AE 360
Homework 5
Due: Thursday, 13 February 1997, in class
Read: Anderson, Chapter 2, Chapter 3

1. Given $A(x), \tau_{w}, q_{w}$, and $e(P, \rho)$, write a general mathematica code which will integrate Eqs. 4.107-4.109 from the course notes. You will use this code in future homeworks. If calorically perfect ideal air enters the diverging section of a frictionless adiabatic wind tunnel at $T=300 K, P=1 M P a, u=500 \mathrm{~m} / \mathrm{s}$ and $A(x)=1.3 \mathrm{~m}^{2}+(2.0 \mathrm{~m}) x$, use your code to generate computer plots of $\rho(x), u(x), P(x)$ for $0.0 m<x<1.0 m$ Also plot $\rho u A, h+u^{2} / 2$, and P / ρ^{γ} as functions of x.
2. Anderson: 3.1, p. 98
3. Anderson: 3.2, p. 98
4. Anderson: 3.3, p. 98
5. Anderson: 3.12 , p. 99 ; use your code to solve this problem; give a computer plot of $u(x)$ and $M(x)$ for the flow. In this problem you can specify "initial" conditions at $x=40 \mathrm{~m}$ and integrate backwards in distance.
6. Anderson: 3.15 , p. 99
