NAME: AERO 360 Examination 1 Prof. J. M. Powers February 27, 1996

- 1. (20) Write the energy equation in non-conservative form for a fluid which is
 - one-dimensional
 - unsteady
 - compressible
 - inviscid
 - heat conducting via Fourier's Law
 - a calorically perfect ideal gas
- 2. (20) A gas obeys the following thermal state equation:

$$P = \rho RT \left(1 + b\rho^2 \right)$$

Find a general expression for the internal energy and sound speed of this gas.

- 3. (20) Calorically perfect ideal helium, $R = 2,077 \frac{J}{kg K}, \gamma = \frac{5}{3}$ is at rest in a tube at $P = 100 \ kPa, T = 150 \ K$. A piston travelling at 250 $\frac{m}{s}$ drives a normal shock wave into the helium. Calculate the speed of the shock wave and the change in specific entropy.
- 4. (20) A large tank contains air at $P_o = 25 \ psia$, $T_o = 60^{\circ}F$. Air exits a small circular hole of radius 0.5 in^2 to the atmosphere at $P_{atm} = 14.7 \ psia$. What is the mass flow rate? For air take $R = 1,717 \ \frac{ft^2}{s^2 \ \circ R}, \gamma = \frac{7}{5}$ and assume it is a calorically perfect ideal gas. One also has $g_c = 32.17 \ \frac{ft \ lbm}{lbf \ s^2}$.
- 5. (20) Argon, $\gamma = \frac{5}{3}$, $R = 208.13 \frac{J}{kg K}$ flows isentropically through a duct. At section 1, $P_1 = 75 \ kPa$, $T_1 = 200 \ K$, $u_1 = 400 \ \frac{m}{s}$, $A_1 = 0.02 \ m^2$. At section 2 downstream, the cross-sectional area has tripled. Find \dot{m} , M_2 , and P_2 .