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1t may be calculated from

w?.;l'z
¢, = T

V2 (Vo +
where 4y = 107 ’: = 1.76 X 10w
7

Vo1 = equivalent d-c grid potential
V: = anode d-c potential

F =1+ 226, y/I{PLi\LXE + 5 <?3)2 \_/L_”—lwwé
2 UNTL+ VT, 38 T VT,
f =1+ L6, !@ﬂ!@
26V + VT
= VIV 2VVs,
VVu+ VTV
With the aid of these tables and F ig. 8 the equivalent circuits on Figs. 25,
20 and 27 are obtained. The networks are all of the resist
type. It may be noted that, in some of the branches, negativ
or negative capacitance appears. However, as seen from the external tube
terminals they are swamped by corresponding positive elements.
"The viewpoints presented in this paper have been used by the writer over
a number of years. They have been given experimental application by

Mr. J. A. Morton, who is principally responsible for their introduction and
use in the studies in these Laboratories of electron
regions.

ance-capacity
€ conductance

tubes in the microwave

With this, our investigation comes to a close. Much has been omitted,
particularly in the field of applications, but it is nevertheless hoped the funda-
mental approach, as well as the networks given, may prove to be useful in
practical applications. The questions of noise and of optimum noise figure

~ design have also been left out of consideration. Mr. J. A. Morton and the
writer plan to discuss these problems in a forthcoming paper.

The writer is pleased to acknowledge his indebtedness to Messrs, R. K.
Potter, J. A. Morton, and R. M. Ryder, who have encouraged this work
and urged its publication; and to Mr. W. E. Kirkpatrick for constructively

.critical scrutiny of the original technical memorandum.

A Mathematical Theory of Communication

By C. E. SHANNON

(Concluded from July 1948 issue)
PART III: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we conside.r the.case wh?re t.hc
signals or the messages or both are continuously v:%rlable, in contrast \Ylth
the discrete nature assumed until now. To a considerable extent th.e~ con-
tinuous case can be obtained through a 1imltmg process from the dlsgrgte
case by dividing the continuum of messages and §1gnals into a large but h(;ute
number of small regions and calculating the‘varlous parameters involve on
a discrete basis. As the size of the regions is decreased 'these parametersAm‘
general approach as limits the proper values for the continuous cas,eil Tht‘.l‘(t:
are, however, a few new effects thfxt appear and also a gellerzfl change o
emphasis in the direction of specialization of the general results to particu-
1arv§zszvs{n not attempt, in the continuous case, to obtain our reSl.llts x‘v1th
the greatest generality, or with the extreme rigor of pure mathem'cltlc.s,l ?m;)c
this would involve a great deal of abstract measure theory and wou d ob-
scure the main thread of the analysis. A plrehnunary study, ho.weve::, indi-
cates that the theory can be formulated in a Completeb'r ax1omat1cq ang
rigorous manner which includes both the continuous and dlscretefaise.a a111
many others. The occasional liberties taken with I.mut%ng processes in the
present analysis can be justified in all cases of practical interest.

18. SETS AND ENSEMBLES OF FUNCTIONS

We shall have to deal in the continuous case with set‘s of'fun.ctions and
ensembles of functions. A set of functions, as the name 1mp}1€s, 1s merely a
class or collection of functions, generally of one varlab}e, time. ‘It _“.m bé
specified by giving an explicit representa.tion of tl}e various functu?{m_ fn(th:'
set, or implicitly by giving a property which functions in the set possess anc
others do not. Some examples are:

1. The set of functions:

fo(t) = sin (¢ + 9).

623

Each particular value of 8 determines a particulur function in the set,
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2. The set of all functions of time containing o frequencies over W cycles
per second.

3. The set of all functions limited in band to W and in amplitude to 4.

4. The set of all Euglish speech signals as functions of time.

An ensemble of functions is a set of functions together with a probability g
measure whereby we may determine the probability of a function in the

set having certain properties.! For example with the set,

So{t) = sin (1 + 9),

E i

we may give a probability distribution for 8, £(8). The set then becomes E

an ensemble.
“Some further examples of ensembles of functions are:

1. A finite set of functions fi(1) (¢ = 1,2, -+, n) with the probability of :

Jx being p;, .

2. A finite dimensional family of functions

f(al,az,"')aﬂ;t)

with a probability distribution for the parameters a; :

p(aly"')an)

For example we could consider the ensemble defined by

flag, - Jan, 00, 0,50 = > a, sin n(el + 6,)
N=1

with the amplitudes g, distributed normally and independently, and the |

phrases 6; distributed uniformly (from 0 to 27) and independently.
3. The ensemble

fla;, t) = i; sin = QW1 ~ n) l

n=—x0 T(ant - n)

with the a; normal and independent all with the same standard deviation ‘
vV/N. Thisisa representation of “white”’ noise, band-limited to the band
from 0 to W cycles per second and with average power N.”

!In mathematical terminology the functions belong to a measure space whose total
measure is unity.

* This representation can be used as a definition of band limited white noise. It has
certain advantages in that it involves fewer limiting operations than do definitions that
have been used in the past. The name “white noise,’’ already firmly intrenched in the
literature, is perhaps somewhat unfortunate. In optics white light means either any
continuous spectrum as contrasted with a point spectrum, or a spectrum which is flat with
wavelenglh (which is not the same as a spectrum tlat with frequency).
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4 4 Let points be distributed on the ¢ axis according to a Poisson distribu-

tion. At each selected point the function f(f) is placed and the different
functions added, giving the ensemble

X
DIFICETN
k=—cw
where the f; are the points of the Poisson distribution. This ensemble
can be considered as a type of impulse or shot noise where all the impulses
are identical. .
3. The set of English speech functions with the probability measure given
by the frequency of occurrence in ordinary use.
An ensemble of functions f.(¢) is stationary if the same ensemble results
when all functions are shifted any fixed amount in time. The ensemble

fo(t) = sin (¢ + 6)

: fk is stationary if 6 distributed uniformly from O to 27. If we shift each func-

tion by # we obtain

2

folt + &1) = sin (¢ + # + 6)
= sin ({ + ¢)

with ¢ distributed uniformly from O to 27. Each function has changed
but the ensemble as a whole is invariant under the translation. The other
examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no subset of the func-
tions in the set with a probability different from 0 and 1 which is stationary.
The ensemble

sin (t + 6)

isergodic. No subset of these functions of probability #0, 1 is transformed
into itself under all time translations. On the other hand the ensemble

asin (| + )

with ¢ distributed normally and 6 uniform is stationary but not ergodic.
The subset of these functions with a4 between 0 and 1 for example is
stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be con-
sidered so. If an ensemble is ergodic we may say roughly that each func-
tion in the set is typical of the ensemble. More precisely it is known that

with an ergodic ensemble an average of any statistic over the ensemble is

equal (with probability 1) to an average over all the time translations of a
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il . . 3 .
particular function in the set. Roughly speaking, each function can be ex-

pected, as time progresses, to go through, with the proper frequency, all the

convolutions of any of the functions in the set.

_|u:st as we may perform various operations on numbers or functions to |
obtain new numbers or functions, we can perform operations on ensembles ]
to obtain new ensembles. Suppose, for example, we have an ensemble of 1
functions /,(¢) and an operator T which gives for each function Sa(t) a result |

ga(1):
g(t) = TFa(t)

Probability measure is defined for the set ga(!) by means of that for the sel ] .‘

Ja®).  The probability of a certain subset of the ga(t) functions is equal
to that of the subset of the f.(1) functions which produce members of the

given subset of g functions under the operation 7.  Physically this corre- |
sponds to passing the ensemble through some device, for example, a filter &

. . b
a rectiher or a modulator. The output functions of the device form the }

ensemble g, (/).

A device or operator T will be called invariant if shifting the input merely : |

shifts the output, i.e., if

ga(t) = Tfalt)
implies

ga(t + [1) = Z:fa(t + tl)

for .all falt) and all ;. It is easily shown (see appendix 1) that if T is in-
varlflnt and the input ensemble is stationary then the output ensemble is
statxcinary‘ Likewise if the input is ergodic the output will also be ergodic. 4§

. A filter or a rectifier is invariant under all time translations, The opers- 4 The coefficients X, of the various terms can be considered as coordinates in
tion of modulation is not since the carrier phase gives a certain time struc- 3

ture. However, modulation is invariant under all translations which are

multiples of the period of the carrier.

erner has pointed out the intimate relation between the invariance of §
physical devices under time translations and Fourier theory.' He has |

3 s 3. o F . - 1
This s the famous ergodic theorem or rather one aspect of this theorem which was §

proved is somewhat different formulations by Birkhoff, von Neumann, and Koopman, and
]

subsequently generalized by Wiener, Hopf 3! i
ently g » Hopf, Hurewicz and others. The literature on ic
theory is quite extensive and the reader is referred to the papers of these writers fi:ggg;f ‘#

cise and general formulations; e.g., E. Hopf “Ergodentheorie’’ Ergebnisse der Mathematic

und ihrer Grenzgebiete, Vol. 5, “On Causality Statistics and Probability’” Journal of H

Mathematics and Physics, Vol. XIII, No. 1, 1934- i ¢ i !
DuchC Mathematical Journal, Vol. 5, ,163(‘)).. ¢ 1994 N. Welner “The Freodic Theorent

ommunication theory is heavily indebted to Wicner for much of its basic philosophy
and theory. His classic NDRC report “The Interpolation, Extrapolatjon,):;lg }S)}r]rﬂ)(:)btoligé

of Stationary Time Series,” to aj i i fi k
0 1 les,”’ ppear soon in book form, contains the first cl
formulation of communication theory as a statistical probl’cm, the study of opei:ilﬁz ‘
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shown, in fact, that if a device is linear as well as invariant Fourier analysis
is then the appropriate mathematical tool for dealing with the problem.
An ensemble of functions is the appropriate mathematical representation
of the messages produced by a continuous-source (for example speech), of
the signals produced by a transmitter, and of the perturbing noise. Com-
munication theory is properly concerned, as has been emphasized by Wiener,
not with operations on particular functions, but with operations on en-

. sembles of functions. A communication system is designed not for a par-
4§ ticular speech function and still less for a sine wave, but for the ensemble of

speech functions.

19. BaAnNDp LIMITED ENSEMBLES OF FUNCTIONS
If a function of time f(/) is limited to the band from 0 to W cycles per
second it is completely determined by giving its ordinates at a series of dis-

crete points spaced 2%7 seconds apart in the manner indicated by the follow-

ing result.’
Theorem 13: Let f(¢) contain no frequencies over W.
Then

= sin tQWi — n)

) = 2 X =

. 2
X =1 (ifv) '

In this expansion f(f) is represented as a sum of orthogonal functions.

where

an infinite dimensional “function space.” In this space each function cor-

* responds to precisely one point and each point to one function.

A function can be considered to be substantially limited to a time T if all
the ordinates X, outside this interval of time are zero. In this case all but
2TW of the coordinates will be zero. Thus functions limited to a band W
and duration T correspond to points in a space of 27W dimensions.

A subset of the functions of band W and duration T corresponds to a re-
gion in this space. For example, the functions whose total energy is less

on time serics. This work, although chiefly concerned with the linear prediction and
fitering problem, is an important collateral reference in connection with the present paper.
We may also refer here to Wiener’s forthcoming book “Cybernetics’’ dealing with the
general problems of communication and control.
¢ For a proof of this theorem and further discussion see the author’s paper “Communi-
?tion in the Presence of Noise” to be published in the Proceedings of the Institute of Radie
ngineers.
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than or equal to E corres
radius r = /2WE.
An ensemble of functions of Ij
by a probability distribution play -+ x
space. If the ensemble is not limite
ordinates in a given interval T to
function in the interval T and the

probability distribution p(x, , - - -
to give the statistical structure of the

20. ENTROPY OF 4 CoNTINTOUS Distrisurion
The entropy of a discrete set of probabilities p; ,

H = —Z Pi log p; .

In an analogous manner we define
with the density distribution function p(x) by:

H = —‘[: 2(x) log p(x) dx

With an 7 dimensional distribution p(x » ", %) we have

H: _f... fp(xl...xn)logp(xl’.-.’xn)dxl...dx

If we have two arguments x and
sional) the joint and conditional e

n .

ntropies of p(x, y) are given by

H(x,y) = — f f p(x,9) log p(x, y) dx dy

and
H(y) = —ff 2(x, y) log P—;%—;c)l) dx dy
H/(x) = —ff (%, ) log 1%}’) dx dy
where

2) = [ oz, 5) ay

#5) = [ alx, 3) ax.

The entropy of continuous distributions h

ave most (but not all) of the
properties of the discrete case,

In particular we have the following:

pond to points in & 27W dimensional sphere with

mited duration and band will be represente
.) in the corresponding 7 dimensional §
d in time we can consider the 27W co- §
represent substantially the part of the §

)
ensemble for intervals of that duration. §

-+ pn has been defined as: ]

the entropy of a continuous distribution

) L : ) giving a
¥ (which may themselves be multi-dimen- § 5. Let p(x) be a one-dimensional distribution. The form of p(x) giving
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1 .. . 2} 1 aximum
1, If x is limited to a certain volume v in its space, then H(x) is a maxi

1\.
) 1S 5 - he volume.
and equal to log v when p(x) is constant ) the

2. With any two variables x, y we have

H(x,v) < H(x) + H(y)

with equality if (and only if) x and v are independ.e'nt, ie., plx, y) = p(x)
p(y) (apart possibly from a set of points of probability zero).

3. Consider a generalized averaging operation of the following type:

P(y) = f a(x, y)p(x) dx
with

f a(x, v) da = fa(x, y) dy = 1, a(x,y) > 0.

Then the entropy of the averaged distribution p’(y) is equal to or greater
than that of the original distribution p(x).

- 1. We have

H(x,y) = H(x) + H{y) = H(y) + H,(x)

and
H.(y) < H(y).

maximum entropy subject to the condition that the sté%n(!ard deviation
of x be fixed at ¢ is gaussian. To show this we must maximize

H(z) = — f p(x) log p(x) da
with '
o = fp(x)x2 dx and 1= fp(x) dx
as constraints. This requires, by the calculus of variations, maximizing
[ 1= 52) 0g 90) + Ap()a® + upl@)] .

The condition for this is
—1 —log p(x) + Aa® + p =

" and consequently (adjusting the constants to satisfy the constraints)

- 17 L —(z2]20?)
p) =g,

T o
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Similarly in » dimensions,
b, -+ | x,) are fixed at A

Aij:f"' fﬁ7ix,'P(Afl,"‘

Then the maximum entropy occurs

P, -, x,)is the n dimensional gau
order moments Ay

6. The. entropy of a one~din1ension
deviation is ¢ is given by

suppose the second order moments of | i

» %) dwy « - du, )

(by a similar calculation) when |
ssian distribution with the second §

al gaussian distribution whose standard i

H(x) = log \/2r¢o.
This is calculated as follows:
(.’L —(121202)
)= Vs
—log p(x)

2
_ - x
= log V2ro + 3
H(z) = ——fp(x) log p(x) dx

= f P(x) log \/2x 0 dx + f o) E
202
2
= log \/2r ¢ + Q%Z

= log V2r¢ + log /e
= log \/2reo.
Similarly the » dimensional
quadratic form a; is given by
_ oy
(2o

and the entropy can be calculated as

gaussian  distribution with associated

p<x1a"'7xn)

exp (— 1%a; X, X;)

H = log (2me)** | a; |}

where | g;; | is the determinant w

- If x is limited to a half line (p(x) =
x is fixed at g:

hose elements are a;.
= O for x < 0) and the first moment of

. A a= .Z p(x)x dx,
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then the maximum entropy occurs when

pla) = = o
and is equal to log ea.

8. There is one important difference between the continuous and discrete
entropies. In the discrete case the entropy measures in an absolule
way the randomness of the chance variable. In the continuous case the
measurement is relative to the coordinale system. 1f we change coordinates
the entropy will in general change. In fact if we change to coorégndtes
y1 - -+ ¥. the new entropy is given by ,

o

n) = [ [ st ws () o gt ()

‘.‘!
where J (y) is the Jacobian of the coordinate transformation. €)n ex-

panding the logarithm and changing variables to x, - -- x, , we obtain:

fP(xl, sy a) log ]( )dxl - dan .

Thus the new entropy is the old entropy less the expected logarithm of
the Jacobian. In the continuous case the entropy can be considered a
measure of randomness relative to an assumed slandard, namely the co-
ordinate system chosen with each small volume element da; - - - day given
equal weight. When we change the coordinate system the entropy in
the new system measures the randomness when equal volume elements
dy, - - - dy, in the new system are given equal weight.

In spite of this dependence on the coordinate system the entropy
concept is as important in the continuous case as the discrete case. This
is due to the fact that the derived concepts of information rate and
channel capacity depend on the difference of two entropies and this
difference does not depend on the coordinate frame, each of the two terms
being changed by the same amount.

The entropy of a continuous distribution can be negative. The scale
of measurements sets an arbitrary zero corresponding to a uniform dis-
tribution over a unit volume. A distribution which is more confined than
this has less entropy and will be negative. The rates and capacities will,
however, always be non-negative.

9. A particular case of changing coordinates is the linear transformation

= Z a;; X .
1]

H(y)=H(x)—f‘”

]
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In this case the Jacobian is simply the determinant | @i [+ and

H(y) = H(x) 4 log | a; |.
?n the case of a rotation of coordinates
formation) J = 1 and g7 () = H®).

21. ENTROPY OF aNn EnseMBLE oF F UNCTIONS
.(,onsxder an ergodic ensemble of f
width W cycles per second. Let

p(xl et xn)

rction for amplitudes Xy
We define the entropy of the ensemble

be the density distribution fyr
sample points.
dom by

* X at # successive
per degree of free-

H/ = — i ..1_ f LY "
{‘_I.Ign fp(xl---x,,)logp(xl,---,x,,)dxl--'dx,,.
We may also define ap ent
the time 7T in seconds for n

ropy H per second by dividing, not by u, but by
With white thermal nois .

sanr}ples. Since n = 2TW, j’ = 2WH
€ 15 gaussian and we have

H' = log \/27reN,
H = W log 2reN.

For a given average power
er.)tro.py. This follows from ¢t
distribution noted above.

The entropy for a continuous stochastic
analogous to that for discrete processes.

! . .
};V, whl?e noise has the maximum possible
€ Maximizing properties of the Gaussian

'I'n the discrete case the entropy
lity of long sequences, and to the
In the continuoys
the logarithm of the probability

volume of reasonably high prob- |

case.it is related in a similar fashion to

de‘;'tszly for a long series of samples, and the

ability in the function space. ’
More precisely, if we assume Py -

~ Xn) CO 1 m = .
then for sufficiently large » ) continuous in all the x; for all n,

- sumptions consider the » dimensional space corresponding to p(xy , - :
Let Va(g) be the smallest volume in this space which includes in its interior

(or any measure preserving trans§

process has many properties |

lloﬂ — [1/}[

n ‘<E

for all choices of (x y

v O, -+, x) apart from a set whose total ility is
less than.t.S, Wlt!l .6 and e arbitrarily small. This follbows frorir(t):: blht}zl'h
Property 1t we divide the space into 4 large number of smal] cells e

A AL ALV AL I VAL, A LILNINI UL UV U AT ANVsd 4 avan hdetd

The relation of H to volume can be stated as follows: Under the same as-
, %n).

a total probability ¢. Then
Lim 1_‘.’,5,? Q) _ H

N0 it

unctions limited to 2 certain band of . provided ¢ does not équal Oor 1.

These results show that for large # there is a rather well-defined volume (at

. least in the logarithmic sense) of high probability, and that within this

volume the probability density is relatively uniform (again in the logarithmic

sense).
In the white noise case the distribution function is given by

—-—1~Ex§.

P(xl Tt xﬂ) = 2N

(—Z——mvj;]‘l*z exp

Since this depends only on 2} the surfaces of equal probability density
are spheres and the entire distribution has spherical symmetry. The region

of high probability is a sphere of radius /#N. As n— « the probability

. . e 1.
of being outside a sphere of radius v/#(N + ¢) approaches zero and - times

the logarithm of the volume of the sphere approaches log A/2reN.

In the continuous case it is convenient to work not with the entropy H of
an ensemble but with a derived quantity which we will call the entropy
power. This is defined as the power in a white noise limited to the same
band as the original ensemble and having the same entropy. In other words
if H' is the entropy of an ensemble its entropy power is

1
= . 2H’.
N, = e exp 2H

In the geometrical picture this amounts to measuring the high probability
volume by the squared radius of a sphere having the same volume. Since
white noise has the maximum entropy for a given power, the entropy power
of any noise is less than or equal to its actual power.

21. EntROPY Loss 1IN LINEAR FILTERS

Theorem I14: If an ensemble having an entropy H, per degree of freedom
in band W is passed through a filter with characteristic Y (f) the output
ensemble has an entropy

to= it [ e YO
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The operation i i i

Ordinaf:s_ o wzft }:ﬁlek tﬁ'tf; 1(51 .essentla.lly a linear transformation of co-

cooedinate systems he o ? ifferent frequency components as the original

nltipliod 1 facgo Tw reque{lcy components are merely the old ones
rs. The coordinate transformation matrix is thus es- |

where the fi are equally spaced through the band W. This becomes in
the limit

exp 1 [ log | YN [ ¢
TABLE I ! Wiw

Since J is constant its average value is this same quantity and applying the
| theorem on the change of entropy with a change of coordinates, the result
 ollows. We may also phrase it in terms of the entropy power. Thus if
- the entropy power of the first ensemble is Ny that of the second is

ENTROPY
GAIN ENTROP
POWER | POWER exl N

FACTOR |IN DECIBELS IMPULSE RESPONSE

<) -8.68 siNfrt 1 .
(mt)2 Ny exp W f log | Y [ df.

w
The final entropy power is the initial entropy power multiplied by the geo-
If the gain is measured in db, then the

output entropy power will be increased by the arithmetic mean db gain

‘f metric mean gain of the filter.

over W.
In Table I the entropy power loss has been calculated (and also expressed

- in db) for a number of ideal gain characteristics. The impulsive responses

v 1

@ 1

i ' of these filters are also given for W = 2, with phase assumed to be 0.
@ 1

214
(F) -5.32 2[§ﬁ£ _ cost
t3 t2

The entropy loss for many other cases can be obtained from these results.

t4 2t2 3 For example the entropy power facto

0.384 ~4.15 6[¢°St-1 .Cost  sINt 1
r — for the first case also applies to any

, €
gain characteristic obtained from 1 — by a measure preserving transforma-
| tion of the w axis. In particular a linearly increasing gain G(w) = w, ora
“saw tooth” characteristic between 0 and 1 have the same entropy loss.

(%) ~2.66 21 M)

t Thus l has the factor €.
w

The reciprocal gain has the reciprocal factor.

~ Raising the gain to any power raises the factor to this power.

e 1
1
i 922. ENTROPY OF THE SUM OF Two ENSEMBLES
i o : 1f we have two ensembles of functions f«(/) and gs(t) we can form a new
i~ eza - | Toe8X ,,'tz [COS (’-a')t-cost] § ensemble by “‘addition.” Suppose the first ensemble has the probability
°Te i density function p(x1, =", x.) and the second g(x1, -+ 5 *a)- Then the

density function for the sum is given by the convolution:

f(xl,"',xﬂ) =f"' fp(yl)”'yyh)
-q(xx—yx,"-,xn—yn)dyx,dy2,--'»dy7i-

Sentlally dlagondhzed n telnl ()f t €s¢ Coo dllla. €S. .I]le la,( ()bla,n ()1 tlle
S h S€ C T
t
tIallstIIna.thll 1S (tOI 1 sine dnd n cosine COIIIpOIleIltS)

J = & Vf) 12
g | Y(7) | Physically this corresponds to adding the noises or signals represented by
the original ensembles of functions.
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The following result is derived in Appendix 6.
Theorem 15: Let the average power of two ensembles be ¥, and N, and

let their entropy powers be Ny and N,. Then the entropy power of the
sum, N; , is bounded by

N+ N, <Ny <N+ N,

White Gaussian noise has the peculiar property that it can absorb any
other noise or signal ensemble which may be added to it with a resultant
entropy power approximately equal to the sum of the white noise power and
the signal power (measured from the average signal value, which is normally
zero), provided the signal power is small, in a certain sense, compared to
the noise.

Consider the function space associated with these ensembles having n
dimensions. The white noise corresponds to a spherical Gaussian distribu-
tion in this space. The signal ensemble corresponds to another probability
distribution, not necessarily Gaussian or spherical. Let the second moments

of this distribution about its center of gravity be a;;. That is, if
p(x1, -+ -, x,) is the density distribution function
ai; = f fp(xf — ai)(w; — a;) dwy, -+ -, day

where the a; are the coordinates of the center of gravity. Now a,; is a posi-
tive definite quadratic form, and we can rotate our coordinate system to
align it with the principal directions of this form. a;; is then reduced to

diagonal form b;;. We require that each b;; be small compared to N, the
squared radius of the spherical distribution.

In this case the convolution of the noise and signal produce a Gaussian
distribution whose corresponding quadratic form is

N + bi.
The entropy power of this distribution is

(v + b“)]lln

or approximately

= [(N)" + zbii(N)n-lllln
= N+ Lz,
n

The last term is the signal power, while the first is the noise power.

. tinuous functions of time f (¢) belonging
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PART IV: THE CONT INUOUS CHANNEL

23. Tae CAPACITY OF A ConTtiNUuoUus CHANNEL

¢ transmitted signals will be con-
to a certain set, and the output or
. . D . 1
received signals will be perturbed versions of these. We.w1_11 conslde:3 ;;2'3;
the case where both transmitted and received signals are g;;&d to ;eis i
" ified, for a time 7', by numbers,
pand W. They can then be specitied, IC ' y 2T nu e
i isti finite dimensional distributio
their statistical structure by : . onal ‘
Thus the statistics of the transmitted signal will be determined by

In a continuous channel the input o

Play, -, %) = P
and those of the noise by the conditional probability distribution
le,“', In(yl b ot bl )’n) = P.l(y)'

f i i S is defined
The rate of transmission of information for a continuous channel is

in 2 way analogous to that for a discrete channel, namely
' R = H(x) — H,(2)

where H(x) is the entropy of the input and H,(x) the equivocatut);ll. in’f)}lﬁ
i i as the maximum of R when we vary the

annel capacity C is defined as t . . ~ : ‘

Z}xter all pcl))ssible ensembles. This means that 1 a finite dimensional ap

proximation we must vary P(x) = Plxy, -, %n) and maximize
] P(, y)
' ; 220 g dy.
— fP(x) log P(x) dx + JfP(x, y) lo Ply) % dy
# This can be written X

f f P(x, y) log P%j)c—}%—) dx dy

using the fact that f f P(x, y) log P dxdy = f P(x) log P(x) dx. The
channel capacity is thus expressed

) 1 ) . “_F_@)y)ﬂdﬁd,‘
C = Lim Max ffP(al, y) log P(x)P(y) v

T P(Z) T

It is obvious in this form that R and C are independent of the coordinate

Ple,y) :
i inlog &7 proy be multi-
system since the numerator and denominator in log 7, ®P0) will be mu

lied by the same factors when «x and y are transformed in any one ';(; c(>;1)e
I\a)vay This integral expression for C is more general. than. H(x) .— H._, ‘)
Prol.)erly interpreted (see Appendix 7) it will always exist while H (x) — H,(x
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may assume an indeterminate form « — o in some cases. This occurs, for
example, if a is limited to a surface of fewer dimensions than » in its # dimen-
sional approximation.

If the logarithmic base used in computing H(x) and H,(x) is two then C
is the maximum number of binary digits that can be sent per second over the
channel with arbitrarily small equivocation, just as in the discrete case.
This can be seen physically by dividing the space of signals into a large num-
ber of small cells, sufficiently small so that the probability density P.(y)
of signal x being perturbed to point y is substantially constant over a cell
(either of x or y). 1If the cells are considered as distinct points the situation
is essentially the same as a discrete channel and the proofs used there will
apply. But it is clear physically that this quantizing of the volume into
individual points cannot in any practical situation alter the final answer
significantly, provided the regions are sufficiently small. Thus the capacity
will be the limit of the capacities for the discrete subdivisions and this is
just the continuous capacity defined above.

On the mathematical side it can be shown first (see Appendix 7) that if u

is the message, « is the signal, y is the received signal (perturbed by noise)
and v the recovered message then

H(x) — Hy(x) 2 Hu) — Ho(u)

regardless of what operations are performed on # to obtain x or on ¥ to obtain
2. Thus no matter how we encode the binary digits to obtain the signal, ot
how we decode the received signal to recover the message, the discrete rate
for the binary digits does not exceed the channel capacity we have defined.
On the other hand, it is possible under very general conditions to find a
coding system for transmitting binary digits at the rate C with as small an
equivocation or frequency of errors as desired. This is true, for example, if,
when we take a finite dimensional approximating space for the signal func-
tions, P(x, y) is continuous in both x and y except at a set of points of prob-
ability zero.

An important special case occurs when the noise is added to the signal

and is independent of it (in the probability sense). Then P,(y) is a function
only of the difference n = (y — ),

Py) = Qly — x)

and we can assign a delinite entropy to the noise (independent of the sta-
tistics of the signal), namely the entropy of the distribution ()(n). This
entropy will be denoted by H (n). ,
Theorem 16: If the signal and noise are independent and the received
signal is the sum of the transmitted signal and the noise then the rate of

§ i the entropy of the recelved
v " . .
' channel capacity 18

i’ *COM r n TION AR AL
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" {ransmission 18

R=H(y) — H(®)

signal less the entropy of the noise. The

C = Max H(y) — 1(n).
P(x)

We have, since y = & + n:

H(x, y) = H®, 7).

3 E.i{palldlll" lhe eft lde a]ld usiy the Ia,Ct thdt a-ud n are lIldepell(lBlll
B 1 ) g 1 P

Hy) + Hyx) = H@ + Ho.

i Hence R= HW — B, =H (y) — H(n)-

imizi ires maximizing

Since H{m) is independent of P(x), maximizing R re?:il;e;onstraims "

H(y), the entropy of the received signal. If there are cer ol it
they e’nsemble of transmitted signals, the entropy of the rec

be maximized subject to these constraints.

TATION
24, CHANNEL CAPACITY WITH AN AVERAGE Powgr LiMI

i ise is a white
icati 16 is the case where the noise
imple application of Theorem e W e
thAx':ri:llpnoisE I:md the transmitted signals are limited to a ;:elr)t_l_ e
po;'er P. Then the received signals have an average p;)oxzethe e
. i imum entropy «

i -erage noise power. The maximun , ' ved s
. ;s thf:j:‘ew}%en they also form a white noise en:lemblebsmc;t ,:ll:;d oy
reatast or P + N and can be 0

ssible entropy for a power ' bt by &
e o f the e;semblc of transmitted signals, namely if they fo

3 . ] ] ] .
‘ h b p we . h T py (p S Cond) Of tlle re-
! W ‘te noise ensem 1e ()f OWEr 1 I € ellt 0 er Se

ceived ensemble is then
H(y) = W log 2me(P + N),

and the noise entropy is
H(n) = W log 2weN.

The channel capacity s

P+ N
¢ = H(y) — Hn) = Wlog —x—"

Summarizing we have the following:

7 h orem 1; . [lle d-pal.lt Of a( llanllel ()f balld “/ eItUI bed by Whltﬂ
14

o AT

T

. .\,m.mmymwwﬁmw
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thermal noise of power N when the average transmitter power is P is given by

This means of course that by sufficiently involved encoding systems we

can transmit binary digits at the rate W log. L _%_Ti?\—f bits per second, with

i

arbitrarily small frequency of errors. It is not possible to transmit at a
higher rate by any encoding system without a definite positive frequency of
errors.

To approximate this limiting rate of transmission the transmitted signals
must approximate, in statistical properties, a white noise.” A system which
approaches the ideal rate may be described as follows: Let M = 2’ samples
of white noise be constructed each of duration 7. These are assigned
binary numbers from 0 to (M — 1). At the transmitter the message se-

quences are broken up into groups of s and for each group the corresponding |

noise sample is transmitted as the signal. At the receiver the M samples are
known and the actual received signal (perturbed by noise) is compared with
each of them. The sample which has the least R.M.S. discrepancy from the
received signal is chosen as the transmitted signal and the corresponding
binary number reconstructed. This process amounts to choosing the most
probable (a posteriori) signal. The number M of noise samples used will

depend on the tolerable frequency e of errors, but for almost all selections of
~-samples we have

P+ N
N b

Lim Lim

€0 T—oo

log Mjfe, T) _ W log
so that no matter how small e is chosen, we can, by taking T sufficiently

large, transmit as near as we wish to 7’W log ? -IZ\—7 A binary digits in the

time 7.
. P4+ N . .
Formulas similar to C = W log N for the white noise case have

been developed independently by several other writers, although with some-
what different interpretations. We may mention the work of N. Wiener,'
W. G. Tuller,® and H. Sullivan in this connection.
In the case of an arbitrary perturbing noise (not necessarily white thermal
noise) it does not appear that the maximizing problem involved in deter-
8 This and other propertics of the white noise case are discussed from the geometrical

point of view in “Communication in the Presence of Noise,” loc. cit.
7¢‘Cybernetics,’’ loc. cit.

8Sc¢. D. thesis, Department of Electrical Engineering, M.LI.T., 1948.
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ity C v icitly. Iowever, upper
mining the channel capacity C can be solved explicitly

. ; o e N
and lower bounds can be set for C in terms of the average 'noxse pi)vierto-
and the noise entropy power Ni. ‘These bounds are sufficiently close

Uel er 1n ||[l)5‘ l)la(‘“(d cases to turnisin a Satls aq Iy SO uthl 0 <
: h 3 :l ~ <y b ~} P < 1 *to I n i th
.. O

blem. . ] - ‘ )
pr(;‘h:::em 18: The capacity of a channel of band W perturbed by an arbi

trary noise is bounded by the inequalities

P N ~ 4 “P_+l
W lo ——'11;-,7-1 <C < Wlog™ 4

P = average transmitter power
N = average noise power
N, = entropy power of the noise. ' . , .
Hlere again the average power of the perturbed sngnals will b.e I; :;- v
The maximum entropy for this power would occur if the rec:ﬂl\)fe Sgible
- e po
i i W log 2me(P + N ). It may no ‘
were white noise and would be f n D P ke
i is; i t be any ensemble of trans g
to achieve this; i.e. there may not . d signale
which, added té) the perturbing noise, produce a white t};;]rm}::l 1:01:}elecztd0re
receiv;:r, but at least this sets an upper bound to H(y). e have,

C = max H(y) — H@#n)
< W log 2me(P + N) — W log 2weN: .

) - . . b_
This is the upper limit given In the theorem. The lovsfi: gn}}t If;naij }?ite

i ideri ate if we make the transmitted Si1g .
{ained by considering the ra e Sgne el

i this case the entropy power 0 ed
noise, of power P. In . ‘ I e e

[ § gre hat of a white noise of powe
must be at least as great ast : D e
i i that the entropy power o

ave shown in a previous theorem . rof th
}elnsen?bles is greater than or equal to the sum of the individual entropy
powers. Hence 4

max H(y) > W log 2re{P + N1)

and
C > Wlog Ire(P 4+ Ni) — W log 2meNy
P+ N
N,

= W log

er, 50 We
As P increases, the upper and Jower bounds approach each other, s

J have as an asymptotic rate

P+ N

W log o

[
$%
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If the noise is itself whi =
oise 1s itself white, N = N, and the result reduces to the formula

proved previously:
C = Wlog(l 4—1i>
N

If the noise is Gaussian but with a spectrum which is not necessarily flat, -
’

Ny is the geometric mean of the noise

power over the various ies i
e by Srometie rious frequencies in

17
Ny = exp W-/w log N(f) df

where N(f) is the noise power at frequency f.

1 eore. I set t p y
h orem 19. C
t we he apacit fOI a glven tIallsmltter p()Wer P

C=Wlog

P+ N—y
N
thin 7 is ll}Qyot?lliC decreasing as P increases and approaches 0 as a limi
Suppose that for a given power P; the channel capacity is m
P+ N — m
N

1

W log

:},1']5 rgt.ean?btl?t tth l)aest signal distribution, say p(x), when added to the
1s¢ distribution ¢(x), gives a received distribution #(
: . y) whose ent
poweris (P + N — 5,). Let us increase the power to P; + AP by adfi(;?gy

a Whlte noise ot pOW er AI to the signal. Ihe entlopy [0 t] 1€ receiv
l
g f el ed Slgnal

H(y) = W log 2me(Py + N — ny + AP)

;)Iy appli‘cation of the theorem on the minimum entropy power of a sum
d'eiufi, i{nce we can attain the H indicated, the entropy of the maximiziné
1stribution must be at least as great and

7 must be monotonic d i

To show that gy — 0 as P— « consi i te oo i
consider a signal which is a white noise wi

To ) | i _ € noise with

Zpi)arrgg P.t 1What}cl\er the perturbing noise, the received signal will be

oximately a white noise, if P is sufficiently 1

y large, in the s i

an entropy power approaching P + N, = enie of having

S. THE CHANNEL CAPACITY WITH A PEAX PowER LIMITATION

In some applications the transmitter is limited not by the average power
output but by the peak instantaneous power. The problem of calculljating

h C]Iallllcl ( apd.Clty 1S th th maxim y val ]atl()ll ()f t € ensem
t € en at ()f aximizin b
) g ( h 11SE ble

H(y) — H(n)
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subject to the constraint that all the functions f() in the ensemble be less
than or equal to /S, say, for all £. A constraint of this type does not work
out as well mathematically as the average power limitation. The most we

3 . . . . _— " .
. have obtained for this case is a lower bound valid for all ¥ an “asymptotic

~

upper band (valid for large Z%') and an asymptotic value of C for fvsmall.
Theorem 20: The channel capacity C for a band W perturbed by white
thermal noise of power N is bounded by

2

C > Wvlog’ék;ﬂ

w

where S is the peak allowed transmitter power. For sufficiently large 1‘;

9
Z S+ N
C < Wlog K}\/ — (1 4+ ¢

v

where € is arbitrarily small. As Z%-—» 0 (and provided the band W starts
at 0)
S
C—oWlogll+ )

We wish to maximize the entropy of the received signal. If ;7 is large

this will occur very nearly when we maximize the entropy of the trans-
mitted ensemble.

The asymptotic upper bound is obtained by relaxing the conditions on
the ensemble. Let us suppose that the power is limited to S not at every
instant of time, but only at the sample points. The maximum entropy of
the transmitted ensemble under these weakened conditions is certainly
greater than or equal to that under the original conditions. This altered
problem can be solved easily. The maximum entropy occurs if the different
samples are independent and have a distribution function which is constant

from — /S to +1/S. The entropy can be calculated as
W log 4S.
The received signal will then have an entropy less than

W log (4S5 + 2meN)(1 + ¢
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with e — 0 s
as — o and the channel capacity is obtained by subtracting

the entropy of the white noise, W log 2weN

2
W log (4S + 27eN)Y(1 4+ ¢) — W e TN
€) log (2reN) = W log me R 1 4.

This ; .
h’;‘s;) 12 g?e. desired upper bound to the channel capacity
poo 8.11;1.’1 a lower bound consider the same ensemble of functions. Le
u i :

these 1 el;}CS t1;)Cns lr);hpass?d .through an ideal filter with a triangular transfe;
. e gain is to be unity at §

characterist y at frequency 0 and decline linear

down ﬁltirlltllaO at frequency W .We first show that the output functiorlly
ve a peak power limitation S at all times (not just the sam; lS

ple

r

points). First we note that a sin 2 W't
ulse ="~ ooing 1 R
p AWt going into the filter produces

1 sin® 71
2 (zWi2

m the ()utpu t. IhlS fullCthIl 1S pever neg athe- Il e 11 p on (n
' &' 1€ 111 ut funCtl
‘]le ge]leral Cd.S(,) can be thought Of as the sum Of a series Of Shlfted funCth(nS

o S0 22V
2z Wi

where g, the amplitude of the sample, is
: . , Is not greater than

:Eép;t r:; tilze?g? oi shifted functions of the non-negative an-l aae\?: ivtxltllj

e e value fol:n; s.' ’I"hese f}lllctlolls being non-negative, the greatest

D e it \231 lis .obtamed when all the coefficients ¢ have their

maximum positive v« uii“w. \/§ In this case the input function was a

e e ;)m u eH S and since the flter has unit gain for D.C., the

T et ofe£1 ence the output ensemble has a peak power S:’

- ensembiz 1e.output ensemble can be calculated from that of th

e by using the theorem dealing with such a situation Th:

utp p Y S equal to th p l ) & I)
€ 1n ut entro ]us tlle e(}lllet 1 al m
[0} ut eIltIO 1 g TiC can

fo longdf=fo 10g(Wu—/-f)2df=_2W

Hence the output entropy is

W log 45 — 21 = W log =5
[4
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and the channel capacity is greater than

, 2 8
W log-}?’N'

. S .
We now wish to show that, for small N (peak signal power over average
I

white noise power), the channel capacity is approximately

S
T o= / - .
C = Wlog (1 + N) .

More precisely C/W log (1 + %) —1as %—» 0. Since the average signal
power P is less than or equal to the peak S, it follows that for all %

P S
R 4 o . < 7 o ).
C<W 1ob<1+N)_W 10;,(1+N>

Therefore, if we can find an ensemble of functions such that they correspond

to a rate nearly W log (1 + ]% and are limited to band W and peak S the

result will be proved. Consider the ensemble of functions of the following
type. A series of ¢ samples have the same value, either ++/S or — V'S,
then the next { samples have the same value, etc. The value for a series
is chosen at random, probability 1 for 4+4/S and § for —4/S 1 this
ensemble be passed through a filter with triangular gain characteristic (unit
gain at D.C.), the output is peak limited to &=S. Furthermore the average
power is nearly S and can be made to approach this by taking ¢ sufficiently
large. 'The entropy of the sum of this and the thermal noise can be found
by applying the theorem on the sum of a noise and a small signal. This

theorem will apply if

S
N

is sufficiently small. This can be insured by taking 1—“37 small enough (after

;
1is chosen). {The entropy power will be S + N to as closean approximation
as desired, and hence the rate of {ransmission as near as we wish to

W log (S—XYJY) .

U e S o
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PART V: THE RATE FOR A CONTINUOUS SOURCE
26. FipeLrty EvALvaTion FUNCTIONS

In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably more involved. Tn the first place a continuously variable quantity
can assume an infinite number of values and requires, therefore, an infinite
number of binary digits for exact specification. This means that to transmit
the output of a continuous source with exact recovery at the receiving point
requires, in general, a chanrel of infinite capacity {in bits per second).
Since, ordinarily, channels have a certain amount of noise, and therefore a
finite capacity, exact transmission is impossible.

This, however, evades the real issue. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-

mission to within a certain tolerance. The question is, can we assign a

definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-
ments are increased the rate will increase. It will be shown that we can, in
very general cases, define such a rate, having the property that it is possible,
by properly encoding the information, to transmit it over a channel whose
capacity is equal to the rate in question, and satisty the fidelity requirements.
A channel of smaller capacity is insufficient.

1t is first necessary to give a general mathematical formulation of the idea
of fidelity of transmission.

Consider the set of messages of a long duration,
say T seconds.

The source is described by giving the probability density,
in the associated space, that the source will select the message in question
P(x). A given communication system is described (from the external point
of view) by giving the conditional probability P.(y) that if message x is
produced by the source the recovered message at the receiving point will
be y. The system as a whole (including source and transmission system)
is described by the probability function P(x, ¥) of having message x and
final output y. If this function is known, the complete characteristics of
the system from the point of view of fidelity are known. Any evaluation
of fidelity must correspond mathematically to an operation applied to
P(x, y). This operation must at least have the properties of a simple order-
ing of systems; i.e. it must be possible to say of two systems represented by
Pi(w, y) and Py(x, y) that, according to our fidelity criterion, either (1) the
first has higher fidelity, (2) the second has higher fidelity, or (3) they have

d¥E 43 4 48 R42TT 2770 0

1 ual fidelity. This means that a criterion of fidelity can be represented by
- )

‘ " 2 numerically valued function:
1 (L%, ¥)
1 shose argument 1anges over possible probability functions lng, y)sumptions
o : d reasonable as
i der very general an
We will now show that un

. ] . : specialized
¥ the function v(P(x, ¥)) can be written in a seemingly much more b'gltfalues
& the ) . 8 S
% (on namely as an average of a function p(x, y) over the set of possi

3 ?

- of xand y: .
| W(P(x, ¥) = fj P(x, y) p(x, ¥) dx dy

i i : . (1) that the source and system are
o Ot')tam }hlts awje ne?ﬁxﬁtﬁnﬁ?ﬁh 1()163, with probability near}y 1, typical
ergol?m Sl?szrlr?ble arz (Z)Dthat the evaluation is “regsonable’” n tl(;e seniz
(:fh:t ?teis possil;le, by observing 2 typical input and outplut‘ .xl ;a.(xll ify;},wse
form a tentative evaluation on the basis 9f these samp eb"u ar o
les are increased in duration the tentative evaluation w1d, w A
:lr?tl; els approach the exact evaluation based on a full knowLe ge ?x h , 3p:
Let the’z tentative evaluation be olx, ¥). Then.th;a f\}ll?cchlz:e ,;n :Lhe W
proaches (as T — ) a constant for almost all ('x, y) W
probability region corresponding to the system:

oz, y) — v(P(x, )

and we may also write
oty 3) = [ [ P, Dol 90,y

since
ffP(x, y)dady =1

o es;abhi:)ej t}(lf (1’351112(51 1':}albeulgténeral nature of a “distal'lce” l.)et\iveen X
anrgh;,g Ul;i meaZur;s how bad it is (according to our ﬁt'iehty E:)tzr:)g }t)(;
receive y when x is transmitted. The gene1:al resultbgnrr:nr:s'emed n e
restated as follows: Any reasonable evaluation canr eandprecovewd o
average of a distance function over the set of me§§a;3es ind recoveres T
- and y weighted according to the probability P(x,y)ot g N 8 py
;a;,giisi: :Eestyion provided the duration T of the messages be taken su
)
iently large. | o
Cle9 It)';s notga “metric’’ in the strict sense,’howcvcr, si)nce in general it does not satisty
ither p(x, 3) = p(y ®) or p(% 3) T oly, z) = p(%, 2).

scmy SRR
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The following are simple examples of evaluation functions:
1. RM.S. Criterion.

=Gl 50y

In this very commonly used criterion of fidelity the distance function
p(x, ¥) is (apart from a constant factor) the square of the ordinary

euclidean distance between the points x and ¥ in the associated function
space.

w

plx,y) = % fo [x(&) — (1)) at

2. F}requency weighted R.M.S. criterion. More generally one can apply
different weights to the different frequency components before using an
R.M.S. measure of fidelity. This is equivalent to passing the difference

x(f) — (i) through a shaping filter and then determining the average
power in the output. Thus let

elt) = x(l) — y(2)

and

10 = [ et = 5y a

then

o(x, y) = —},le(02 dt.

3. Absolute error criterion.

plx, y) = —Tl-for [(8) — 5(0) | dt

4. The structure of the ear and brain determine mplicitly an evaluation, or
rather a number of evaluations, appropriate in the case of speech or mt’xsic
transmission. There is, for example, an “intelligibility” criterion in
which p(#, y) is equal to the relative frequency of incorrectly interpreted
words v‘v}'.xen message x(/) is received as y(f). Although we cannot give
an explicit representation of p(x, y) in these cases it could, in principle
be determined by sufficient experimentation. Some of its propertie;
follow from well-known experimental results in hearing, e.g., the ear is
relatively insensitive to phase and the sensitivity to am,pli{3 ’
quency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which we have

tude and fre-
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tacitly assumed an evaluation based on the frequency of errors. The
function p(x, y) is then defined as the number of symbols in the sequence
y differing from the corresponding symbols in & divided by the total num-
ber of symbols in x.

27. THE RATE FOR A SOURCE RELATIVE 10 A FIDELITY EVALUATION

We are now in a position to define a rate of generating information for a
continuous source. We are given P(x) for the source and an evaluation ¢
determined by a distance function p(x, y) which will be assumed continuous
inboth xand y. With a particular system P(x, y) the quality is measured by

v = ff p(x, y) P(x,y) dxdy

Furthermore the rate of flow of binary digits corresponding to P(x, y) is

Pz, y)
R = ff P(x, y) log - 227 dx dy.
P18 paypiy) P
We define the rate R, of generating information for a given quality v, of
reproduction to be the minimum of R when we keep v fixed at v and vary
Py). That is:

. P(x, y)
R=M f Plx, y) log o0 ax d
! Pz(lz?) (s, 9) log P(x)P(y) v

subject to the constraint:

v = _U P(z, y)p(x, v) dx dy.

This means that we consider, in effect, all the communication systems that
might be used and that transmit with the required fidelity. The rate of
transmission in bits per second is calculated for each one and we choose that
having the least rate. This latter rate is the rate we assign the source for
the fidelity in question.

The justification of this definition lies in the following result:

Theorem 21: Tf a source has a rate R; for a valuation # it is possible to
encode the output of the source and transmit it over a channel of capacity C
with fidelity as near »; as desired provided R; < €. This is not possible
if &y > C.

The last statement in the theorem follows immediately from the defmition
of Ry and previous results. If it were not true we could trunsmit more than
C bits per second over a channel of capacity C. The first part of the theorem
is proved by a method analogous to that used for Theorenm 11. We may, in
the first place, divide the (x, y) space into a large number of small cells and
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represent the situation as a discrete case. This will not change the evalua-
tion function by more than an arbitrarily small amount (when the cells are
very small) because of the continuity assumed for p(x, y). Suppose that

Py(x, y) is the particular system which minimizes the rate and gives Ry, We 3

choose from the high probability y’s a set at random containing

‘)(111 +ear

members where € — 0 as 7 — ». With large 7 each chosen point will be
connected by a high probability line (as in Fig. 10) to a set of #’s. A calcu-
lation similar to that used in proving Theorem 11 shows that with large T

almost all a’s are covered by the fans from the chosen y points for almost

all choices of the y’s. The communication system to be used operates as

follows: The selected points are assigned binary numbers. When a message” - 3

a Is originated it will (with probability approaching 1 as T — o) lie within
one at least of the fans. The corresponding binary number is transmitted
(or one of them chosen arbitrarily if there are several) over the channel by
suitable coding means to give a small probability of error. Since R, < ¢
this is possible. At the receiving point the corresponding y is reconstructed
and used as the recovered message.

The evaluation v; for this system can be made arbitrarily close to # by
taking T sufficiently large. This is due to the fact that for each long sample
of message x(/) and recovered message y(f) the evaluation approaches
(with probability 1).

It is interesting to note that, in this system, the noise in the recovered
message is actually produced by a kind of general quantizing at the trans-
mitter and is not produced by the noise in the channel. It is more or less
analogous to the quantizing noise in P.C.M.

28. THE CALCULATION OF¥ RATES

The definition of the rate is similar in many respects to the definition of
channel capacity. In the former

' : P(z, y)
R = Max [[ P(x,y) log 522 4y d
pﬁﬂPWW%mmw“y

with P(x) and ¢ = f P(x, y)p(x, ) dx dy fixed. 1In the latter
P{z)

C = Min f j P(x, y) log —PT(LA’—}% dx dy

with P,(y) fixed and possibly one or more other constraints (e.g., an average
power limitation) of the form K = s/ P(x, y) \(x, y) dx dy.
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A partial solution of the general maximizing problem for determining the
rate of a source can be given. Using Lagrange’s method we consider

P, y) - W)n(x (e )] da d
x NI £ Plx, y)o(x, v) + v(2)P(x, y)] dvdy
[/ [ e gty v oot |
The variational equation (when we take the first variation on Plx, v)
leads to -
P,(x) = B(x)e "7

where \ is determined to give the required fidelity and B(x) is chosen to
satisfy

f B(x)e ™Y dx = 1

This shows that, with best encoding, the conditional probability ott a cer-
tain cause for various received y, P,(x) will decline exponentially with the
distance function p(x, y) between the x and y is question.

In the special case where the distance function p(x, ) depends only on the
(vector) difference between x and v,

p(x, ) = p(x — )

we have

fB(x)e"“(’*”) dx = 1.

Hence B(x) is constant, say o, and
P,(x) = ae MEY)
Unfortunately these formal solutions are difficult to evaluate in. particular
cases and seem to be of little value. In fact, the actual calculation of rates
has been carried out in only a few very simple cases.
If the distance function p(x, v) is the mean square discrepancy bet\.zveen
x and y and the message ensemble is white noise, the rate can be determined.

In that case we have
R = Min [H(») — H,(x)] = H(x) — Max H,(x)

with N = Z;c_— y)®. But the Max H,(¥) occurs when y — xis a white noise,
and is equal to W, log 2re N where W, is the bandwidth of the message en-
semble. Therefore ,
R = Wi log 2zeQ — Wi log 2meN
Q
=W X
W, log N

where  is the average message power. This proves the following:
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Theorem 22: The rate for a white noise source of power () and band W,
relative to an R.M.S. measure of fidelity is

Q
AT
where N 1s the allowed mean square error between original and recovered
messages.

R = W, log

More generally with any message source we can obtain inequalities bound-
ing the rate relative to a mean square error criterion.
Theorem 23: The rate for any source of band W is bounded by

W, log% <R<W logz—%

where Q is the average power of the source, (1 its entropy power and A the
allowed mean square error.

The lower bound follows from the fact that the max H,(x) for a given
(x — 9)° = N occurs in the white noise case. The upper bound results if we
place the points (used in the proof of Theorem 21) not in the best way but
at random in a sphere of radius v/Q — N.
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APPENDIX 5

Let S be any measurable subset of the g ensemble, and S, the subset of
the f ensemble which gives S1 under the operation T. Then

Sl = TSQ

Let H' be the operator which shifts all functions in a set by the time A,
Then

'S, = H'TS, = TH'S,

since T is invariant and therefore commutes with H*. Hence if m[S] is the
probability measure of the set S

mlH'S)] = m[TH'S:] = m[H"S,]
= ml[Sy] = m[Si]

MATHEMATICAL THEORY OF COMMUNILALIUN Rt

where the second equality is by definition of measure ill t}.w: g space the
third since the f ensemble is stationary, and the last by definition of g meas-

ure again. . .
To prove that the ergodic property 1s preserved under inv ariant operations,

. . S
let S; be a subset of the g ensemble which is invariant under H', and let Sz
be the set of all functions f which transform into Si.  Then

'S, = H'TS: = TH'S: = S
so that HS, is included in 51 for allA. Now. since

mlH )‘S 2] = m[Si]

this implies
H)\Sz = Sg
for all A with m[Ss) # 0, 1. This contradiction shows that S5y does not exist.
| APPENDIX 6
The upper bound N, < Ni+ N., is due to the fact that the maximum

possible entropy for a power N1 + IV occurs when we have a white noise of
i is ¢ tropy power is N1+ Na.
is power. In this case the en - Ne .
thT(}) obtain the lower bound, suppose we have two distributions n # dimen
sions p(a;) and q(‘xg) with entropy powers N1 and No. . What fon‘n shmfld.
pand ¢ have to minimize the entropy power Ny of their convolution 7(x:):

r(w:) = f plydg(es — i) dyi-
The entropy Hs of 7 is given by
H; = —-f r(x;) log r(x:) dxi.
We wish to minimize this subject to the constraints

H; = —f p(x;) log p(x:) duxs

H,

- f Q(xt) ]-Og q(x.) dx; .
We consider then

U=—ﬂmwyw+wwmﬂﬂ+Mﬂmﬂm“

W=—fm+mymwm+upu%ﬂmm@
+ wl1 + log g(x)sg(2)]) dx-.
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If p(x) is varied at a particular argument i,

or(x) = g(a; — $)
and

ol =

-] glx; — s5,) log r(x;) da; — A log p(s;) =0
and similurly when ¢ is varied. Hence the conditions for a

] g(x; — ;) log r(x;) = —» log p(s;)

fp(x,» — 53) log r(x;) = —u log ¢(s,).

If we multiply the first by p(s:) and the second
respect to s we obtain

H3 = ‘*)\ H1

H 3 M H 2
or solving for A and y and replacing in the equations

I, f glxi — ;) log 7(x,) dx; = — 1, log p(s;)

o, j B(x: — s3) log r(x;) dx;

Now suppose p(x;) and q(x;) are normal

= —Hjlog p(s,).

p(x;) = ]_‘ilff Inlz 1
@y O — 12wy
- 1 Ba["
Q(-M) = (71'_—]5;‘/—2 exp — %EB,',-xixj.

Then r(x;) will also be normal with

n quadratic form C;,.
these forms are a,;, bij, ¢ then !

Cij = ai;; + b,;.
Wfl wish to show that these functior
and only if a;; = Kb;; and thus gi ini

& . ; us give the 5
First we have ’ i

N7 |
log r(x;) = élog o [Ciil — 32Cyi 20,

‘I(x,'—sil r(x) =2 1
f ) 0g r(x‘) ) lOgZ—‘; I(,,‘,'I - %EC,’,‘S,‘S,‘ - %EC{,‘I);,’.

= s, the variation in r(x) is

minimum are

by ¢(s:) and integrate with

If the inverses of

1s satisfy the minimizing conditions if
under the constraints,
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- This should equal

H;|n 1, .
;I—j [-2— l()g i;r {A.‘j! - %ZA,‘jS,‘S,’]
which requires A,; = g—l Cii.
3

In this case A;; = -I—IE B.; and both equations reduce to identities.

2
APPENDIX 7

The following will indicate a more general and more rigorous approach to
the central definitions of communication theory. Consider a probability
measure space whose elements are ordered pairs (x, ¥). The variables x, y
are to be identified as the possible transmitted and received signals of some
long duration T. Let us call the set of all points whose x belongs to a subset
Sy of x points the strip over S, and similarly the set whose y belongs to S,
the strip over S;. We divide x and y into a collection of non-overlapping
measurable subsets X; and V; approximate to the rate of transmission R by

1 P(X;, V)

R, = T Z P(X;, Y.) log PX)P(V))

where
P(X,) is the probability measure of the strip over X;

P(Y,) is the probability measure of the strip over ¥
P(X, 1)) is the probability measure of the intersection of the strips.

A further subdivision can never decrease R;. For let Xy be divided into

L= X1+ X1 and let

P(Y) =a PX) =b+c¢
P(X]) = b P(X;, Vo) = d
P(XY) = ¢ P(X{, 1) = e

PX, Y)=d+e

Then in the sum we have replaced (for the X, ¥ intersection)
d+e d e

d+ e dlog — + oy

( e) log e by log pra e log e

1t is easily shown that with the limitation we have on b, ¢, d, e,

dt )™ &
b+ ¢ — b
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and consequently the sum is increased. T
sions form a directed set, with R m
the subdivision. We ma
for the Ry and write it

_1 , Plx,y)
R = T ff P(x, y) log PGIP(y) dx dy.

hus the various possible subdivi-
onotonic increasing with refinement of
y define R unambiguously as the least upper bound

This integral, understood in the above sense, includes both the continuous
and discrete cases and of course many others which cannot be represented
in either form. It is trivial in this formulation that if x and « are in one-to-
one correspondence, the rate from # to ¥ is equal to that from » to y. Ify
is any function of y (not necessarily with an inverse) then the rate from x to
¥ is greater than or equal to that from x to 7
“approximations, the subdivisions of y are essentially a finer subdivision of
those for v. More generally if y and v are related not functionally but
statistically, i.e., we have a probability measure space (9, ), then R(x, 7) <
R(x,y). This means that any operation applied to the received signal, even
though it involves statistical elements, does not increase R.
Another notion which should be defined prezisely in an abstract formu-
lation of the theory is that of “dimension rate,” that is the average number
of dimensions rejuired per second to specify a member of an ensemble. In
the band limited case 2W numbers per second are sufficient. A general
definition can be framed as follows. Let fa(t) be an ensemble of functiong
and let p;[f.(2), f+()] be a metric measuring the “distance” from fa to fs
over the time T (for example the R.M.S. discrepancy over this interval.)
Let N(e, 8, T) be the least number of elements f which can be chosen such
that all elements of the ensemble apart from a set of measure ¢ are within
the distance ¢ of at least one of those chosen. Thus we are covering the
space to within e apart from a set of small measure §. We define the di-
mension rate X for the ensemble by the triple limit

since, in the calculation of the

A = Lim Lim Lim ¢ V68, 7).
80 0 rHw  Tloge
This is a generalization of the meas
topology, and agrees with the intuitiv,
where the desired result is obvious.

ure type definitions of dimension in
e dimension rate for simple ensembles

Transients in Mechanical Systems
By J. T. MULLER

INTRODUCTION

A study of the response of an electrical networ%& or system to the mé)u;
of transients in the form of short-duration pu.lses is an accepted metho l0
analysis of the network. By comparing the'mput and t%le output, conclu-
sions may be drawn as to the respective merit of the various c.ompo\nent.s.h

Until recently similar procedures were only of a?adetmc interest w1t
mechanical systems. However, the tests for mecha.mcal.ruggedness, whlcg
are required of electronic gear in order to pass sgec1ﬁcat10ns for 'tht.a a{me
forces, are an example of the application of transients to a mechanical sys-
tem. These tests are known as High I'mpact Shock Tests. )

A basic part of an electrical system is a dan.lped resonant network f:onblxst(;
ing of an inductance, a capacitance and a resistance. A mass, a spring an
a friction device is the equivalent mechanical netwo.rk called a sxmpl‘e me—l
chanical system and a combination of such networksisa genefal mechdmc’d‘
system. It is, of course, advantageous to keep the mechanical systefmt;:s
simple as possible without detracting from the general usefulness of the

ined. o

Iesi}l:s Enl?(:?)lems here considered are pertinent to a system 'v\.rhlch is essen-
tially made up of a supporting structure or table and a res:xhent mm;:;ng
array bearing the equipment (e.g. electronic gear) which is vulnerable to

. Fig. 1. .
Sh(/)&dsihocgzs?se thegph)zsical manifestation of the transfe{' of mecham'cal energy
from one body to another during an extremely. short interval (?f time. Tllle
order of magnitude of the time interval is milliseconds and quite frequently

ions of a millisecond. '
fr%lc‘::f(:) r;ystem is excited by administering la.rge spurts of m.echamc.al el,leiiy
to the supporting table. The manner in which this energy is suppllefl to h_e
base and the way it is dissipated through the system are the subjects of this
pa’II)‘;r(; energy transfer to the supporting tab}e is accomplished by the ’11‘1;6
of huge hammers which strike the anvil with con?rol\able _speeds. e
action is assumed to be similar to that of an explosion, particularly to an
underwater explosion at close range or a near-miss. As to' the real com}')ar:
ison between the two, the reader is rcferred‘ to the various manus'cr;lpfa.
published by the Bureau of Ships. This particular phase of the subject is
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