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It may be calculated from 

W2X2 
tJ'2 

V'2~WYDI + ,,If:; 
where 11 = 107 -~ = 1.76 X 10lb 

111 

V Dl = equivalent d-c grid potential 
V D'!. = anode d-c potential 

1 + .~ ~; ~:1: 2:::;, + ~ (~)' -::;1 : 3:::'; 
1 + 1 {)2 VV~~ + 2VVD2 

2 o~ -Y;=V Dl + VV~ 
,,/V~~ + 2VVD2 

~'~ +--Y;v D2 

With the aid of these tables and Fig. ~ the equivalent circuits on Figs. 25, 
20 and 27 are obtained. The networks are all of the resistance-capacity 
type. It may be noted that, in some of the branches, negative conductance 
or negative capacitance appears. However, as seen from the external tube 
terminals they are swamped by corresponding positive elements. 

The viev,Tpoints presented in this paper have been used by the writer over 
a number of years. They have been given experimental application by 
l\1r. ]. A. 'Morton, who is principally responsible for their introduction and 
use in the studies in these Laboratories of electron tubes in the microwave 
regions. 

\Vith this, our investigation comes to a close. Much has been omitted, 
particularly in the 1ield of applications, but it is nevertheless hoped the funda
mental approach, as well as the networks given, may prove to be useful in 
practical applications. The questions of noise and of optimum noise figure 
design have also been left out of consideration. Mr. J. A. Morton and the 
writer plan to discuss these problems in a forthcoming paper. 

The writer is pleased to acknowledge his indebtedness to Messrs. R. K. 
Potter, J. A. Morton, and R. M. Ryder, who have encouraged this work 
and urged its publication; and to l\1r. \V. E. Kirkpatrick for constructively 

. critical scrutiny of the original technical memorandum. 

A Mathematical Theory of Communication 

By C. E. SHANNON 

(Concluded from July 11)-18 issue) 

PART III: MATHE1\L<\TICAL PRELIl\tUNARIES 

In this final installment of the paper we consider the case where the 
signals or the messages or both are continuously variable, in contrast with 
the discrete nature assumed until now. To a considerable extent the con
tinuous case can be obtained through a limiting process from the discrete 
case by dividing the continuum of messages and signals into a large but finite 
number of small regions and calculating the various parameters involved on 
a discrete basis. As the size of the regions is decreased these parameters in 
general approach as limits the proper values for the continuous case. There 
are, however, a few new effects that appear and also a general change of 
emphasis in the direction of specialization of the general results to particu
lar cases. 

We will not attempt, in the continuou:; case, to obtain our results with 
the greatest generality, or with the extreme rigor of pure mathematics, since 
this would involve a great deal of abstract measure theory and would ob
scure the main thread of the analysis. A prelimina.ry study, however, indi
cates that the theory can be formulated in a completely axiomatic and 
rigorous manner which includes both the continuous and discrete cases and 
many others. The occasional liberties taken with limiting processes in the 
present analysis can be justified in all cases of practical interest. 

18. SETS AND ENSEMBLES OF FUNCTIONS 

We shall have to deal in the continuous case with sets of functions and 
ensembles of functions. A set of functions, as the name implies, is merely a 
class or collection of functions, generally of one variable, time. It can he 
specified by giving an explicit representation of the various functions in the 
set, or implicitly by giving a property which functions in the set possess and 
others do not. Some examples are: 
1. The set of functions: 

fo(l) = sin (t + 0). 

Each particular value of {} determines a particular function in the set. 
623 
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2. The set of all functions of time containing nu frequencies over W cycles 
per second. 

3. The set of all functions limited in band to lV and in amplitude to A. 
4. The scl of a.ll Euglish speech signals as functions of time. 

An ensemble of functions is a set of functions together with a probability 
measure whereby we may determine the probability of a function in the 
set having certain properties. l For example with the set, 

fo(t) = sin (t + 0), 

we may give a probauility distribution for 0, pee). The set then becomes 
an ensemble. 

Some further examples of ensembles of functions are: 
1. A tinite set of functionsj,.(t) (k = 1, 2, ... , n) with the probability of 

fk being Pk. 
2. A fmite dimensional family of functions 

f(al , a;! , ... , an ; t) 

with a probability distribution for the parameters a. : 
p(al, ... , an) 

For exa.mple ,ve could consider the ensemble defmed by 

n 

f(al , ... , an , (it , ... ,On; t) L an sin n(wt + On) 
n=l 

'with the amplitudes a'i distributed normally and independently, and the 
phrases fJ i distributed uniformly (from 0 to 271') and independently. 

3. The ensemble 

, +00. 
j(a. , t) Lan sm 1I"(3W~ - n) 

n=-oo 1I"(2ll't -1if-

,,,ith the ai normal and independent all with the same standard deviation 
viv. This is a representation of "white" noise, band-limited to the band 
from 0 to W cycles per second and with average power N.2 

1 In mathematical terminology the function:. belong to a measure space whose total 
measure is unity. 

2 This representation can Lc used as a definition of band limited white noise. It has 
certain advantages in that it involves fewer limiting operations than do definitions that 
have been used ill the past. The name "'"hite noise," already tirmly intrenched in the 
literature, is perhaps somewhat unfortunate. In optics white light means either any 
continuous spectrum as contrasted with a point spectrum, or a spectrum which is flat with 
wavelength (which is not the same as a spectrum tlat with frequency). 
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4. Let points be distributed on the t axis according to a Poisson distribu
tion. At each selected point the functionj(t) is placed and the different 
functions added, giving the ensemble 

00 

2: f(t + h) 
k=-oo 

where the tk are the points of the Poisson distribution. This ensemble 
can be considered as a type of impulse or shot noise where all the impulses 
are identical. 

5. The set of English speech functions with the probability measure given 
by the frequency of occurrence in ordinary use. 
An ensemble of functions faCt) is stati.ollllfY if the same ensemble results 

when all functions are shifted any fixe(l amount in time. The ensemble 

fe(t) = sin (t + 0) 

is stationary if 0 distributed uniformly from 0 to 211". If we shift each func
tion by h we obtain 

f8(t + it) = sin (t + It + 8) 

= sin (I + op) 

with 'P distributed uniformly from 0 to 211". Each function has changed 
but the ensemble as a whole is invariant under the translation. The other 
examples given above are also stationary. 

An ensemble is ergodic if it is stationary, and there is no subset of the func
tions in the set with a prouabilit.y different from 0 and 1 which is stationary. 
The ensemble 

sin (t + 0) 

is ergodic. No subset of these functions of prohahility ~O, 1 is transformed 
into itself under all time translations. On the other hand the ensemble 

a sin (t + 0) 

with a distributed normally and 8 uniform is stationary but not ergodic. 
The subset of these functions with a between 0 and 1 for example is 
stationary. 

Of the examples ~iven, 3 and 4 are ergodic, and 5 may perhaps be con
sidered so. If an ensemble is ergodic we may say roughly that each func
tion in the set is typical of the ensemble. More precisely it is known that 
with an ergodic ensemble an average of any statistic over the ensemble is 
equal (with probability 1) to an average over all the time translations of a 

, ~ 
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particular function in the set.
3 

Roughly speaking, each function can be ex
pected, as time progresses, to go through, with the proper frequency, all the 
convolutions of any of the functions in the set. 

Just as we may perform various operations on numbers or functions to 
obtain new numbers or functions, we can perform operations on ensembles 
to obtain new ensembles. Suppose, for example, we have an ensemble of 
functions Ja(t) and an operator T which gives for each functionfa(t) a result 
ga(t) : 

ga(t) Tfa(t) 

Probability measure is defined for the set ga(t) by means of that for the set 
faCt). The probability of a certain subset of the ga(t) functions is equal 
to that of the subset of the faCt) functions which produce members of the 
given subset of g functions under the operation T. Physically this corre
sponds to passing the ensemble through some device, for example, a filter, 
a rectifier or a modulator. The output functions of the device form the 
ensemble gaCl). 

A device or operator T will be called invariant if shifting the input merely 
shifts the output, i.e., if 

ga(t) TjaCt) 
implies 

gO/(t + t1) = 1jO/(t + t1) 

for all fa(t) and all it. It is easily shown (see appendix 1) that if T is in
variant and the input ensemble is stationary then the output ensemble is 
stationary. Likewise if the input is ergodic the output will also be ergodic. 

A filter or a rectitier is invariant under all time translations. The opera
tion of modulation is not since the carrier phase gives a certain time struc
ture. However, modulation is invariant under all translations which are 
multiples of the period of the carrier. 

\Viener has pointed out the intimate relation between the invariance of 
physical devices under time translations and Fourier theory.4 He has 

3 This is the famous ergodic theorem or rather one aspect of this theorem which was 
proved is somewhat different formulations by Birkhoff, von Neumann, and Koopman, anrl 
subsequently generalized by Wiener, Hopi, Hurewicz and others. The literature on ergodic 
theory is quite extensive and the reader is referred to the papers of these writers for pre
cise and general formulations; e.g., E. Hopf "Ergodentheorie" Ergebnisse der Mathematic 
und ihrer GrenzgeLiete, Vol. 5, "On Causality Statistics and ProLalJility" Journal of 
Mathematics and Physics, Vol. XIII, No.1, 1934; N. Weiner "The Ergodic Theorem" 
Duke Mathematical Journal, Vol. 5, 1939. 

4 Communication theory is heavily indebted to Wiener for much of its basic philosophy 
and theory. His classic NDRC report "The Interpolation, Extrapolation, and Smoothing 
of Stationary Time Series," to appear soon in book form, contains the first clear-cut 
formulation of communication theory as a statistical problem, the study of operations 
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shown, in fact, that if a device is lincar as well as invariant Fourier analysis 
is then the appropriate mathematical tool for dealing with the problem. 

An ensemble of functions is the appropriate mathematical representation 
of the rncssages produced by a continuous source (for example speech), of 
the signals produced by a transmitter, and of the perturbing noise. Com
munication theory is properly concernc1l, as has been emphasized by Wiener, 
not with operations on particular functions~ but with operations on en
sembles of functions. A communication system is designed not for a par
ticular speech function and still less for a :-ine wave, but for the ensemble of 
speech functions. 

19. BAND LIMITED ENSEMBLES OF FUNCTIONS 

If a function of time f(t) is limited to the band from 0 to W cycles per 
second it is completely determined by giying its ordinates at a series of dis-

crete points spaced llv seconds apart in the manner indicated by the follow-

ing result.;; 
Theorem 13: Let f(t) contain no frequencies over W. 
Then 

j(t) 

where 

f X" sin ~~~Wt - n) 
-00 1I"(2Wt - nf-

x. = j (if V) . 
In this expansion ICt) is represented as a sum of orthogonal functions. 

The coetlicients X n of the various terms can be considered as coordinates in 
an infinite dimensional "function space." In this space each function cor
responds to precisely one point and each point to one function. 

A function can be considered to be suhstantially limited to a time T if all 
the ordinates X,. outside this interval of time are zero. In this case all but 
2TW of the coordinates will be zero. Thus functions limited to a band W 
and duration T correspond to points in a space of 2TW dimensions. 

A subset of the functions of band Wand duration T corresponds to a re
gion in this space. For example, the functions whose total energy is less 

on time series. This work, although chiefly concerned with the linear prediction and 
filtering problem, is an important collateral reference in connection with the present paper. 
We may also refer here to' Wiener's forthcoming book "Cybernetics" dealing with the 
general problems of communication and control. 

6 For a proof of this theorem and further discussion see the author's paper "Communi
cation in the Presence of Noise" to be published in the Proceedings of the Institute of Radio 
Engineers. 

I 
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than or equal to E correspond to poi t . r ') T 1" I:' . . . . . .. 
radius r = V2JVE. n s III (t ... U dImensIOnal sphere with: 1. If x IS lImIted to a certam volume v m ItS space, then lI(x) IS a maXlll1Um 

and equal to log v when p(x) is con.lant G) in the volume. An ensemble of functions of limited duration and band will be represented 
by a probability distribution P(XI ... x l1) in the corresponding n dimensional 
space. If the ensemble is not limited in time we can consider the 2TW co
ordinates in a given interval T to represent substantially the part of the 
function in the interval T and the probability distribution PCXl, ... , x

h

) 

to give the statistical structure of the ensemble for intervals of that duration. 

20. ENTROPY OF A CONTINUOUS DISTRIBUTION 

The entropy of a discrete set of probabilities PI, ... pn has been defined as: 

11 = - L Pi log Pi. ' 

In an analogous manner we define the entropy of a continuous distribution 
with the density distribution function pCx) by: 

H = -1: pCx) log pCx) dx 

\Vith an n dimensional distribution P(Xl , ... , XII) we have 

H = - f . .. f P(Xl" . XrJ log p(.rI, ... , xn) dx! ... dXn . 

If we have two arguments x and y (which may themselves be multi-dimen
sional) the joint and conditional entropies of p(x, y) are given by 

and 

where 

H(x, y) = - f f p(x, y) log p(x, y) dx dy 

H.(y) = - f f p(x, y) log ~~~f) dx dy 

H.(x) = - f f p(x, y) log p~(~f) dx dy 

p(x) = f p(x, y) dy 

p(y) = f p(x, y) dx. 

The entropy of continuous distributions have most (but not all) of the 
properties of the discrete case. In particular we have the following: 

2. With any two variables x, y we have 

H(x, yo) ~ H(x) + H(y) 

with equality if (and only if) x and yare independent, i.e., p(x, y) = p(x) 
p(y) (apart possibly from a set of points of probability zero). 

3. Consider a generalized averaging operation of the following type: 

p'(y) = J a(x, y)p(x) dx 

with 

J a(x, y) dx = J a(x, y) dy = 1, a(x, y) ~ O. 

Then the entropy of the averaged distribution p'(y) is equal to or greater 
than that of the original distribution p(x). 

i. We have 

H(x, y) = H(x) + Hiy) = H(y) + Hix) 

and 

Hiy) ~ H(y). 

5. Let p(x) be a one-dimensional distribution. The form of p(x) giving a 
maximum entropy subject to the condition that the standard deviation 
of x be fixed at (}' is gaussian. To show this we must maximize 

H(x) = - J p(x) log p(x) dx 

with 

(}'2 = J p(x)i dx and 1 = J p(x) dx 

as constraints. This requires, by the calculus of variations, maximizing 

J [- p(x) log p(x) + "Ap(x):"? + ,up(x)J dx. 

The condition for this is 

-1 - log p(x) + Ai + ,u = 0 

and consequently (adjusting the constants to satisfy the constraints) , 

( ) 
1 _(x2/Z0"2) P X = -~r-=-- ... e . 

y21l'(}' 
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Similarly in It dimensions, suppose the second order moments of 1-

P(Xl , ... , xn) are fixed at Aij : 

Aij = f ... f XiXjP(Xl, '" ,Xn ) dXl ... dx".· 

-, 
Then the maximum entropy occurs (by a similar calculation) when: 
P(Xl, ... , Xn) is the n dimensional gaussian distribution with the second 
order moments A ij ',_ 

6. The entropy of a one-dimensional gaussian distribution whose standard 
deviation is u is given by 

H(x) = log V21reu. 

This is calculated as follows: 

1 -(x2/2(12) 
p(x) = V21ru e 

2 
_ /7\- x -log p(x) = log V 21r U + __ 

2u2 

H(x) = - f p(x) log p(x) dx 

= f p(x) log v'2';:tr dx + f p(x) {dX 

2 

= log Vhu + :a.2 
= log y12;u + log Ve 
= log Vh~u. 

Similarly the It dimensional gaussian distribution with associated 
quadratic form aij is given by 

P(XI ... ".) - 1 aij e exp (- l~'a .. X.X.) , , .... " - (21r )~/2 2'" ~J l J 

and the entropy can be calculated as 

H = log (21re t i2 I aij It 
where I aij j is the determinant whose elements are aij. 

7. If x is limited to a half line (p(x) = 0 for x ~ 0) and the first moment of 
x is fixed at a: 

a = [flO p(x)x dx, 

MATHEMATICAL l'HJi.,UKY VI' CUM1UU1Vlld~11VH 

then the maximum entropy occurs when 

and is equal to log ea. 

p(x) = ! e -(x/a) 

a 

8. There is one important difference between the continuous and discrete 
entropies. In the discrete case the entropy measures in an absolute 
way the randomness of the chance variable. In the continuous case the 
measurement is reiati've to the coordinate sY5tem. If we change coord~nates 
the entropy will in general change. In fact if we change to coorlinates 
Yl ... Yn the new entropy is given by l 

H(y) ~ f ... f p(x,··· x,,)J m log p(x, ... x,,)J (~) dy, .. ~t?" 

where J (~) is the Jacobian of the coordinate transformation. ;,,, ex

panding the logarithm and changing variables to Xl .•. Xn , we obtain: 

H(y) ~ LI(x) - f ... f p(x" ... , x,,) log J (~) dx, .. . dx •. 

Thus the new entropy is the old entropy less the expected logarithm of 
the Jacobian. In the continuous case the entropy can be considered a 
measure of randomness relative to an assumed standard, namely the co
ordinate system chosen with each small volume element dXl ... dXn given 
equal weight. When we change the coordinate system the entropy in 
the new system measures the randomness when equal volume elements 
dYl ... dYn in the new system are given equal weight. 

In spite of this dependence on the coordinate system the entropy 
concept is as important in the continuous case as the discrete case. This 
is due to the fact that the derived concepts of informat.ion rate and 
channel capacity depend on the difference of two entropies and this 
difference does not depend on t.he coordinate frame, each of the two terms 
being changed by the same amount. 

The entropy of a continuous distribution can be negative. The scale 
of measurements sets an arbitrary zero corresponding to a uniform dis
tribution over a unit volume. A distribution which is more confined than 
this has less entropy and will be negative. The rates and capacities will, 
however, always be non-negative. 

9. A particular case of changing coordinates is the linear transformation 

Yi = L: aijXi. 
i 
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In t.his case the Jacobian is simply the determinant I aij j-l and 

H(y) = H(x) + log I aij /. 

In the case of a rotation of coordinates (or any measure preserving trans .• 
formation) J = t and H(y) = H(x). 

21. ENTROPY O}' AN ENSEMBLE OF FUNCTIONS 

Consider an ergodic ensemble of functions limited to a certain band oC 
width JV cycles per second. Let 

P(XI ... Xl.) 

be the density distribution function for amplitudes Xl •.. x" at n successive 
sample points. \Ve define the entropy of the ensemble per degree of freedom by 

H' = -Lim! f ... f P(XI - .. xn) log P(Xl, ... , xn) dXl .. _ dXn . n-+co 1t 

We may also define an entropy H per second by dividing, not by It, but by 
the time T in seconds for Jl. samples. Since It = 2T~V, H' = 2lVH. 

With white thermal noise P is gaussian and we have 

H' = log V27reN, 

H = VV log 27reN. 

For a given average power N, white noise has the maximum possible 
entropy. This follows from the maximizing properties of the Gaussian 
distribu tion noted above. 

The entropy for a continuous stochastic process has many properties 
analogous to that for discrete processes. In the discrete case the entropy 
was related to the logarithm of the probability of long sequences, and to the 
number of reasonably probable sequences of long length. In the continuous 
case it is related in .a similar fashion to the logarithm of the probalJility 
density for a long series of samples, and the volume of reasonably high prob
ability in the function space. 

More precisely, if we assume P(X, ... xfi ) continuous in all the Xi for all _, 
then for sufficiently large It 

! log P _ H' I < f 

n I 
for all choices of (Xl, ... , x,) apart from a set whose total probability j, 
less than 0, with 0 and < arbitrarily small. This follows from the ergodic 
property if we divide the space into a large number of small cells. 

.1.U.!1.l. n.nlU.!.1.l.lv.t1.l.J .J. LJ.~V.L\"~ Vi' LV~r.L..LU U J..I.£V.I.'&'&' '&'V''''' 

The relation of H to volume can be stated as follows: Dnder the same as
sumptions consider the n dimensional space corresponding to P(Xl, " . ,xn). 

Let Vn(q) be the smallest volume in this space which includes in its interior 
a total probability q. Then 

Lim ~()g -Y n( ~2 H' 
"_00 11 

provided q does not equal U or l. 
These results show that for large 11 there is a rather well-defined volume (at 

least in the logarithmic sense) of high probability, and that within this 
volume the probability density is relatively uniform (again in the logarithmic 
sense). 

In the white noise case the distribution fUllction is given by 

P(XI ... x ) = -~- ex!) - ~- 2;x~ n (27f'N)n/2 2N' . 

Since this depends only on 2:x~ the surfaces of equal probability density 
are spheres and the entire distribution has spherical symmetry. The region 
of high probabilit.y is a sphere of radius VllN. As n, ~ rJ:; the probability 

of being outside a sphere of radius Vn(N + f) approaches zero and ~ times 
1t 

the logarithm of the volume of the sphere approaches log V27rcN. 
In the continuous case it is cOllvenient to work not with the entropy H of 

an ensemble but with a derived quantity which we will call the entropy 
power. This is defined as the power in a white noi:.c limited to the same 
band as the original ensemble and having the same entropy. In other words 
if H' is the entropy of an ensemble its entropy power is 

Nl = }-- exp 2H'. 
27re 

In the geometrical picture this amounts to measuring the high probability 
volume by the squared radius of a sphere having the same volume. Since 
white noise has the maximum entropy for a given power, the entropy power 
of any noise is less than or equal to its actual power. 

21. ENTROPY Loss IN LINEAR FILTERS 

Theorem 14: If an ensemble having an entropy HI per degree of freedom 
in band TV is passed through a filter with characteristic Y(j) the output 
ensemble has an entropy 

H2 = HI + l~ fw log I Y(j) 12 dj. 
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The operation of the tilter is essentially a linear transformation of co
ordinates. If we think of the different frequency components as the original 
coordinate system, the new frequency components are merely the old ones 
multiplied by factors. The coordinate transformation matrix is thus es-

ENTROPY ENTROPY 
GAIN POWER POWER GAIN IMPULSE RESPONSE 

FACTOR IN DECIBELS 

,-~----~~ I 
-8.68 SIN 2 1Tt 

e2 (fTt)2 

o ClJ 1 

,-W2 ____ ~~ (tt -5.32 2 [.2lli..!:. _ COS t ] 
t 3 t 2 

o ClJ 1 

'-W3---~Li 0.384 -4.15 6[~- cost + SINtJ 
t4 2t2 t 3 

o fA) 1 

~---~D (tt -2.66 
11 J , (t) 
'2 --t-

o fA) 1 

'11 1 
-B.68 a a't2 [COS (I-a)t-cos tJ e2a 

0 
ClJ I 

sentially diagonalized in terms of these coordinates. The Jacobian of the 
transformation is (for n sine and n cosine components) 

r. 

J = II I Y(!i) 12 
i=l 
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,where the Ji are equally spaced through the band W. This becomes in 

.the limit 

exp l~ fw log I f(j) \2 df. 

Since J is constant its average value is this same quantity and applying the 
theorem on the change of entropy with a change of coordinates, the result 
follows. We may also phrase it in terms of the entropy power. Thus if 

, the entropy power of the fIrst ensemble is N 1 that of the second is 

Nl exp l~ fw log I Y(j) \2 dj. 

'. The final entropy pO\\Ter is the initial entropy power multiplied by the geo
metric mean gain of the filter. If the gain is measured in db, then the 
output entropy power will be increased by the arithmetic mean db gain 

over W. 
In Table I the entropy power loss has been calculated (and also' expressed 

in db) for a number of ideal gain characteristics. The impulsive responses 
of these filters are also given for IV = 27r, with phase assumed to be O. 

The entropy loss for many other cases can be obtained from these results. 

For example the entropy power factor ~ fur the firsl case also applies to any 
e 

gain characteristic obtained from 1 - w by a measure preserving transforma
tion of the w axis. In particular a linearly increasing gain G(w) = w, or a 
"saw tooth" characteristic between 0 and 1 have the same entropy loss. 

The reciprocal gain has the reciprocal factor. Thus ~ has the factor e
2

• w 

Raising the gain to any power raises the factor to this power. 

22. ENTROPY O.F THE SUM OF Two ENSEMBLES 

If we have twu ensembles of functions faCl) and gp(t) we can form a new 
ensemble by "addition." Suppose the first ensemble has the proLability 
density function P(Xl' .. ' , ;\~n) and the second q(Xl , ... ,xn

). Then the 
density function for the sum is given by the convolution: 

r(Xl, ... , Xn) f· .. f P(Yl, ... , Y1') 

. q(Xl - Yl, ... , Xn - Yn) dYl, dY2, ... , dY1i . 

Physically this corresponds to adding the noises or signals represented by 

the original ensembles of functions. 
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The following result is derived in Appendix 6. 
Theorem 15: Let the average power of two ensembles be Nl and N2 and 

let their entropy powers be Nl and N 2 • Then the entropy power of the 
sum, Na , is bounded by 

Nl + N2 :::; N~ :::; Nl + N2 . 

White Gaussian noise has the peculiar property that it can absorb any 
other noise or signal ensemble which may be added to it with a resultant 
entropy power approximately equal to the sum of the white noise power and 
the signal power (measured from the average signal value, which is normally 
zero), provided the signal power is small, in a certain sense, compared to 
the noise. 

Consider the function space associated with these ensembles having n 
dimensions. The white noise corresponds to a spherical Gaussian distribu
tion in this space. The signal ensemble corresponds to another probability 
distribution, not necessarily Gaussian or spherical. Let the second moments 
of this distribution about its center of gravity be aij. That is, if 
P(XI , ... , x7l ) is the density distribution function 

aij = f ... f P(Xi - aJ(xj - aJ dXl, .•. , dXn 

where the ai are the coordinates of the center of gravity. Now aij is a posi
tive definite quadratic form, and we can rotate our coordinate system to 
align it with the principal directions of this form. aij is then reduced to 
diagonal form bii • We require that each bii be small compared to N, the 
squared radius of the spherical distribution. 

In this case the convolution of the noise and signal produce a Gaussian 
distribution whose corresponding quadratic form is 

N + bii • 

The entropy power of this distribution is 

or approximately 

[n(N + bii)]l/n 

= [(Nt + ~bii(Nt-l]l/n 
1 

== N + - ~bii. 
11-

The last term is the signal power, while the first is the noise power. 
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PART IV: THE CONTINUOUS CHANNEL 

23. IRE CAPACITY OF A CONTINUOUS CHANNEL 

In a continuous channel the input or transmitted signals will be con
tinuous functions of time jet) belonging to a certain set, and the output or 
received signals will be perturbed versions of these. We will consider only 
the case where both transmitted and received signals are limited to a certain 
band lV. They can then be specified, for a time T, by 2TW numbers, and 
their statistical structure by finite dimensional distribution functions. 
Thus th.~ statistics of the transmitted signal will be determined by 

P(Xl, ... , Xn) = P(x) 

and those of the noise by the conditional probability distribution 

PX1 ..... x,,(Yl, ... ,Yn) = Piy)· 

The rate of transmission of information for a continuous channel is defmed 

in a way analogous to that for a discrete channel, namely 

R = H(x) - H!Jx) 

where H(x) is the entropy of t.he input and Eli/(x) the equivocation. The 
channel capacity C is defined as the maximum of R when we vary the input 
over all possible ensembles. This means that in a finite dimensional ap
proximation we must vary P(x) = P(Xl , ... ,xn) and maximize 

_ f p(x) log P(x) dx + J J p(x, y) log 1:'~~~) dx dy. 

This can be written ..... ~ 

.L 

If
. p(x, y) 

p(x, y) log P(x)P(y) dx dy 

using the fact that J f P(x, y) log p(x) dx dy = J P(x) log P(x) dx. The 

channel capacity is thus expressed 

C L
· M 1ff·( ")1 p(x,y) d 

= T:~ P(~~ l' p x, Y og P(x)p(y) x dy. 

It is obvious in this form that Rand C are independent of the coordinate 
. h dd" I P(x,y) 'llb l' 

system smce t e numerator an enommator m og j>(-;;)})(y) WI e mu tl-

plied by the same factors when x and yare transformed in anyone to one 
way. This integral expression for C is more general than H(x) - Hix). 
Properly interpreted (see Appendix 7) it will ahn.y:- exist while H(x) - Ill/(x) 

p.,t 
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may assume an indeterminate form 00 - 00 in some cases. This occurs, for 
example, if x is limited to a surface of fewer dimensions than n in its n dimen
siOllal approximation. 

If the logarithmic Lase used in computing H(x) and HyCr) is two then C 
is the maximum number of binary digits that can be sent per second over the 
channel with arbitrarily small equivocation, just as in the discrete case. 
This can be seen physically by dividing the space of signals into a large num
ber of small cells, sufliciently small so that the probability density P;r(y) 
of signal x being perturbed to point y is substantially constant over a cell 
(either of x or y). If the cells are considered as distinct points the situation 
is essentially the same as a discrete channel and the proofs used there will 
apply. But it is clear physically that this quantizing of the volume into 
individual points cannot in any practical situation alter the final answer 
significantly, provided the regions are sutliciently small. Thus the capacity 
will be the limit of the capacities for the discrete subdivisions and this is 
just the continuous capacity dcfined above. 

On the mathematical side it can be shown 11rst (see Appendix 7) that if u 
is the messagc, x is the signal, y is the received signal (perturbed by noise) 
and v the recovered message then 

H(x) - Hy(x) ~ H(u) - Hv(u) 

regardless of what operations are performed on u to obtain x or on y to obtain 
v. Thus no matter how we encode the binary digits to obtain the signal, or 
how we decode the received signal to recover the message, the discrete rate 
for the binary digits does not exceed the channel capacity we have defined. 
On the other hand, it is possible under very general conditions to find a 
coding system for transmitting binary digits at the rate C with as small an 
equivocation or frequency of errors as desired. This is true, for example, if, 
when we take a finite dimensional approximating space for the signal func
tions, P(x, y) is continuous in both x and y except at a set of points of prob
ability zero. 

An important special case occurs when the noise is added to the signal 
and is independent of it (in the probability sense). Then Px(y) is a function 
only of the difference It = (y - x), 

Piy) = Q(y - x) 

and we can assign a defmite entropy to the noise (independent of the sta
tistics of the signal), namely the entropy of the distribution Q(n). This 
entropy will be denoted by H(n). 

Theorem 16: If the signal and noise are independent and the received 
signal is the sum of the transmitted signal and the noise then the rate of 
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transmission IS 

R = H(y) - lIen) 

i.e., the entropy of the received signal \c" the entropy of the noise. The 

channel capacity is 
c = 1YIax H(y) - Jl(n). 

P(x) 

We have, since y = x + n: 
F1(:r, y) = H(x, n). 

Expanding the left side and using the fact that x and n are independent 

H(y) + lly(x) = H(x) + lI(n,). 

Hence 
R = H(x) - lly(x) = H(y) - H(n). 

Since H(n) is independent of P(x), ma.ximizing R requires maximizing 
H(y), the entropy of the received signal. If there are certain constraints on 
the ensemble of transmitted signals, the entropy of the received signal must 

be maximized subject to these constraints. 

24. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION 

A simple application of Theorem 16 is the case where the noise is a white 
thermal noise and the transmitted signals are limited to a certain average 
power P. Then the received signals have all average power P + N where 
N is the average noise power. The maximum entropy fOf the received sig
nals occurs when they also form a white noise ensemble since this is the 
greatest possible entropy for a power P + N and can be obtained by a 
suitable choice of the ensemble of transmitted signals, namely if they form a 
white noise ensemble of power P. The entropy (per second) of the re-

ceived ensemble is then 
H(y) W log 21re(P + N), 

and the noise entropy is 
W log 2rreN. H(n) 

The channel capacity is 

C = H(y) - H(n) lVlog0
N 

N 

Summarizing we have the following: 
Theorem 17: The capacity of a channel of band W perturbed by white 

i 

~_<i 
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thermal noise of power N when the average transmitter power is P is given by 

c = W log ~_~_JY 
N 

This means of course that by sufficiently involved encoding systems we 

. . b' d' . h T.V 1 P + N b' d . h can transmIt mary Iglts at t e rate Y Og2 -N-- Its per secon ,WIt 

arbitrarily small frequency of errors. It is not possible to transmit at a 
higher rate by any encoding system without a definite positive frequency of 
errors. 

To approximate this limiting rate of transmission the transmitted signals 
must approximate, in statistical properties, a white noise.6 A system which 
approaches the ideal rate may be described as follows: Let M = 28 samples 
of white noise be constructed each of duration T. These are assigned 
binary numbers from 0 to (M - 1). At the transmitter the message se
quences are broken up into groups of s and for each group the corresponding 
noise sample is transmitted as the signal. At the receiver the}J samples are 
known and the actual received signal (perturbed by noise) is compared with 
each of them. The sample which has the least R.M.S. discrepancy from the 
received signal is chosen as the transmitted signal and the corresponding 
binary number reconstructed. This process amounts to choosing the most 
probable (a posteriori) signal. The number M of noise samples used will 
depend on the tolerable frequencY.E of errors, but for almost all selections of 

· ... samples we have 

L' L' log 2t.f(E, T) P + 7I.T 1m IDl ~ --.... -- = W 10" ~_J._l~ -
f_O T-+Oo T 1:1 N ' 

so that no matter how small E is chosen, we can, by taking T sufficiently 

1 . . h l'JV I P + N b' d'" h arge, transmIt as near as we WIS to og ---yv- mary IgitS 1I1 t e 

time T. 

Formulas similar to C = 1V log ~-t N for the white noise case have 

been developed independently by several other writers, although ""Tith some
what different interpretations. We may mention the work of N. Wiener,7 
W. G. Tuller,S and H. Sullivan in this connection. 

In the case of an arbitrary perturbing noise (not necessarily white thermal 
noise) it does not appear that the maximizing problem involved in deter-

6 This and other properties of the white noise case are discussed from the geometrical 
point of view in "Communication in the Presence of Noise," loco cit. 

7" Cybernetics," loco cit. 
8 &:. D. thesis, Department of Electrical Engineering, M.LT., 1948. 
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mining the channel capacity C can be solved explicitly. However, upper 
and lower bounds can be set for C in terms of the average noise power N 
and the noise entropy power N l . 'fhese bounds are sufficiently close to
gether in most practical cases to furnish a satisfactory solution to the 

problem. 
Theorem 18: The capacity of a channel of band lV perturbed by an arbi-

trary noise is bounded by the inequalities 

ltV log P +~~ < C < W 10" ~)_t N 
Nl - - .~ Nl 

where 
p = average transmitter power 
N = average noise power 
N 1 = entropy power of the noise. 
Here again the average power of the perturbed signals will be P + N. 

The maximum entropy for this power would occur if the received signal 
were white noise and would be ~V log 27re(P + N). It may not be possible 
to achieve this; i.e. there may not be any ensemble of transmitted signals 
which, added to the perturbing noise, produce a white thermal noise at the 
receiver, but at least this sets an upper bound to H(y). We have, therefore 

C = max H(y) - H(n) 

S; W log 27re(P + N) - ~V log 27reNl . 

This is the upper limit given in the theorem. The lower limit can be ob
tained by considering the rate if we make the transmitted signal a white 
noise, of power P. In this case the entropy power of the received signal 
must be at least as great as that of a white noise of power P + Nl since we 
have shown in a previous theorem that the entropy power of the sum of two 
ensembles is greater than or equal to the sum oi the individual entropy 

powers. Hence 

and 

max H(y) ~ W log 27re(P + N1) 

c 2: W log 27re(P + Nl) - W log 27rcN l 

P + Nl 
= lV log ----w;,-- . 

As P increases, the upper and lower bounds approach each other, so we 

have as an asymptotic rate 

ltV log P + N 
Nl 

. ...... 
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If the noise is itself white, N = Nl and the result reduces Lo the formula 
proved previously: 

c ~ W log (1 + ~) . 
If the noise is Gaussian but with a spectrum which is not necessarily fiat, 

Nl is the geometric mean of the noise power over the various frequencies in 
the band VV. Thus 

1 J' Nl = exp W w log N(j) dj 

where NC!) is the noise power at frequency f. 
Theorem 19: If we set the capacity for a given transmitter power P 

equal to 

C - Tll I P + N - '1] 
- rr og-----

NI 

then '1] is mO~lOtonic decreasing as P increases and approaches 0 as a limit. 
Suppose that for a given pmver PI the channel capacity is 

ur I PI + N - '1]1 
rt og i\T 

.LVI 

This means that the best signal distribution, say p(x), when added to the 
noise distribution q(x), gives a received distribution r(y) whose entropy 
power is (PI + N - '1]1). Let us increase the power to P1 + AP by adding 
a white noise of power AP to the signal. The entropy of the received signal 
is now at least 

H(y) .::: lV log 2'1re(P1 + N - '1]1 + AP) 

by application of the theorem on the minimum entropy power of a sum. 
Hence, since we can attain the H indicated, the entropy of the maximizing 
distribution must be at least as great and '1] must be monotonic decreasing. 
To show that '1] --..,. 0 as P --..,. oc, consider a signal which is a white noise with 
a large P. \Vhatcver the perturbing noise, the received signal will be 
approximately a ''''hite noise, if P is sufficiently large, in the sense of having 
an entropy power approaching P + N. 

25. THE CHANNEL l ~APACITY WITH A. PEAK POWER LIMITATION 

In some applications the transmitter is limited not by the average power 
output but by the peak instantaneous power. The problem of calculating 
the channel capacity is then that of maximizing (by variation of the ensemble 
of transmitted symbols) 

H(y) - H(n) 
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subject to the constraint that all the functions j(t) in the ensemble be less 
than or equal to vIS, say, for all t. A constraint of this type does not work 
out as well mathematically as the average power limitation. The most we 

have obtained for this case is a lower bound valid for all ~, an "asymptotic" 

upper band (valid for large ~) and an asymptotic value of C for ~ small. 

Theorem 20: The channel capacity C for a band W perturbed by white 

thermal noise of power N is bounded by 

2 S 
C > W log --3 iT , 

- 'Ire H 

where S is the peak allowed transmitter power. For sufficiently large ~ 
,) 

~-- S + N 

C ~ ~v log ~-j{- (1 + E) 

where E is arbitrarily small. As t --..,. 0 (and provided the band J.V starts 

at 0) 

C -dV log (1 + ~) . 

We wish to maximize the entropy of the received signal. If t is large 

this will occur very nearly when we maximize the entropy of the trans

mitted ensemble. 
The asymptotic upper bound is obtained by relaxing the conditions on 

the ensemble. Let us suppose that the power is limited to S not at every 
instant of time, but only at the sample points. The maximum entropy of 
the transmitted ensemble under these weakened conditions is certainly 
greater than or equal to that under the original conditions. This altered 
problem can be solved easily. The maximum entropy occurs if the different 
samples are independent and have a distribution function which is constant 
from - yS to + YS. The entropy can be calculated as 

liT log 45. 

The received signal will then have an entropy less than 

If' log (45 + 21l'"eN)(1 + E) 
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with E -t 0 as ~ -t 00 and the channel capacity is obtained by subtracting 

the entropy of the white noise, W log 21reN 

~S+N 
tV log (4S + 21reN)(1 + E) - W log (21reN) 1re ( W log ---w--- 1 + E). 

This is the desired upper bound to the channel capacity. 
To obtain a lower bound consider the same ensemble of functions. Let 

these functions be passed through an ideal filter with a triangular transfer 
characteristic. The gain is to be unity at frequency 0 and decline linearly 
down to gain 0 at frequency rv. We first show that the output functions 
of the filter have a peak power limitation S at all times (not just the sample 

• ) LV h 1 sin 21rU't . . h -1 d pomts. rlrst we note t at a pu se -Z1rWT gomg mto t e 11 ter pro uces 

1 5m2 1rvVt 
2 (1rWt) 2 

in the output. This function is pever negative. The input function (in 
,~ the general case) can be thought of as the sum of a series of shifted functions 

sin 21rWt 
a ---==-~ 

21rTVt 

where a, the amplitude of the sample, is not greater than 0. Hence the 
output is the sum of shifted functions of the non-negative form above with 
the same coefficients. These functions being non-negative, the greatest 
positive value for any t is obtained when all the coefficients a have their 
maximum positive values, i.e. VS. In this case the input function was a 
constant of amplitude VS and since the filter has unit gain for D.C., the 
output is the same. Hence the output ensemble has a peak power S. 

The entropy of the output ensemble can be calculated from that of the 
input ensemble by using the theorem dealing with such a situation. The 
output entropy is equal to the input entropy plus the geometrical mean 
gain of the ill ter; 

l
w 

.) l w (W - f)2 o log G- df = 0 log -w- df = -2~V 

Hence the output entropy is 

TV 100' 4S - 2TV = IV log ~ 
/:) t 2 
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and the channel capacity is greater than 

2 S 
tV log 1re' N . 

645 

We now wish to show that, for small ~ (peak signal power over average 

white noise power), the channel capacity is approximately 

C=WIOg(1+~)' 

More precisely C/W log (1 + ~) --? 1 as ~ --? O. Since the average signal 

power P is less than or equal to the peak S, it follows that for all ~ 

c :,; W log (1 + ~) :,; W log ( 1 + ~) 
Therefore, if we can find an ensemble of functions such that they correspond 

to a rate nearly W log (1 + ~) and are limited to band Wand peak S the 

result will be proved. Consider the ensemble of functions of the following 
type. A series of t samples have the same value, either +0 or - ..J.~, 
then the next t samples have the same value, etc. The value for a series 
is chosen at random, probability! for + y-(~ and! for - V-s. If this 
ensemble be passed through a filter with triangular gain characteristic (unit 
gain at D.C.), the output is peak limited to ±S. Furthermore the average 
power is nearly S and can be made to approach this by taking t sufticiently 
large. The entropy of the sum of this and the thermal noise can be founel 
by appl);ng the theorem on the sum oi a noise and a small signal. Thi, 

theorem will apply if 
s 

·Vi ii 

is sufficiently small. Tllls can be insured by taking ~ small enough (after 

t is chosen). tThe entropy power will he S + N to as close an approximation t 

as desired, and hence the rate of transmission as near as we wish to 

W log (~-+-~) N . 
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PART V: THE RATE FOR A CONTINUOUS SOURCE 

26. FID1~LITY EVALUATION FUNCTIONS 

In the case of a discrete source of information we were able to determine a 
definite rate of generating information, namely the entropy of the under
lying stochastic process. \Vith a continuous source the situation is con
siderably more involved. In the flrst place a continuously variable quantity 
can assume an infinite number of values and requires, therefore, an infinite 
number of binary digits for exact specification. This means that to transmit 
the output ~f a continuous source with exact recovery at the receiving point 
requires, in general, a channel of infinite capacity (in bits per second). 
Since, ordinarily, channels have a certain amount of noise, and therefore a 
finite capacity, exact transmission is impossible. 

This, however, evades the real issue. Practically, we are not interested 
in exact transmission when we have a continuous source, but only in trans
mission to within a certain tolerance. The question is, can we assign a 
definite rate to a continuous source when we require only a certain fidelity 
of recovery, measured in a suitable way. Of course, as the fidelity require
ments are increased the rate will increase. It will be shown that we can, in 
very general cases, define such a rate, having the property that it is possible, 
by properly encoding the information, to transmit it over a channel whose 
capacity is equal to the rate in question, and satisfy the fidelity requirements. 
A channel of smaller capacity is insufficient. 

It is first necessary to give a general mathematical formulation of the idea 
of fidelity of transmission. Consider the set of messages of a long duration, 
say T seconds. The source is described by giving the probability density, 
in the associated space, that the source will select the message in question 
P(x). A given communication system is des.cribed (from the external point 
of view) by giving the conditional probability Px(y) that if message x is 
produced by the source the recovered message at the receiving point will 
be y. The system as a whole (including source and transmission system) 
is described by the probability function P(x, y) of having message x and 
final output y. If this function is known, the complete characteristics of 
the system from the point of view of fidelity are known. Any evaluation 
of fidelity must correspond mathematically to an operation applied to 
P(x, y). This operation must at least have the properties of a simple order
ing of systems; i.e. it must be possible to say of two systems represented by 
Pl(x, y) and P2(X, y) that, according to our fidelity criterion, either (1) the 
first has higher fidelity, (2) the second has higher fidelity, or (3) they have 

JV1.i'l.l 1.1 ..L~J." "".a..L'" v .... ·- ---

equal fidelity. This means that a criterion of tidelity can be represented by 

a numerically valued function: 

'L'(1-'(x, y» 
whose argument ranges over possible probability fuuctions P(x, y). 

We will noW show that under very general and reasonable assumptions 
the function v(P(x, y» can be written in a seemingly much more specialized 
form, namely as an average of a function p(x, y) over the set of possible values 

of x and y: 

v(P(x, y» = J J P(x, y) pel:, y) d:x dy 

To obtain this we need only assume (1) that the source and system are 
ergodic so that a very long sample will be, with probability nearly 1, typical 
of the ensemble, and (2) that the evaluation is "reasonable" in the sense 
that it is possible, by observing a typical input and output Xl and Y1 , to 
form a tentative evalu(ltion on the basis of these samples; and if these 
samples are increased in duration the tentative evaluation will, with proba
bility 1, approach the exact evaluation based on a full knowledge of P(x, y). 
Let the tentative evaluation be p(x, y). Then the function p(x, y) ap
proaches (as T -> 00) a constant for almost all (x, y) which are in the high 

probability region corresponding to the system: 

p(x, y) ~ v(P(x, y» 

and we may also write 

p(x, y) ~ I J P(x, y)p(x, y) dx, dy 

since 

f f p(x, y) dx dy = 1 

This establishes the desired result. 
The function p(x, y) has the general nature of a "distance" between x 

and y.9 It measures how bad it is (according to our fidelity criterion) to 
receive y when x is transmitted. The general result given above can be 
restated as follows: Any reasonable evaluation can be represented as an 
average of a distance function over the set of messages and recovered mes
sages x and y weighted according to the probability P(x, y) of getting the 
pair in question, provided the duration T of the mCSRages be taken suffi-

ciently large. 
9 It is not a "metric" in the strict sense, however, since in general it does not satisfy 

either p(x, y) = p(y, x) or p(x, y) + p(y, z) 2. p(x, z). 
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The following are simple examples of evaluation functions: 
1. R.M.S. Criterion. 

v = (x(t) - y(t»2 

In this very commonly used criterion of fidelity the distance function 
p(x, y) is (apart from a constant factor) the square of the ordinary 
euclidean distance between Lq.e points x and y in the associated function 
space. 

1 iT p(x, y) = T 0 [x(t) - y(t)]2 dt 

2. Frequency weighted R.l\1.S. criterion. :More generally one can apply 
different weights to the different frequency components before using an 
R.M.S. measure of fIdelity. This is equivalent to passing the difference 
x(t) - yet) through a shaping filter and then determining the average 
power in the output. Thus let 

e(t) = x(t) - yet) 

and 

jet) = L: e(T)k(t - T) dt 

then 

p(x, y) 1 [T T 0 j(t)2 dt. 

3. Absolute error criterion. 

1 iT p(x, y) = T 0 I x(t) - yet) j dt 

4. The structure of the ear and brain determine implicitly an evaluation, or 
rather a number of evaluations, appropriate in the case of speech or music 
transmission. There is, for example, an "intelligibility" criterion in 
which p(x, y) is equal to the relative frequency of incorrectly interpreted 
words when message x(t) is received as yet). Although we cannot give 
an explicit representation of p(x, y) in these cases it could, in principle, 
be determined by sufficient experimentation. Some of its properties 
follow from well-known experimental results in hearing, e.g., the ear is 
relatively insensitive to phase and the sensitivity to amplitude and fre
quency is roughly logarithmic. 

5. The discrete case can be considered as a specialization in which we have 
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tacitly assumed an evaluation based on the frequency of errors. The 
function p(x, y) is then defined as the number of symbols in the sequence 
y differing from the corresponding symbols in x divided by the total num
ber of symbols in x. 

27. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION 

We are now in a position to defj.ne a rate of generating information for a 
continuous source. We are given P(x) for the source and an evaluation v 
determined by a distance function p(x, y) which will be assumed continuous 
in both x and y. With a particular system P(x, y) the quality is measured by 

v = Jf p(x, y) P(x, y) dx dy 

Furthermore the rate of flow of binary digits corresponding to P(x, y) is 

rr. p(x, y) . 
R = JJ P(x, y) log P(x)P(y) dx dy. 

We define the rate RI of generating information for a given quality VI of 
reproduction to be the minimum of R when we keep v fixed at VI and vary 
P:z:Cy). That is: 

RI Min 
Px(v) 11 P(x, y) 

p(x y) log --- --- dx dy 
, P(x)P(y) 

subject to the constraint: 

Vi = II p(x, y)p(x, y) dx dy. 

This means that we consider, in effect, all the communication systems that 
might be used and that transmit with the required 1idelity. The rate of 
transmission in bits per second is calculated for each one and we choose that 
having the least rate. This latter rate is the rate we assign the source for 
the fidelity in question. 

The justification of this defmition lies in the following result: 
Theorem 21: If a source has a rate Rl for a valuation Vl it is possihle to 

encode the output of the source and transmit it over a channel of capacity C 
with fidelity as near VI as desired provided Rl ::::; C. This is not possible 
if RI > c. 

The last statement in the theorem follows immeuiately from the defmition 
of RI and previous results. If it were not true we could transmit more than 
C bits per second over a channel of capacity C. The first part of the theorem 
is proved by a method analogous to that used for Theorem 11. \Ve may, in 
the first place, divide the (x, y) space into a large number of small cells and 
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represent the situation as a discrete case. This will not change the evalua
tion function by more than an arbitrarily small amount (when the cells are 
very small) because of the continuity assumed for p(x, y). Suppose that 
PI(x, y) is the particular system which minimizes the rate and gives R1 • We 
choose irom the high probability y's a set at random containing 

2Ull + f) 7' 

members where E ~ 0 as T ~ 00. With large T each chosen point will be 
connected by a high probability line (as in Fig. 10) to a set of x's. A calcu
lation similar to that used in proving Theorem 11 shows that with large T 
almost all x's are covered by the fans from the chosen y points for almost 
all choices of. the y's. The communication system to be used operates as 
follows: The selected points are assigned binary numbers. When a message' .. 
x is originated it will (with probability approaching 1 as T ~ 00) lie within 
one at least of the fans. The corresponding binary number is transmitted 
(or one of them chosen arbitrarily if there are several) over the channel by 
suitable coding means tu give a small probability of error. Since RI :::; C 
this is possible. At the receiving point the corresponding y is reconstructed 
and used as the recovered message. 

The evaluation v~ for this system can be made arbitrarily close to VI by 
taking T sufficiently large. This is due to the fact that for each long sample 
of message xCi) and recovered message yet) the evaluation approaches VI 

(with probability 1). 

It is interesting to note that, in this system, the noise in the recovered 
message is actually produced by a kind of general quantizing at the trans
mitter and is not produced by the noise in the channel. It is more or less 
analogous to the quantizing noise in P.C.:M. 

28. THE CALCULATION O:F RATES 

The ddinition of the rate is similar in many respects to the definition of 
channel capacily. In the former 

" . P(x) 
R = J\!lax jl·J. P(x, y) log p' ( . p' Y(-)' dx dy 

Px(u) J x) y 

with P(x) and L'l = ff P(x, y)p(x, y) dx dy fixed. In the latter 

., - 1\·1' fj' }.>(. ) I p(x, y) d' d· e - .lV. 111 X, 'V og -------x Y 
P(x) • P(x)P(y) 

with Px(Y) t1xed and possibly one or mure other constraints (e.g., an average 
power limitation) of the form K = f f P(x, y) X(x, y) d:r dy. 

]vI A TH E.tl A 1'1 CA L 1'1ll!AJK Y UI' L,U "lL41 U 1\'1 L, ill 1 Ui.'I 

A partial sulution of the general maximizing problem for determining the 
rate of a source can be given. Using Lagrange's method we consider 

JJ [1'(X, y) log fc~0'lc~) + I' p(.1o, y)p(x, y) + v(x)}'(x, y)1 dx dy 

The variational equation (when we take the first variation on P(J...:, y) 
leads to 

Pix) = H(x) e-}..p(x'iJ) 

where X is determined to give the required fidelity and B(x) is chosen to 

satisfy 

f B(x)e--}..p(x,u) dx = 1 

This shows that, with best encoding, the conditional probability of a cer
tain cause f~r various received y, Py(x) will decline exponentially with the 
distance function p(x, y) between the x and y is question. 

In the special case where the distance function p(x, y) depends only on the 
(vector) difference between x and y, 

p(x, y) = p(x - y) 

we have 

f B( ) -}..P\X-y) d x e x 1. 

Hence B(x) is constant, say (x, and 
PyCx) = ae-AP(x-y) 

Unfortunately these formal solutions are ditlicult to evaluate in particular 
cases and seem to be of little value. In fact, the actual calculation of rates 
has been carried out in only a fe\v very simple rases, 

If the distance function p(x, y) is the mean square discrepancy between 
x and y and the message ensemble is white noise, the rate can be uetermined. 

In that case we have 

R = :Min rH(J...:) - Hy(x)] = lI(x) - Max Hy(x) 

with N = ex - y)2. But the 1tlax lly(x) occurs when y - x is a white noise, 
and is equal to HTl log 27re N where fV1 is the bandwidth of the message en

semble. Therefore 
R = WI log 27reQ - fV 1 log 27rel\l 

H11 10g ; 

where Q is the average message power. This proves the following: 
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Theorem 22: The rate for a white noise source of power Q and band WI 
relative to an R.M.S. measure of fidelity is 

R = lVllog!l 
N 

where N is the allowed mean square error between original and recovered 
messages. 

l\-Iore generally with any message source we can obtain inequalities bound
ing the rate relative to a mean square error criterion. 

Theorem 23: The rate for any source of band WI is bounded by 

WI log ~ ~ R ~ UTI log ~ 

where Q is the average power of the source, Ql its entropy power and N the 
allowed mean square error. 

The lower bound follows from the fact that the max Hy(x) for a given 
(x - y/ = N occurs in the white noise case. The upper bound results if we 
place the points (used in the proof of Theorem 21) not in the best way but 
at random in a sphere of radius ,1([=---i.V. 
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APPENDIX 5 

Let SI be any measurable subset of the g ensemble, and S2 the subset of 
the f ensemble which gives SI under the operation T. Then 

SI = TS2. 

Let HA be the operator which shifts all functions in a set by the time X. 
Then 

H'~"S1 = HATS'}. = THAS'}. 

since T is invariant and therefore commutes with HA. Hence if m[Sj is the 
probability measure of the set S 

m[HAS1] = m[THAS2] = m[HAS2] 

= m[S2] = mrSl] 
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where the second equality is by definition of measure in the g space the 
third since thef ensemble is stationary, and the last by definition of g meas-

ure again. 
To prove that the ergodic property is preserved under invariant operations, 

let 51 be a subset of the g ensemble which is invariant under HA I and let S2 
be the set of all functions f which transform into SI. Then 

H ASI = li'TSz = Tli"s2 = SI 

so that H"S\ is included in SI for all 'A. Now. since 

mlHAS21 = m[S\) 

this implies 
H"S2 = S2 

for all A with m[S2) ¥= 0, 1. 
This contradiction shows that Sl does not exi::;t. 

APPENDIX 6 

The upper bound, N a ~ N 1 + ]V 2 , is due to the fact that the maximum 
possible entropy for a power Nl + N z occurs when we have a white noise of 

this power. In this case the entropy power is Nl + N z• 
To obtain the lower bound, suppose we have two llistributions in It dimen-

sions P(Xi) and q(Xi) with entropy powers Nl and ;;;:2. What form should 
p and q have to minimize the entropy power Nil of their convolution r(xi): 

r(xi) = J P(Yi)q(Xi - Yi) dYi . 

The entropy Ha of r is given by 

Ha = - J r(xi) log r(:ri) dXi' 

We wish to minimize this subject to the constraints 

HI = - J P(Xi) log P(Xi) dXi 

H2 = - I q(Xi) log q(Xi) dXi. 

We consider then 

U = - J (r(x) log rex) + At(· ... -) log p(x) + JLq(x) log q(x)] dx 

oU = - I [[1 + log r(x)lor(x) + A[l + log p(x)]oJ(x) 

+ JL[l + log q(x)otj(x»)1 dx. 

-"-,-~ ... 
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If p(x) is varied at a particular argument Xi = Si, the variation in rex) is 

or(x) = q(."Ci - s,) 
and 

of = - I q(Xi - Sj) log r(xJ dXi - A log P(Si) = 0 

and similarly when q is varied. Hence the conditions for a minimum are 

I q(Xi - Si) log r(Xi) - A log p(sJ 

J P(Xi - Si) log r(xJ = - jJ. log q(Si). 

If we mUltiply the first by P(Si) and the second by q(Si) and integrate with 
respect to s we obtain 

H3 = -A HI 

H3 = -jJ. H2 

or solving for A and jJ. and replacing in the equations 

III f q(Xi - Si) log r(xi) dXi = - fla log p(Sj) 

liz f P(Xi - Si) log r(x.) dXi = - Ha log P(Si). 

Now suppose P(Xi) and q(Xi) are normal 

p(XJ I A jj I
nl2 

---- exp - .1 ~A (211" )n/2 2" if Xi Xj 

I In/2 

( .) - B'ij . 1 B 
q Xi - (211")n/2 exp - 2~ ijXiXj. 

Then r(;"i) will also be normal with quadratic form C ij. If the inverses of 
these forms are a'"i, bij, C;'j then 

(ij = aij + b'j' 

\Ve wish to show that these functions satisfy the minimizing conditions if 
and only if aij = Kbij and thus give the minimum H3 under the constraints. 
First we have 

log r(xi) = ~ log 21 I Cij I - !2;Cij X i X j 

- 11" 

J q('"i - s;) log r(Xi) = i log L I C" I - !2:C;jSiSj - }2:Cij bij " 

i ." ""~~. 
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This should equal 

Ha [1£ 1 I J 
H 

-2 log-2-" I Ajj I - 2i~A "S"S' 1 11" I ~1 l J 

h· h . f HI C' W IC reqUIres.'1. if = Ha ij· 

In this case A ij = !!~ B i } and both equations reduce to identities. 
Hz 

APPENDIX 7 

The following will indicate a more general and more rigorous approach to 
the central definitions of communication theory. Consider a probability 
measure space whose elements are ordered pairs (x, y). The variables x, y 
are to be identified as the possible transmitted and received signals of some 
long duration T. Let us call the set of all points whose x belongs to a subset 
S1 of x points the strip over SI , and similarly the set whose y belongs to 5;2 
the strip over Sz . We divide x and y into a collection of non-overlapping 
measurable subsets X i and Y i approximate to the rate of transmission R by 

where 

P(X.i , Vi) 
RI = ~ L: p()C, Vi) log p(X~fp(y~) Ti 

P(X i ) is the probability measure of the strip over Xi 
P( Y i) is the probability measure of the strip over Y i 

P(X 1", Y i) is the probability measure of the intersection of the strips. 

A further subdivision can never decrease R1 . For let Xl be divided into 
Xl = X~ + X~' and let 

P(Y1) = a 

P(X~) = b 

P(X~) = c 

P(X1) = b + c 

P(X~, VI) = d 

( " -PX1,h)=e 

P(X 1, Y1) = d + e 

Then in the sum we have replaced (for the Xl, Yl intersection) 

d + e d e 
(d + e) log ----;----- bv d log - + e log -. 

a( b + c), ab ac 

It is easily shown that with the limitation we have on b, c, d, e, 

----- <----[
d + eJd+e it ee 
b + ( - b.t ce 
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and consequently the sum is increased. Thus the various possible subdivi
sions form a directed set, with R monotonic increasing with refinement of 
the subdivision. We may define R unambiguously as the least upper bound 
for the RI and write it 

R ~ j J J P(x, y) log t{TP?;) dx dy. 

This integral, understood in the above sense, includes both the continuous 
and discrete cases and of course many others which cannot be represented 
in either form. It is trivial in this formulation that if x and u are in one-to
one correspondence, the rate from u to y is equal to that from x to y. If v 
is any function of y (not necessarily \vith an inverse) then the rate from x to 
y is greater than or equal to that from x to v since, in the calculation of the 
'~approximations, the subdivisions of yare essentially a tiner subdivision of 
those for v. More generally if y and v are related not functionally but 
statistically, i.e., we have a probability measure space (y, v), then R(x, v) ~ 
R(x, y). This means that any operation applied to the received signal, even 
though it involves statistical elements, does not increase R. 

Another notion which should be defined pre::isely in an abstract formu
lation of the theory is that of "dimension rate," that is the average number 
of dimensions re=tuired per second to spe::ify a member of an ensemble. In 
the band limited case 2W numbers per second are sufficient. A general 
definition call be framed as follows. Let faCt) be an ensemble of functions 
and letpdfa(t),!P(t)] be a metric measuring the "distance" from fa tojp 
over the time T (for example the R.l\1.S. discrepancy over this interval.) 
Let N(E, D, T) be the least number of elementsf which can be chosen such 
that all elements of the ensemble apart from a set of measure D are within 
the distance E of at least one of those chosen. Thus we are covering the 
space to within E apart from a set of small measure D. We detlne the di
mension rate A for the ensemble by the triple limit 

, L· L· L· 106 N(E, D, T) 1\ = III In1 1m _______ . 
05-00 E-oO T-.oo T log E 

This is a generalization of the measure type definitions of dimension in 
topology, and agrees with the intuitive dimension rate for simple ensembles 
where the desired result is obvious. 

Transients in Mechanical Systems 

By J. T. MULLER 

INTRODUCTION 

A study of the response of an electrical network or system to the input 
of transients in the form of short-duration pulses is an accepted method of 
analysis of the network. By comparing the input and the output, conclu
sions may be drawn as to the respective merit of the various components. 

Until recently similar procedures were only of academic interest with 
mechanical systems. However, the tests ior mechanical ruggedness, which 
are required of electronic gear in order to pass specifications for the armed 
forces, are an example of the application of transients to a mechanical sys
tem. These tests are known as High Impact Shock Tests. 

A basic part of an electrical system is a damped resonant network consist
ing of an inductance, a capacitance and a resistance. A mass, a spring and 
a friction device is the equivalent mechanical network called a simple me
chanical system and a combination of such networks is a general mechanical 
system. It is, of course, advantageous to keep the mechanical system as 
simple as possible without detracting from the general usefulness of the 
results obtained. 

The problems here considered are pertinent to a system which is essen
tially made up of a supporting structure or table and a resilient mounting 
array bearing the equipment (e.g. electronic gear) which is vulnerable to 
shock. (See Fig. 1.) 

A shock is the physical manifestation of the transier of mechanical energy 
from one body to another during an extremely short interval of time. The 
order of magnitude of the time interval is milliseconds and quite frequently 
fractions of a millisecond. 

The system is excited by administering large spurts of mechanical energy 
to the supporting table. The manner in which this energy is supplied to the 
base and the way it is dissipated through the system are the subjects of this 
paper. 

The energy transfer to the supporting table is accomplished by the use 
of huge hammers which strike the anvil with controllable speeds. The 
action is assumed to be similar to that of an explosion, particularly to an 
underwater explosion at close range or a near-miss. As to the real compar
ison between the two, the reader is referred to the various manuscripts 
published by the Bureau of Ships. This particular phase of the subje(t is 
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