NAME: AE 360 Examination 1 J. M. Powers 20 February 1997

1. Consider the non-conservative form of the compressible, viscous, one-dimensional energy equation:

$$\rho \frac{\partial e}{\partial t} + \rho u \frac{\partial e}{\partial x} = -\frac{\partial q_x}{\partial x} - P \frac{\partial u}{\partial x} + \tau_{xx} \frac{\partial u}{\partial x}$$

Showing all steps and utilizing the appropriate mass and linear momentum equations,

- write this equation in *full conservative form*.
- 2. To account for real gas behavior at elevated temperatures, one can model the internal energy of an *ideal* gas as a quadratic function of temperature:

$$e(T) = e_o + c_{vo}T + aT^2$$

For air, $e_o = -19546 \frac{J}{kg}$, $c_{vo} = 731.33 \frac{J}{kg K}$, $a = 0.055648 \frac{J}{kg K^2}$ gives accurate results for 300 K < T < 3000 K

- Give a symbolic expression for the sound speed of this calorically imperfect *ideal* gas
- Evaluate the sound speed of ideal calorically imperfect air $(R = 287 \frac{J}{kg K})$ when P = 800 kPa, $\rho = 1.2 \frac{kg}{m^3}$.
- Evaluate the sound speed at the same pressure and density using a calorically perfect ideal assumption with $\gamma = \frac{7}{5}$, $R = 287 \frac{J}{ka K}$.
- 3. Calorically perfect air with $\gamma = \frac{7}{5}$, $R = 287 \frac{J}{kg K}$ enters a combustion chamber at a static pressure of $P_1 = 100 \ kPa$ and static temperature of $T_1 = 300 \ K$ and velocity $u_1 = 200 \ \frac{m}{s}$. The duct has a constant cross sectional area of $A = 0.03 \ m^2$. The duct has a length of $L = 0.3 \ m$. We can model the combustion process as that of uniformly distributed heat flux through the side walls with $q_w = 3 \ \frac{MW}{m^2}$. Find
 - the inlet Mach number,
 - the stagnation temperature at the inlet,
 - the stagnation temperature at the outlet,
 - the outlet Mach number
 - the outlet temperature
- 4. Calorically perfect air with $\gamma = \frac{7}{5}$, $R = 1717 \frac{ft^2}{s^2 R}$ flows isentropically into a diverging nozzle of cross sectional area $A_1 = 2 ft^2$ with an inlet Mach number of $M_1 = 1.3$. The air has stagnation pressure of $P_o = 100 psia$ and stagnation temperature of $T_o = 500 R$. The area at the outlet is $A_2 = 5 ft^2$. Find
 - the mass flow rate
 - the Mach number at the outlet
 - the stagnation pressure at the outlet
 - the static temperature at the outlet