AE 360
Homework 9
Due: Thursday, 27 March 1997, in class

1. Anderson, 4.1, p. 144.
2. Air at $T_{o}=300 \mathrm{~K}, P_{o}=100 \mathrm{kPa}, M_{o}=20$ encounters a wedge inclined at 10°. Calculate the shock angle β and the post shock pressure assuming a calorically perfect ideal gas.
3. Repeat assuming an ideal gas with

$$
e(T)=-19546 \frac{J}{k g}+731.33 \frac{J}{k g K} T+0.055648 \frac{J}{k g K^{2}} T^{2}
$$

I recommend using mathematica for this problem. It may be possible to get an exact solution. It may be easier to iterate on β until you match the proper θ.
4. Repeat assuming a calorically perfect ideal gas and the linear theory valid for small wedge angle.
5. For calorically perfect ideal gases with very high incoming Mach number, a good estimate for wave angle and post shock pressure are

$$
\begin{gathered}
\beta=\frac{\gamma+1}{2} \theta \\
P_{s}=\frac{2 \gamma \sin ^{2} \beta}{\gamma+1} M_{o}^{2} P_{o} .
\end{gathered}
$$

Repeat your estimates using this theory.

