    species temperatures, nominally 1.
        cgs units, K
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
AMS(*) - Real array, standard state Helmholtz free energies
    for species;
    dimension at least KK, the total species count.
    cgs units, ergs/gm
```



```
CKCHLO
                CKCHLO CKCHLO CKCHLO CKCHLO CKCHN
                        **************************
                            ******
CHARACTER FUNCTION CKCHLO (ISTR, ILEN)
Convert ILEN characters in a character string to lower-case.
INPUT
ISTR - Character string to be converted.
ILEN - Length of the character string to be converted.
RETURN
    Character string ISTR, converted to lower case.
```


CKCHUP CKCHUP CKCHUP CKCHUP CKCHUP CKCHUP CKCHUP

$\star \star \star \star \star \star$
CHARACTER FUNCTION CKCHUP (ISTR, ILEN)
Convert characters of a character string to upper case.
INPUT
ISTR - Character string to be converted.
ILEN - Length of the character string to be converted.
RETURN
Character string ISTR, converted to upper case.


```
CKCOPY
                CKCOPY CKCOPY CKCOPY CKCOPY CKCOPY
                ************************************************
                        **************************
                            ******
SUBROUTINE CKCOPY (NN, X1, X2)
Copy X1(*) array members into X2(*) array.
INPUT
NN - Integer scalar; number of elements to copy.
X1(*) - Real array; dimension at least NN.
OUTPUT
X2(*) - Real array; dimension at least NN.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{CKCPBL} & CKCPBL & CKCPBL & CKCPBL & CKCPBL & CKCPBL & \multirow[t]{4}{*}{CKCPBL} \\
\hline & \multicolumn{5}{|l|}{} & \\
\hline & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{\(* * * * * * * * * * * * * * * * * * * * * * * * * * ~\)}} & \\
\hline & & & & & & \\
\hline
\end{tabular}
SUBROUTINE CKCPBL (T, X, ICKWRK, RCKWRK, CPBML)
Returns the mean specific heat at constant pressure in molar units;
see Eq. (33).
INPUT
T(*) - Real array, temperature(s); dimension is determined by
        the application program to be the total number of
        species temperatures, nominally 1.
                        cgs units, K
X(*) - Real array, mole fractions of the mixture;
        dimension at least KK, the total species count.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
CPBML - Real scalar, mean specific heat at constant pressure.
    cgs units, ergs/(mole*K)
```



```
CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS CKCPMS
        ********************************************
                        **************************
                            ******
SUBROUTINE CKCPMS (T, ICKWRK, RCKWRK, CPMS)
Returns the specific heats at constant pressure in mass units;
see Eq. (26).
INPUT
T(*) - Real array, temperature(s); dimension is determined by
                        the application program to be the total number of
                        species temperatures, nominally 1.
                    cgs units, K
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
CPMS(*) - Real array, specific heats at constant pressure for
    species;
    dimension at least KK, the total species count.
                        cgs units, ergs/(gm*K)
```


$\star \star \star \star \star \star$
SUBROUTINE CKCPOR (T, ICKWRK, RCKWRK, CPOR)
Returns the nondimensional specific heats at constant pressure;
see Eq. (19).
INPUT
T(*) - Real array, temperature(s); dimension is determined by
the application program to be the total number of
species temperatures, nominally 1.
cgs units, K
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
CPOR(*) - Real array, nondimensional specific heats at constant
pressure for species;
dimension at least $K K$, the total species count.

CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL CKCVBL

SUBROUTINE CKCVBL (T, X, ICKWRK, RCKWRK, CVBML)
Returns the mean specific heat at constant volume in molar units; see Eq. (35).

INPUT

T (*)	- Real array, temperature(s); dimension is determined by the application program to be the total number of species temperatures, nominally 1. cgs units, K
X (*)	- Real array, mole fractions of the mixture; dimension at least $K K$, the total species count
ICKWRK (*)	- Integer workspace array; dimension at least LENICK.
RCKWRK (*)	- Real workspace array; dimension at least LENRCK.
OUTPUT	
CVBML	- Real scalar, mean specific heat at constant volume. cgs units, ergs/(mole*K)

```
SUBROUTINE CKCVBS (T, Y, ICKWRK, RCKWRK, CVBMS)
```

Returns the mean specific heat at constant volume in mass units;
see Eq. (36).
INPUT
T(*) - Real array, temperature(s); dimension is determined by
the application program to be the total number of
species temperatures, nominally 1.
cgs units, K
Y(*) - Real array, mass fractions of the mixture;
dimension at least KK, the total species count.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
CVBMS - Real scalar, mean specific heat at constant volume.
cgs units, ergs/(gm*K)

CKCVMI

SUBROUTINE CKCVML (T, ICKWRK, RCKWRK, CVML)
Returns the specific heats in constant volume in molar units; see Eq. (22).

INPUT
T(*) - Real array, temperature(s); dimension is determined by the application program to be the total number of species temperatures, nominally 1. cgs units, K
ICKWRK(*) - Integer workspace array; dimension at least LENICK. RCKWRK(*) - Real workspace array; dimension at least LENRCK.

OUTPUT
CVML(*) - Real array, specific heats at constant volume for species; dimension at least $K K$, the total species count. cgs units, ergs/(mole*K)


```
CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR CKEQYR
    *************************************************
                        **************************
                            ******
SUBROUTINE CKEQYR (RHO, T, Y, ICKWRK, RCKWRK, EQKC)
Returns the equilibrium constants of the reactions given mass
density, temperature(s) and mass fractions; see Eq. (54).
INPUT
RHO - Real scalar, mass density.
                cgs units; gm/cm**3
T(*) - Real array, temperature(s); dimension is determined by
    the application program to be the total number of
        species temperatures, nominally 1.
                        cgs units, K
Y(*) - Real array, mass fractions of the mixture;
    dimension at least KK, the total species count.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
EQKC(*) - Real array, equilibrium constants in concentration units
    for reactions;
    dimension at least II, the total reaction count.
        cgs units; (mole/cm**3)**some power, depending on
                        the reaction
```

 Returns a set of flags indicating whether a reaction has pressuredependent behavior and an array of parameters.

INPUT
NDIM

- Integer scalar, first dimension of the matrix FPAR; NDIM must be greater than or equal to NFAR, the maximum number of supplemental rate parameters, which is currently equal to 8.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
IFOP(*) - Integer array, flags indicating pressure-dependent behavior; dimension at least II, the total reaction count. IFOP(I) indicates the pressure-dependent behavior of reaction I: 0 - No pressure dependency 1 - Lindeman form (3 parameters) 2 - SRI form (8 parameters) 3 - Troe form (6 parameters) 4 - Troe form (7 parameters)
IFLO(*) - Integer array, flags indicating pressure-dependency; dimension at least II, the total reaction count. IFLO(I) indicates
0 - unimolecular pressure-dependency, 1 - chemically activated bi-molecular.
KFAL(*) - Integer array, flags indicating type of bath-gas concentration to be used in expressions (see footnote on page 27); dimension at least II, the total reaction count. KFAL(I) indicates the type of reaction I: 0 - Use total concentration of gas mixture (with the added capability of using enhanced
third body coefficients) (default) K - Use the concentration of species K
FPAR(*,*) - Real matrix, pressure dependency parameters; dimension at least NFAR for the first, the maximum number of parameters (currently 8), and at least II for the second, the total reaction count.
The number of parameters depends on the particular functional form indicated by the IFOP array: $\operatorname{FPAR}(1, I), \operatorname{FPAR}(2, I), \operatorname{FPAR}(3, I)$ are always the parameters entered on the LOW auxiliary keyword line in the CHEMKIN interpreter input file.
$\operatorname{FPAR}(1, I)=$ Pre-exponential for low pressure limiting rate constant cgs units, mole-cm-sec-K
$\operatorname{FPAR}(2, I)=$ Temperature dependence exponents for the low pressure limiting rate constants. $\operatorname{FPAR}(3, I)=$ Activation energy for the low pressure limiting rate constant. cgs units, K
Additional FPAR values depend on IFOP: IFOP (I) = 2:
$\operatorname{FPAR}(4, I)=a \quad$ (See Eqn. (69))
$\operatorname{FPAR}(5, I)=b($ Kelvin $) \quad($ See Eqn. (69))
$\operatorname{FPAR}(6, I)=c($ Kelvin $) \quad($ See Eqn. (69))

```
    FPAR(7,I) = d (See Eqn. (69))
    FPAR(8,I) = e (See Eqn. (69))
IFOP(I) = 3:
    FPAR}(4,I)=a (See Eqn. (68))
    FPAR(5,I) = T*** (Kelvin) (See Eqn. (68))
    FPAR(6,I) = T* (Kelvin) (See Eqn. (68))
IFOP(I) = 4:
    FPAR(4,I) = a (See Eqn. (68))
    FPAR(5,I) = T*** (Kelvin) (See Eqn. (68))
    FPAR(6,I) = T* (Kelvin) (See Eqn. (68))
    FPAR(7,I) = T** (Kelvin) (See Eqn. (68))
```



```
CKFRCH
CKFRCH CKFRCH CKFRCH CKFRCH
CKFRCH
CKFRCH
INTEGER FUNCTION CKFRCH (STR)
Returns the index of the first non-blank, non-tab character in
a string.
INPUT
STR - Character string
```



```
CKIEXC
CKIEXC CKIEXC CKIEXC CKIEXC CKIEX
*********************************************
    **************************
    ******
SUBROUTINE CKIEXC (ICKWRK, RCKWRK, IEXC, EEXC)
Returns a set of flags indicating whether the reactions are
excitation reactions and, if so, the energy loss per event in eV.
INPUT
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
IEXC(*) - Integer array, excitation-only reaction flag;
        dimension at least II, the total reaction count.
        IEXC(I)= -1 reaction I is not an excitation-only reax
        IEXC(I)= 1 reaction I is an excitation reaction
EEXC(*) - Real array, excitation energy loss per event in forward
        direction for reactions;
        dimension at least II, the total reaction count.
CKIMOM CKIMOM \underset{***********************************************}{\mathrm{ CKIMOM CKIMOM CKIMOM}}\mathrm{ CKIMOM}
        **********************************************
    ******
SUBROUTINE CKIMOM (ICKWRK, IMOM)
Returns a set of flags indicating whether the reactions are
electron momentum-transfer collision frequencies and, if so,
the index of the species with which the electron collides.
INPUT
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
OUTPUT
IMOM(*) - Integer array, electron momentum-transfer collision
    frequency flags for reactions;
    dimension at least II, the total reaction count.
    IMOM(I)= -1 reaction I is not a mom-transfer coll freq
    IMOM(I)= K reaction I is a mom-transfer coll frequency
    and K is species index of the electron's
    collision partner
```



```
CKIREV CKIREV CKIREV CKIREV CKIREV CKIREV CKIREV
        *************************************************
        **************************
        ******
SUBROUTINE CKIREV (IR, ICKWRK, RCKWRK, IREV, RAR, RBR, RER)
Returns an integer flag to indicate whether reaction IR has an
explicitly assigned reverse rate constant. It also returns the
reverse Arrhenius expression values for reaction IR,
if it was explicitly assigned in the Chemkin interpreter.
If reverse Arrhenius values were not explicitly assigned,
RAR, RBR and RER will be zero.
INPUT
IR - Integer scalar, reaction index.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
IREV - Integer scalar,
    1, reaction IR has explicit reverse rate parameters
    0, no.
RAR - Real scalar, explicit pre-exponential constants
    for reaction IR.
            cgs units, mole-cm-sec-K
RBR - Real scalar, explicit temperature dependence exponents
        for reaction IR.
RER - Real scalar, explicit activation energy for reaction IR.
    cgs units, Kelvins
```



```
SUBROUTINE CKIVIS (P, T, X, XNUIM, K, ICKWRK, RCKWRK, VISI)
```

Returns the ion species viscosities given collision frequencies.
INPUT
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
P - Real scalar, pressure.
cgs units, dynes/cm**2
T(*) - Real array, temperature(s); dimension is determined by
the application program to be the total number of
species temperatures, nominally 1.
cgs units, K
X(*) - Real array of mole fractions of the mixture;
dimension at least KK , the total species count.
XNUIM - Real scalar, momentum-transfer collision frequency
for an ion
K - Integer scalar, species index of the ion
OUTPUT
VISI - Real scalar, ion viscosity
cgs units, GM/CM*S
CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM CKIXSM
**

$\star \star \star \star \star \star$
SUBROUTINE CKIXSM (ICKWRK, IXSM, IXSK)
Returns a set of flags indicating whether the reactions are ion
momentum-transfer cross sections.
INPUT
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
OUTPUT
IXSM(*) - Integer array, ion momentum-transfer cross-section flag;
dimension at least II, the total reaction count.
$\operatorname{IXSM}(I)=-1 \quad$ reaction I is not a ion mom-transfer $x-s e c$
$\operatorname{IXSM}(I)=K I$ reaction I is a ion mom-trans cross-section
and KI is the ion species index
IXSK(*) - Integer array, species indices for the collision partner
of the ion momentum-transfer cross-section reactions;
dimension at least II, the total reaction count.

SUBROUTINE CKNCF (MDIM, ICKWRK, RCKWRK, NCF)
Returns the elemental composition of the species
INPUT
MDIM - Integer scalar, first dimension of the matrix NCF; MDIM must be equal to or greater than MM, the total element count.
ICKWRK(*) - Integer workspace array; dimension at least LENICK. RCKWRK(*) - Real workspace array; dimension at least LENRCK.

OUTPUT
NCF (*,*) - Real matrix, the elemental composition of the species; dimension at least MM for the first, the total element count, and at least $K K$ for the second, the total species count. $\operatorname{NCF}(M, K)$ is the quantity of the element M in species K.

SUBROUTINE CKNCMP (STR, IRAY, II, I, NF)
Returns the first index of the character string STR if it occurs
in the character string IRAY, and returns the total number of
times STR occurs in IRAY.

```








```

CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX CKRAEX
**

SUBROUTINE CKRAEX (I, RCKWRK, RA)*
Get/put the Pre-exponential coefficient of the Ith reaction
INPUT
I - Integer scalar, reaction index;
I > 0 gets RA(I) from RCKWRK
I < 0 puts RA(I) into RCKWRK
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
If I < 1:
RA - Real scalar, pre-exponential coefficient for reaction I.
cgs units, mole-cm-sec-K
OUTPUT
If I > 1:
RA - Real scalar, pre-exponential coefficient for reaction I.
cgs units, mole-cm-sec-K

```








```

CKSNUM
CKSNUM CKSNUM CKSNUM CKSNUM CKM CKSNUM CKNM,

SUBROUTINE CKSNUM (LINE, NEXP, LOUT, KRAY, NN, KNUM, NVAL,
RVAL, KERR)
Search a character string, LINE, for (1) a character substring which
may also appear in an array of character substrings KRAY, and
(2) some number of character substrings representing numbers.
In the case of (1), if the character substring appears in KRAY,
KNUM is its index position.
In the case of (2), the character substrings are converted to
NVAL real numbers and stored in RVAL, until NEXP are converted.
This allows format-free input of combined alpha-numeric data.
For example, the subroutine might be called to find a Chemkin
species index and convert the other substrings to real values:
input: LINE = "N2 1.2"
NEXP = 1, the number of values expected
LOUT = 6, a logical unit number on which to write
diagnostic messages.
KRAY(*) = "H2" "O2" "N2" "H" "O" "N" "OH" "H2O" "NO"
NN = 9, the number of entries in KRAY(*)
output: KNUM = 3, the index number of the substring in
KRAY(*) which corresponds to the first
substring in LINE
NVAL = 1, the number of values found in LINE
following the first substring
RVAL(*) = 1.200E+00, the substring converted to a number
KERR = .FALSE.
INPUT
LINE - Character string; length depends on calling routine.
NEXP - Integer scalar, number of values to be found in LINE.
If NEXP < 0, then IABS (NEXP) values are expected, but
it is not an error condition if less values are found.
LOUT - Integer scalar, formatted output file unit.
KRAY(*) - Character string array.
NN - Integer scalar, total number of character strings
in KRAY.
OUTPUT
KNUM - Integer scalar, index of character string in KRAY
which corresponds to the first substring in LINE.
NVAL - Integer scalar, count of real values found in LINE.
RVAL(*) - Real array, real values found in LINE; dimension at least
NEXP.
KERR - Logical, syntax or dimensioning error flag;
corresponding string not found, or total of
values found is not the number of values expected,
will result in KERR = .TRUE.

```


```

| CKSYMS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| | $* ~$ | | | | | |
| | | | | | | |
| SUBROUTINE CKSYMS (CCKWRK, LOUT, KNAME, KERR)* | | | | | | |
| Returns the character strings of species names | | | | | | |
| INPUT | | | | | | |
| CCKWRK(*) - Character string workspace array; dimension at least LENRCK. | | | | | | |
| LOUT | - Integer scalar, formatted output file unit. | | | | | |
| OUTPUT | | | | | | |
| KNAME (*) - Character string array, species names; dimension at least $K K$, the total species cour | | | | | | |
| KERR | - Logic | charac | c length | rror fla | | |

CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB CKTHB

SUBROUTINE CKTHB (KDIM, ICKWRK, RCKWRK, AKI)
Returns matrix of enhanced third body coefficients; see Eq. (58).
INPUT
KDIM - Integer scalar, first dimension of the matrix AKI;
KDIM must be at least KK, the total species count.
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
RCKWRK(*) - Real workspace array; dimension at least LENRCK.
OUTPUT
AKI(*,*) - Real matrix, enhanced third body efficiencies of the
species in the reactions;
dimension at least KK for first, the total species count,
and at least II for the second, the total reaction count.
AKI(K,I) is the enhanced efficiency of species K in
reaction I.

```






```

CKXMAX CKXMAX CKXMAX CKXMAX CKXMAX CKXMAX CKXMAX
**

SUBROUTINE CKXMAX (X, NN, XMAX, IMAX)
Returns the maximum value in an array and its location in the array.
INPUT
X(*) - Real array.
NN - Integer scalar; size of X.
OUTPUT
XMAX - Real scalar.
IMAX - Integer scalar; location in X of XMAX.
CKXMIN CKXMIN CKXMIN CKXMIN CKXMIN CKXMIN CKXMIN
**

SUBROUTINE CKXMIN (X, NN, XMIN, IMIN)
Returns the minimum value in an array and its location in the array.
INPUT
X(*) - Real array.
NN - Integer scalar; size of X.
OUTPUT
XMIN - Real scalar.
IMIN - Integer scalar; location in X of XMIN.

```

CKXNUM
\begin{tabular}{|c|c|c|c|c|c|}
\hline CKXNUM & CKXNUM & CKXNUM & CKXNUM & CKXNUM & CKXNUM \\
\hline & & & & & \\
\hline
\end{tabular}
\(\star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * *\)
\(\star \star \star \star \star \star\)

SUBROUTINE CKXNUM (LINE, NEXP, LOUT, NVAL, RVAL, KERR)
Searches a character string, LINE, for NEXP space-delimited substrings representing numbers, until NVAL real values are converted and stored in the array, RVAL.
This allows format-free input of numerical data. For example:
input: LINE \(=\) " 0.170E+14 0 47780.0"
NEXP \(=3\), the number of values requested
LOUT \(=6\), a logical unit number on which to write diagnostic messages.
output: NVAL \(=3\), the number of values found
RVAL (*) \(=1.700 \mathrm{E}+13,0.000 \mathrm{E}+00,4.778 \mathrm{E}+04\)
KERR = .FALSE.
INPUT
LINE - Character string, length established by calling program.
NEXP - Integer scalar, number of real values to be found in LINE; If NEXP < 0 then IABS (NEXP) values are expected, but it is not an error condition if fewer values are found.
LOUT - Integer scalar, output unit for printed diagnostics.
OUTPUT
NVAL - Integer scalar, count of real values found in LINE.
RVAL - Real array, values converted from characters in LINE; dimension at least NEXP.
KERR - Logical, syntax or dimensioning error flag.




```

PKINDX PKINDX PKINDX PKINDX PKINDX PKINDX PKINDX
**

SUBROUTINE PKINDX (ICKWRK, KELECT, KKION)
Returns plasma indices for the particular reaction mechanism.
INPUT
ICKWRK(*) - Integer workspace array; dimension at least LENICK.
OUTPUT
KELECT - Integer scalar, species array index for the electron.
KKION - Integer scalar, total ion count.

```

\section*{7. SAMPLE PROBLEM}

Before applying CHEMKIN, the user must (1) define a system of governing equations, (2) define a reaction mechanism, and (3) choose a solution method. In this sample problem we will solve the equations describing constant pressure combustion for a hydrogen-air reaction mechanism. The governing energy and mass conservation equations are
\[
\begin{gathered}
\frac{d T}{d t}=-\frac{1}{\rho \bar{c}_{p}} \sum_{k=1}^{K} h_{k} \dot{\omega}_{k} W_{k}, \\
\frac{d Y_{k}}{d t}=\frac{\dot{\omega}_{k} W_{k}}{\rho}, \quad k=1, \ldots, K .
\end{gathered}
\]
where \(T\) is temperature and \(Y_{k}\) are the mass fractions of the \(K\) species involved. The independent variable \(t\) is time. Other variables are \(\rho\), mass density; \(\bar{c}_{p}\), mean specific heat at constant pressure; \(h_{k}\), the specific enthalpies of the species; \(\dot{\omega}_{k}\), the molar production rates of the species; and \(W_{k}\), the molecular weights of the species.

The governing system of ordinary differential equations and accompanying initial conditions form an initial value problem. The equations will be solved using VODE. 11 We find this solver to be highly reliable for the solution of a wide range of stiff initial-value problems.

The FORTRAN program for the solution of the sample problem is given in Section 7.3 After initializing CHEMKIN, the program reads the initial nonzero moles from input. It then repeatedly calls subroutine VODE to obtain the solution at uniform print intervals. The governing equation formulation is found in SUBROUTINE FUN, which is called by VODE.

The sections below present CHEMKIN Interpreter input and output for the sample problem, the sample FORTRAN program, called CONP, and the output for the CONP execution. Finally, Section \(Z_{6}\) describes how to use VODE.

\subsection*{7.1 Sample Input to the Interpreter}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{ELEMENTS H O N END} \\
\hline SPECIES H2 H O2 O & \(\mathrm{O} \mathrm{OH} \mathrm{HO2}\) & 2 O 2 H 2 O N N2 NO E & END & & \\
\hline \multicolumn{6}{|l|}{REACTIONS} \\
\hline \(\mathrm{H} 2+\mathrm{O} 2=2 \mathrm{OH}\) & & \(0.170 \mathrm{E}+14\) & 0.00 & 47780 & \\
\hline \(\mathrm{OH}+\mathrm{H} 2=\mathrm{H} 2 \mathrm{O}+\mathrm{H}\) & & \(0.117 \mathrm{E}+10\) & 1.30 & 3626 ! & D-L\&W \\
\hline \(\mathrm{O}+\mathrm{OH}=\mathrm{O} 2+\mathrm{H}\) & & \(0.400 \mathrm{E}+15\) & -0.50 & 0 ! & JAM 1986 \\
\hline \(\mathrm{O}+\mathrm{H} 2=\mathrm{OH}+\mathrm{H}\) & & \(0.506 \mathrm{E}+05\) & 2.67 & 6290 ! & KLEMM, ET AL \\
\hline \(\mathrm{H}+\mathrm{O} 2+\mathrm{M}=\mathrm{HO} 2+\mathrm{M}\) & & \(0.361 \mathrm{E}+18\) & -0.72 & 0 ! & DIXON-LEWIS \\
\hline H20/18.6/ & H2/2.86/ & N2/1.26/ & & & \\
\hline \(\mathrm{OH}+\mathrm{HO} 2=\mathrm{H} 2 \mathrm{O}+\mathrm{O} 2\) & & \(0.750 \mathrm{E}+13\) & 0.00 & 0 ! & D-L \\
\hline \(\mathrm{H}+\mathrm{HO} 2=2 \mathrm{OH}\) & & \(0.140 \mathrm{E}+15\) & 0.00 & 1073 ! & D-L \\
\hline \(\mathrm{O}+\mathrm{HO} 2=\mathrm{O} 2+\mathrm{OH}\) & & \(0.140 \mathrm{E}+14\) & 0.00 & 1073 ! & D-L \\
\hline \(2 \mathrm{OH}=\mathrm{O}+\mathrm{H} 2 \mathrm{O}\) & & \(0.600 \mathrm{E}+09\) & 1.30 & 0 ! & COHEN-WEST. \\
\hline \(\mathrm{H}+\mathrm{H}+\mathrm{M}=\mathrm{H} 2+\mathrm{M}\) & & \(0.100 \mathrm{E}+19\) & -1.00 & & D-L \\
\hline \multicolumn{6}{|l|}{H2O/0.0/ H2/0.0/} \\
\hline \(\mathrm{H}+\mathrm{H}+\mathrm{H} 2=\mathrm{H} 2+\mathrm{H} 2\) & & \(0.920 \mathrm{E}+17\) & -0.60 & 0 & \\
\hline \(\mathrm{H}+\mathrm{H}+\mathrm{H} 2 \mathrm{O}=\mathrm{H} 2+\mathrm{H} 2 \mathrm{O}\) & & \(0.600 \mathrm{E}+20\) & -1.25 & 0 & \\
\hline \(\mathrm{H}+\mathrm{OH}+\mathrm{M}=\mathrm{H} 2 \mathrm{O}+\mathrm{M}\) & & \(0.160 \mathrm{E}+23\) & -2.00 & 0 ! & D-L \\
\hline \multicolumn{6}{|l|}{H2O/5/} \\
\hline \(\mathrm{H}+\mathrm{O}+\mathrm{M}=\mathrm{OH}+\mathrm{M}\) & & \(0.620 \mathrm{E}+17\) & -0.60 & 0 ! & D-L \\
\hline \multicolumn{6}{|l|}{H2O/5/} \\
\hline \(\mathrm{O}+\mathrm{O}+\mathrm{M}=02+\mathrm{M}\) & & \(0.189 \mathrm{E}+14\) & 0.00 & -1788! & NBS \\
\hline \(\mathrm{H}+\mathrm{HO} 2=\mathrm{H} 2+\mathrm{O} 2\) & & \(0.125 \mathrm{E}+14\) & 0.00 & 0 ! & D-L \\
\hline \(\mathrm{HO} 2+\mathrm{HO} 2=\mathrm{H} 2 \mathrm{O} 2+\mathrm{O} 2\) & & \(0.200 \mathrm{E}+13\) & 0.00 & 0 & \\
\hline \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{M}=\mathrm{OH}+\mathrm{OH}+\mathrm{M}\) & & \(0.130 \mathrm{E}+18\) & 0.00 & 45500 & \\
\hline \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{H}=\mathrm{HO} 2+\mathrm{H} 2\) & & \(0.160 \mathrm{E}+13\) & 0.00 & 3800 & \\
\hline \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{OH}=\mathrm{H} 2 \mathrm{O}+\mathrm{HO} 2\) & & \(0.100 \mathrm{E}+14\) & 0.00 & 1800 & \\
\hline \(\mathrm{O}+\mathrm{N} 2=\mathrm{NO}+\mathrm{N}\) & & \(0.140 \mathrm{E}+15\) & 0.00 & 75800 & \\
\hline \(\mathrm{N}+\mathrm{O} 2=\mathrm{NO}+\mathrm{O}\) & & \(0.640 \mathrm{E}+10\) & 1.00 & 6280 & \\
\hline \(\mathrm{OH}+\mathrm{N}=\mathrm{NO}+\mathrm{H}\) & & \(0.400 \mathrm{E}+14\) & 0.00 & 0 & \\
\hline
\end{tabular}
SPECIES H2 H O2 O OH HO2 H2O2 H2O N N2 NO END
REACTIONS
    \(\mathrm{H} 2+\mathrm{O} 2=2 \mathrm{OH}\)
    \(\mathrm{O}+\mathrm{OH}=02+\mathrm{H}\)
    \(0.400 \mathrm{E}+15-0.50\)
    \(\mathrm{O}+\mathrm{H} 2=\mathrm{OH}+\mathrm{H}\)
    \(0.506 \mathrm{E}+05 \quad 2.67\)
    \(0.361 \mathrm{E}+18-0.72\)
\(0.750 \mathrm{E}+13 \quad 0.00\)
\(0.140 \mathrm{E}+15 \quad 0.00\)
\(0.140 \mathrm{E}+14 \quad 0.00\)
\(0.600 \mathrm{E}+091.30\)
\(0.920 \mathrm{E}+17-0.60 \quad 0\)
\(0.600 \mathrm{E}+20-1.25 \quad 0\)
\(0.160 \mathrm{E}+23-2.00\)
\(0.620 \mathrm{E}+17-0.60\)
\(0.189 \mathrm{E}+14 \quad 0.00\)
\(0.125 \mathrm{E}+14 \quad 0.00\)
\(0.200 \mathrm{E}+13 \quad 0.00\)
\(0.130 \mathrm{E}+18 \quad 0.00\)
\(0.160 \mathrm{E}+13\)
\(0.100 \mathrm{E}+14 \quad 0.00 \quad 1800\)
\(0.140 \mathrm{E}+15 \quad 0.00 \quad 75800\)
\(0.640 \mathrm{E}+10 \quad 1.00 \quad 6280\)
\(0.400 \mathrm{E}+14 \quad 0.00 \quad 0\)

\subsection*{7.2 Output from the Interpreter for the Sample Input}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{REACTIONS CONSIDERED} & A & b & E \\
\hline 1. \(\mathrm{H} 2+\mathrm{O} 2=2 \mathrm{OH}\) & & & 1.70E+13 & 0.0 & 47780.0 \\
\hline 2. \(\mathrm{OH}+\mathrm{H} 2=\mathrm{H} 2 \mathrm{O}+\mathrm{H}\) & & & \(1.17 \mathrm{E}+09\) & 1.3 & 3626.0 \\
\hline 3. \(\mathrm{O}+\mathrm{OH}=\mathrm{O} 2+\mathrm{H}\) & & & \(4.00 \mathrm{E}+14\) & -0.5 & 0.0 \\
\hline 4. \(\mathrm{O}+\mathrm{H} 2=\mathrm{OH}+\mathrm{H}\) & & & \(5.06 \mathrm{E}+04\) & 2.7 & 6290.0 \\
\hline 5. \(\mathrm{H}+\mathrm{O} 2+\mathrm{M}=\mathrm{HO} 2+\mathrm{M}\) & & & \(3.61 \mathrm{E}+17\) & -0.7 & 0.0 \\
\hline H2O & Enhanced by & \(1.860 \mathrm{E}+01\) & & & \\
\hline H2 & Enhanced by & \(2.860 \mathrm{E}+00\) & & & \\
\hline N2 & Enhanced by & \(1.260 \mathrm{E}+00\) & & & \\
\hline 6. \(\mathrm{OH}+\mathrm{HO} 2=\mathrm{H} 2 \mathrm{O}+\mathrm{O} 2\) & & & \(7.50 \mathrm{E}+12\) & 0.0 & 0.0 \\
\hline 7. \(\mathrm{H}+\mathrm{HO} 2=2 \mathrm{OH}\) & & & 1.40E+14 & 0.0 & 1073.0 \\
\hline 8. \(\mathrm{O}+\mathrm{HO} 2=\mathrm{O} 2+\mathrm{OH}\) & & & 1.40E+13 & 0.0 & 1073.0 \\
\hline 9. \(2 \mathrm{OH}=\mathrm{O}+\mathrm{H} 2 \mathrm{O}\) & & & \(6.00 \mathrm{E}+08\) & 1.3 & 0.0 \\
\hline 10. \(\mathrm{H}+\mathrm{H}+\mathrm{M}=\mathrm{H} 2+\mathrm{M}\) & & & \(1.00 \mathrm{E}+18\) & -1.0 & 0.0 \\
\hline H2O & Enhanced by & \(0.000 \mathrm{E}+00\) & & & \\
\hline H2 & Enhanced by & \(0.000 \mathrm{E}+00\) & & & \\
\hline 11. \(\mathrm{H}+\mathrm{H}+\mathrm{H} 2=\mathrm{H} 2+\mathrm{H} 2\) & & & \(9.20 \mathrm{E}+16\) & -0.6 & 0.0 \\
\hline 12. \(\mathrm{H}+\mathrm{H}+\mathrm{H} 2 \mathrm{O}=\mathrm{H} 2+\mathrm{H} 2 \mathrm{O}\) & & & \(6.00 \mathrm{E}+19\) & -1.3 & 0.0 \\
\hline 13. \(\mathrm{H}+\mathrm{OH}+\mathrm{M}=\mathrm{H} 2 \mathrm{O}+\mathrm{M}\) & & & 1.60E+22 & -2.0 & 0.0 \\
\hline H2O & Enhanced by & \(5.000 \mathrm{E}+00\) & & & \\
\hline 14. \(\mathrm{H}+\mathrm{O}+\mathrm{M}=\mathrm{OH}+\mathrm{M}\) & & & \(6.20 \mathrm{E}+16\) & -0.6 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline H2O & Enhanced by & \(5.000 \mathrm{E}+00\) & & & \\
\hline 15. \(\mathrm{O}+\mathrm{O}+\mathrm{M}=\mathrm{O} 2+\mathrm{M}\) & & & \(1.89 \mathrm{E}+13\) & 0.0 & -1788.0 \\
\hline 16. \(\mathrm{H}+\mathrm{HO} 2=\mathrm{H} 2+\mathrm{O} 2\) & & & \(1.25 \mathrm{E}+13\) & 0.0 & 0.0 \\
\hline 17. \(\mathrm{HO} 2+\mathrm{HO} 2=\mathrm{H} 2 \mathrm{O} 2+\mathrm{O} 2\) & & & \(2.00 \mathrm{E}+12\) & 0.0 & 0.0 \\
\hline 18. \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{M}=\mathrm{OH}+\mathrm{OH}+\mathrm{M}\) & & & 1.30E+17 & 0.0 & 45500.0 \\
\hline 19. \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{H}=\mathrm{HO} 2+\mathrm{H} 2\) & & & 1. \(60 \mathrm{E}+12\) & 0.0 & 3800.0 \\
\hline 20. \(\mathrm{H} 2 \mathrm{O} 2+\mathrm{OH}=\mathrm{H} 2 \mathrm{O}+\mathrm{HO} 2\) & & & \(1.00 \mathrm{E}+13\) & 0.0 & 1800.0 \\
\hline 21. \(\mathrm{O}+\mathrm{N} 2=\mathrm{NO}+\mathrm{N}\) & & & 1.40E+14 & 0.0 & 75800.0 \\
\hline 22. \(\mathrm{N}+\mathrm{O} 2=\mathrm{NO}+\mathrm{O}\) & & & \(6.40 \mathrm{E}+09\) & 1.0 & 6280.0 \\
\hline 23. \(\mathrm{OH}+\mathrm{N}=\mathrm{NO}+\mathrm{H}\) & & & \(4.00 \mathrm{E}+13\) & 0.0 & 0.0 \\
\hline
\end{tabular}

NOTE: A units mole-cm-sec-K, E units cal/mole

NO ERRORS FOUND ON INPUT:
ASCII Vers. 1.1 CHEMKIN linkfile chem.asc written.
WORKING SPACE REQUIREMENTS ARE INTEGER: 751

REAL: 496
CHARACTER: 14
Total CPUtime (sec): 0.140625

\subsection*{7.3 Sample User's FORTRAN Application: CONP}

PROGRAM CPDRIV
C///////////////////////////////////////////////////////////////
C This is the driver routine for CONP, the gas-phase Chemkin Example.
C The file is used to make 'conp.exe'
C
C The parameters and unit numbers that may be changed
C by the user are described below:
C
unit numbers:
LIN user Keyword input
LOUT solution and diagnostic printing (output)
LINCK gas-phase Chemkin Linking File (input)
dimensions:
KMAX maximum number of species
LENIWK maximum integer workspace available for CONP
LENRWK maximum real workspace available for CONP
LENCWK maximum character workspace available for CONP
numerical tolerances for solution convergence:
ATOL the absolute tolerance for solution values
RTOL the relative tolerance for solution values
C
C//////////////////////////////////////////////////////////////
C
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER(I-N)
PARAMETER (LENIWK=4000, LENRWK=4000, LENCWK=500, LIN=5, LOUT=6,
1 LINCK=25, \(\mathrm{KMAX}=50\), RTOL=1.0E-6, ATOL=1.0E-15, ZERO=0.0)
C
DIMENSION IWORK (LENIWK), RWORK (LENRWK), X(KMAX), Z(KMAX)
CHARACTER*16 CWORK (LENCWK), KSYM (KMAX)
C
C use appropriate machine-dependent cktime.f
C
OPEN (LINCK,STATUS='UNKNOWN',FORM='FORMATTED',FILE='./chem.asc')
C
CALL CONP (LINCK, LIN, LOUT, LENIWK, LENRWK, LENCWK, KMAX,
1 IWORK, RWORK, CWORK, KSYM, X, Z, RTOL, ATOL)
C
TEND = CKTIME (TSTART)
IF (TEND .GT. 60.) THEN
WRITE (LOUT, '(A,1PE15.2)') ' Total CPUtime (min): ',TEND/60. ELSE

WRITE (LOUT, '(A,1PE15.2)') ' Total CPUtime (sec): ',TEND
ENDIF
C
CLOSE (LINCK)
STOP
END
```

 SUBROUTINE CONP (LINKCK, LIN, LOUT, LENIWK, LENRWK, LENCWK,
 1
 2 RTOL, ATOL)
 IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
 C
PARAMETER (ZERO=0.0, NK=5, NLMAX=55, ITOL=1, IOPT=0, ITASK=1)
DIMENSION IWORK(LENIWK), RWORK(LENRWK), X(KMAX), Z(KMAX)
CHARACTER*16 CWORK(LENCWK), KSYM(KMAX), PRVERS, PRDATE, PREC
CHARACTER*80 LINE
LOGICAL KERR, IERR
INTEGER CKLSCH
EXTERNAL CKLSCH, FUN
COMMON /ICONS/ KK, NP, NWT, NH, NWDOT
EXTERNAL CKTIME
TSTART = CKTIME (ZERO)
C
DATA PRVERS/'1.7'/, PRDATE/'00/02/01'/, PREC/'DOUBLE'/
WRITE (LOUT, '(/A, /1X,A, A, A, A, /A, /A, //)')
1' CONP: CHEMKIN-III Constant Pressure Kinetics Code,',
PREC(1:CKLSCH(PREC)), ' PRECISION VERS. ',
PRVERS (1:CKLSCH (PRVERS) +1), PRDATE,
4 ' Copyright 1995, Sandia Corporation.',
5' The U.S. Government retains a limited license in this software.'
C
KERR = .FALSE.
DO 05 K = 1, KMAX
X(K) = 0.0
KSYM(K) = ' '
05 CONTINUE
C
CALL CKLEN (LINKCK, LOUT, LENI, LENR, LENC, IFLAG)
IF (IFLAG .GT. 0) GO TO 7000
CALL CKINIT (LENIWK, LENRWK, LENCWK, LINKCK, LOUT, IWORK,
1 RWORK, CWORK, IFLAG)
IF (IFLAG .GT. 0) GO TO 7000
CALL CKINDX (IWORK, RWORK, MM, KK, II, NFIT)
C
NEQ = KK + 1
LRW = 22 + 9*NEQ + 2*NEQ**2
NVODE = LENR + 1
NP = NVODE + LRW
NWT = NP + 1
NH = NWT + KK
NWDOT = NH + KK
NTOT = NWDOT+ KK - 1
C
LIW = 30 + NEQ
IVODE = LENI + 1
ITOT = IVODE + LIW - 1
C
IF (KK.GT.KMAX .OR. LENRWK.LT.NTOT .OR. LENIWK.LT.ITOT) THEN
IF (KK .GT. KMAX) WRITE (LOUT, *)
1 ' Error...KMAX too small...must be at least ',KK
IF (LENRWK .LT. NTOT) WRITE (LOUT, *)
1 ' Error...LENRWK too small...must be at least', NTOT
IF (LENIWK .LT. ITOT) WRITE (LOUT, *)
1 ' Error...LENIWK too small...must be at least', ITOT
GO TO 7000
ENDIF
C
CALL CKSYMS (CWORK, LOUT, KSYM, IERR)
IF (IERR) KERR = .TRUE.
CALL CKWT (IWORK, RWORK, RWORK (NWT))
CALL CKRP (IWORK, RWORK, RU, RUC, PATM)
C

```
```

C Pressure and temperature
C
WRITE (LOUT, '(/A,//A)')
1' ADIABATIC FIXED PRESSURE PROBLEM,',
2' INPUT PRESSURE (ATM) AND TEMPERATURE (K):'
READ (LIN, *) PA, T
WRITE (LOUT, 7105) PA, T
RWORK(NP) = PA*PATM
C
4 0 ~ C O N T I N U E ~
Initial non-zero moles
LINE = ' '
WRITE (LOUT, '(/A)') ' INPUT MOLES OF NEXT SPECIES'
READ (LIN, '(A)', END=45) LINE
WRITE (LOUT, '(1X,A)') LINE
CALL CKDTAB (LINE)
ILEN = INDEX (LINE, '!')
IF (ILEN .EQ. 1) GO TO 40
C
ILEN = ILEN - 1
IF (ILEN .LE. O) ILEN = LEN(LINE)
IF (INDEX(LINE(1:ILEN), 'END') .EQ. 0) THEN
IF (LINE (1:ILEN) .NE. ' ') THEN
CALL CKSNUM (LINE (1:ILEN), 1, LOUT, KSYM, KK, KNUM,
1
NVAL, VAL, IERR)
IF (IERR) THEN
WRITE (LOUT,*) ' Error reading moles...'
KERR = .TRUE.
ELSE
X(KNUM) = VAL
ENDIF
ENDIF
GO TO 40
ENDIF
C
4 5 ~ C O N T I N U E ~
Final time and print interval
WRITE (LOUT, '(/A)') ' INPUT FINAL TIME AND DT'
READ (LIN, *) T2, DT
WRITE (LOUT,7105) T2, DT
C
IF (KERR) GO TO 7000
C Normalize the mole fractions
CALL CKNORM (X, KK)
C Initial conditions and mass fractions
TT1 = 0.0
Z(1) = T
CALL CKXTY (X, IWORK, RWORK, Z(2))
C
C Integration control parameters for VODE
TT2 = TT1
MF = 22
ISTATE= 1
NLINES=NLMAX + 1
C
250 CONTINUE
Integration loop
C
IF (NLINES .GE. NLMAX) THEN
Print page heading

```

C

C
```

 WRITE (LOUT, 7003)
 WRITE (LOUT, 7100) (KSYM(K)(1:10), K=1,MIN(NK,KK))
 NLINES = 1
    ```
        DO 200 K1 \(=\mathrm{NK}+1, \mathrm{KK}, \mathrm{NK}\)
            WRITE (LOUT, 7110) (KSYM(K) (1:10), K=K1, MIN(K1+NK-1, KK))
            NLINES = NLINES + 1
    200 CONTINUE
        ENDIF
C
    \(\mathrm{T}=\mathrm{Z}(1)\)
    CALL CKYTX (Z (2), IWORK, RWORK, X)
C
C Print the solution
    WRITE (LOUT, 7105) TT1, T, (X(K), K=1, MIN (NK, KK))
    NLINES = NLINES + 1
C
    DO 300 K1 \(=N K+1\), KK, NK
        WRITE (LOUT, 7115) (X (K), K=K1, MIN (K1+NK-1, KK))
        NLINES \(=\) NLINES +1
    300 CONTINUE
C
    IF (TT2 .GE. T2) GO TO 7000
    TT2 \(=\) MIN (TT2 + DT, T2)
C
    350 CONTINUE
C
C Call the differential equation solver
    CALL DVODE
    * (FUN, NEQ, Z, TT1, TT2, ITOL, RTOL, ATOL, ITASK,
    1 ISTATE, IOPT, RWORK (NVODE), LRW, IWORK (IVODE),
    2 LIW, JAC, MF, RWORK, IWORK)
C
    IF (ISTATE .LE. -2) THEN
        WRITE (LOUT,*) ' ISTATE=', ISTATE
        GO TO 7000
        ENDIF
        GO TO 250
C
C FORMATS
    7003 FORMAT (1H1)
    7100 FORMAT (2X, 'T(SEC)', 6X, 'TMP (K)', 6X, 5(1X,A10))
    7105 FORMAT (12E11.3)
    7110 FORMAT (26X, 5(1X,A10))
    7115 FORMAT (22X, 10E11.3)
C
    7000 CONTINUE
            IF (IFLAG .EQ. 0) CALL CKDONE (IWORK, RWORK)
C end of SUBROUTINE CPRUN
    RETURN
    END
C
```

 SUBROUTINE FUN (N, TIME, Z, ZP, RPAR, IPAR)
 IMPLICIT DOUBLE PRECISION(A-H,O-Z), INTEGER(I-N)
 C
COMMON /ICONS/ KK, NP, NWT, NH, NWDOT
DIMENSION Z(*), ZP(*), RPAR(*), IPAR(*)
C
C Variables in Z are: Z(1) = T
Variables in Z are: Z(1) = T
Call CHEMKIN subroutines
CALL CKRHOY (RPAR(NP), Z(1), Z(2), IPAR, RPAR, RHO)
CALL CKCPBS (Z(1), Z(2), IPAR, RPAR, CPB)
CALL CKWYP (RPAR(NP), Z(1), Z(2), IPAR, RPAR, RPAR(NWDOT))
CALL CKHMS (Z(1), IPAR, RPAR, RPAR(NH))
C
C Form governing equation
C
SUM = 0.0
DO 100 K = 1, KK
H = RPAR (NH + K - 1)
WDOT = RPAR (NWDOT + K - 1)
WT = RPAR(NWT + K - 1)
ZP(K+1) = WDOT * WT / RHO
SUM = SUM + H * WDOT * WT
100 CONTINUE
ZP(1) = -SUM / (RHO*CPB)
C
C end of SUBROUTINE FUN
RETURN
END

```
7.4 Input to the Sample Fortran Application, CONP
```

11000
H2 1
O2 3
N2 .1
END
3.0E-4 3.0E-5

```

\subsection*{7.5 Output from the Sample FORTRAN Application, CONP}
```

CONP: CHEMKIN-III Constant Pressure Kinetics Code,
DOUBLE PRECISION VERS. 1.7 00/02/01
Copyright 1995, Sandia Corporation
The U.S. Government retains a limited license in this software.

```

CKLIB: CHEMKIN-III GAS-PHASE CHEMICAL KINETICS LIBRARY, DOUBLE PRECISION Vers. 5.28 2000/08/05
Copyright 1995, Sandia Corporation.
The U.S. Government retains a limited license in this software.

ADIABATIC FIXED PRESSURE PROBLEM,

INPUT PRESSURE (ATM) AND TEMPERATURE (K) :
\(0.100 \mathrm{E}+01 \quad 0.100 \mathrm{E}+04\)

INPUT MOLES OF NEXT SPECIES
H2 1

INPUT MOLES OF NEXT SPECIES
023

INPUT MOLES OF NEXT SPECIES
N2 . 1

INPUT MOLES OF NEXT SPECIES
END

INPUT FINAL TIME AND DT
\(0.300 \mathrm{E}-03 \quad 0.300 \mathrm{E}-04\)
1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{T (SEC)} & \multirow[t]{2}{*}{TMP ( K )} & H2 & H & O2 & 0 & OH \\
\hline & & HO2 & H2O2 & H2O & N & \multirow[t]{2}{*}{N2} \\
\hline & & NO & & & & \\
\hline \multirow[t]{3}{*}{\(0.000 \mathrm{E}+00\)} & \multirow[t]{3}{*}{\(0.100 \mathrm{E}+04\)} & \(0.244 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.732 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) \\
\hline & & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.244 \mathrm{E}-01\) \\
\hline & & \(0.000 \mathrm{E}+00\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.300 \mathrm{E}-04\)} & \multirow[t]{3}{*}{\(0.100 \mathrm{E}+04\)} & \(0.244 \mathrm{E}+00\) & \(0.817 \mathrm{E}-05\) & \(0.732 \mathrm{E}+00\) & \(0.425 \mathrm{E}-05\) & \(0.144 \mathrm{E}-05\) \\
\hline & & \(0.129 \mathrm{E}-04\) & \(0.103 \mathrm{E}-07\) & \(0.259 \mathrm{E}-04\) & \(0.181 \mathrm{E}-20\) & \(0.244 \mathrm{E}-01\) \\
\hline & & \(0.375 \mathrm{E}-19\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.600 \mathrm{E}-04\)} & \multirow[t]{3}{*}{\(0.196 \mathrm{E}+04\)} & \(0.890 \mathrm{E}-02\) & \(0.169 \mathrm{E}-01\) & \(0.625 \mathrm{E}+00\) & 0.570E-01 & 0.411E-01 \\
\hline & & \(0.174 \mathrm{E}-03\) & \(0.355 \mathrm{E}-04\) & \(0.224 \mathrm{E}+00\) & 0.229E-09 & 0.262E-01 \\
\hline & & \(0.167 \mathrm{E}-07\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.900 \mathrm{E}-04\)} & \multirow[t]{3}{*}{\(0.235 E+04\)} & \(0.367 \mathrm{E}-02\) & \(0.331 \mathrm{E}-02\) & \(0.658 \mathrm{E}+00\) & \(0.235 \mathrm{E}-01\) & 0.392E-01 \\
\hline & & 0.845E-04 & \(0.445 \mathrm{E}-05\) & \(0.246 \mathrm{E}+00\) & 0.193E-08 & 0.271E-01 \\
\hline & & \(0.163 \mathrm{E}-05\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.120 \mathrm{E}-03\)} & \multirow[t]{3}{*}{\(0.243 E+04\)} & 0.258E-02 & 0.185E-02 & \(0.665 \mathrm{E}+00\) & 0.165E-01 & 0.352E-01 \\
\hline & & 0.693E-04 & \(0.254 \mathrm{E}-05\) & \(0.251 \mathrm{E}+00\) & 0.229E-08 & \(0.272 \mathrm{E}-01\) \\
\hline & & \(0.438 \mathrm{E}-05\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.150 \mathrm{E}-03\)} & \multirow[t]{3}{*}{\(0.246 \mathrm{E}+04\)} & \(0.216 \mathrm{E}-02\) & \(0.139 \mathrm{E}-02\) & \(0.669 \mathrm{E}+00\) & \(0.138 \mathrm{E}-01\) & \(0.330 \mathrm{E}-01\) \\
\hline & & \(0.641 \mathrm{E}-04\) & \(0.197 \mathrm{E}-05\) & \(0.254 \mathrm{E}+00\) & 0.236E-08 & \(0.273 \mathrm{E}-01\) \\
\hline & & \(0.730 \mathrm{E}-05\) & & & & \\
\hline \multirow[t]{3}{*}{\(0.180 \mathrm{E}-03\)} & \multirow[t]{3}{*}{\(0.248 \mathrm{E}+04\)} & \(0.197 \mathrm{E}-02\) & \(0.120 \mathrm{E}-02\) & \(0.670 \mathrm{E}+00\) & \(0.125 \mathrm{E}-01\) & \(0.319 \mathrm{E}-01\) \\
\hline & & 0.619E-04 & \(0.173 \mathrm{E}-05\) & \(0.255 \mathrm{E}+00\) & \(0.237 \mathrm{E}-08\) & \(0.273 \mathrm{E}-01\) \\
\hline & & 0.102E-04 & & & & \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\(0.210 \mathrm{E}-03\) & \(0.248 \mathrm{E}+04\) & \(0.188 \mathrm{E}-02\) & \(0.111 \mathrm{E}-02\) & \(0.671 \mathrm{E}+00\) & \(0.119 \mathrm{E}-01\) & \(0.313 \mathrm{E}-01\) \\
& & \(0.609 \mathrm{E}-04\) & \(0.162 \mathrm{E}-05\) & \(0.255 \mathrm{E}+00\) & \(0.238 \mathrm{E}-08\) & \(0.273 \mathrm{E}-01\) \\
\(0.240 \mathrm{E}-03\) & \(0.249 \mathrm{E}+04\) & \(0.131 \mathrm{E}-04\) & & & & \\
& & \(0.183 \mathrm{E}-02\) & \(0.106 \mathrm{E}-02\) & \(0.671 \mathrm{E}+00\) & \(0.116 \mathrm{E}-01\) & \(0.310 \mathrm{E}-01\) \\
\(0.270 \mathrm{E}-03\) & \(0.249 \mathrm{E}+04\) & \(0.181 \mathrm{E}-02\) & \(0.104 \mathrm{E}-02\) & \(0.672 \mathrm{E}+00\) & \(0.115 \mathrm{E}-01\) & \(0.308 \mathrm{E}-01\) \\
& & \(0.160 \mathrm{E}-04\) & \(0.157 \mathrm{E}-05\) & \(0.256 \mathrm{E}+00\) & \(0.239 \mathrm{E}-08\) & \(0.273 \mathrm{E}-01\) \\
& & \(0.602 \mathrm{E}-04\) & \(0.154 \mathrm{E}-05\) & \(0.256 \mathrm{E}+00\) & \(0.240 \mathrm{E}-08\) & \(0.273 \mathrm{E}-01\) \\
\(0.300 \mathrm{E}-03\) & \(0.249 \mathrm{E}+04\) & \(0.179 \mathrm{E}-02\) & \(0.103 \mathrm{E}-02\) & \(0.672 \mathrm{E}+00\) & \(0.114 \mathrm{E}-01\) & \(0.307 \mathrm{E}-01\) \\
& & \(0.600 \mathrm{E}-04\) & \(0.152 \mathrm{E}-05\) & \(0.256 \mathrm{E}+00\) & \(0.241 \mathrm{E}-08\) & \(0.273 \mathrm{E}-01\) \\
Total CPUtime (sec): & \(0.217 \mathrm{E}-04\) & \(6.25 \mathrm{E}-02\) & & &
\end{tabular}

\subsection*{7.6 Summary of VODE Math Library Usage}
```

 SUBROUTINE DVODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF,
 RPAR, IPAR)
 EXTERNAL F, JAC
 DOUBLE PRECISION Y, T, TOUT, RTOL, ATOL, RWORK, RPAR
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW,
 1 MF, IPAR
 DIMENSION Y(*), RTOL(*), ATOL(*), RWORK(LRW), IWORK(LIW),
 1 RPAR(*), IPAR(*)
 C DVODE.. Variable-coefficient Ordinary Differential Equation solver,
C with fixed-leading coefficient implementation.
C This version is in double precision.
C DVODE solves the initial value problem for stiff or nonstiff
systems of first order ODEs,
dy/dt = f(t,y), or, in component form,
dy(i)/dt = f(i) = f(i,t,y(1),y(2),···,y(NEQ)) (i = 1,...,NEQ).
DVODE is a package based on the EPISODE and EPISODEB packages, and
on the ODEPACK user interface standard, with minor modifications.
Revision History (YYMMDD)
890615 Date Written
890922 Added interrupt/restart ability, minor changes throughout.
910228 Minor revisions in line format, prologue, etc.
920227 Modifications by D. Pang:
(1) Applied subgennam to get generic intrinsic names.
(2) Changed intrinsic names to generic in comments.
(3) Added *DECK lines before each routine.
920721 Names of routines and labeled Common blocks changed, so as
to be unique in combined single/double precision code (ACH).
920722 Minor revisions to prologue (ACH).
920831 Conversion to double precision done (ACH).
References..

1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variable
Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),
pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.
2. G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the
Numerical Solution of Ordinary Differential Equations,"
ACM Trans. Math. Software, 1 (1975), pp. 71-96.
3. A. C. Hindmarsh and G. D. Byrne, "EPISODE: An Effective Package
for the Integration of Systems of Ordinary Differential
Equations," LLNL Report UCID-30112, Rev. 1, April 1977.
4. G. D. Byrne and A. C. Hindmarsh, "EPISODEB: An Experimental
Package for the Integration of Systems of Ordinary Differential
Equations with Banded Jacobians," LLNL Report UCID-30132, April
1976.
5. A. C. Hindmarsh, "ODEPACK, a Systematized Collection of ODE
Solvers," in Scientific Computing, R. S. Stepleman et al., eds.,
North-Holland, Amsterdam, 1983, pp. 55-64.
6. K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
of Variable Step-Size Multistep Formulas for Stiff ODEs," ACM
Trans. Math. Software, 6 (1980), pp. 295-318.
Authors..
Peter N. Brown and Alan C. Hindmarsh
Computing and Mathematics Research Division, L-316
```

\begin{tabular}{|c|c|c|}
\hline C & & Name of subroutine for right-hand side vector f. \\
\hline C & & This name must be declared external in calling program. \\
\hline C & NEQ & Number of first order ODE-s. \\
\hline C & Y & \(=\) Array of initial values, of length NEQ. \\
\hline C & T & \(=\) The initial value of the independent variable. \\
\hline C & TOUT & = First point where output is desired (.ne. T). \\
\hline C & ITOL & = 1 or 2 according as ATOL (below) is a scalar or array. \\
\hline C & RTOL & = Relative tolerance parameter (scalar). \\
\hline C & ATOL & = Absolute tolerance parameter (scalar or array \\
\hline C & & The estimated local error in \(Y(i)\) will be controlled so as \\
\hline C & & to be roughly less (in magnitude) than \\
\hline C & & EWT (i) = RTOL*abs(Y(i)) + ATOL if ITOL = 1, or \\
\hline C & & EWT (i) = RTOL*abs(Y(i)) + ATOL(i) if ITOL = 2 . \\
\hline C & & Thus the local error test passes if, in each component, \\
\hline C & & either the absolute error is less than ATOL (or ATOL(i)), \\
\hline C & & or the relative error is less than RTOL \\
\hline C & & Use RTOL \(=0.0\) for pure absolute error control, and \\
\hline C & & use ATOL \(=0.0\) (or ATOL(i) \(=0.0\) ) for pure relative error \\
\hline C & & control. Caution.. Actual (global) errors may exceed these \\
\hline C & & local tolerances, so choose them conservatively. \\
\hline C & ITASK & \(=1\) for normal computation of output values of \(Y\) at \(t=\) TOUT. \\
\hline C & ISTATE & = Integer flag (input and output). Set ISTATE \\
\hline C & IOPT & = 0 to indicate no optional input used. \\
\hline C & RWORK & Real work array of length at least \\
\hline C & & 20 + 16*NEQ for MF = 10, \\
\hline C & & \(22+9 * N E Q+2 * N E Q * * 2\) for MF \(=21\) or 22, \\
\hline C & & \(22+11 * N E Q+(3 * M L+2 * M U) * N E Q\) for MF \(=24\) or 25. \\
\hline C & LRW & Declared length of RWORK (in user's DIMENSION statement \\
\hline C & IWORK & Integer work array of length at least \\
\hline C & & 30 for MF = 10, \\
\hline C & & \(30+\mathrm{NEQ}\) for MF \(=21,22,24\), or 25. \\
\hline C & & If \(\mathrm{MF}=24\) or 25, input in IWORK(1), IWORK(2) the lower \\
\hline C & & and upper half-bandwidths ML, MU. \\
\hline C & LIW & = Declared length of IWORK (in user's DIMENSION) \\
\hline C & JAC & Name of subroutine for Jacobian matrix ( \(\mathrm{MF}=21\) or 24). \\
\hline C & & If used, this name must be declared external in calling \\
\hline C & & program. If not used, pass a dummy name. \\
\hline C & MF & \(=\) Method flag. Standard values are. \\
\hline C & & 10 for nonstiff (Adams) method, no Jacobian used. \\
\hline C & & 21 for stiff (BDF) method, user-supplied full Jacobian. \\
\hline C & & 22 for stiff method, internally generated full Jacobian. \\
\hline C & & 24 for stiff method, user-supplied banded Jacobian. \\
\hline C & & 25 for stiff method, internally generated banded Jacobian. \\
\hline \multicolumn{3}{|l|}{\multirow[b]{4}{*}{C Note that the main program must declare arrays Y, RWORK, IWORK, \(C\) and possibly ATOL, RPAR, and IPAR. C}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
```

C E. The output from the first call (or any call) is..
C Y = Array of computed values of y(t) vector.
C T = Corresponding value of independent variable (normally TOUT).
C ISTATE = 2 if DVODE was successful, negative otherwise.
C -1 means excess work done on this call. (Perhaps wrong MF.)
C -2 means excess accuracy requested. (Tolerances too small.)
C -3 means illegal input detected. (See printed message.)
C -4 means repeated error test failures. (Check all input.)
C -5 means repeated convergence failures. (Perhaps bad
Jacobian supplied or wrong choice of MF or tolerances.)
C
C
C
C F. To continue the integration after a successful return, simply
C reset TOUT and call DVODE again. No other parameters need be reset.

```

\section*{8. REFERENCES}
1. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, "Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics" Sandia National Laboratories Report SAND96-8216, (1996).
2. R. J. Kee, J. A. Miller, and T. H. Jefferson, "Chemkin: A General-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package" Sandia National Laboratories Report SAND80-8003, (1980).
3. R. J. Kee, F. M. Rupley, and J. A. Miller, "Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics" Sandia National Laboratories Report SAND89-8009, (1990).
4. S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations" NASA Report SP-273, (1971).
5. M. Mitchner and J. Charles H. Kruger, Partially Ionized Gases John Wiley \& Sons, New York, (1973).
6. F. Lindemann, Trans. Faraday Soc. 17: 598 (1922).
7. R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87: 169 (1983).
8. P. H. Stewart, C. W. Larson, and D. M. Golden, Combustion and Flame 75: 25 (1989).
9. A. F. Wagner and D. M. Wardlaw, Journal of Physical Chemistry 92: 2462 (1988).
10. R. K. Janev, W. D. Langer, J. K. Evans, and J. D. E. Post, Elementary Processes in Hydrogen-Helium Plasmas Springer-Verlag, New York, (1987).
11. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, SIAM J. Sci. Stat. Comput. 10: 1038 (1989).

\section*{APPENDIX A. STORAGE ALLOCATION FOR THE WORK ARRAYS}

\begin{abstract}
Work arrays ICKWRK, RCKWRK, and CCKWRK contain information about the elements, species and reactions in the mechanism; they also contain some work space needed for internal manipulations. A user wishing to modify a subroutine or to write new routines will probably want to use the work arrays directly. The pointers described below are starting addresses for information stored in the work arrays, and are found in the labeled common block COMMON /CKSTRT/, declared by the use of the include file ckstrt.h.
\end{abstract}
```

COMMON /CKSTRT/
Integer constants
1 NMM, NKK, NII, MXSP, MXTB, MXTP, NCP, NCP1, NCP2, NCP2T,
NPAR, NLAR, NFAR, NLAN, NFAL, NREV, NTHB, NRLT, NWL, NEIM,
NJAN, NJAR, NFT1, NF1R, NEXC, NMOM, NXSM, NTDE, NRNU, NORD,
MXORD,KEL, NKKI,
Integer pointers to character string arrays in CCKWRK
5 IcMM, IcKK,
Integer pointers to integer arrays in ICKWRK
IcNC, IcPH, IcCH, IcNT, IcNU, IcNK, IcNSU,IcNS, IcNR, IcLT,
IcRL, IcRV, IcWL, IcFL, IcFO, IcFT, IcKF, IcTB, IcKN, IcKT,
IcEI, IcET, IcJN, IcF1, IcEX, IcMO, IcMK, IcXS, IcXI, IcXK,
IcTD, IcTK, IcRNU,IcORD,IcKOR,IcKI, IcKTF,IcK1, IcK2,
Integer pointers to real variables and arrays in RCKWRK
NcAW, NcWT, NcTT, NcAA, NcCO, NcRV, NcLT, NcRL, NcFL, NcKT,
NcWL, NcJN, NcF1, NcEX, NcRU, NcRC, NcPA, NcKF, NcKR, NcRNU,
NcRSU,NcKOR,NcK1, NCK2, NcK3, NcK4, NcI1, NcI2, NcI3, NcI4

```
    INTEGER CONSTANTS:
NMM, Total count, elements in problem.
NKK, Total count, species in problem.
NII, Total count, reactions in problem.
MXSP, Maximum number of species (reactants plus products) allowed
        in any reaction; unless changed in the interpreter, \(M X S P=12\).
MXTB, Maximum number of enhanced third-bodies allowed in any
        reaction; unless changed in the interpreter, \(M X T B=10\).
MXTP, Maximum number of temperatures allowed in fits of
        thermodynamic properties for any species;
        unless changed in the interpreter and the thermodynamic
        database, \(\mathrm{MXTP}=3\).
NCP, Number of polynomial coefficients to fits of CP/R for a
        species; unless changed in the interpreter and the
        thermodynamic database, \(\mathrm{NCP}=5\).
NCP1, \(\quad \mathrm{NCP}+1\)
NCP2, NCP + 2
NCP2T, Total number of thermodynamic fit coefficients for species;
        unless changed, \(\mathrm{NCP} 2 \mathrm{~T}=(\mathrm{MXTP}-1) * \mathrm{NCP} 2=14\).
NPAR, Number of parameters required in the rate expression for
        reactions; in the current formulation NPAR=3, however,
        a 4th parameter is used for purposes of scaling.
NLAR, Number of parameters required for Landau-Teller reactions;
        NLAR=4.
NFAR, Number of parameters allowed for pressure-dependent
        reactions; NFAR=8.
NLAN, Total count, Landau-Teller reactions.
NFAL, Total count, pressure-dependent reactions.
NREV, Total count, reactions with reverse parameters.
NTHB, Total count, reactions with third-bodies.
NRLT, Total count, Landau-Teller reactions with reverse parameters.

NWL, Total count, reactions with radiation wavelength enhancement.
NEIM, Total count, electron-impact reactions.
NJAN, Total count, Janev-Langer, Evans,Post reactions.
NJAR, Number of parameters required for an NJAN reaction.
NFT1, Total count, reactions using fit\#1.
NF1R, Number of parameters required for an NFT1 reaction.
NEXC, Total count, excitation-only reactions.
NMOM, Total count, electron momentum-transfer reactions.
NXSM, Total count, ion momentum-transfer reactions.
NTDE, Total count, non-thermal-equilibrium reactions.
NRNU, Total count, real stoichiometry reactions.
NORD, Total count, changed-order reactions.
MXORD, Maximum number of order changes allowed for above.
KEL, Species index of the electron species if present.
NKKI, Total count, ion species in the mechanism.
STARTING ADDRESSES FOR THE CHARACTER WORK SPACE, CCKWRK.
```

ICMM, CCKWRK(I = ICMM) starts an array of element names;
CCKWRK(I + M - 1) is the name of element M.
IcKK, CCKWRK(I = IcKK) starts an array of species names;
CCKWRK(I + K - 1) is the name of species K.

```

STARTING ADDRESSES FOR THE INTEGER WORK SPACE, ICKWRK.
```

ICNC, ICKWRK(I = ICNC) starts a matrix of elemental composition
for the species;
ICKWRK(I + (K-1)*NMM + M - 1) is the quantity of element M
in species K.
IcPH, ICKWRK(I = IcPH) starts an array of physical phases for the
species;
ICKWRK(I + K - 1) = -1, species K is solid
= 0, species K is gaseous
= +1, species K is liquid
IcCH, ICKWRK(I = IcCH) starts an array of electronic charges for
the species;
ICKWRK(I + K - 1) = -2, species K has two excess electrons.
IcNT, ICKWRK(I = IcNT) starts an array of the total number of
temperatures dividing the ranges of thermodynamic fits of
the species;
ICKWRK(I + K - 1) is the number of dividing temperatures
for thermodynamic fits for species K.
ICNU, ICKWRK(I = ICNU) starts a matrix of stoichiometric coefficients
for the MXSP species in the reactions;
ICKWRK(I + (N-1)*MXSP + L - 1) is the coefficient of the Lth
participant species in the Nth reaction.
ICNK, ICKWRK(I = IcNK) starts a matrix of indices for the MXSP
species in the reactions;
ICKWRK(I + (N-1)*MXSP + L -1) is the species index for the
Lth participant species in the Nth reaction.
ICNSU, ICKWRK(I = ICNSU) starts an array of the sum of stoichiometric
coefficients of the reactions;
ICKWRK(I + N - 1) is the sum of stoichiometric coeff'nts
of the Nth reaction.
IcNS, ICKWRK(I = IcNS) starts an array of the total counts of
participant species for the reactions,
and indicates the reversibility of the reactions;
ICKWRK(I + N - 1) = +L, reaction N is reversible and has
L participant species (reactants+products)
= -L, reaction N is irreversible and has
L participant species (reactants+products)
IcNR, ICKWRK(I = IcNR) starts an array of the total count of
reactants only for the reactions;
ICKWRK(I + N - 1) is the total reactant count for reaction N.
IcLT, ICKWRK(I = IcLT) starts an array of reaction indices for

```

Landau-Teller reactions;
ICKWRK (I + N - 1) is the reaction index of the Nth LT reaction.
IcRL, ICKWRK (I = IcRL) starts an array of reaction indices for Landau-Teller reactions with explicit reverse parameters; ICKWRK (I + N - 1) is the reaction index of the Nth reaction with reverse Landau-Teller parameters.
IcRV, ICKWRK (I = IcRV) starts an array of reaction indices for those with explicit reverse Arrhenius coefficients;
ICKWRK (I + N - 1) is the reaction index of the Nth reaction with reverse coefficients.
IcWL, ICKWRK (I = IcWL) starts an array of reaction indices for those with radiation wavelength enhancement;
ICKWRK (I + N - 1) is the reaction index of the Nth reaction with wavelength enhancement.
ICFL, ICKWRK (I = IcFL) starts an array of reaction indices for those with pressure-dependent formulations;
ICKWRK (I + N - 1) is the reaction index of the Nth pressuredependent reaction.
ICFO, ICKWRK (I = IcFO) starts an array of formulation types for pressure-dependent reactions;
ICKWRK (I + N - 1) is the type of the Nth pressure-dependent reaction, 1 for 3-parameter Lindemann Form

2 for 6- or 8-parameter SRI Form
3 for 6-parameter Troe Form
4 for 7-parameter Troe form
ICFT, ICKWRK (I = IcFT) starts an array of option types for pressuredependent reactions;
ICKWRK (I + N - 1) is an option for the Nth pressure-dependent
reaction, 0 for unimolecular pressure-dependency,
1 for chemically activated.
ICKF, ICKWRK (I = IcKF) starts an array of third-body species flags for pressure-dependent reactions;
ICKWRK (I + N - 1) is the third-body species flag for the Nth pressure-dependent reaction,
0 , the concentration of the third-body is the sum of the concentrations of all species in the problem
\(K\), the concentration of the third-body is the concentration of species \(K\).
ICTB, ICKWRK ( \(I=I c T B\) ) starts an array of reaction indices for those with enhanced third-bodies;
ICKWRK (I + N - 1) is the reaction index of the Nth third-body reaction.
IcKN, ICKWRK (I = IcKN) starts an array of enhanced species counts for 3rd-body reactions;
ICKWRK (I + N - 1) is the total enhanced species count for the Nth third-body reaction.
IcKT, ICKWRK (I = IcTB) starts a matrix of species indices for enhanced 3rd bodies in third-body reactions;
ICKWRK (I \(+(N-1) * M X T B+L-1)\) is the species index of the Lth enhanced species in the Nth third-body reaction.
ICEI, ICKWRK (I = ICEI) starts an array of reaction indices for electron-impact reactions; ICKWRK (I + N - 1) is the reaction index of the Nth electronimpact reaction.
ICET, ICKWRK (I = IcET) starts an array of temperature-dependence flags for electron-impact reactions;
ICKWRK (I + N - 1) is a pointer to the temperature in an array which is used to compute the reaction's rate.
ICJN, ICKWRK (I = IcJN) starts an array of reaction indices for Janev-Langer reactions;
ICKWRK (I + N - 1) is the reaction index of the Nth JanevLanger reaction.
ICF1, ICKWRK (I = ICF1) starts an array of reaction indices for fit-type reactions;
ICKWRK (I + N - 1) is the reaction index of the Nth fit-type
reaction.
IcEX, ICKWRK (I = IcEX) starts an array of reaction indices for excitation-only reactions;
ICKWRK (I + N - 1) is the reaction index of the Nth excitationonly reaction.
IcMO, ICKWRK(I = IcMO) starts an array of reaction indices for those with electron momentum-transfer;
ICKWRK (I + N - 1) is the reaction index of the Nth electron momentum-transfer reaction.
IcMK, ICKWRK(I = IcMK) starts an array of species indices for an electron's collision partner in the electron momentum-transfer reactions;
ICKWRK (I + N - 1) is the species index of the collision partner in the Nth electron momentum-transfer reaction.
IcXS, ICKWRK (I = IcXS) starts an array of reaction indices for those with ion momentum-transfer cross-section;
ICKWRK (I + N - 1) is the reaction index of the Nth ion momentum-transfer cross-section reaction.
IcXI, ICKWRK (I = IcXI) starts an array of species indices for the ion collision partner in ion momentum-transfer reactions; ICKWRK (I + N - 1) is the species index of the ion collision partner in the Nth ion momentum-transfer reaction.
IcXK, ICKWRK (I = IcXK) starts an array of species indices for the non-ion collision partner in ion momentum-transfer reactions; ICKWRK (I + N - 1) is the species index of the non-ion collision partner for the Nth.
IcTD, ICKWRK (I = IcTD) starts an array of reaction indices for those with non-thermal-equilibrium temperature-dependence; ICKWRK (I + N - 1) is the reaction index of the Nth non-thermal-equilibrium reaction.
IcTK, ICKWRK(I = IcTK) starts an array of temperature-dependent species indices for the non-thermal-equilibrium reactions; ICKWRK (I + N - 1) is the index of the species which determines the temperature for the Nth non-thermal-equilibrium reaction.
IcRNU, ICKWRK (I = IcRNU) starts an array of reaction indices for those with real stoichiometry; ICKWRK (I + N - 1) is the reaction index of the Nth reaction with real stoichiometry.
IcORD, ICKWRK (I = IcORD) starts an array of reaction indices for those with changed-order species; ICKWRK (I + N - 1) is the reaction index of the Nth reaction with changes of order.
IcKOR,ICKWRK(I = IcKOR) starts a matrix of species indices for the changed-order reactions;
\(K=\operatorname{ICKWRK}(I+(N-1) * M X O R D+L-1)\) is the species number of the Lth change-of-order for the Nth changed-order reaction;
> 0, K participates in the reverse direction (product),
\(<0, \mathrm{~K}\) participates in the forward direction (reactant).
IcKI, ICKWRK (I = IcKI) starts an array of species indices for those which are ions;
ICKWRK (I + N - 1) is the species index for the Nth ion.
IcKTF,ICKWRK(I = ICKTF) starts an array of temperature array pointers for the species; ICKWRK(I + K - 1) is the pointer to the temperature array for species \(K\).
IcK1, ICKWRK (I = IcK1) starts scratch storage space of length NKK.
IcK2, ditto
STARTING ADDRESSES FOR THE REAL WORK SPACE, RCKWRK.
NCAW, RCKWRK (I = NCAW) starts an array of atomic weights (gm/mole); RCKWRK (I + M - 1) is the atomic weight of element M.
NCWT, RCKWRK (I = NCWT) starts an array of molecule weights (gm/mole); RCKWRK (I + K - 1) is the molecular weight of species K.

NcTT, RCKWRK(I = NcTT) starts an array of temperatures (Kelvin) used to fit thermodynamic properties for the species; RCKWRK (I + (K-1) *MXTP + N - 1) is the Nth temperature for species K.
NCAA, RCKWRK (I = NCAA) starts a three-dimensional array of polynomial
coefficients for thermodynamic properties of the species;
RCKWRK (I + (L-1)*NCP2 + (K-1)*NCP2T + N - 1) is the Nth polynomial coefficient \(A(N, L, K)\) for species \(K\), in the Lth temperature range.
NCCO, RCKWRK (I \(=\) NCCO) starts a matrix of Arrhenius parameters for reactions;
RCKWRK (I + (N-1)*(NPAR+1) \(+\mathrm{L}-1\) ) is the Lth parameter of reaction \(N\), where
\(\mathrm{L}=1\) is the pre-exponential factor (mole-cm-sec-K),
\(\mathrm{L}=2\) is the temperature exponent,
\(\mathrm{L}=3\) is the activation energy (Kelvins), and
\(\mathrm{L}=4\) is used as a scalar for sensitivity analysis.
NCRV, RCKWRK (I = NCRV) starts a matrix of reverse Arrhenius parameters for reactions which give them explicitly;
RCKWRK (I + (N-1)* (NPAR+1) \(+\mathrm{L}-1)\) is the Lth reverse parameter
for the Nth reaction with reverse parameters declared, where
\(\mathrm{L}=1\) is the pre-exponential factor (mole-cm-sec-K),
\(\mathrm{L}=2\) is the temperature exponent,
\(\mathrm{L}=3\) is the activation energy (Kelvins),
\(\mathrm{L}=4\) is used as a scalar for sensitivity analysis.
The reaction index is ICKWRK (IcRV \(+\mathrm{N}-1\) ).
NCLT, RCKWRK (I = NCLT) starts a matrix of parameters for the Landau-
Teller reactions;
RCKWRK (I + (N-1)*NLAR + L - 1) is the Lth Landau-Teller
parameter for the Nth Landau-Teller reaction, where
\(\mathrm{L}=1\) is \(\mathrm{B}(\mathrm{I})\) (Eq. 73) (Kelvins**1/3), and
\(\mathrm{L}=2\) is C(I) (Eq. 73) (Kelvins**2/3).
The reaction index is ICKWRK (IcLT + N - 1).
NCRL, RCKWRK (I = NCRL) starts a matrix of explicitly-given reverse Landau-Teller parameters;
RCKWRK (I \(+(N-1) * N L A R+L-1)\) is the Lth reverse parameter for the Nth reaction with reverse Landau-Teller parameters, where
\(\mathrm{L}=1\) is \(\mathrm{B}(\mathrm{I})\) (Eq. 73) (Kelvins**1/3), and
\(\mathrm{L}=2\) is C(I) (Eq. 73) (Kelvins**2/3).
The reaction index is ICKWRK (IcRL \(+\mathrm{N}-1\) ).
NcFL, RCKWRK (I = NCFL) starts a matrix of parameters for the pressure-dependent reactions;
RCKWRK (I + (N-1)*NFAR \(+\mathrm{L}-1\) ) is the Lth parameter for the Nth pressure-dependent reaction, where the low pressure limits
limits are defined by
\(\mathrm{L}=1\) is the pre-exponential factor (mole-cm-sec-K),
\(\mathrm{L}=2\) is the temperature exponent, and
\(\mathrm{L}=3\) is the activation energy (Kelvins).
Additional parameters define the centering, depending on
the type of formulation -
Troe: L=4 is the Eq. 68 parameter a,
\(\mathrm{L}=5\) is the Eq. 68 parameter \(\mathrm{T}^{* * *}\) (Kelvins),
\(\mathrm{L}=6\) is the Eq. 68 parameter \(\mathrm{T}^{*}\) (Kelvins), and
\(\mathrm{L}=7\) is the Eq. 68 parameter \(\mathrm{T} * *\) (Kelvins).
SRI: L=4 is the Eq. 69 parameter a,
\(\mathrm{L}=5\) is the Eq. 69 parameter b (Kelvins),
\(\mathrm{L}=6\) is the Eq. 69 parameter c (kelvins),
\(\mathrm{L}=7\) is the Eq. 69 parameter d , and
\(\mathrm{L}=8\) is the Eq. 69 parameter e.
The reaction index is ICKWRK (IcFL+N-1) and the type of formulation is ICKWRK (IcFO+N-1).
NcKT, RCKWRK (I = NcKT) starts a matrix of enhancement factors for third-body reactions;
RCKWRK (I + (N-1)*MXTB + L - 1) is an enhancement factor for
```

 the Lth enhanced species in the Nth third-body reaction;
 the reaction index is ICKWRK(IcTB+N-1), and the Lth
 enhanced species index is ICKWRK(IcKT+(N-1)*MXTB+L-1).
 NcWL, RCKWRK(I = NcWL) starts an array of wavelengths for wavelength-
enhanced reactions;
RCKWRK(I + N - 1) is the wavelength enhancement (angstrom)
for the Nth wavelength-enhanced reaction;
the reaction index is ICKWRK(IcWL+N-1).
NCJN, RCKWRK(I = NCJN) starts a matrix of parameters for the Janev-
Langer reactions;
RCKWRK(I + (N-1)*NJAR + L - 1) is Lth parameter for the Nth
Janev-Langer reaction, where
L=1 is
L=2 is
The reaction index is ICKWRK(IcJN+N-1).
NCF1, RCKWRK(I = NCF1) starts an array of parameters for fit\#1
reactions;
RCKWRK(I + (N-1)*NF1R + L - 1) is the Lth parameter for the
Nth fit-type reaction, where
L=1 is
L=2 is
The reaction index is ICKWRK(IcF1+N-1).
NcEX, RCKWRK(I = NcEX) starts an array of enervy losses for
excitation-only reactions;
RCKWRK(I + N - 1) is the excitation energy loss per event
for the Nth excitation only reaction.
The reaction index is ICKWRK(IcEX+N-1).
NCRU, RCKWRK(I = NcRU) is the universal gas constant (ergs/mole-K).
NCRC, RCKWRK(I = NcRC) is the universal gas constant (cal/mole-K).
NCPA, RCKWRK(I = NCPA) is the pressure of one standard atmosphere
(dynes/cm**2).
NCKF, RCKWRK(I = NCKF) starts an array of the temperature-dependent
forward rate components for reactions.
NCKR, RCKWRK(I = NcKR) starts an array of the temperature-dependent
reverse rate components for reactions.
NCRNU,RCKWRK(I = NCRNU) starts a matrix of stoichiometric
coefficients for reactions with real stoichiometry;
RCKWRK(I + (N-1)*MXSP + L - 1) is the coefficient for
the Lth species in the Nth real stoichiometry reaction.
The reaction index is ICKWRK(IcRNU+N-1).
The species index is ICKWRK(IcNUNK+(N-1)*MXSP+L-1).
NCRSU,RCKWRK(I = NcRSU) starts an array of the sum of
stoichiometric coefficients for reactions with real
stoichiometry;
RCKWRK(I + N - 1) is the sum of the coefficients of the
Nth real stoichiometry reaction.
NCKOR,RCKWRK(I = NcKOR) starts a matrix of order values for changed-
order species reactions;
RCKWRK(I + (N-1)*MXORD + L - 1) is the order for the Lth
changed-order species in the Nth change-order reaction.
The reaction index is ICKWRK(IcKOR+N-1).
The change-order species index is
ICKWRK (IcKOR+(N-1)*MXORD+L-1).
NcK1, RCKWRK(I = NcK1) starts species scratch workspace.
NcK2, RCKWRK(I = NcK2) starts species scratch workspace.
NcK3, RCKWRK(I = NcK3) starts species scratch workspace.
NcK4, RCKWRK(I = NcK4) starts species scratch workspace.
NcI1, RCKWRK(I = NcI1) starts reaction scratch workspace.
NcI2, RCKWRK(I = NcI2) starts reaction scratch workspace.
NcI3, RCKWRK(I = NcI3) starts reaction scratch workspace.
NcI4, RCKWRK(I = ncI4) starts reaction scratch workspace.
STORING DATA INTO THE ARRAYS is usually accomplished by a CALL CKINIT, which reads a linkfile generated by the gas-phase mechanism interpreter;

```
```

 the linkfile consists of the following records:
 Linkfile information:
 1. FILVER
 2. PRVERS
 3. PREC
 4. KERR
 5. LENI, LENR, LENC
 Parameters and constants:
 6. MAXSP, MAXTB, MAXTP, NTHCF, NIPAR, NITAR,
 NIFAR, NJA, MXORD, NF1
 7. MM, KK, II, NREV, NFAL, NTHB, NLAN, NRLT, NWL,
 NCHRG, NEIM, NJAN, NFT1, NEXC, NMOM, NXSM,
 NTDE, NRNU, NORD, KEL, KKION
 8. CKMIN
 Element data:
 9. (CCKWRK(IcMM + M - 1), M = 1, MM) element names
 10. (RCKWRK (NcAW + M - 1), M = 1, MM) atomic weights
Species data:
11. (CCKWRK(IcKK + K - 1), K = 1, KK) species names
12. (RCKWRK (NCWT + K - 1), K = 1, KK) molecular weights
13. ((ICKWRK (IcNC + (K-1)*MM + M - 1), composition
M = 1, MM), K = 1, KK)
14. (ICKWRK(IcCH + K - 1), K = 1, KK) electronic charge
15. (ICKWRK(ICNT + K - 1), K = 1, KK) \#fit temperatures
16. (ICKWRK(IcPH + K - 1), K = 1, KK) physical phase
17. ((RCKWRK(NcTT + (K-1)*MAXTP + L - 1), fit temperatures
L = 1, MAXTP), K = 1, KK)
18. (((RCKWRK (NCAA + (L-1)*NCP2 + (K-1)*NCP2T + N - 1),
N = 1, NCP2), L = 1, (MAXTP-1)), K = 1, KK) thermodynamics
Ion data (if NKKI > 0):
19. NKKI
20. (ICKWRK(IcKI + K - 1), K = 1, NKKI) ion species indices
Reaction data (if II > 0:
21. (ICKWRK(IcNS + I - 1), I = 1, II) species counts
22. (ICKWRK(IcNR + I - 1), I = 1, II) reactant counts
23. ((ICKWRK(IcNU + (I-1)*MAXSP + N - 1), stoichiometric coeff'nts
ICKWRK(ICNK + (I-1)*MAXSP + N - 1), species indices
N = 1, MAXSP), ICKWRK(IcNSU), I = 1, II) sum of coeff'nts
24. ((RCKWRK (NcCO + (I-1)* (NPAR+1) + N - 1),
N = 1, NPAR), I = 1, II) Arrhenius coefficients
Explicit reverse parameter reaction data (if NREV > 0):
25. NREV
26. (ICKWRK(IcRV + N - 1), N = 1, NREV) reaction indices
27. ((RCKWRK (NcRV + (N-1)* (NPAR+1) + L - 1),
L = 1, NPAR), N = 1, NREV) reverse coefficients
Pressure-dependent reaction data (if NFAL > 0):
28. NFAL, NFAR
29. (ICKWRK(IcFL+N-1), reaction indices
ICKWRK(IcFO+N-1), option type
ICKWRK(IcFT+N-1),
ICKWRK(IcKF+N-1), N = 1, NFAL)
flow type
3rd-body species index
30. ((RCKWRK (NCFL + (N-1)*NFAR + L - 1), option parameters
L = 1, NFAR), N = 1, NFAL)
Third-body reaction data (if NTHB > 0):
31. NTHB
32. (ICKWRK(IcTB + N - 1), reaction indices
ICKWRK(IcKN + N - 1), N = 1, NTHB) 3rd body count
33. ((ICKWRK(ICKT + (N-1)*MAXTB + L - 1), 3rd body species indices
L = 1, MAXTB), N = 1, NTHB)
34. ((RCKWRK (NCKT + (N-1)*MAXTB + L - 1), enhancement factors
L = 1, MAXTB), N = 1, NTHB)
Landau-Teller reaction data (if NLAN > 0):
35. NLAN, NLAR
36. (ICKWRK(IcLT + N - 1), N = 1, NLAN) reaction indices
37. ((RCKWRK (NcLT + (N-1)*NLAR + L - 1), L-T parameters
```
\(\mathrm{L}=1\), NLAR), \(\mathrm{N}=1\), NLAN)
Landau-Teller reverse reaction data (if NRLT > 0):
38. NRLT
39. ( ICKWRK (IcRL + N - 1), \(\mathrm{N}=1\), NRL) reaction indices
40. ( (RCKWRK (NCRL + (N-1)*NLAR + L - 1), reverse L-T parameters \(\mathrm{L}=1\), NLAR), \(\mathrm{N}=1\), NRLT)
Wavelength enhancement reaction data (if NWL > 0):
41. NWL
42. ( ICKWRK (IcWL + N - 1), \(N=1\), NWL) reaction indices
43. ( RCKWRK (NcWL + N - 1), N = 1, NWL) enhancement factors

Electron-impact reaction data (if NEIM > 0):
44. NEIM
45. ( ICKWRK (IcEI + N - 1), N = 1, NEIM) reaction indices
46. ( ICKWRK (ICET + N - 1), \(N=1, N E I M)\) electron energy

Janev-Langer reaction data (if NJAN > 0):
47. NJAN, NJAR
48. ( ICKWRK (IcJN \(+\mathrm{N}-1), \mathrm{N}=1\), NJAN) reaction indices
49. ((RCKWRK (NCJN + (N-1)*NJAR + L - 1), J-L parameters
\(\mathrm{L}=1\), NJAR), \(\mathrm{N}=1\), NJAN)
Fit \#1 reaction data (if NFT1 > 0):
50. NFT1, NF1R
51. ( ICKWRK (IcF1 + N - 1), \(\mathrm{N}=1\), NFT1) reaction indices
52. ( (RCKWRK (NCF1 + (N-1)*NF1R + L - 1), fit\#1 parameters \(\mathrm{N}=1, \mathrm{NF} 1 \mathrm{R}), \mathrm{N}=1, \mathrm{NFT1})\)
Excitation-only reaction data (if NEXC > 0):
53. NEXC
54. ( ICKWRK (IcEX + N - 1), N = 1, NEXC) reaction indices
55. ( RCKWRK (NcEX + N - 1), N = 1, NEXC)

Electron momentum-transfer collision reaction data (if NMOM > 0):
56. NMOM
57. ( ICKWRK (ICMO \(+\mathrm{N}-1), \mathrm{N}=1\), NMOM) reaction indices
58. ( ICKWRK (IcMK + N - 1), N = 1, NMOM) partner species indices Ion momentum-transfer cross-section reaction data (if NXSM > 0):
59. NXSM
60. ( ICKWRK (IcXS + N - 1), \(\mathrm{N}=1\), NXSM) reaction indices
61. ( ICKWRK (ICXI \(+N-1\) ), \(N=1, N X S M)\) ion species indices
62. ( ICKWRK (IcXK + N - 1), \(N=1\), NXSM) partner species indices

Non-thermal-equilibium reaction data (if NTDE > 0):
63. NTDE
64. ( ICKWRK (IcTD + N - 1), N = 1, NTDE) reaction indices
65. ( ICKWRK (ICTK + N - 1), \(N=1\), NTDE) species indices

Real stoichiometry reaction data (if NRNU > 0):
66. NRNU
67. ( ICKWRK (IcRNU + N - 1), N = 1, NRNU) reaction indices
68. ((RCKWRK (NCRNU + (N-1)*MAXSP + L - 1), stoichiometric coeff'nts \(\mathrm{L}=1\), MAXSP), \(\mathrm{N}=1\), NRNU)
Changed-order reaction data (if NORD > 0):
69. NORD
70. ( ICKWRK (IcORD + N - 1), N = 1, NORD) reaction indices
71. ((ICKWRK (IcKOR + (N-1)*MXORD + L - 1), change-order species

L = 1, MXORD), \(\mathrm{N}=1\), NORD)
72. ((RCKWRK (NCKOR + (N-1)*MXORD + L - 1), change-order values L = 1, MXORD), \(N=1\), NORD)```


[^0]:    * By default, CHEMKIN uses activation energies in calories instead of ergs.

[^1]:    * The ChEMKIn Interpreter can be modified for additional temperature ranges, which would then require format changes to the thermodynamic data.

[^2]:    * Two gas constants, $R$ and $R_{C}$, are used throughout this report and the CHEMKIN code. $R_{C}$ is used only in conjunction with the activation energy $E_{i}$ and has compatible units. The reason for the duality is that many users would rather use units of calories/mole for the activation energies even though ergs/mole are used elsewhere.

[^3]:    $\dagger$ It is also possible that the third body in the fall-off region could be a specific species rather than the mixture as a whole. In such a case, the reaction could be written, for example, as $\mathrm{CH}_{3}+\mathrm{CH}_{3}\left(+\mathrm{N}_{2}\right) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}\left(+\mathrm{N}_{2}\right)$ In this

[^4]:    * This computer-dependent number is set in the Gas-Phase Subroutine Library at the time the library is created.

[^5]:    * The minimum length for the arrays can be found in Interpreter output.

[^6]:    $\dagger$ If there was an error in the input to the Interpreter, CKINIT will print a diagnostic message and execution will stop.

[^7]:    * The elements that CHEMKIN recognizes are as follows:

    H, HE, LI, BE, B, C, N, O, F, NE, NA, MG, AL, SI, P, S, CL, AR, K, CA, SC, TI, V, CR, MN, FE, CO, NI, CU, ZN, GA, GE, AS, SE, BR, KR, RB, SR, Y, ZR, NB, MO, TC, RU, RH, PD, AG, CD, IN, SN, SB, TE, I, XE, CS, BA, LA, CE, PR, ND, PM, SM, EU, GD, TB, DY, HO, ER, TM, YB, LU, HF, TA, W, RE, OS, IR, PT, AU, HG, TL, PB, BI, PO, AT, RN, FR, RA, AC, TH, PA, U, NP, PU, AM, CM, BK, CF, ES, FM, D, E

[^8]:    * Species names may not begin with a number, a + , or an $=$, or have imbedded blanks; an ionic species may end with any number of $+^{\prime}$ s or - 's; an imbedded plus sign $(+)$ must be enclosed in parentheses.

[^9]:    a Use only when all the thermodynamic data are to be taken from Interpreter input.
    ${ }^{\mathrm{b}}$ Include line 2 only with THERMO ALL (it is already in the Thermodynamic Database).

[^10]:    * SRI refers to the formulation of Stewart, et al. ${ }^{8}$, who are at SRI International, Menlo Park, CA.
    $\dagger$ See Section 2.4.3 for a discussion of the different formulations.

[^11]:    *SRI refers to the formulation of Stewart et al. 8 , who are at SRI International, Menlo Park, CA.

[^12]:    * If more than ten species have enhanced third body efficiencies in any one reaction, some dimensioning needs to be changed in the driver for the CHEMKIN Interpreter.

