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A METHOD OF GEOMETRICAL REPRESENTATION OF THE
THERMODYNAMIC PROPERTIES OF SUBSTANCES BY
MEANS OF SURFACES.

[Transactions of the Connecticut Academy, I1. pp. 382-404, Dec. 1873.]

THE leading thermodynamic properties of a fluid are determined
by the relations which exist between the volume, pressure, tempera-
ture, energy, and entropy of a given mass of the fluid in a state of
thermodynamic equilibrium. The same is true of a solid in regard
to those properties which it exhibits in processes in which the
pressure is the same in every direction about any point of the solid.
But all the relations existing between these five quantities for any
substance (three independent relations) may be deduced from the
single relation existing for that substance between the volume, energy,
and entropy. This may be done by means of the general equation,

de=tdr)—pdgi, i (1)*
that is, p=- (g—:)","}‘ g Q:T\' u _ ' T®@ .

where v, p, ¢, ¢, and 5 denote severally the volume, pressure, absolute
temperature, energy, and entropy of the body considered. The sub-
script letter after the differential coefficient indicates the quantity
which is supposed constant in the differentiation.

Representation of Volume, Entropy, Energy, Pressure, and
Temperature.

Now the relation between the volume, entropy, and energy may
be represented by a surface, most simply if the rectangular co-
ordinates of the various points of the surface are made equal to the
volume, entropy, and energy of the body in its various states. It
may be interesting to examine the properties of such a surface, which

*For the demonstration of this equation, and in regard to the units used in the
@easurement of the quantities, the reader is referred to page 2.
Q. L C
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we will call the thermodynamic surface of the body for which it is
formed.*

To fix our ideas, let the axes of v, 5, and ¢ have the directions
usually given to the axes of X, Y, and Z (v increasing to the right
n forward, and ¢ upward). Then the pressure and temperature of
the state represented by any point of the surface are equal to the
tangents of the inclinations of the surface to the horizon at that
point, as measured in planes perpendicular to the axes of 5 and of ¢
respectively. (Eqs. 2 and 3) It must be observed, however, that
in the first case the angle of inclination is measured upward from
the direction of decreasing v, and in the second, upward from the
direction of increasing 7. Hence, the tangent plane at any point
indicates the temperature and pressure of the state represented. It
will be convenient to speak of a plane as representing a certain
pressure and temperature, when the tangents of its inclinations t,
the horizon, measured as above, are equal to that pressure and
temperature.

Before proceeding farther, it may be worth while to distinguish
between what is essential and what is arbitmry in a surface thus
formed. The position of the plane v=0 in the surface is evidentiy
fixed, but the position of the planes n=0, e=0 is arbitrary, pmnded
the direction of the axes of 5 and e be not altered. This results from
the nature of the definitions of entropy and energy, which involve
each an arbitrary constant. As we may make =0 and e=0 for any
state of the body which we may choose, we may place the origin of
co-ordinates at any point in the plane v=0. Again, it is evident
from the form of equation (1) that whatever changes we may make in
the units in which volume, entropy, and energy are measured, it wi.'
always be possible to make such changes in the units of temperatare
and pressure, that the equation will hold true in its present form.
without the introduction of constants. It is easy to see how a change
of ‘the units of volume, entropy, and energy would affect the surface.
The projections parallel to any one of the axes of distances between
points of the surface would be changed in the ratio inverse to that
in which the corresponding unit had been changed. These con-
siderations enable us to foresee to a certain extent the nature of the
general properties of the surface which we are to investigate. They

’Pro'uor J. Thomson bas proposed and used a surface in which the co-ordimates
are proportional to the volume, pressure, and temperatare of the body. (Prec. Reg
8oc., Nov. 16, 1871, vol. xx, p. 1; and PAL. Mag., vol. xliii, p. 227.) It is evideme,
however, that the relation between the volume, pressure, and temperature affords »
less complete knowledge of the properties of the body than the relation between the
volume, entropy, and energy. For, while the former relation is entirely determined by
the latter, and can be derived from it by differentiation, the latter relation is by »e
means determined by the former.
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must be such, namely, as shall not be affected by any of the changes
mentioned above. For example, we may find properties which concern
the plane v=0 (as that the whole surface must necessarily fall on the
positive side of this plane), but we must not expect to find properties
which concern the planes =0, or €=0, in distinction from others
parallel to them. It may be added that, as the volume, entropy, and
energy of a body are equal to the sums of the volumes, entropies, and
energies of its parts, if the surface should be constructed for bodies
differing in quantity but not in kind of matter, the different surfaces
thus formed would be similar to one another, their linear dimensions
being proportional to the quantities of matter.

Nature of that Part of the Surface which represents States which are
not Homogeneous.

This mode of representation of the volume, entropy, energy, pressure,
and temperature of a body will apply as well to the case in which
different portions of the body are in different states (supposing always
that the whole is in a state of thermodynamic equilibrium), as to that
in which the body is uniform in state throughout. For the body
taken as a whole has a definite volume, entropy, and energy, as well
as pressure and temperature, and the validity of the general equation
(1) is independent of the uniformity or diversity in respett to state
of the different portions of the body.* It is evident, therefore, that

*#It is, however, supposed in this equation that the variations in the state of the
body, to which dv, dn, and de refer, are such as may be produced reversibly by expan-
sicn and compression or by addition and subtraction of heat. Hence, when the body
consists of parts in different states, it is necessary that these states should be such as
can pass either into the other without semsible change of pressure or temperature.
Otherwise, it would be necessary to suppose in the differential equation (1) that the
proportion in which the body is divided into the different states remains constant.
Bat such a limitation would render the equation as applied to a compound of different
states valueless for our present purpose. If, however, we leave out of account the
cases in which we regard the states as chemically different from one another, which
lie beyond the scope of this paper, experience justifies us in assuming the above con-
dition (that either of the two states existing in contact can pass into the other without
sengible change of the pressure or temperature), as at least approximately true, when
one of the states is fluid. But if both are solid, the necessary mobility of the parts is
wanting. It must therefore be understood, that the following discussion of the com-
pound states is not intended to apply without limitation to the exceptional cases, where
we bhave two different solid states of the same substance at the same pressure and
temperature. It may be added that the thermodynamic equilibrium which subsists
between two such solid states of the same substance differs from that which subsists
when one of the states is fluid, very much as in statics an equilibrium which is main-
tained by friction differs from that of a frictionless machine in which the active forces
are 30 balanced, that the slightest change of force will produce motion in either
direction.

Another limitation is rendered necessary by the fact that in the following discussion
the magnitude and form of the bounding and dividing surfaces are left out of acoount ;

Y
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the thermodynamic surface, for many substances at least, can be
divided into two parts, of which one represents the homogeneous
states, the other those which are not so. We shall see that, when
the former part of the surface is given, the latter can readily be
formed, as indeed we might expect. We may therefore call the
former part the primitive surface, and the latter the derived surface.

To ascertain the nature of the derived surface and its relations to
the primitive surface sufficiently to construct it when the latter is
given, it is only necessary to use the principle that the volume,
entropy, and energy of the whole body are equal to the sums of the
volumes, entropies, and energies respectively of the parts, while the
pressure and temperature of the whole are the same as those of each
of the parts. Let us commence with the case in which the body is
in part solid, in part liquid, and in part vapor. The position of the
point determined by the volume, entropy, and energy of such a com-
pound will be that of the center of gravity of masses proportioned
to the masses of solid, liquid, and vapor placed at the three points of
the primitive sutface which represent respectively the states of com-
plete solidity, complete liquidity, and complete vaporization, each at
the temperature and pressure of the compound. Hence, the part of
the surface which represents a compound of solid, liquid, and vapor is
a plane triangle, having its vertices at the points mentioned. The
fact that the surface is here plane indicates that the pressure and
temperature are here constant, the inclination of the plane indicating
the value of these quantities. Moreover, as these values are the same
for the compound as for the three different homogeneous states cor-
responding to its different portions, the plane of the triangle is
tangent at each of its vertices to the primitive surface, viz: at one
vertex to that part of the primitive surface which represents solid, at
another to the part representing liquid, and at the third to the part
representing vapor.

When the body consists of a compound of two different homo-
geneous states, the point which represents the compound state will be
at the center of gravity of masses proportioned to the masses of the
parts of the body in the two different states and placed at the points
of the primitive surface which represent these two states (i.e., which
represent the volume, entropy, 4nd energy of the body, if its whole
mass were supposed successively in the two homogeneous states which
occur in its parts). It will therefore be found upon the straight line

8o that the results are in general strictly valid only in cases in which the influence
of these particulars may be neglected. When, therefore, two states of the substance
are spoken of as in contact, it must be understood that the surface dividing them
is plane. To consider the subject in a more general form, it would be necessary to
introduce considerations which belong to the theories of capillarity and crystallization.

™
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which unites these two points. As the pressure and temperature are
evidently constant for this line, a single plane ean be tangent to the
derived surface throughout this line and at each end of the line tan-
gent to the primitive surface.®* If we now imagine the temperature
and pressure of the compound to vary, the two points of the primitive
surface, the line in the derived surface uniting them, and the tangent

#1t is here shown that, if two different states of the substance are such that they
can exist permanently in contact with each other, the points representing these states
in the thermodynamic surface have a common tangent plane. We shall see hereafter
that the converse of this is true,—that, if two points in the thermodynamic surface have
s common tangent plane, the states represented are such as can permanently exist in
contact; and we shall also see what determines the direction of the discontinuocus
change which oocurs when two different states of the same pressure and temperature,
for which the condition of a common tangent plane is not satisfied, are brought into
contact.

It is easy to express this condition analytically. Resolving it into the comditions,
that the tangent planes shall be parallel, and that they shall cut the axis of ¢ at the
same point, we have the equations

=r, (o)
¢=¢, ®
- P = - g, o)

where the letters which refer to the differemt states are distingwished by accenta. If
there are three states which can exist in contact, we must have for these states,

g=p'=p",
= ‘n__._‘nl’
‘I_‘I'I+PI‘/=.II"I"I+?N (Y L ""'i"’"'

These results are interesting, as they show us how we might foresee whether two
given states of a substance of the same pressure and temperature, can or cannot exist
in contact. It is indeed true, that the values of ¢ and y cannot like those of », p, and ¢
be ascertained by mere measurements upon the substance while in the two states in
question. It is necessary, in order to find the value of ¢'-¢ or ¥” -v/, to carry out
measurements upon a process by which the substance is brought from ome state to the
other, but this need not be by a process in which the two given states shall be found in con-
tact, and in some cases at least it may be done by processes in which the body remains
slwaye homogeneous in state. For we know by the experiments of Dr. Andrews,
Phil. Troms., volL 159, p. 575, that carbonic acid may be carried from any of the
states which we usually call liquid to any of those which we usually call gas, without
losing its homogeneity. Now, if we had so carried it from a state of liquidity to a
sate of gas of the same pressure and temperature, making the proper measurements
in the process, we should be able to foretell what would occur if these two states of
the substance should be brought together,—whether evaporation would take place, or
condensation, or whether they would remain unchanged in contact,—although we had
Bever seen the phenomenon of the coexistence of these two states, or of any other two
states of this substance.

Equation () may be put in a form in which its validity is at once manifest for two
states which can pass either into the other at a constant pressure and temperature.
If we put p’ and ¢ for the equivalent p” and ¢, the equation may be written

=t (" -n)-p' (V-v).

Here the left hand member of the equation represents the difference of emergy in the
two states, and the two terms on the right represent severally the heat received and
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plane will change their positions, maintaining the aforesaid relations

We may conceive of the motion of the tangent plane as produced by

rolling upon the primitive surface, while tangent to it in two points

and as it is also tangent to the derived surface in the lines joining

these points, it is evident that the latter is a developable surfacr

and forms a part of the envelop of the successive positions of the

rolling plane. We shall see hereafter that the form of the primitive

surface is such that the double tangent plane does mot cut it, &
that this rolling is physically possible.

From these relations may be deduced by simple geometrical

considerations one of the principal propositions in regard to such

compounds. Let the tangent plane touch the pn-

mitive surface at the two points L and V (fig. 1)

which, to fix our ideas, we may suppose to repre-

sent liquid and vapor; let planes pass through

these points perpendicular to the axes of v and 3

V' respectively, intersecting in the line AB, which

will be parallel to the axis of e. Let the tangent

L plane cut this line at A, and let LB and VC be

e 1 drawn at right angles to AB and parallel to the

axes of p and v. Now the pressure and temperature represented by

the tangent plane are evidently 8—8 and %I’E respectively, and if we

Al
A

K]

suppose the tangent plane in rolling upon the primitive surface to
turn about its instantaneous axis LV an infinitely small mgle ©
as to meet AB in A, dp anddtwnllbeequalto%—e and BL

respectively. Therefore,

dp_BL_n -7

dt=CV - v =V
where ¢ and 5" denote the volume nnd entropy for the point L
and v" and 5" those for the point V. If we substitute for §"—3
its equivalent ; (r denoting the heat of vaporization), we have the
dp_  r
dt (v =v)
the work done when the body passes from one state to the other. The equation may

also be derived at onoce from the general equation (1) by integration.
It is well known that when the two states being both fluid meet in a curved sarface.

instead of (a) we have p-p= r(' ')

equation in its usual form,

r
where v and v are the radil of the principal curvatures of the surface of contact a2 any
point (positive, if the concavity is toward the mass to which p° refers), and 7 » wha
is called the swperficial temsion. Equation (8), however, holds good for such cesss, ead
it might easily be proved that the same is trus of equation (7). In other words, the
taagent planes for the points in the thermodynamio surface repressating the two states
out the plane v=0 in the same line.
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Properties of the Surface relating to Stability of Thermodynamic
Equilibrium.

We will now turn our attention to the geometrical properties of
the surface, which indicate whether the thermodynamic equilibrium
of the body is stable, unstable, or neutral. This will involve the
consideration, to a certain extent, of the nature of the processes which
take place when equilibrium does not subsist. We will suppose the
body placed in a medium of constant pressure and temperature; but
as, when the pressure or temperature of the body at its surface differs
from that of the medium, the immediate contact of the two is hardly
consistent with the continuance of the initial pressure and temperature
of the medium, both of which we desire to suppose constant, we will
suppose the body separated from the medium by an envelop which
will yield to the smallest differences of pressure between the two, but
which can only yield very gradually, and which is also a very poor
conductor of heat. It will be convenient and allowable for the pur-
poses of reasoning to limit its properties to those mentioned, and to
suppose that it does not occupy any space, or absorb any heat except
what it transmits, i.e., to make its volume and its specific heat 0. By
the intervention of such an envelop, we may suppose the action of the
body upon the medium to be so retarded as not sensibly to disturb
the uniformity of pressure and temperature in the latter.

When the body is not in a state of thermodynamic equilibrium, its
state is not one of those which are represented by our surface. The
body, however, as a whole has a certain volume, entropy, and energy,
which are equal to the sums of the volumes, etc., of its parts.* If,
then, we suppose points endowed with mass proportional to the
masses of the various parts of the body, which are in different thermo-
dynamic states, placed in the positions determined by the states
and motions of these parts, (ie., 8o placed that their co-ordinates are
equal to the volume, entropy, and energy of the whole body supposed
successively in the same states and endowed with the same velocities
as the different parts), the center of gravity of such points thus
placed will evidently represent by its co-ordinates the volume, entropy,
and energy of the whole body. If all parts of the body are at rest,
the point representing its volume, entropy, and energy will be the
center of gravity of a number of points upon the primitive surface.
The effect of motion in the parts of the body will be to move the
corresponding points parallel to the axis of ¢, a distance equal in
each case to the vis viva of the whole body, if endowed with the

# As the discussion is to apply to cases in which the parts of the body are in (sensible)
motion, it is necessary to define the semse in which the word energy is to be used. We

will use the word as incduding the vis viva of sensible motions.
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velocity of the part represented ;—the center of gravity of points
thus determined will give the volume, entropy, and energy of the
whole body.

Now let us suppose that the body having the initial volume,
entropy, and energy, v', , and €', is placed (enclosed in an envelop as
aforesaid) in 8 medium having the constant pressure P and tempers-
ture T, and by the action of the medium and the interaction of its
own parts comes to a final state of rest in which its volume, etc.. are
V', 9°, € ;—we wish to find a relation between these quantities. If
we regard, a8 we may, the medium as a very large body, so that
imparting heat to it or compressing it within moderate limits will
have no appreciable effect upon its pressure and temperature, and
write V, H, and E, for its volume, entropy, and energy, equation (1)

becomes dE=TdH-PdV,
which we may integrate regarding P and T as constants, obtaining
E—E=TH -TH -PV"+PV’, (8)

where E’, E”, etc., refer to the initial and final states of the medium.
Again, as the sum of the energies of the body and the surrounding
medium may become less, but cannot become greater (this arises from
the nature of the envelop supposed), we have

€+E =¢+E'. (b)
Again as the sum of the entropies may increase but cannot diminish

r+H Zn+H' )
Lastly, it is evident that

‘{I+Vll=vl+yl. (d)

These four equations may be arranged with slight changes as follows:
—E"+TH"-PV'=~E'+TH - PV’
C+E €+ E’
—Ty"—TH"=-Ty'-TH’
Py'+ PV"=Pv+ PV

By addition we have

=Ty +Pv' —e~Ty+Pv. (e
Now the two members of this equation evidently denote the vertical
distances of the points (¢, 5", €”) and (v, ', €') above the plane pass-
ing through the origin and representing the pressure P and tempers-
ture T. And the equation expresses that the ultimate distance is les
or at most equal to the initial. It is evidently immaterial whether
the distances be measured vertically or normally, or that the fixed
plane representing P and T should pass through the origin; bat
distances must be considered negative when measured from a point
below the plane.
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It is evident that the sign of inequality holds in (e) if it holds in
either (b) or (c), therefore, it holds in (e) if there are any differences
of pressure or temperature between the different parts of the body
or between the body and the medium, or if any part of the body has
sensible motion. (In the latter case, there would be an increase of
entropy due to the conversion of this motion into heat.) But even if
the body is initially without sensible motion and has throughout the
same pressure and temperature as the medium, the sign < will still
hold if different parts of the body are in states represented by points
in the thermodynamic surface at different distances from the fixed
plane representing P and T. For it certainly holds if such initial
circumstances are followed by differences of pressure or temperature,
or by sensible velocities. Again, the sign of inequality would neces-
sarily hold if one part of the body should pass, without producing
changes of pressure or temperature or semsible velocities, into the
state of another part represented by a point not at the same distance
from the fixed plane representing P and . But these are the only
suppositions possible in the case, unless we suppose that equilibrium
sabsists, which would require that the points in question should have
a common tangent plane (page 37), whereas by supposition the planes
tangent at the different points are parallel but not identical

The results of the preceding paragraph may be summed up as
follows :—Unless the body is initially without sensible motion, and
its state, if homogeneous, is such as is represented by a point in the
primitive surface where the tangent plane is parallel to the fixed plane
representing P and T, or, if the body is not homogeneous in state,
unless the points in the primitive surface representing the states of
its parts have a common tangent plane parallel to the fixed plane
representing P and T, such changes will ensue that the distance
of the point representing the volume, entropy, and energy of the
body from that fixed plane will be diminished (distances being con-
sidered negative if measured from points beneath the plane) Let
us apply this result to the question of the stability of the body when
surrounded, as supposed, by & medium of constant temperature and
pressure.

The state of the body in equilibrium will be represented by a point
in the thermodynamic surface, and as the pressure and temperature of
the body are the same as those of the surrounding medium, we may
take the tangent plane at that point as the fixed plane representing
Pand T. If the body is not homogeneous in state, although in
equilibrium, we may, for the purposes of this discussion of stability,
either take a point in the derived surface as representing its state, or
we may take the points in the primitive surface which represent the
states of the different parts of the body. These points, as we have

Ao
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seen (page 87), have a common tangent plane, which is identical with
the tangent plane for the point in the derived surface.

Now, if the form of the surface be such that it falls above the tan-
gent plane except at the single point of contact, the equilibrium is
necessarily stable; for if the condition of the body be slightly altered.
either by imparting sensible motion to any part of the body, or by
slightly changing the state of any part, or by bringing any small
part into any other thermodynamic state whatever, or in all of these
ways, the point representing the volume, entropy, and energy of the
whole body will then occupy a position above the original tangeat
plane, and the proposition above enunciated shows that processes
will ensue which will diminish the distance of this point from that
plane, and that such processes cannot cease until the body is brought
back into its original condition, when they will necessarily cease on
account of the form supposed of the surface.

On the other hand, if the surface have such a form that any part
of it falls below the fixed tangent plane, the equilibrium will be
unstable. For it will evidently be possible by a slight change in the
original condition of the body (that of equilibrium with the surround-
ing medium and represented by the point or points of contact) to
bring the point representing the volume, entropy, and energy of the
body into a position below the fixed tangent plane, in which case we
see by the above proposition that processes will occur which will
carry the point still farther from the plane, and that such processes
cannot cease until all the body has passed into some state entirely
different from its original state.

It remains to consider the case in which the surface, although it
does not anywhere fall below the fixed tangent plane, nevertheless
meets the plane in more than one point. The equilibrium in this
case, as we might anticipate from its intermediate character between
the cases already considered, is neutral. For if any part of the
body be changed from its original state into that represented by
another point in the thermodynamic surface lying in the same tan-
gent plane, equilibrium will still subsist. For the supposition in
regard to the form of the surface implies that uniformity in tempers-
ture and pressure still subsists, nor can the body have any necoessary
tendency to pass entirely into the second state or to return into the
original state, for a change of the values of T and P less than any
assignable quantity would evidently be sufficient to reverse such s
tendency if any such existed, as either point at will could by such an
infinitesimal variation of T and P be made the nearer to the plane
representing T and P.

It must be observed that in the case where the thermodynamic
surface at a certain point is concave upward in both its principsl
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curvatures, but somewhere falls below the tangent plane drawn
through that point, the equilibrium although unstable in regard to
discontinuous changes of state is stable in regard to continuous
changes, as appears on restricting the test of stability to the vicinity
of the point in question ; that is, if we suppose a body to be in a state
represented by such a point, although the equilibrium would show
iteelf unstable if we should introduce into the body a small portion
of the same substance in one of the states represented by points
below the tangent plane, yet if the conditions necessary for such a
discontinuous change are not present, the equilibrium would be
stable. A familiar example of this is afforded by liquid water when
heated at any pressure above the temperature of boiling water at
that pressure.*

Leading Features of the Thermodynamic Surface for Substances
which take the forms of Solid, Liquid, and Vapor.

We are now prepared to form an idea of the general character of
the primitive and derived surfaces and their mutual relations for a
substance which takes the forms of solid, liquid, and vapor. The
primitive surface will have a triple tangent plane touching it at the
three points which represent the three states which can exist in
contact. Except at these three points, the primitive surface falls
entirely above the tangent plane. That part of the plane which forms
a triangle having its vertices at the three points of contact, is the
derived surface which represents a compound of the three states of the
substance. We may now suppose the plane to roll on the under side
of the surface, continuing to touch it in two points without cutting it.
This it may do in three ways, viz: it may commence by turning about
any one of the sides of the triangle aforesaid. Any pair of points
which the plane touches at once represent states which can exist
permanently in contact. In this way six lines are traced upon the
surface. These lines have in general a common property, that a
tangent plane at any point in them will also touch the surface in
another point. We must say in general, for, as we shall see hereafter,
this statement does not hold good for the critical point. A tangent
plane at any point of the surface outside of these lines has the surface

*If we wish to express in a single equation the necessary and sufficient condition
of thermodynamic equilibrium for a substance when surrounded by a medium of constant
pressare P and temperature 7', this equation may be written

8(e- Tn+ Pv)=0,
when 3 refers to the variation produced by any variations in the state of the parts of
the body, and (when different parts of the body are in different states) in the proportion
in which the body is divided between the different states. The condition of stable
equilibrium is that the value of the expression in the parenthesis shall be a minimum.

L
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entirely above it, except the single point of contact. A tangent plane
at any point of the primitive surface within these lines will cut the
surface. These lines, therefore, taken together may be called the
limit of absolute stability, and the surface outside of them, the surface
of absolute stability. That part of the envelop of the rolling plane,
which lies between the pair of lines which the plane traces on the
surface, is a part of the derived surface, and represents a mixture of
two states of the substance.

The relations of these lines and surfaces are roughly represented in
horizontal projection* in figure 2, in which the full lines represent lines
on the primitive surface, and the dotted lines those on the derived
surface. S, L, and V are the points which have a common tangent

8” ¢

Fig. 2

plane and represent the states of solid, liquid, and vapor which can
exist in contact. The plane triangle SLV is the derived surface
representing compounds of these states. LL’ and VV’ are the pair of
lines traced by the rolling double tangent plane, between which lies
the derived surface representing compounds of liquid and vapor.
VV” and SS” are another such pair, between which lies the derived
surface representing compounds of vapor and solid. SS” and LL”
are the third pair, between which lies the derived surface representing
a compound of solid and liquid. L"LL’, V'VV” and S”SS” are the
boundaries of the surfaces which represent respectively the absolutely
stable states of liquid, vapor, and solid.

The geometrical expression of the results which Dr. Andrews,

% A horizontal projection of the thermodynamic surface is identical with the diagram
described on pages 20-28 of this volume, under the name of the volume-entropy
diagram,
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Phil. Trans., vol. 159, p. 575, has obtained by his experiments with
carbonic acid is that, in the case of this substance at least, the derived
surface which represents a compound of liquid and vapor is terminated
s follows: as the tangent plane rolls upon the primitive surface,
the two points of contact approach one another and finally fall
together. The rolling of the double tangent plane necessarily comes
toan end. The point where the two points of contact fall together is
the critical point. Before considering farther the geometrical character-
istics of this point and their physical significance, it will be convenient
to investigate the nature of the primitive surface which lies between
the lines which form the limit of absolute stability.

Between two points of the primitive surface which have a common
tangent plane, as those represented by L’ and V' in figure 2, if there
is no gap in the primitive surface, there must evidently be a region
where the surface is concave toward the tangent plane in one of its
principal curvatures at least, and therefore represents states of un-
stable equilibrium in respect to continuous as well as discontinuous
changes (see pages 42, 43).* If we draw a line upon the primitive
surface, dividing it into parts which represent respectively stable and
unstable equilibrium, in respect to continuous changes, ie., dividing
the surface which is concave upward in both its principal curvatures
from that which is concave downward in one or both, this line, which
may be called the limit of essential imstability, must have a form
somewhat like that represented by l'Cvv'ss’ in figure 2. It touches
the limit of absolute stability at the critical point C. For we may
take a pair of points in LC and VC having a common tangent plane
as near to C as we choose, and the line joining them upon the primi-
tive surface made by a plane section perpendicular to the tangent
plane, will pass through an area of instability.

The geometrical properties of the critical point in our surface may
be made more clear by supposing the lines of curvature drawn upon
the surface for onme of the principal curvatures, that one, namely,
which has different signs upon different sides of the limit of essential
instability. The lines of curvature which meet this line will in
general cross it. At any point where they do so, as the sign of their
curvature changes, they evidently cut a plane tangent to the surface,
and therefore the surface itself cuts the tangent plane. But where
one of these lines of curvature touches the limit of essential instability
without crossing it, so that its curvature remains always positive
(curvatures being considered positive when the concavity is on the
upper side of the surface), the surface evidently does not cut the

° This is the same result as that obtained by Professor J. Thomson in connection with
the surface referred to in the note on page 34,
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tangent plane, but has a contact of the third order with it in the section
of least curvature. The critical point, therefore, must be a point
where the line of that principal curvature which changes its sign
is tangent to the line which separates positive from negative
curvatures.

From the last paragraphs we may derive the following physical
property of the critical state:—Although this is a limiting state
between those of stability and those of instability in respect to con-
tinuous changes, and although such limiting states are in general
unstable in respect to such changes, yet the critical state is stable in
regard to them. A similar proposition is true in regard to absolute
stability, ie., if we disregard the distinction between continuous and
discontinuous changes, viz: that although the critical state is a limit-
ing state between those of stability and instability, and although the
equilibrium of such limiting states is in general neutral (when we
suppose the substance surrounded by a medium of constant pressure
and temperature), yet the critical point is stable.

From what has been said of the curvature of the primitive surface
at the critical point, it is evident, that if we take a point in this
surface infinitely near to the critical point, and such that the tangent
planes for these two points shall intersect in a line perpendicular to
the section of least curvature at the critical point, the angle made by
the two tangent planes will be an infinitesimal of the same order as
the cube of the distance of these points. Hence, at the critical point

@0 @~ @ @),
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and if we imagine the isothermal and isopiestic (line of constant
pressure) drawn for the critical point upon the primitive surface,
these lines will have a contact of the second order.

Now the elasticity of the substance at constant temperature and
its specific heat at constant pressure may be defined by the equations,

e==o(f): =),

therefore at the critical point

e=0, 1=0,

@ G0 @)= (@),=0

The last four equations would also hold good if p were substituted
for t, and vice versa.
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We have seen that in the case of such substances as can pass con-
tinuously from the state of liquid to that of vapor, unless the primi-
tive surface is abruptly terminated, and that in a line which passes
through the critical point, a part of it must represent states which are
essentially unstable (ie., unstable in regard to continuous changes),
and therefore cannot exist permanently unless iz very limited spaces.
It does not necessarily follow that such states cannot be realized at
all. It appears quite probable, that a substance initially in the
critical state may be allowed to expand so rapidly that, the time being
too short for appreciable conduction of heat, it will pass into some of
" these states of essential instability. No other result is possible on
the supposition of no transmission of heat, which requires that the
points representing the states of all the parts of the body shall be
confined to the isentropic (adiabatic) line of the critical point upon
the primitive surface. It will be observed that there is no instability
in regard to changes of state thus limited, for this line (the plane
section of the primitive surface perpendicular to the axis of 5) is con-
cave upward, as is evident from the fact that the primitive surface
lies entirely above the tangent plane for the critical point.

We may suppose waves of compression and expansion to be propa-
gated in a substance initially in the critical state. The velocity of

. . dp\ . dZ
propagation will depend upon the value of (Zi—) , e, of — ——) .
Vg n
Now for a wave of compression the value of these expressions is

determined by the form of the isentropic on the primitive surface.
If a wave of expansion has the same velocity approximately as one
of compression, it follows that the substance when expanded under
the circumstances remains in a state represented by the primitive
surface, which involves the realization of states of essential instability.
The value of (%e;) in the derived surface is, it will be observed,
9

totally different from its value in the primitive surface, as the
eurvature of these surfaces at the critical point is different.

The case is different in regard to the part of the surface between
the limit of absolute stability and the limit of essential instability.
Here, we have experimental knowledge of some of the states repre-
sented. In water, for example, it is well known that liquid states can
be realized beyond the limit of absolute stability, —both beyond the
part of the limit where vaporization usually commences (LL’ in figure
2), and beyond the part where congelation usually commences (LL").
That vapor may also exist beyond the limit of absolute stability, i.e.,
that it may exist at a given temperature at pressures greater than
that of equilibrium between the vapor and its liquid meeting in a
plane surface at that temperature, the considerations adduced by Sir

'
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W. Thomson in his paper “On the equilibrium of a vapor at the
curved surface of a liquid ” (Proc. Roy. Soc. Edinb., Session 1869-1870,
and Phil. Mag., vol. xlii, p. 448), leave no room for doubt. By experi-
ments like that suggested by Professor J. Thomson in his paper
already referred to, we may be able to carry vapors farther beyond
the limit of absolute stability.* As the resistance to deformation
characteristic of solids evidently tends to prevent a discontinuous
change of state from commencing within them, substances can doubt-
less exist in solid states very far beyond the limit of absolute stability.

The surface of absolute stability, together with the triangle repre-
senting a compound of three states, and the three developable surfaces
which have been described representing compounds of two states,
forms a continuous sheet, which is everywhere concave upward
except where it is plane, and has only one value of e for any given
values of v and 7. Hence, as ¢ is necessarily positive, it has only one
value of n for any given values of v and e. If vaporization can take
place at every temperature except 0, p is everywhere positive, and
the surface has only one value of v for any given values of 5 and e
It forms the surfuce of dissipated energy. If we consider all the
points representing the volume, entropy, and energy of the body in
every possible state, whether of equilibrium or not, these points will
form a solid figure unbounded in some directions, but bounded in
others by this surface.t

*If we experiment with a fluid which does not wet the vessel which contains it,
we may avoid the necessity of keeping the veasel hotter than the vapor, in order to
prevent condensation. If a glass bulb with a stem of sufficient length be placed vertically
with the open end of the stem in a cup of mercury, the stem containing nothing but
mercury and its vapor, and the bulb nothing but the vapor, the height at which the
mercury rests in the stem, affords a ready and accurate means of determining the
pressure of the vapor. If the stem at the top of the column of liquid should be made
hotter than the bulb, condensation would take place in the latter, if the liquid were one
which would wet the bulb. But as this is not the case, it appears probable, that if
the experiment were conducted with proper precautions, there would be no condensa-
tion within certain limits in regard to the temperatures. If condensation should take
place, it would be easily observed, especially if the bulb were bent over, so that the
mercury condensed could not run back into the stem. So long as condensation does
not occur, it will be easy to give any desired (different) temperatures to the bulb and
the top of the column of mercury in the stem. The temperature of the latter will
determine the pressure of the vapor in the bulb. In this way, it would appear, we
may obtain in the bulb vapor of mercury having pressures greater for the tempera-
tures than those of saturated vapor.

1 This description of the surface of dissipated energy is intended to apply to a sub-
stance capable of existing as solid, liquid, and vapor, and which presents no anomalies
in its thermodynamic properties. But, whatever the form of the primitive suarface
may be, if we take the parts of it for every point of which the tangent plane does
not cut the primitive surface, together with all the plane and developable derived
surfaces which can be formed in a manner analogous to those described in the preceding
pages, by fixed and rolling tangent planes which do not cut the primitive surface,—
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The lines traced upon the primitive surface by the rolling double
tangent plane, which have been called the limit of absolute stability,
do not end at the vertices of the triangle which represents a mixture
of those states. For when the plane is tangent to the primitive surface
in these three points, it can commence to roll upon the surface as
a double tangent plane not only by leaving the surface at one of
these points, but also by a rotation in the opposite direction. In the
latter case, however, the lines traced upon the primitive surface by
the points of contact, although a continuation of the lines previously
described, do not form any part of the limit of absolute stability.
And the parts of the envelops of the rolling plane between these lines,
although a continuation of the developable surfaces which have been
described, and representing states of the body, of which some at least
may be realized, are of minor interest, as they form no part of the
surface of dissipated energy on the one hand, nor have the theoretical
interest of the primitive surface on the other.

Problems relating to the Surface of Dissipated Energy.

The surface of dissipated energy has an important application to a
certain class of problems which refer to the results which are theo-
retically possible with a given body or system of bodies in a given
initial condition.

For example, let it be required to find the greatest amount of
mechanical work which can be obtained from a given quantity of a
certain substance in & given initial state, without increasing its total
volume or allowing heat to pass to or from external bodies, except

such surfaces taken together will form a continuous sheet, which, if we reject the
pat, if any, for which p <0, forms the surface of dissipated energy and has the geo-
metrical properties mentioned above.

There will, however, be no such part in which p<0, if there is any assignable
temperature ¢’ at which the substance has the properties of a perfect gas except when its
volume is less than a certain quantity v'. For the equations of an isothermal line in the
thermodynamic surface of a perfect gas are (see equations (B) and (k) on pages 12-13)

e=C

n=alogv+C'.
The isothermal of ¢ in the thermodynamic surface of the substance in question must
therefore have the same equations in the part in which v exceeds the comstant v’.
Now if at any point in this surface p <Oand ¢ >0 the equation of the tangent plane for
that point will be

e=mn+nv+C”,
where m denotes the temperature and —n the pressure for the point of contact, so that
= and » are both positive. Now it is evidently possible to give so large a value to
* in the equations of the isothermal that the point thus determined shall fall below the
tangent plane. Therefore, the tangent plane cuts the primitive surface, and the point
of the thermodynamic surface for which p <0 cannot belong to the surfaces mentioned
in the last paragraph as forming a continuous sheet.

G. L D
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such as at the close of the processes are left in their initial con-
dition. This has been called the available energy of the body. The
initial state of the body is supposed to be such that the body can
be made to pass from it to states of dissipated energy by reversible
processes.

If the body is in a state represented by any point of the surface of
dissipated energy, of course no work can be obtained from it under
the given conditions. But even if the body is in a state of thermody-
namic equilibrium, and therefore in one represented by a point in the
thermodynamic surface, if this point is not in the surface of dissipated
energy, because the equilibrium of the body is unstable in regard to
discontinuous changes, a certain amount of energy will be available
under the conditions for the production of work. Or, if the body is
solid, even if it is uniform in state throughout, its pressure (or tension)
may have different values in different directions, and in this way it
may have a certain available energy. Or, if different parts of the
body are in different states, this will in general be a source of avail-
able energy. Lastly, we need not exclude the case in which the body
has sensible motion and its vis viva constitutes available energy. In
any case, we must find the initial volume, entropy, and energy of the
body, which will be equal to the sums of the initial volumes, entropies,
and energies of its parts. (‘Energy’ is here used to include the vis
viva of sensible motions.) These values of v, 5, and € will determine
the position of a certain point which we will speak of as representing
the initial state.

Now the condition that no heat shall be allowed to pass to ex-
ternal bodies, requires that the final entropy of the body shall not be
less than the initial, for it could only be made less by violating this
condition. The problem, therefore, may be reduced to this,—to find
the amount by which the energy of the body may be diminished
without increasing its volume or diminishing its entropy. This
quantity will be represented geometrically by the distance of the
point representing the initial state from the surface of dissipated
energy measured parallel to the axis of e.

Let us consider a different problem. A certain initial state of the
body ic given as before. No work is allowed to be done upon or by
external bodies. Heat is allowed to pass to and from them only on
condition that the algebraic sum of all heat which thus passes shall
be 0. From both these conditions any bodies may be excepted, which
shall be left at the close of the processes in their initial state. More-
over, it is not allowed to increase the volume of the body. It is
required to find the greatest amount by which it is possible under
these conditions to diminish the entropy of an external system.
This will be, evidently, the amount by which the entropy of the
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body can be increased without changing the energy of the body
or increasing its volume, which is represented geometrically by the
distance of the point representing the initial state from the surface
of dissipated energy, measured parallel to the axis of 7. This might
be called the capacity for entropy of the body in the given state.*

It may be worth while to call attention to the analogy and the difference between
this problem and the preceding. In the first case, the question is virtually, how great
a weight does the state of the given body enable us to raise a given distance, no other
permanent change being produced in external bodies? In the second case, the question
is virtaally, what amount of heat does the state of the given body enable us to
take from an external body at a fixed temperature, and impart to another at a higher
fited temperature? In order that the numerical values of the available energy and
of the capacity for entropy should be identical with the answers to these questions, it
would be necessary in the first case, if the weight is measured in units of force, that
the given distance, measured vertically, should be the unit of length, and in the second
cass, that the difference of the reciprocals of the fixed temperatures should be unity.
If we prefer to take the freezing and boiling points as the fixed temperatures, as
1h - s$5=000098, the capacity for entropy of the body in any given condition
would be 000098 times the amount of heat which it would enable us to raise from the
freezing to the boiling point (i.e., to take from the body of which the temperature
remains fixed at the freezing point, and impart to another of which the temperature
remains fixed at the boiling point).
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The relations of these quantities to one another and to the surface of dissipated
energy are illustrated by figure 3, which represents a plane perpendicular to the axis
of v and passing through the point A, which represents the initial state of the body.
MN is the section of the surface of dissipated energy. Qe and Qn are sections of the
planes n=0 and ¢=0, and therefore parallel to the axes of ¢ and » respectively. AD and
AE are the energy and entropy of the body in its initial state, AB and AC its avallable
energy and its capacity for entropy respectively. It will be observed that when either
the available energy or the capacity for entropy of the body is 0, the other has the saine
value. Except in this case, either quantity may be varied without affecting the other.
For, on aocount of the curvature of the surface of dissipated emergy, it is evidently
possible to change the position of the point representing the initial state of the body so
s to vary its distance from the surface measured parallel to one axis without varying
that measured parallel to the other.

As the different sense in which the word entropy has been used by different
writers is liable to cause misunderstanding, it may not be out of place to add a

P ame
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Thirdly. A certain initial condition of the body is given as before.
No work is allowed to be done upon or by external bodies, nor any
heat to pass to or from them; from which conditions bodies may be
excepted, as before, in which no permanent changes are produced.
It is required to find the amount by which the volume of the body
can be diminished, using for that purpose, according to the conditions,
only the force derived from the body itself. The conditions require
that the enmergy of the body shall not be altered nor its entropy
diminished. Hence the quantity sought is represented by the distance
of the point representing the initial state from the surface of dissi-
pated energy, measured parallel to the axis of volume.

Fourthly. An initial condition of the body is given as before. Its
volume is not allowed to be increased. No work is allowed to be
done upon or by external bodies, nor any heat to pass to or from
them, except a certain body of given constant temperature ¢". From
the latter conditions may be excepted as before bodies in which no
permanent changes are produced. It is required to find the greatest
amount of heat which can be imparted to the body of constant
temperature, and also the greatest amount of heat which can be taken
from it, under the supposed conditions. If through the point of the

few words on the terminology of this subject. If Professor Clausius had defined
entropy so that its value should be determined by the equation

instead of his equation (Mechanische Wdrmetheorie, Abhand. ix. § 14; Pogg. Ann.
July, 1865)

where § denotes the entropy and 7 the temperature of a body and dQ the element of
heat imparted to it, that which is here called capacity for entropy would naturally be
called available entropy, a term the more convenient on account of its analogy with the
term available energy. Such a difference in the definition of entropy would involve no
difference in the form of the thermodynamic surface, nor in any of our geometrical
coustructions, if only we suppose the direction in which entropy is measured to be
reversed. It would only make it necessary to substitute —» for  in our equations,
and to make the corresponding change in the verbal enunciation of propositions.
Professor Tait has proposed to use the word entropy ¢‘ in the opposite sense to that in
which Clausius has employed it” (Thermodynamics, § 48. See also § 178), which
appears to mean that he would determine its value by the first of the above equations.
He nevertheless appears subsequently to use the word to denote available energy
(§ 182, 2d theorem). Professor Maxwell uses the word entropy as synonymous with
available energy, with the erroneous statement that Clausius uses the word to denote
the part of the energy which is not available (Theory of Heat, pp. 186 and 188). The
term entropy, however, as used by Clausius does not denote a quantity of the same
kind (i.e., one which can be measured by the same unit) as energy, as is evident from
his equation, cited above, in which Q (heat) denotes a quantity measured by the unit
of energy, and as the unit in which 7' (temperature) is measured is arbitrary, S and ¢
are evidently measured by different units. It may be added that entropy as defined
by Clausius is synonymous with the thermodynamic function as defined by Rankine,
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initial state a straight line be drawn in the plane perpendicular to
the axis of v, so that the tangent of the angle which it makes with
the direction of the axis of 5 shall be equal to the given temperature
t, it may easily be shown that the vertical projections of the two
segments of this line made by the point of the initial state and the
surface of dissipated energy represent the two quantities required.*

These problems may be modified so as to make them approach
more nearly the economical problems which actually present them-
selves, if we suppose the body to be surrounded by a medium of
constant pressure and temperature, and let the body and the medium
together take the place of the body in the preceding problems. The
results would be as follows:

If we suppose a plane representing the constant pressure and tem-
perature of the medium to be tangent to the surface of dissipated
energy of the body, the distance of the point representing the initial
state of the body from this plane measured parallel to the axis of €
will represent the available energy of the body and medium, the
distance of the point to the plane measured parallel to the axis of 3
will represent the capacity for entropy of the body and medium, the
distance of the point to the plane measured parallel to the axis of v
will represent the magnitude of the greatest vacuum which can be
produced in the body or medium (all the power used being derived
from the body and medium); if a line be drawn through the point
in a plane perpendicular to the axis of v, the vertical projection of the
segment of this line made by the point and the tangent plane will
represent the greatest amount of heat which can be given to or taken
from another body at a constant temperature equal to the tangent of
the inclination of the line to the horizon. (It represents the greatest
amount which can be given to the body of constant temperature, if
this temperature is greater than that of the medium; in the reverse
case, it represents the greatest amount which can be withdrawn from
that body.) In all these cases, the point of contact between the plane
and the surface of dissipated energy represents the final state of the
given body.

If a plane representing the pressure and temperature of the medium
be drawn through the point representing any given initial state of
the body, the part of this plane which falls within the surface of
dissipated energy will represent in respect to volume, entropy, and
energy all the states into which the body can be brought by rever-
sible processes, without producing permanent changes in external
bodies (except in the medium), and the solid figure included between

°Thus, in figure 3, if the straight line MAN be drawn so that tan NAC=¢, MR
will be the greatest amount of heat which can be given to the body of constant
temperatare and N8 will be the greatest amount which can be taken from it.
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this plane figure and the surface of dissipated energy will represent
all the states into which the body can be brought by any kind of
processes, without producing permanent changes in external bodies
(except in the medium).*

* The body under discussion has been supposed throughout this paper to be homo-
geneous in substance. But if we imagine any material system whatever, and suppoee
the position of a point to be determined for every possible state of the system, by
making the co-ordinates of the point equal to the total volume, entropy, and energy
of the system, the points thus determined will evidently form a solid figure bounded
in certain directions by the surface representing the states of dissipated energy. In
these states, the temperature is necessarily uniform throughout the system; the
pressure may vary (e.g., in the case of a very large mass like a planet), but it will always
be possible to maintain the equilibrium of the system (in a state of dissipated energy)
by a uniform normal pressure applied to its surface. This pressure and the uniform
temperature of the system will be represented by the inclination of the surface of
dissipated energy according to the rule on page 34. And in regard to such problems as
have been discussed in the last five pages, this surface will possess, relatively to the
system which it represents, properties entirely similar to those of the surface of
dissipated energy of a homogeneous body.



