Phyfico-mechanical EXPERIMENTS,

To fhew the

Spring and Effects of the AIR.

S E CT. I.

TH E air is fo neceffary to life, that moft creatures, which breathe, The origin of cannot fubfift, for many minutes, without it; and moft of the natural bodies we deal with, being, as well as our own, almoft perpetually contiguous to it, the alterations thereof have a manifeft fhare in many obvious effects, and, particularly, in diftempers: wherefore, a farther inquiry into the nature of this fluid, will, probably, fhew, that it concurs to exhibit abundance of phenomena, wherein it has, hitherto, feemed little concerned. So that, a true account of any new experiment, upon a thing whereof we have fuch a conftant and neceffary ufe, may prove advantagious to human life.

With this view, before ever I was informed that Otto Gueric, the ingenious conful of Magdeburg, had practifed a way, in Germany, of emptying glafs veffels of the air, I had made experiments on the fame foundation; but, as that gentleman firft produced confiderable effects by this means, I acknowledge the affiftance and encouragement which the report of his performances afforded me.

But, as few inventions happen to be compleat at the firft, fo the engine employ'd by the conful, feem'd very defective in its contrivance $;$. whence but little more could be expected from it, than thofe very few phenomena obferved by the author, and related by Schottus. I, therefore, put Mr. Hook, upon contriving an air-pump, more manageable and convenient, that might not, like the German-engine, require to be kept under water : and, after fome unfuccefsful attempts, he fitted me with one, confifting of two principal parts; a glafs veffel, and a pump to evacuate the air.

Pbyfico-mechanical Experiments:

The firt is a glafs A, with a large mouth, a cover thereto, and a ftop: cock fitted to the neck below. This wouid contain 30 lquarts of water, BC, the mouth of it, is about four inches in diameter, and furrounded with a glafs lip, almoft an inch high, for the cover to reft on ; wherein DE, is a brafs ring, to cover, and be cemented on to the lip BC. To the internal orifice of this ring, a glafs ftopple is fitted, to keep out the external air. In the middle of this cover is a hole HI, half an inch in diameter, incircled with a ring, or focket; to which is adapted a brafs ftopple K , to be turn'd round, without admitting the leaft air. In the lower-end of this, is a hole 8 , to admit a ftring, $8,9,10$; which alfo paffes thro' a fmall brafs ring L, fixed to the bottom of the ftopple FG, to move what is contain'd in the exhaufted veffel, or receiver. That the ftop-cock N , in the firf figure, might perfectly exclude the air, we faften'd a thin tin-plate, MTVW, to the fhank of the cock X , all along the neck of the receiver, with a cement made of pitch, rofin, and wood-athes, poured hot into the cavity of the plate; and to prevent the cement from running in at the orifice Z , of the fhank X , it was ftopt with a cork fix'd to a ftring, that it might be drawn out at the upper orifice of the receiver; and then the neck of the glafs, being made warm, was preffed into the cement, which thus fill'd the interftices betwixt the tin-plate and the receiver, and betwixt the receiver and the thank of the cock.

The lower part of our engine confifts of a fucking-pump, fupported by a wooden frame, with three legs III, fo contrived, that, for the fieer motion of the hand, one fide of it may ftand perpendicular; and a-crofs the middle of the frame we nail'd a piece of board 222, to which the principal part of the pump is fixed. The pump confilts of an exact ftrong concave cylinder of brafs, fourteen inches long, its cavity three inches in diameter; to which a fncker, 4455 , is adapted, made up of two parts; one of which 44 , is lefs in diameter than the cavity of the cylinder, with a thick piece of tann'd leather nail'd on it, whereby it excludes the air. The other part, a thick iron plate 55, is firmly join'd to the middle of the former, and is a little longer than the cylinder; one edge of it being fmooth, and the other indented, to receive the teeth of a fmall ironnut $\alpha \beta \%$, fixed by two ftaples to the underfide of the board nailed a-crofs 22 , on which the cylinder ftands; and it is turn'd by the handle 7 .

The laft part of the pump is the valve R, a hole at the top of the cylinder, and taper towards the cavity; to this is fitted a brafs-plug, to be taken out as occafion requires. The engine being thus contrived, fome oil muft be pour'd in at the top of the receiver upon the ftop-cock, to fill up the interftices of its parts, and that the key S, may turn with the greater eafe. A quantity of oil, alfo, mult be left in the cylinder, to prevent the air from getting betwixt that and the fucker; for the like reafons, fome muft, likewife, be apply'd to the valve.

And here 'tis proper to obferve, that when we ufed oil, or water, feparately, for this purpofe, and they have not anfwered the end, a mixture
of the two has afterwards proved effectual. And, that the air may not Purowarics. enter betwixt the brafs-corer and the ring, 'twill be convenient to lay fome diachylon-plaifter on their edges with a hot iron. That no air, alfo, may remain in the upper part of the cylinder, the handle is to be turn'd till the fucker rifes to the top; and then, the valve being fhut, it is to be drawn down to the bottom; by which means, the air being driven out of the cylinder, and a fucceffion from without prevented, the caviry of the cylinder muft be empry of air ; fo that, when the ftop-cock is turn'd to afford a communication betwixt the receiver and the cylinder, part of the air before lodged in the receiver, will be drawn down into the cylinder ; which, by turning back the key, is kept from entering the receiver again, and may, by unftopping the valve, and forcing up the fucker, be driven into the open air ; and fo, by repeated exfuctions out of the receiver, and expulfions out of the cylinder, the veffel may be exhaufted as the experiment requires*.

1. Upon

* The airpump has received great improvements fince the time of Mr . Boyle, and feems brought to its utmoft degree of fimplicity, and perfeation, by the late, and the prefent Mr . Hamksbee. This inftrument, as 'tis Fig. 3r. now made, by Mr. Haukbbee, confifts of two brals-clylinders, a a a a a, twelve inches high, and two their internal diameter. The emboli are raifed, and depreffed, by turning the winch $b b$, backward and forward. This winch is faften'd to a spindle, paffing thro a lanthorn, whofe pins ferve for cogs, laying hold of the reeth of the racks $c e r c$; fo that one is. depreffed, and the other elevated reciprocally. By this means the valves, made of limber Madder, und fixd on the upper part of carh einbolus, and at the bottom of the cylinders, mutually exhauft and difcharge the fame air from the receiver: which becoming nearly empty, the pref. fure of the external air on the defcending embolus is fo grear, that the power required to raife the other, need but little furmount the friction of the moving parts; whence this pump becomes preferatle to all others. The bottoms of the barrels lic in a brafs-difh $d d$, its fides two inches high, containing water to kecp the lea-ther-collars, on which the cylinders fland, moift; whercby the air is precluded.: The cylinders are ferew'd hereon by the nuts rece, which force the frontifpiece $f f$, down upon them ; thro which pafs the two pillurs 888 g . Each pillarhas an iron Vol. II.
belonging to it, paffing from them in the form of a fwan's neck $g g$; thefe irons being faftened to the hind part of the frame, to prevent their thaking. Between the two barrels, rifes a hollow brafs-wire $b b b b$, communicating with each of them, by means of a perforated piece of brafs, lying horizontally from one to the other. The upper end of this wire is faften'd to another piece of perforared brafs, ferew'd on below the plate iiii, which is ten inches over; having a brafs-rim foldered on it, that it may contain water. Between the middle, and the fide of this plate, rifes a fmall pipe k, about an inch and half high; thro which, into the hollow wire, paffes all the air into the barrels from the receiver. Upon the plate of the pump is always laid a wet leather, for the receivers to ftand on. This leather prevents the air's getting into the glaffes, whofe edges are ground truc; and ferves for this purpofe vaftly beyond any cement whatever. Another excellence in this pump, is the gage $l \| l l$, a glafs-tube about thirty-four inches long, fo placed, that it cannot cafily be damaged, or prove inconvenient. Its lower orifice is immerfed in a glafs of quick-filver $m m$; on the furface whereof is a perforated piece of cork for the tube to pafs thro. On this cork is placed a board of box-wood, about an inch in breadth, and grooved in the middle, to receive the rube, which is looped on thereto, that it may rife and fall" as Gg g
the

1. Upan drawing down the fucker of our engine, whilft the valre is

Some phemerna fotbe engine folved. thut, the cylindrical fpace deferted by it will be left empty of air; and, therefore, upon turning the key, the air contain'd in the receiver ruthes into the cylinder, till, in both veffels, it be brought to an equal dilatation; fo that, upon thutting the receiver, turning back the key, opening the valve, and forcing up the fucker again, almoft a whole cylinder of air will be driven out after this firf exfuction; but, after every fucceeding ftroke, defs air will come out of the receiver into the cylinder: fo that, at length, the fucker will rife almoft to the top of the cylinder, before the valve need be open'd. And if, when it is fo exhaufted, the handle of the pump be let go, and the valve be ftopp'd, the fucker, by the force of the external air, which is an over-balance to the internal rarify'd air, will be forced to the upper part of the cylinder, and higher, in proportion, as the air is more exhaufted *. We obferved, alfo, that, whith any confiderable quantity of air remains in the receiver, a brist noife is immediately produced, upon turning the key.
The fring and But to xender our experiments the more intelligible, we muft premife, prefure of the sair exp! ${ }^{2}$ in d. that the air abounds in elaftic particles, which being preffed together by their awn weight, conftantly endeavour to expand and free themfelves from that force; as wool, for example, refifts the hand that fqueezes it, and contracts its dimenfions; but recovers them as the hand opens, and endeavours at it, even whilft that is gut. It may be alledg'd, that tho the air confirts of elaftic particles, yet this only accomnts for the dilatation of it in pneumatical engines, wherein it hath been comprefs'd, and its fpring violently bent; by an external force; upon the remoral whereof, ie expands, barely to recover its natural dimenfons; whilf, in our experiments, the air appears not to have been compreffed, before its fpentaneous dilatation. But, we have many experiments to prove, that our atmofphere is a heavy body, and that the upper parts of ir prefs upon the lower. And I found a dry lamb's bladder, containing two thirds of a pint, and comprefs'd by a pack-thread tied about it, to lofe, in a vary tender balance, $1 \frac{1}{\mathrm{z}}$ grain of
the mercury afcendsor defeends in the gage. To the upper part of this tube is cemented a brals-head, that fits into the perforated braispiece, fcrew'd on under the plate, and comr mupicating barth with the receiver, and the hollow brafs-wire कbsh. The box board is graduated into inches and quarters, from the furface of the quick-filver eo twentr eight inches high ; and thence ris divided inso tenths. By this means, the degrees of rarifaction may, at all times, be nieety oblerved in an experiment. The air-ceck n, which lets in the air, is, likewife, a fcrew on the fame perforated bras, in which the upper parts of the gage, and the hollow wire, are iaferted. 000
reprefonts a pocoiver, fandine the phite of the pump; oun whene upper part if, wroa' a bon of leather-collars pas fes a filip of wire, to tuke up let Eall, ar frupend any thing in tha receivera without admixaing the aim

* The original air in the receiver, is at ways to the remainder, as the fum of the expacity of the veffed of the puanp, raifed to she power, unboce exponent is equal to the number of the andites of the fucker, to the capaciny of the reffed micod to the fame power. See this demanimated by
 P 347
its former weight, by the recefs of the air, upon pricking its Suppofing, therefore, that the air is not deffitute of weight, tis eafy to conceive, that the part of the atmofphere wherein we live, is greatly comprefs d by thofe direetly over j t, to the top of the atmofphere. And tho the height of this atmolphere, according to Kepler, fcarce exceeds eight miles, yet later aftronomers extend it fix or feven miles farther. The learned Ricioto makes it reach fifty miles high. So that a column of air, feveral miles in height, preffing upon fome elaftic particles of the fame fluid here below, may eafily bend their little fprings, and keep them bent; as if fleeces of wool, were piled to a vaft height upon one another, the hairs of the loweft locks would, by the weight of all the incumbent parts, be ftrongly comprefs'd. Hence it is, that, upon taking off the preffiure of the incumbent air, from any parcel of the lower atmofphere, the particles of the latter poffefs more tpace than before. If it be farther objected againft this condenfation of the inferior air, that we find this fluid readily yields to the motion of flies, feathers, © 6 c. we may reply, that as when a man fqueezes wool in his hand, he feels it make a continual refiftance; fo each parcel of the air, about the earth, conflantly endeavours to thruit away fuch contiguous bodies as keep it bent, and hinder the expanfion of its parts; which will ly out towards that part, where they find the leaft refiftance. And, Since the corpufcles whereof the air confifts, tho of a. fpringy nature, are So very fmall, as to compofe a l uid body, tis eafy to conceive, that here, as in other fluids, the component parts are in perpetual motion, whereby they become apt to yield to, or be difplaced by other bodies; and that the fame corpufcles are fo varioufly mor'd, that, if fome attempt to force a body one way, others, whofe motion hath an oppofite determination, as ftrongly prefs it the contrary way ; whence it moves not out of its place; the preffare, on all fides, being equal. For if, by the help of our engine, the air be drawn only from one fide of a body, he, who thinks to move that body, as eafily as before, will, upon trial, find himfelf miftaken.

2. Thus, when our receiver is tolerably exhaufted, the brafs ftopple in the cover, is fo difficult to lift, that there feems to be fome great weight faften'd to the bottom of it : for, the internal air being, now, very much dilated, its. fpring muft be greatly weakned; and, confequently, it can but faintly prefs againt the lower-end of the fopple, whilft the fpring of the external air keeps it down, with iss full natural force, And as the air is gradually admitted into the receiver, the weight is manifefly felt to decreale; till, at length, the receiver being again filled with air, the fopple nay be carily lifted.

It may feem furprizing, that we fpeak of the air thut up in ourt receiver, as of the preffure of the atmofphere; tho' the glafs manifeftly keeps the incumbent pillar of air from preffing upon that within the vellel. But, let us confider, that if a fleece of wool, by preffure, be thus directly reduced inte 2. narrow compafs, and convery'd into a clofe box, tho' the former farce ceafes to bend its numerous : Lpringy parts, yet they continue

Pbyfico-mechanical Experiments.

$\underbrace{\text { provantic.as as frongly bent as before; becaufe we fuppofe the including box }}$ refifts their expanfion, as much as the force that crowded them in. Thus the air, being fhut up in our glafs when its parts are bent by the whcle weight of the incumbent atmofphere, though that weight can no longer prefs upon it; yet the corpufcles of the internal air, continue as forcibly bent, as before they were included. If it be faid, that the continual endeavour it has to expand itfelf, ought then to break the glafs, we muft obferve, that the expanfive force of the internal air, is balanc'd by preffure of the external, which preferves the glafs intire ; as, by the fame neeans, thin large bubbles, made with foapy water, will, for fome time, continue whole in the open air.
3. And though, by help of the handle, which is a lever, the facker may eafily be drawn down to the bottom of the cylinder; yet, without fuch a mechanic power, the fame effect could not be produced, but by a force able to furmount the preflure of the atmofphere: as in the Torricellian experiment, if the column of mercury be too high, it will fubfide, till its weight be a balance to the preffure of the air. Hence we need not wonder, that tho' the fucker move eafily in the cylinder, by means of the handle, yet, if that be taken off, it will require a confiderable force to raife or deprefs it. Nor will it feem ftrange, that if, when the valve, and flop-cock are exactly clofed, the fucker be drawn down, and then the handle let loofe, that the fucker, as of itfelf, re-afcends to the top of the cylinder ; fince the fpring of the external air, finds nothing to refift its preffure upon the bottom of the fucker. And, for the fame reafon, when the receiver is almoft emptied, tho', the fucker being drawn down, the paffage from the receiver to the cylinder be open'd, and then ftop'd again, the fucker will, upon the letting go the handle, be forcibly carried up, almoft to the top of the cylinder ; becaufe the air within the cylinder, being equally dilated and weakned with that of the glafs, is unable to refift the preflure of the external air, till it be crowded into fo little fpace, that both their forces are in equilibrium. So that, in this cafe, the fucker is drawn down with little lefs difficulty, than if, the cylinder being deftitute of air, the ftop-cock were, exactly thut. It mult alfo be obferv'd, that when the fucker hath been impell'd to the top of the cylinder, and the valve is fo carefully ftop'd, that no air remains in the cylinder, above the fucker; if, then, the fucker be drawn to the lower part of the cylinder, no greater difficulty is found to deprefs the fucker, when nearer the bottom of the cylinder, than when it is much farther from it. Whence it appears, that the preffure of the external air, is not increas'd upon the acceffion of the air driven out; which, to make itfelf room, forceth the contiguous air to a violent fub-ingreffion of its parts, as fome fuppofe; for otherwife the fucker would be more refifted by the external air as it comes lower ; more of the difplaced air being thruft into it, to comprefs
sed by tbe fpring of the jivi.
it.
4. We took a large lamb's bladder, well dry'd, and very limber, and leaving in it about half the air it would contain, we ftrongly tied the neck
of it; then conveying it into the receiver, the pump was work'd; and after two or three ftrokes, the imprifon'd air began to fwell in the bladder, and continued to do fo, as the receiver was farther exhaufted, till, at length, the bladder appear'd perfectly turgid. Then, by degrees, allowing the external air to return into the receiver, the diftended bladder Ihrunk proportionably, grew flaccid, and, at laft, appear'd as full of wrinkles as before.

And to try whether the actual elafticity of the fibres of the bladder, had any thare in this effect, we let down to the former, two fmaller bladders, of the fame kind; the one not cied up at the neck; that the air it contain'd might pafs into the receiver ; the other, with its fides ftretch'd out, and prefs'd together, that it might hold the lefs air, and then ftrongly tied up at the neck; and, whilft the firft, upon working the pump, appear'd, every way diftended to its full dimenfions, neither of the others were remarkably fwell'd; and that whofe neck was left loofe, feem'd very little lefs wrinkled than when firt put in.

We made, likewife, a ftrong ligature about the middle of a long bladder, emptied of its air in part, but left open at the neck; and, upon exhaufting the receiver, obferv'd no fuch fwelling betwixt the ligature, and the neck, as betwixt the ligature and the bottom of the bladder; where air was included.
5. We hung a dry bladder, well tied, and blown moderately full, in the And bumf hy receiver, by a ftring fatten'd to the infide of the cover; and, upon exhauft - ${ }^{\text {tbe Same. }}$ ing the glaifs, the included air firft diftended the bladder, and then burft it, as if it had been forcibly torn afunder.

This experiment was repeated with the like fuccefs; and the bladder burfting, long before the receiver was fully exhaufted, gave a greatreport.
But it was often, in vain, that we try'd to burft bladders, after this manner, becaufe they were commonly grown dry, before they came to our: hands; whence, if we tied them very hard, they were apt to fret, and fo becone unferviceable; and, if tied but moderately hard, their ftiffinefs kept them from being clofed fo exactly, that the air fhould not get out into the receiver. We found, alfo, that a bladder moderately filled with air, and ftrongly tied, being held for a while, near the fire, grew exceeding turgid; and, afterwards, being brought nearer to the fire, fuddenly burft, with fo loud and vehement a noife, as made us almoft deaf for fome time after*.

6. Having

[^0]focver, may perperually increafe the force of its fpring, by a fmall degree of heat; provided this air be more and more preffed continually. The fame gentleman, alfo, found by experience, that the heat of boiling water, which he flows to be the fpring.

The dilatation of air by its fpring, meafur rd.

We thoroughly wetted a limber lamb's bladder, in water, that the fides of it being fqueezed together, no air might be left in its folds, and ftrongty tied the neck of it about that of a fmall glafs, capable of holding five drams of water; the bladder being firt to fqueez'd, that the air it contain'd was wholly forced into the glafs, without being comprefs'd there; then the pump being fet on work, the air, in the wial, foon began to dilare, produc'd a fmall tumor in the neck, and gradually came further into the bladder; elevating the fides, and difplayng the folds, till, at length, it feem'd blown up to its full extent; when the external air, being permitted to return into the receiver, the air that had fill'd the bladder, was thereby reduced into its former narrow receptacle, and the bladder became flaccid and wrinkled, as before. Then taking out the bladder $_{2}$ and glafs, we fill'd them both with water, thro' a hole made in the rop of the btadder; and found the weight of it so be five ounces, five drams, and a half. So that the air, ar its utmoft expanfion, poffefs'd above nine times the fpace it did when firft pue into the receiver.

But to meafure the expranfive force of the air more accurately, we took a cylindrical pipe of glals, its bore about a quarter of an inch in diameter, its length about feven inches, and left it open at one end ; but the other, whore it was hermetically fealed, had a fmall ghais bubble, to receive the air, whofe dilatation was to be meafirid. Along the fide of this tube we pafted a Mip of parchment, divided intoo twency-fir equal parts, marked with black lines, to meafure both the inctuded air, and its expanfion. Afterwards we almoft fitld the tube with water ; when, ttopping the open end, and inverting it, the air was permitted to afcead to the bubble; and, as the afcent was very flow, it gave us the opportumity to mark how much more, or lefs than one of thofe divifions, this air took up. Thus, after a trial, or two, we convey'd to the top of the glafs, a bubble of air, apparently equal to one of thofedivifions; then the open end of the tube being put into a fmall vial, whofe botrom was coverd with water; we includect both glaffes in a fmall flender receiver, and coufed the pump to be work'd. The event was, that, at the Girt exfuction of the air, there feem'd not any expanfion of the bubble, comparable to what appear'd at the fecond; and, after a very few frokes, the trubble, reacto ing as low as the furface of the fubjacent water, gave us caufe to thints, that it would have expanded much farther, had there been room. We, therefore, took out the little tube, and found that, befides the twenty-fix divifions, the glafs bubble, and forme:part of the pipe, to which the parth-

[^1]and upon this foundation, he ingenioully attemprs to effablifa an uniformity in thermanserers Sec Memoirs de 1 'dicadam. A. 1 ;ox. p. 204 A. 1703. P. 61 , \&c.
ment did not reach, amounted to fix divifions more. Whence it appears, Pramante. that the air poffeff'd one and thirty times more fpace than before; and yet feem'd capable of a far greater expanfion. Wherefore, after the fame manner, we let in another bubble, that feem'd but half as big as the former, and found that, upon exhaufting the receiver, it did not only fill up the whole tube, but, in part, broke thro the water in the vial; and thereby manifefted itfelf to have poffefs'd above fixty times its former fpace.

Finding, then, that our tube was fill too hort, we took a flender conical one, thirty inches long, hermetically feal'd at the flender end, and almoft fill'd it with water; and conveying a bubble of air to the top of it, we put the open end in a vial, as before : then the cover, by means of a fmall hole made in it, for the glafs-pipe to come out at, was cemented to the receiver; and the pump being fet on work, the air manifeftly appear'd extended below the furface of the water; and fome bubbles were feen to come out at the bottom of the pipe, and break thro' the water. This done, we left off pumping, and oblerv'd, that at unperceiv'd leaks of the receiver, the air got in fo faft, that it very quickly impelld up the water to the top of the tube ; excepting a little fpace, whereinto that bubble was driven, which had before poffers ${ }^{\circ} d$ the whole tube. This air, at the flender end, appear'd to be a cylinder of, s inch in length; but when the pipe was taken out, and inverted, it feem'd, at the other end, lefs in bulk than a pea. . Then, with a fmall pair of fcales, weighing the tube and water, we found they amounted to one ounce thirty grains and a half; and filling the tube with water, and weighing again the pipe and water, we found the weipht increas'd only by one grain. Laftly, pouring out the water, and carefully freeing the pipe from it, we weigh'd the glafs alone, and found it wanted two drams and thirty-two grains of its former weight. So that the bubble of air poffefing the fpace but of one grain weight of water, itr appear'd that this air, by its own fpring, was rarified to one hundred fiftytwo times its former dimenfions; tho' it had been comprefs'd only by the ordinary weight of the contiguous air. The experiment, indeed, was made in a moift night, and in a room with a large fire; which did, perhaps, fomeWhat rarify the bubble of air.

It hath feem'd almoft incredible, what Merfonnus relates, that the air, by the violence of heat, may be dilated fo as to take up feventy times its natural fpace: we, therefore, once more, convey'd into the tube a bubble of the fame bignefs with the former; and profecuting the experiment as. before, we obferv'd, that the air did manifefty ftretch itfelf fo, as to appear, feveral times, far below the furface of the water in the vial; and that, too, with a furface very convex toward the bottom of the pipe. Nay, the.pump being ply'd a little longer, the air reach'd, to that place, where the tube refted upon the bottom of the vial, and feem'd to hit againt. and rebound from it. Whence'tis probable, if the experiment could be fo made that the expanfion of the air might not be refifted, it would yet enlarge its bounds, and perhaps ftretch itfelf to more than two hundred cimes

Phyfico-mechanical Experiments.

 times its former bulk. And this may render many phenomena of our en= gine credible; fince, of that part of the atmofphere wherein we live, what we call the free air, and prefume to be uncomprefs'd, is crowded into fo very fmall a portion of the fpace, it would, if unrefifted, poffers.The fluength of glafs, and tbe figure in futaim ing a prefjure.
7. To difcover the ttrength of glafs, and what intereft the figure of a body may have in refifting a preffure, we made the following experiments.

A round glafs bubble, capable of containing five ounces of water, being purpofely blown very thin, and with a flender neck, we moderately emptied the receiver, and nimbly applied the neck of the bubble to the orifice of the bottom of it; and after turning the key of the ftop-cock, we made a free pafiage for the air to come out of the bubble into the recciver ; which高 did with great celerity ; leaving the bubble as empty as the receiver itfelf. We then let in the external air, which now prefs'd only on the outfide of the exhaufted bubble, being prevented from getting within it; neverthelefs, it continued as intire as before; the roundnefs of its figure enabling it, tho' almoft as thin as paper, to refift a preffure equal to that of the whole incumbent atmofphere. And repeating the experiment, we found again, that the preffure of the air, thrufting all the parts inwards, made them, by reafon of their arched figure, fo fupport one another, that the glafs would not break.
Fig. 32. 8. We took a glais alembic, containing between two and three pints; the roftrum C, being hermetically feal'd; and at the top of it was a hole, wherein we cemented one of the fhanks of a ftop-cock; fo that the glais being inverted, the wide orifice ftood uppermoft ; and to this was cemented a cover of lead: the other fhank of the fop-cock was alfo, with cement, faften'd into the upper part of the pump, which beginning to be work'd, the remaining air became by much too weak to balance the preffure of the external air, when the glafs was, with a great noife, crack'd almof half round, along that part of it where it began to bend inwards; as in the line AB; and upon attempting to evacuate more of the air, the crack appear'd to run further, tho' the glafs, where it was broken, feem'd above twenty times as thick as the bubble employ'd in the preceding expez riment. Hence it may feem itrange, that taking another glafs bubble, alike in all refpects, for ought appear'd, to that juft mention'd, fealing it up hermetically, and fufpending it in the receiver, the exfuction of the furrounding air did not enable the internal air to break or crack it : and this prov'd the cafe, tho' the experiment were tried feveral times, with bubbles of different fizes. But, perhaps, the heat of the lamp, wherewith fuch glaffes are hermetically feal'd, might rarify the contain'd air, and weaken its fpring.
Fig. 33. 9. Into the neck of a common four-ounce vial, we put a flender pipe of glafs, and carefully faften'd it, with a mixture of pitch and rofin, to the neck thereof. This vial, containing water that reach'd confiderably higher than the lower end of the pipe, was put into a fmall receiver, in fuch manner, that the glafs pipe, paffing thro' a hole in the leaden cover of the receiver,

Phy/ico-mechanical Experiments:

wat principally without the veffel; which being exacly clofed, we work'd the pump: but at the very firft ftroke, and before the fucker was drawn to the bottom of the cylinder, there flew out of the vial, a large piece of glafs, with a furprizing violence and noife, fo as to crack the receiver in many places.

For farther fatisfaction, we repeated the experiment in a round glafs, that would contain fix ounces of water ; which we put into a fmall receiver, fo that the bottom of it refted upon the lower part of the receiver, and the neck came out thro' the leaden cover of the fame. This vial we included in a bladder, before it was put in, and the receiver being clos'd, fo that the outward air could not enter but by breaking thro' the vial, into whofe cavity it had free accefs by the mouth, the fucker was nimbly drawn down; upon which, the external air immediately prefs'd forcibly, as well upon the leaden cover as the vial; and the cover happening to be in one place a little narrower, than the edge of the receiver, it was deprefs'd, and thruft into it fo violently, that getting a little within the lip of the glafs, it thruft out the fide, where it was deprefs'd, fo as to fplit the receiver. And having fitted a wider cover to the fame receiver, and clos'd both that, and the crack with cement, we profecuted the experiment in the former manner with this fuccefs; that, upon fuddenly depreffing the fucker, the external air burft the vial into above a hundred pieces, many of them exceeding fmall, and with fuch violence, that we found a wide rent, and many holes made in the bladder.

And to fhew, that thefe phenomena were the effects of a limited force, and not of fuch an abhorrence of a vacuum; as muft, upon occafion, exercife a boundlefs power, we try'd feveral thicker glaffes, and found that the experiment would not fucceed; for the glaffes were taken out, as entire as they were put in.

And here, by the way, we may obferve, that every fmall crack will not render a roundifh reteiver ufelefs in our experiments, becaufe, upon evacuation of the internal air, the external on all fides preffing the glafs towards the center, thrufts the edges of the crack clofer together.

And, in cafe of confiderable flaws, we fuccefsfully apply a plaifter, made of quick-lime, finely powder'd, and nimbly ground, with a proper quantity of the fcrapings of cheefe, and fair water, enough to bring the mixture to a foft pafte; which, when the ingredients are exquifitely incorporated, will have a ftrong, and fetid fcent ; and then, it muft be immediately fpread upon a linen cloth, and applied, left it begin to harden.
10. We let down, into our receiver, a tallow-candle of a moderate fize, Tbe flamo of tal. and fufpending it, fo that the flame appeared in the middle of the veffel, liow vand of wax we prefently clos'd it up, and upon pumping found, that within little more, than half a minute after, the flame went out.

At another time, the flame lafted about two minutes, tho upon the firft exfuction it feem'd to contract itfelf in all its dimenfions, and after two or three exfuctions, it appear'd exceeding blue, and gradually Vol. II.
$\mathrm{H}_{\mathrm{h}} \mathrm{h}$
receded
promarices. receded from the tallow, till at length it feem'd to poffefs only the very top of the wiek, and there it vanih'd.

The fame candle, being lighted again, was fhut into the receiver, to try how it would burn there, without exhaufting the air ; and we found that it lafted much longer than formerly ; and before it went out, it receded from the tallow, towards the top of the wiek, tho' not near fo much, as in the former experiment.

We took notice, that when the air was not drawn out, a confiderable part of the wiek remain'd kindled upon the extinction of the flame, which emitted a fmoke, that fwiftly afcended directly upwards, in a flender and uninterrupted cylinder, till it came to the top, from whence it return'd, by the fides, to the lower part of the veffel; but when the flame went out, upon the exfuction of the air, we once perceiv'd it not to be follow'd by any fmoke at all. And at another time, the upper part of the wiek, remaining kindied after the extinction of the flame, a flender fteam afcended, but a very little way, and after fome uncertain motions, for the greateft part, foon fell downwards.

Joining together fix flender tapers of white wax, as one candle, and having lighted all the wieks, we let them down into the receiver, and made what hart we could to clofe it up with cement. But, tho in the mean while, we left open the valve of the cylinder, the hole of the ftop-cock, and that in the cover of the receiver, that fome air might get in to cherifh the flame, and that the fmoke might have a vent; yet the air fufficed not for fo great a flame, till the cover could be perfectly luted on"; fo that before we were ready to employ the pump, the flame was extinguilh'd. Wherefore, we took but one of the tapers, and having lighted it,clos'd it up in the receiver, to try how long a fmall flame, with a proportionable fmoke, would continue in fuch a quantity of air ; but we found, upon two feveral trials, that from our beginning to pump, the flame went out in about a minute. It appear'd, indeed, that the fwinging of the wire, whereby, the candles hung, haftned the extinction of the flame, which feem'd, by the motion of the pump, to be thrown, fometimes on one fide of the wiek, and fometimes on the other. But, once refraining to pump, after a very few exfuctions, the flame lafted not much longer. And laftly, clofing up the fame lighted taper, to difcover how long it would laft, without drawing out the air; we found, that it burnt vividly for a while ; but afterwards, began to diminifh gradually in all its dimenfions, tho' the flam edid not, as before, retire itfelf by little and little towards the top, but towards the bottom of the wiek, fo that the upper part of it, manifeftly appear'd for fome time, above the top of the flame; which, having lafted about five minutes, was fucceeded by a ftream of fmoke, that afcended in a ftrait line.
yiunlud chare 11. A fpiral wire, fill'd to the height of about five inches, with Fig. 34 wood-coals throughly kindled, being let down into the receiver, and the pump fer to work; we obferv'd, that upon the very firfe exfuction of the coals, the fire grew dim, and tho' the agitation of the veffel made them fwing; yet, when we could no longer difcern a rednefs in any of them,
we found that, from the beginning of the pumping, that is, about twoprovatice. minutes after the coals had been put in, glowing, to the total difappearing of the fire, there had pafs'd three minutes.

We then, prefently, took them out, and found there had remain'd fome little parcels of fire, rather cover'd, than totally extinguifh'd; for, in the open air, the coals began to re-kindle, in feveral places. Wherefore, having, by fwinging them about in the wire, throughly lighted them a fecond time, we let them down again into the receiver; and clofing it, waited till the fire feem'd totally extinct, without working the pump, and found that from the time the veffel was clofed, till no fire at all could be perceiv'd, there had elapfed four minutes.

Laftly, having taken out the wire, and put other coals into it, we, in the fame room where the engine ftood, let it hang quietly by a ftring, in the open air ; and found that the fire began to go out firf at the top, and outfides of the coals; but inwards, and near the bottom, it continu'd vifible for above half an hour ; a great part of the coals, efpecially the lowermoft, being reduced to afhes before the fire was extinguifh'd.

A piece of iron, of the bignefs of a middle-fized charcoal, being, alfo, Redbet irne. made red-hot throughout, we fufpended it in the exhaufted receiver ; but could not obferve any manifeft change upon the exfuction of the air. The iron, indeed, began to lofe its fiery rednefs at the top; but that feem'd owing to the upper-end's being fomewhat more flender, than the lower; and the rednefs, tho' it were in the day-time, continued vifible about four minutes; and then before it quite difappear'd, we let in the air, but no change enfued. Yet fome little remainders of wax, that ftuck to the wire, and were turn'd into fumes by the heat of the iron, afforded a more diffufive fmoke when the air was drawn out, than afterwards; tho' allowance were made for the decreas'd heat of the metal. And laftly, notwithftanding a confiderable extraction of the air, and the inconfiderable diffipation of the parts of the iron, the fides of the receiver were very fenfibly hot, and retain'd a warmth for fome time after the iron was taken out,
12. We fufpended a piece of well-lighted match, in our receiver, with Lighted match:: the lighted end downwards, when the fumes of it, almoft, immediately fill'd, and darken'd the receiver. Wherefore, left the veffel fhould be endanger'd, the pump was nimbly ply'd, and a great deal of air and fmoke, mix'd together, drawn out ; whereby the receiver growing more clear, we could difcern the fire in the match, to burn, by degrees, more languidly; and, after no long time, it ceas'd to be difcernible either by its light, or fmoke. And tho we continued pumping for a while longer, yet, upon admiffion of the external air, the fire, that feem'd to have been long extinguilh'd, prefently reviv'd, and began again to thine, and diffipate the adjacent fewel into fmoke, as before.
13. We, afterwards, let down into the receiver, together with a piece of lighted match, a large bladder, well tied at the neck, and containing only about a pint of air, tho' capable of containing ten times as much. Hhh 2

This was defign'd to try, whether the fmoke of the match, replenifing the receiver, would hinder the dilatation of the internal air, upon the extraction of the external ; and to difcover whether the extinction of the fire in the match, proceeded from want of air, or, barely, from the preffure of its own fumes.

The event was, that, at the beginning of our pumping, the match appeared well lighted, tho it had almoft filld the receiver with fmoke ; but, by degrees, it burnt more dimly; tho', by nimbly drawing out the air, and fmoke, the veffel became lefs opake : fo that the longer we pump'd, the lefs air, and fmoke, came out of the cylinder, upon opening the valve ; yet the fire in the match, went out but nowly. And when, afterwards, we had darken'd the room, and, in vain, attempted to difcover any fpark of fire, we ftill continued pumping ; and, at laft, letting in the air, the fire quickly revived, yielded light, and plenty of fmoke. Then we fell to pumping a-frefh, and continued it till long after the match went out again; To that in lefs than half a quarter of an hour, the fire was extinguifhed, beyond the poffibility of a recovery by re-admitting the air. If the cylinder were emptied, when the receiver was full of fmoke, immediately upon turning of the ftop-cock, the receiver would appear manifefly darkned, to an eye viewing the light thro' it ; and this darknefs was lefs, as the receiver contain'd lefs fmoke: it was alfo inftantaneous, and feem'd to proceed from a fudden change of place and fituation, in the exhalations, upon the vent afforded them, and the air they were mix'd with, out of the receiver into the cylinder. We alfo obferv'd a kind of a halo, for a confiderable time, about the fire, that feem'd to be produced by the furrounding exhalations. And, when the fumes feem'd moft to replenifh the receiver, they did not, fenfibly, hinder the air, included in the bladder, from dilating itfelf, after the fame manner it would otherwife have done: fo that, before the the match was quite extinct, the bladder appear'd diftended to fix or feven times its former dimenfions.

We, alfo, took a fmall receiver, capable of containing about a pound and a half of water, and, in the midft of it, fufpended a lighted match; but tho within a minute, from putting in the match, we had cemented on the cover, yet, before we began to pump, the fmoke had fo fill'd the receiver, as, apparently, to choke the fire. And finding it thus impoffible to clofe up the veffel, and pump out the fumes foon enough to prevent the extinction of the fire, we uled this expedient : as foon as we had pump'd once or twice, we fuddenly turn'd the key, and thereby gave accefs to the excluded air, which ruming violently in, drove away the afhes, fill'd the glafs with frefh air, and re-kindled the fire; and having, by this means, obtain'd a lighted match in the receiver, without fending time, to clofe it up, we exhaufted the receiver, and found the match then quickly ceas'd to fmoke.

And gneppers der fired in ve. си.
14. We took a piftol, and having firmly ty'd it to a ftick, almoft as long as the cavity of the receiver, we primed it with dry gun-powder; then cocking it, we faften'd the trigger to one end of a ftring, whofe other end

Pbyfico-mechanical Experiments.

was faften'd to the key in the cover of our receiver. This done, we convey'd the whole apparatus into the veffel, which being clofed up, and emptied after the ufual manner, we turn'd the key in the cover, and thereby thortning the fring, pull'd the trigger, and obferv'd, that the force of the fpring of the lock, was not fenfibly abated by the abfence of the air; for, the cock falling with its ufual violence, ftruck as many, and as confpicuous fparks of fire, as, for ought we could perceive, it did in the open air. Upon often repeating this experiment, we could not perceive, but that the fparks of fire moved upwards, downwards, and fide-ways, as when out of the receiver.

We, likewife, fubftituted a piece of fteel for the flint, when, the piftol being cock'd, and convey'd into the receiver, we pull'd the trigger, after the air was drawn out ; and tho' the place were purpofely darkned, there appear'd not, upon the collifion of the two fteels, the leaft fpark of fire. We have, indeed, found, that, by the dextrous collifion of two harden'd pieces of fteel, many fparks may be ftruck out; but that was done with fuch a vehement percuffion of their edges, as could not well be procured in our receiver.

But moft of our attempts, to fire the gun-powder in the pan of the piftol, fail'd, becaufe we were obliged to let it hang, almoft perpendicularly, in the receiver; whereby the powder was thook out, before the fparks could reach it. Once, however, the experiment fucceeded; and the kindled powder feem'd to make a more expanded flame, than it would have done in the open air, and mounted upwards: upon the extinction of the flame, the receiver appear'd darkned with fmoke, which feem'd to move freely up and down, and, upon letting in the air, began to circulate much fafter than before.
15. We convey'd into a fmall receiver, a piece of combuftible, dry, black An attoupt to matter ; and carefully clofing the veffel, we brought it to a window, at kindita bomb which the fun fhone in very freely; then, drawing out the air, we, with by bef funds rays a burning-glafs, threw the fun's rays upon the combuftible matter, which began immediately to fend out a fmoke that darkned the receiver; but, notwithftanding all our care, the external air got in, and fruftrated the experiment.

We, therefore, lodg'd this combuftible matter in the cavity of our largeft receiver, fo that it was almoft contiguous to the fide next the fun : we then endeavour'd to kindle it, but found, that by reafon of the thicknefs of the glafs, the fun-beams, thrown in by the burning-glafs, were, in their paflage, fo diflocated, and fcatter'd, that we could not, poffibly, unite enow of them, to make the matter yield a fenfi bfmoke.
16. We convey'd into the receiver, a little pedeftal of wood, in the midft of which was, perpendicularly erected, a fender iron, upon the fharp point whereof, an excited needle of fteel, of about five inches long, was to placed, that, hanging in equilibrium, it could move freely every way. Then the air being pump'd out, we employ'd a load-ftone, moderately vigorous, to the outfide of the glafs, and found that it attracted, or what the fame load-ftone would have done, had none of the air been drawn away from about the needle; which, when the load-ftone was remov'd, refted, after fome tremulous vibrations, in a pofition north and fouth.

Tbe Toricellian experiment in vacu.
17. A flender, and very exact cylinder of glafs, near three feet in length ; its bore, a quarter of an inch in diameter; being hermetically fealed, at one end, was, at the other, filled with quick-filver; care being taken, that as few bubbles as poffible, fhould be left in the mercury. Then the tube, being ftop'd with the finger, and inverted, was open'd into a long, flender, cylindrical box, half fill'd with quick-filver; when that in the tube fubfiding, and a piece of paper being pafted level to - its upper furface, the box and tube were, by ftrings, carefully let down into the receiver; and the cover, by means of this hole, flipt along as much of the tube, as reach'd above the top of the receiver: the interval left betwixt the fides of the hole, and thofe of the tube, being exquifitely fill'd up with melted diachylon; and the round chink, betwixt the cover and the receiver, likewife, very carefully clos'd; upon which clofure, there appear'd no change in the height of the mercurial cylinder: whence the air feems to bear upon the mercury, rather by virtue of its fpring, than of its weight; fince its weight could not be fuppos'd to amount to above two or three ounces; which is inconfiderable, in comparifon of fuch a cylinder of mercury as it would fuftain. Now the fucker was drawn down, and immediately, upon the evacuation of a cylinder of air, out of the receiver, thequickfilver in the tube fubfided; and notice being carefully taken of the place where it fop'd, we work'd the pump again, and mark'd how low the quickfilver fell at the fecond exfuction: but, continuing thus, we were foon hinder'd from accurately marking the ftages in its defcent, becaufe it prefently funk below the top of the receiver: fo that we could, from hence, only mark it by the eye. And continuing pumping, for about a quarter of an hour, we could not bring the quick-filver, in the tube, totally to fubfide. Then we let in fome air; upon which, the mercury began to re-afcend in the tube, and continued mounting, till having return'd the key, it immediately refted at the height it had then attain'd. And fo, by turning, and returning the key, we did, feveral times, impel it upwards, and check its afcent; till, at length, admitting as much of the external air, as would come in, the quick-filver was impell'd up, almoft, to its firt height; which it could not fully regain, becaufe fome little particles of air were lodg'd among thofe of the quick-filver, and rofe in bubbles to the top of the tube.

It is remarkable, that having, two or three times, try'd this experiment, in a fmall veffel; upon the very firft cylinder of air that was drawn out of the receiver, the mercury fell, in the tube, 18 inches and a half; and, at another time, 19 inches and a half.

We, likewife, made the experiment in a tube lefs than two feet in length ; and, when there was fo much air drawn out of the receiver, that the remaining part could not counter-balance the mercurial cylinder, it fell
above a fpan at the firft ftroke; and the external air being let in, impelld it up again, almoft to the top of the tube : fo little matters it, how heavy or light the cylinder of quick-filver be, provided its gravity overpower the preffure of as much external air, as bears upon the furface of that mercury into which it is to fall.

Laftly, we obferv'd, that if more air were impell'd up, by the pump, into the receiver, after the quick-filver had regain'd its ufual ftandard in the tube, it would afcend ftill higher; and immediately, upon letting out that air, fall again to the height it refted at before.
But, in order to fill the Torricellian tube with exactnefs, the edges of the open end fhould be made even, and turned inwards, that fo the orifice, not much exceeding a quarter of an inch in ciameter, may be the more eafily, and exactly ftopd by the finger ; between which, and the quick-filver, that there may be no air intercepted, it is requifite that the tube be perfectly full, that the finger, preffing upon the protuberant mercury, may rather throw fome out, than not find enough to keep out the air exactly. It is, alfo, an ufeful way, not quite to fill the tube, but to leave, near the top, about a quarter of an inch empty: for, if you then ftop the open end, and invert the tube, that quarter of an inch of air, will afcend in a great bubble to the top; and, in its paffage, lick up all the little bubbles, and unite them with itfelf, into one great one. So that, if by re-inverting the tube, you let that bubble return to the open end of it, you will have a much clofer mercurial cylinder than before; and need add but a very little quick-filver more, to fill up the tube exactly. And, lafty, as for fuch lefs, and invifible parcels of air, which cannot be thus gather'd up, you may endeavour, before you invert the tube, to free the quick-filver from them, by fhaking the glaff, and gently knocking on the outfide of it, after every little parcel of quick-filver pour'd in; and afterwards, forcing the bubbles to difclofe themfelves, and break, by applying a hot-iron near the top of the glafs; which will raife the bubbles fo powerfully, as to make the mercury appear to boil. I remember, that by carefully filling a fhort tube, tho' not quite free from air, we have made the mercurial cylinder reach to thirty inches, and above an eighth; which is mention'd, becaufe we have found, by experience, that in fhort tubes, a little air is more prejudicial to the experiment, than in long ones.
18. We fill'd a glais tube, about three feet long, with mercury ; and odd phamman: having inverted it into a veffel of other quick-filver, that in the tube, of the werchas. fell down to its ufual height; leaving tome little particles of air in the fpace it had deferted : for, by the application of hot bodies, to the upper part of the tube, the quick-filver would be a little deprefs'd. Laftly, having put both the tube, and the veffel whereon it refted, into a convenient wooden frame, we placed them together in a window of my chamber.

And during feveral weeks, that the tube continu'd there, I obferv'd, that the quick-filver did, fometimes faintly imitate the liquor of a thermo-

Pbyfico-mechanical Experiments:

Preumatice: meter; fubfiding a little in warm, and rifing a little in cold weather; which we afcrib'd to the greater, or leffer preffure of that little air, which remain'd at the top of the tube, expanded, or condens'd by the heat, or cold of the ambient air. But, the quick-filver often rofe, and fell in the tube very confiderably, after a manner, quite contrary to that of weather-glaffes, where air is at the top; for fometimes, 1 obferv'd it, in very cold weather, to fink much lower, than at other times, when the air was comparatively warmer. And fometimes, the quick-filver would, for feveral days together, reft almoft at the fame height; and at others, it would in the compafs of the fame day confiderably vary its altitude; tho' there appear'd no change, either in the air abroad, or in the temper of that within my room, nor in any thing elfe, to which fuch a change could reafonably be imputed; efpecially confidering, that the fpace wherein the mercury continued unfettled for five weeks, amounted to full two inches; defcending in that time about $\frac{9}{1!}$ of an inch from the place where it firft fettled, and afcending the other inch, and $\frac{7}{1}$: and when we took the tube out of the frame, after it had ftaid there part of November, and December, a large fire being then in the room, we found the mercurial cylinder to be above the upper furface of the ftagnant mercury $29 \frac{3}{4}$ inches ${ }^{*}$.

* That the quick-filver in the barometer fhould ftand lower, when the air is ; thick and moift, than when it is dry, and clear, feems to overthrow the theory of the air's gravitation. Indeed, to difcover the caules of all the minute variations in the air, is a very difficult task. The winds have a great thare herein, with the vapours, exhalations, and expirations of the earth ; perhaps alfo, the changes, which happen in the adjaceut regions; the flux and reflux caufed by the moon in the air, no lefs than in the fea, and many other particulars, are not unconcern'd. Now, the air is heavier, than the vapours it fuftains; its particles being more grofs, and arifing from denfer bodies, than the particles of vapours. But, winds may change this weight of the air, in any particular region ; either by bringing, and keeping up more air over it, as may eafily happen, when two contrary winds blow; or by fweeping it away, and affording room for the fubjacent air to expand itfelf; as may be the care, when two oppofite winds meet, or, when only one blows exceeding Atrong. Thus, 'tis faat, that violent gufts make the mercury in the barometer greatly to fink of a fudden. The cold nitrous particles of the air, or the air itfelf, being condenfed by cold in the north, and
blown to another quarter, may, not only condenfe the atmofphere, but make it heavier. Moreover, heavy dry exhalations will increafe the weight of the air, (as falts and metals diffolv'd in proper menftrua, increafe the fpecific gravity of them;) and perhaps, at the fame time, add to its elafticity. Again, the air, by thefe, or the like caufes, being rendred heavier, is the more able to fuftain the vapours; which therefore coming to be intimarely mir'd therewith, and floating every where uniformly therein, render it fair and clear. But, when from contrary caufes it becomes lighter, "tis rendred unable to fuftain the vapours, which always opprefs it ; fo that being, as it were, precipitated together, they form clouds, and running into drops, fall, by their increafed gravity, to the earth. Hence we fee, what caufes render the air heavier, and more able to fuftain the quick-filver in the barometer, namely, fuch as make the air clear and dry: but the caufes, which render the air light and unfit to futtain the mercury, produce rain. When therefore, the air is lighteft, and the mercury in the barometer loweft, the elouds appear very low, and in very fwift motion; and the air having clear'd itfelf of its clouds by rain, becomes very bright and

Such an inequality in the rife, and fall of the mercury will, I fear, ren-Przomatsea, der. it difficult to determine by the barometer, whether the moon be the caufe of the tides, efpecially, till the reafon of this odd phenomenon be certainly known; which feems principally to depend upon confiderable alterations in the air, in point of rarity and denfity.
19. We took a tube of glafs, about four feet in length, hermetically a like experifeal'd at one end, fill'd it with common water, and inverted the open end, went made with beneath the furface of a vefiel of water. Then this veffel, with the tube in it, being let down into the receiver, the pump was fet on work; when, till the receiver was moderately exhaufted, the tube continu'd quite full of water ; it being requifite, that a great part of the air contain'd in the receiver fhould be drawn out, to bring the remaining to an equilibrium, with fo thort a cylinder of water. But, when once the water began to fall in the tube, eachexfuction of air made it defcend a little lower; tho nothing near fo much, nor fo unequally, as the quick-filver did. The loweft, we were able to draw down the water, was, to about a foot above the furface of that in the veffel. And, when the water was drawn down thus low, we found, that by letting in the outward air, it might be immediately impelid up again, to the higher parts of the tube.

Upon making this experiment in a finall receiver, we obferv'd, that at the firft exfuction of the air, the water ufually fubfided feveral inches; and at the fecond, fometimes near two feet; whereupon letting in the external air, the water was impell'd up, with a very great velocity.
20. That the air hath a confiderable elaftic power, we have abundantly whatber water proved : but, whether water participates, in any meafure, thereof, feems ${ }^{b_{8}}$ elaftic 9 hitherto, to have been fcarce confider'd.

Into a large glafs bubble, with a long neck, we pour'd common water, till it reach'd about a fpan above the bubble ; and a piece of paper being pafted thereon, we put it, unftopp'd, into the receiver; when, the pump
tranfparent, fo as to afford an excellent profped of remote objects. Bur, when it is heavy, and the quick-filver ftands high in the barometer, the heavens appear fair, but fomewhat thick, by reafon of the vapours, every where equally difperfed therein, and is lefs fit to afford a good view of objecas at a diftance. And if any clouds are feen, they be very high, and move flow. When the air is at the heavieft, thick clouds fometimes cover the earth, confifting probably of fuch exhelations, as the air, at that time, is unable to fuftain ; and which, cannot float therein, when tis light. In our climate, the barometer ftands higheft, when the weather is coldeft, and when the eaft, or north-eat winds blow ; becaufe, at that time, two winds blow together, from op-
pofite parts ; for in the Atlantic ocean, at the degree of latitude anfwering to ours, the wind, almoft continually blows weft; and when the north-wind blows, an air condens'd by cold is brought to us. Farther, in the moft northern regions, the height of the barometer varies more, than in the fouthern; the winds being there more ftrong, changeable, and contrary to one another, on a fmall trad of land; whereby, at one time, they heap up, and condenfe the air, and at another, fweep it away, and rurify it. Laftly, the barometer varies leaft between the tropics, becaufe the wind is there almoft always gente, and blows the fame. way. See Clark. Annotat. in Robault. \& Pbillf. Tranf. No. 181. 292.

Promaticg, was work'd, after the ufual manner, and a confiderable part of the air in the receiver drawn out, before we difcern'd any expanfion of the water ; but continuing to pump, the water manifeftly began to afcend in the ftem of the glafs, and feveral bubbles, from the lower parts of the veffel, made their way thro' the liquor to the top of it, and there broke into the receiver. After the water once appear'd to fwell, at each time the air was let out from the receiver into the pump, the water in the neck of the glafs, fuddenly rofe, about the breadth of a barley-corn, and fo by degrees attain'd to a confiderable height, above the mark. And at length, the external air, being fuddenly re-admitted, the water immediately fubfided, and deferted all the additional fpace, it had gain'd in the glafs.

2 I . We convey'd into the receiver a new glafs-vial, capable of holding about fix or feven ounces of water; into which we had before-hand put only two or three fpoonfuls of that fluid, and ftopp'd it clofe with a fit cork. The receiver being emptied, there appear'd no change in the inclofed water ; the air, imprifon'd with it, not having the force to blow out the ftopple. Wherefore, we again put in the vial, lefs firmly clofed than before; but when the air was pumped out of the receiver, that within the vial quickly found little paffages to get out at: for when the vial was put in the time before, the water remain'd all the while perfectly free from bubbles; but now the bottom of the glafs appear'd all cover'd with them, which, upon the return of the excluded air, prefently fhrunk up.

Hence it feem'd deducible, that, whilit the vial continu'd well ftopp'd, . the included water fuftain'd, from the air fhut up with it, a preffure equal to that of the atmofphere; fince, till the air could get out of the glafs, there appear'd no bubbles in the water, notwithftanding the want of preffure in the ambient body.

But, further, we caufed a convenient quantity of water to be hermetically feal'd up in a. glafs-egg, whofe long neck was faften'd to one end of a ttring, the other end whereof was ty'd to the cover of our receiver; then the egg being convey'd into the receiver, and that being evacuated, we, by turning the brafs-ftopple, fo thorten'd the ftring, as to break the glafs; whereby liberty being given to the air imprifon'd in the egg, to pafs into the receiver, its fudden recefs made fo many bubbles appear immediately, and afcend fo fwiftly in the water, that their motion look'd like that of a violent fhower of rain ; except that the bubbles did not, like the drops of rain, tend downwards, but upwards; as happens in the diffolution of feedpearl, in fome very acid menftruum, wherein, if a large quantity of the pearls be caft whole, they will, at firft, be carry'd in fwarms from the bottom to the top of the liquor. And, without fealing up the glafs, this experiment may be try'd in a fmall receiver : for the air may here be drawn out fo foon, that the bubbles, lurking in the water, will, immediately, difplay themfelves, and afcend in throngs. So that, having made the experiment, in fuch a receiver, with red wine, inftead of water, the wine appear'd all cover'd with a large vanifhing white froth.

Pbyfico-mechanical Experiments.

22. To difcover whether the expanfion of the water really proceeded from an elaftic power in the parts of that fluid; we fill'd a glafs-vial, with a pound and fome ounces of water, and then put into it a glafs-pipe, open at both ends, and feveral inches in length, fo as to reach a little below the neck; then we carefully cemented it thereto, that no air might come into the vial, nor any water get out of it, but thro' the pipe; and the pipe, being warily filld about half way with water, and a mark being pafted over-againft the upper furface thereof, the whole was, by ftrings, let down into the receiver: when, pumping out the air, the water in the pipe began to rife, while fome little bubbles difcover'd themfelves on its fides; and, foon after, the water ftill fwelling, there appear'd, at the bottom of the pipe, a bubble, about the bignefs of a fmall pea; which, afcending thro' the tube to the top of the water, ftaid there a while, and then broke. But the pump being nimbly ply'd, the expanfion of the water fo increafed, that, quickly getting up to the top of the pipe, fome drops of it began to run down along the outfide of it ; which obiliged us to forbear pumping a while, and let it fubfide, as it did, within lefs than two inches of the bottom of the pipe. Then the pump being again fet on work, the bubbles began to afcend from the bottom of the pipe ; of which we reckon'd about fixty large ones, that afcended one after another. And, at length, letting in the external air, the water, in the pipe, initantly fell down almoft to the bottom of it.

When the greater part of the air had been pump'd out of the receiver, the bubbles afcended fo very flowly in the pipe, that their progrefs was fcarce difcernible ; their magnitude not permitting them fufficiently to expand themfelves in the cavity of the glafs, without prefling againt the fides of it. And, what feems ftrange, thefe bubbles were commonly much larger than thofe which rofe before them; fome of them being equal in bulk to four or five peas.

And tho 0°, in ordinary bubbles, the air, together with the thin film of water that invefts it, commonly fwells above the furface of the water, and conftitutes hemifpherical bodies; the little parcels of air, that came up after the receiver was tolerably emptied, did not make protuberant bubbles; but fuch, whofe upper furface was either level with, or beneath that of the water: fo that, the upper furface being ufually fomewhat convex, the lefs protuberant parts had a quantity of water above them.

We farther obferv'd, that, in the bubbles which firft appear'd, the afcending air made its way upwards, by dividing the water thro' which it pafs'd; in thofe that rofe at the latter end of the experiment, the afcending parcels of air, having now little more than the weight of the incumbent water to furmount, were able to expand themfelves, fo as to fill that part of the pipe which they pervaded, and, by preffing every way againft the fides of it, to raife what water they found above them, without letting any confiderable quantity glide down along the fides of the glafs: fo that, fometimes, we could fee a bubble thruft on before it a whole cylinder of water, perhaps an inch high, and carry it up to the top

Hence it appears, that the air, and other bodies under water, may be prefs'd upon as well by the atmofphere, as by the weight of the incumbent water. Hence, likewife, it cannot from the preceding experiment be fafely concluded, that water uncompreffed, has an elaftic power; fince the intumefcence, produced in that experiment, may be afcribed to the numerous little bubbles produced in water, freed from the prefure of the atmofphere. And hence, laftly, it feems probable, that, in the interftices of water, there lie conceal'd many parcels either of air, or fomething analogous thereto; tho' fo very fmall, that they have not been hitherto fufpected to lurk there.
23. It may, indeed, be conjectur'd, that thefe bubbles proceed not fo much from any air in the water, as from the more fubtile parts of the water itfelf.
We, therefore, repeated our former experiment, in a three-foot tube, fill'd with water, and in a fmall receiver; and found, that, upon the fubfiding of the fuid, fo many bubbles, vifibly broke into the upper part of the tube, that, having afterwards let in the external air, the water was not thereby impell'd to the top, within more than half an inch. Then we, again, drew the air out of the receiver, and found, that, by reafon of the body which poffers'd the top of the tube, we were able, not only to make the water fall to a level, with the furface of that in the veffel; but alfo a great way beneath it. Now, fince this could not well be afcribed to the bare fubbiding of the water by its own weight, the water feems to have been depreffed by the air. And, indeed, the furface of the water, in the tube, was much more concave than ufual. And, by the way, when the water, in the pipe, was funk almoft as low as the water without; we obferv'd, that, by the bare application of the hand, moderately warm, to the deferted part of the tube, the remaining water would be, fuddenly, confiderably deprefs'd. And having, for a while, held a kindled coal to the outfide of the tube ; the air was, by the heat, fo far expanded, that it quickly drove the water to the bottom of the tube, which refted feveral inches below the furface of the ambient water. Hence it appears, that the air, when expanded to between ninety, and a hundred times its natural dimenfions, will, yet, readily admit of a much farther rarifaction, by heat.
But, to proceed; in cafe our bubbles were produced by air, lurking in the water ; that air being got together at the top of the tube, I imagin'd, if the receiver were again exhaufted, bubbles would not rife, as before: and, accordingly, the air being again pumped out, the water, in the tube, defcended; but, for a great while, we fcarce faw one bubble appear; only when the receiver had been very much exhaufted, and the water fallen very low, we difcover'd, near the bottom of the tube, fome little oses, which feem'd to confift of fuch parcels of air, as had not, by reafon

Pbyjcco-mechanical Experiments.

Ton of their fmallnefs, got up to the top of the water, with the more bulky and vigorous fort. And having, by letting in the air, forced up the water into the tube, we could not perceive that it afcended near the top, tho' the engine remain'd unemploy'd for two or three nights togother. Having, alfo, try'd a like experiment with quick-filver, inftead of water, in a tube about a foot and a half long; upon drawing down the quick-filver as low as poffible, and letting in the external air, we found, that fome lurking particles of air were got up to the top of the tube, and hinder'd the quick-filver from rifing to that height again. And, tho' the mercury were, by this means, brought to appear as a very clofe cylinder ; yet the air, in the receiver, being again evacuated, I could perceive feveral little bubbles faften'd to the infide of the tube, near the bottom. And, having purpofely watched one or two of the principal, I obferv'd, that tho' they grew gradually bigger, as the furface of the mercurial cylinder fell nearer to them; fo that, at length, they fwell'd to a confiderable bulk; yet, upon letting in the air, they did not break, but prefently thrunk up, till they became invifible.

Hence, it feems highly probable, that, even in the clofeft, and moft ponderous liquors, and, therefore, much rather in water, there may lurk undifcernible parcels of air, capable, upon the removal of the preflure of the atmofphere, and that of the liquor wherein it lurks, to produce confpicuous bubbles.

From thefe feveral particulars, it feems plain, that the bubbles we have been treating of, were produced by fuch a fubftance, as may be properly enough call'd air ; tho' we do not, pofitively, determine, whether air be a primogenial body, that cannot be generated, or turn'd into water, or any other body. This feems an important queftion, and might greatly conduce to explain the nature of the air.

Many naturalifts efteem the air to be ingenerable, and incorruptible ; and whetberair may plaufible reafons may be drawn, to countenance this opinion, from the tranjunited, permanency required in the corporeal principles of other bodies. Schottus tells us, that, in the Mufaum Kircherianum, there is a glafs, near half full of ordinary fpring-water, which, having been hermetically feal'd up by the fanous Clavius, is, to this day, preferv'd not only clear and pure, but without, in the leaft, turning into air, tho' it has ftood for fifty years.

Nor doth it appear, in thofe glaffes which are hermetically feal'd for chymical ufes, that the included air, during its long imprifonment, notwithftanding the alteration it receives from various degrees of heat, difcernibly alters its nature; whilft we plainly perceive, in digeftions and diftillations, that, tho' water may be rarify'd into vapours; yet it is not, really, changed into air, but only divided by heat, and diffufed into very minute parts; which, meeting together, prefently return to fuch water as they conftituted before. And even fpirit of wine, and other fubtile and fugitive fpirits, tho' they readily fly into the air, and mingle with it, do yer, in the glaffes of chymifts, eafily refume the form of liquors. And fo vodatile play up and down the capacity of a receiver; yet, after a while, faften themfelves to the infide theteof, in the form of lalts.

And the experiment made in our engine, with a piece of match, feems to thew, that even thofe light and fubtile fumes, into which the fire itfelf fhatters dry bodies, have no fuch fpring as that of the air ; fince they were unable to hinder the expanfion of the air, included in a bladder they furrounded. Fofephus Acofta, indeed, tells us, that he faw, in the WeftIndies, fome grates of iron fo rufted and confumed by the air, that the metal crumbled between the fingers, was like parch'd ftraw. Varemius, alfo, tells us, that, in the iflands call'd Azores, the air is fo tharp, as, in a fhort time, to fret not only iron-plates, but the very tiles upon the roofs of houfes, and reduce them to duft. But it may be faid, that thefe authors afcribe fuch effects, chiefly, to the winds; and that the corrofion of the iron may proceed not from the air itfelf, or any of its genuine parts; but from tome faline corpufcles difperfed thro' it, and driven, by the winds, againft the bodies it is prefumed to fret.

But, to try whether water could be turn'd into air, we fill'd an xolipile therewith; and placing it upon kindled coals, when the heat forc'd out a vehement ftream of aqueous vapours, we ty'd an empty bladder about the neck of it; and finding the xolipile, after a while, to blow up the bladder, we carefully ty'd it again, that the included fubftance might not get away. Then nlipping it off from the zolipile, we convey'd it into our exhaufted receiver, and found, that the included fubftance expanded to a much greater bulk than before. And, having again taken out the bladder, we fuffer'd it to remain ty'd up till the next morning, when it appear'd little lefs tumid: but, upon repeating the experiment, I found it very difficult to make it fo accurately, as to fhew, that water may be rarify'd into true air.

On the other hand, we found, by experience, that water, rarify'd into vapour, may, for a while, refemble the elaftic power of the air. For, if you fill a convenient xolipile with water, and lay it upon quick-coals, you may, after a while, obferve fo great a preffure of fome of the parts, contain'd in it, upon others; that the water will, fometimes, be thrown up into the air, above three or four feet high. And, if you then take the solipile, almoft red-hot, from the fire, you may perceive, that the water will, for a confiderable time, be fpouted out in a violent ftream. And, if there remains but little water in the rolipile, when 'tis thus taken from the fire ; immerfing the neck of it into cold water, you will find, that, after it begins to draw fome of it in, there will be generated, from time to time, many large bubbles in that water wherein the neck was plunged. Thefe bubbles feem manifeftly to proceed from hence, that, for a while, the heat, in the rolipile, continues ftrong enough to rarify part of the water that is fuck'd in, and expel it, in the form of vapours, thro ${ }^{\circ}$ that incumbent on the pipe. If, alfo, when the rolipile is almoft full of water, you hold a fire-brand in that ftream of vapours which iffues out

Pbypico-mechanical Experiments:

of the harrow mouth thereof, it will be very ftrongly blown with a confiderable noife. And it has been obferved, that, by placing the brand almoft at the mouth of the zolipile, the wind appear'd more vehement, than if it were held fome inches from it.

The elaftic power of this ftream, indeed, feems manifeftly owing to the heat that expands, and agitates the aqueous particles thereof; and fuch rapid winds feem to be but water broke into little parts, and put in motion ; fince, by holding a folid, fmooth, and clofe body againft it, the vapours condenfing thereon, will prefently cover that body with water.

But Kircher relates a remarkable experiment, which feems to fhew, that water is convertible into air. He tells us, that he made an hydraulic organ, which was fupplied with wind after the following manner. "There Fig. 3s.
was built a little chamber A H, five feet high, and three broad, with "t two tranfverfepartitions CD, and EF, perforated like a fieve; under thefe " ran a pipe G, which carried the water that, by a ftop-cock, was let out at "H : the water, therefore, ruhhing in violently at G, excited a very great " wind within; which bringing too much moifture along with it, the "partitions were contrived to purge it therefrom, that it might be con" vey'd more pure thro' the pipe A: but to render the air ftill more pure, " we made a fpiral tube of lead $Q R$, and inferted it into the veffel S : " by which means the air arrvied at the organ, thro' the orifice \mathbf{Z}, as dry " as if it had come out of an oven".

Now, if the wind that blows the organ here, doth not, upon the ceffation of its unufual agitation, gradually relapfe into water, I fhould ftrongly fufpect, that 'tis poffible for water to be eafily turn'd into air ; for it can fcarce feem probable, that fo little air, as is commonly contain'd in water, fhould be able, in fo fmall a quantity of water, as feems here employ'd, to make fo violent a wind as our author fpeaks of. I, therefore, fufpect that the wind, in this cafe, may be produced by fmall particles of the water it felf, forcibly expell'd out of the chamber into the organ. And tho' no heat intervenes, perhaps, motion alone, if vehement, may fuffice to break water into very minute parts, and make them afcend upwards, if: they cannot, otherwife, more eafily, continue their agitation. For, I remember, that betwixt Lyons and Geneva, 'where the Rhone is fuddenly ftraitned by two rocks, exceedingly near each other, that rapid fream, dalhing, with great impetuofity, againft them, breaks part of its water into fuch minute corpufcles, and gives it fuch a motion, that a mift, as it were. may be obferv'd at a confiderable diftance, arifing from the place, and afcending high into the air. But, it feems odd, that aqueous vapours fhould, like a dry wind, pafs thro fuch a long winding pipe of lead, as that defcribed by our author ; fince we fee, in the heads of ftills, and in the necks of zolipiles, fuch vapours are prefently, even by a very little cold, condenfed into water.

We took a clear glafs bubble, capable of containing three ounces of water, with a long and wide cylindrical neck ; this we fill'd w hoil of vitricl , and fair water, of each almoft a like quantity; and cafting in fix fmail

Phyfec-machanical Experiments:

Purvenroc.fmall iron nails, we ftop'd the mouth of the glafs, which was n̄ow folf of liquor, with a piece of diapalma, and fpeedily inverting the bubble, we put the neck of it into a fmall wide-mouth'd glafs, with more of the fame liquor in it ; and as foon as the neck had reach'd the bottom of the liquor, there appear'd, at the upper-part of the vial, a bubble, about the bignefs, of a pea, which feem'd rather to confift of new Imall bubbles, produc'd by the action of the diffolving liquor upon the iron, than any parcel of the external air, that might be fufpected to have got in upon the inverfion of the glafs; efpecially fince we allow'd time to thofe little particles of air, which were carried down with the nails, to fly up again : and, foon after, we perceiv'd the bubbles, produced by the action of the menftruum upon the metal, afcending in fwarms to the former ; and breaking into it, they foon exceedingly increas'd it, and, by degrees, deprefs'd the water, till, at length, the fubitance contain'd in thefe bubbles, poffefs'd the whole cavity of the vial, and moft of its neck too ; reaching much lower therein, than the furface of the ambient liquor, wherewith the openmouth'd glafs was, by this means, almoft replenifhed. We fufferd both the vial, and the open-mouth'd glafs, to remain as they were, in a window, for three or four days and trights together; but often looking upon them, during that time, as well as at the expiration of it, the whole cavity of the glafs bubble, and moft of its neck, feem'd to be poffefs'd by air; fince, by its fpring, it was able, for fo long, to hinder the expell'd liquor that furrounded it, from regaining its former place. And juft before we took the vial out of the other glafs, upon the application of a warm hand to the convex part of the bubble, the imprifon'd fubftance readily dilated itfelf, like air, and broke thro the liquor in feveral fucceeding bubbles.

Having alfo, at another time, made the like experiment, with a fmall vial, and nails diffolv'd in Aqua fortis, we found it fucceeded as the foregoing. And here we obferv'd, that the fteams newly generated, did not only poffefs almoft the whole cavity of the, glafs, but feveral times, of themfelves, broke away in large bubbles, thro' the ambient liquor into the open air : whence thefe experiments feem'd, manifefly, to prove, that, in general, air may be generated de novo.

And if, according to the mechanical hypothefis, the difference of bodies proceeds but from the various magnitudes, figures, motions, and textures of the fmall parts they confift of; there appears no reafon why the minute parts of water, and other bodies, may not be fo agitated, or connected, as to deferve the name of air.
24. We chofe a glafs-egg, half an inch in diameter at the top, and an inch at the bottom; and filling it with common water, to the height of about a foot and a half, fo that the upper part remain'd empty, we enclofed it in the receiver; and, upon pumping, obferved bubbles at the bottom and fides of the glafs; and, increaing as the air was drawn away ${ }_{2}$ they, from time to time, plentifully afcended to the top of the water, where they quickly bioke: but the widenefs of the glafs allowing them free

Pby/cco-mechanical Experiments.

paffage thro' the water, they did not, as in the former experiments, feem to make it fwell; and, upon the return of the external air, the water appear'd to have loft of its firft extent, by the avolation of the air interfperfed.

We put about two ounces of rain-water, carefully diftill'd, into a round glafs-bubble, with a very fmall neck, which was thereby fill'd half way to the top, and then convey'd it into the receiver ; and, tho' we drew out more air than ordinary, there appear'd not the leaft intumefcence of the water, nor any afcending bubbles. But fufpecting that either the fmall quantity of the water, or the figure of the vefiel, might affect the experiment, we took the former glafs egg, and another, not much different from it, and fill'd the firf, with diftill'd rain-water, to the old mark, and, into the latter, put a long cylinder of folid glafs, to ftraiten the cavity of the neck; and then pouring fome diftill'd water into that, alfo, till it reach'd near the top, they were both let down into the receiver : but here the air was fo far exhaufted, before there appear'd any bubble in either of the glaffes, that the difference betwixt this, and common water, was very manifef. But, at length, when the air was almoft quite drawn out, the bubbles began to difclofe themfelves, and to increafe, as the preflure of the air, in the receiver, decreas'd. But, in the firft egg, the bubbles were very fmall, and never able to fwell the water above the mark; in the other, whofe neck was ftraitned, great numbers of large ones, faften'd themfelves to the lower-end of the folid piece of glafs, and gather'd to fuch a degree, between it and the fides of the neck, that the water fwell'd a finger's breadth above the mark; tho', upon admitting the external air, it relaps'd to the former mark, or rather fell below it : upon which, all the bubbles prefently difappear'd in the former veffel; whilft feveral remain'd faften'd to the lower-part of the glals cylinder, and continued there for above an hour after, but contracted in their dimenfions.

And having fuffer'd thefe glaffes to remain above twenty-four hours in the receiver, we, afterwards, repeated the experiment ; but tho' the receiver was carefully exhaufted, yet we fcarce faw a bubble in either of the glaffes; yet the water rofe the breadth of a barley-corn in the neck of that glafs wherein the folid cylinder had been placed; the liquor, in the other, not being fenfibly fwell'd. And, laftly, upon letting in the air, the water in the ftraitned neck, foon fubfided to the mark, above which it had ftretched.
25. We took a glafs egg, with a long neck, of about $\frac{1}{3}$ inch in diameter, and Tha nir come. pouring in fallad-oil till it reach'd above half-way to the top, we inclosd it in the receiver, together with fome common water in a fimilar veffel. The pump being fet on work, there began to appear bubbles in the oil, much fooner than in the water; and afterwards they, alfo, afcended more plentifully in the former, than in the latter; and when the receiver was well exhaufted, the bubbles rofe almoft as numerous as ever : fo that none of the various liquors, we have try'd, feem'd to abound more with aerial particles, than this oil. And here twas remarkable, that. between the time

Vol. II.
Kkk
it
$\underbrace{\text { Prevmatics }}$ Oil of tarpensime.
it was put into the receiver, and that before we could work the pump, it fubfided about half an inch below the mark it at firft reach'd to.

Common oil of turpentine, being put into a fmall glafs bubble with a flender neck, fo as to fill it about two inches from the top, prefented us, upon evacuating the receiver, with numerous bubbles; moft of which, rifing from the bottom, expanded themfelves exceedingly in their afcent, and made the liquor, in the neck, to fwell fo much by degrees, that at length, it feveral times ran over at the top: whereby we were hinder'd from difcerning, upon letting in the air, how much the finking of the oil, below the firft mark, was due to the recefs of the bubbles.

Having filld a glafs egg with a very ftrong folution of falt of tartar in fair water; tho this, except quick-filver, is reckon'd the heavieft of liquors; we try'd, whether it would afford any bubbles; and putting it into the receiver, along with other liquors, we found that they yielded many bubbles, long before any appear'd in that: and upon profecuting the experiment, it feem'd, of all the liquors whereof we made trial, this afforded the feweft, and fmalleft bubbles.

Spirit of vime

 gar, red mint, ©nd milk.
Eggo

Sirit of arime, and of wise.

Spirit of vinegar, examined after the fame manner, exhibited a moderate quantity of bubbles. In red wine, we found nothing very remarkable: for tho' upon the exfuction of the air, the bubbles afcended in it, as it were in fhoals, and hhifted places, among themfelves, in their afcent; yet the intumefcence of the whole bulk of the liquor, was fcarce fenfible; the bubbles moft commonly breaking very foon after their arrival at the top; where during their ftay, they compofed a kind of fhallow froth, which, alone, appear'd higher, in the neck of the glafs, than the wine, when it was firft let down. Milk convey'd into our receiver, prefented us with nothing confiderable, except that the bubbles, not eafily breaking at the top, and thrufting up one another, made the intumefcence appear much greater, than that of common water.

We likewife convey'd hens eggs into the receiver, but after the exfuction of the air, took them out whole again.

We put fome fpirit of urine into a glafs egg, fill'd another glafs, to about two thirds of its neck, with rectified fpirit of wine, and a third with com- mon water, till it reach'd to the middle of the neck, and then pour'd to it of the fame fpirit of wine, till it reach'd about an inch higher. Thefe glaffes, having marks fet on them, over againft the tops of the contain'd liquors, were put into the receiver, and that beginning to be evacuated, bubbles began to appear in all three. The mixture of fipitit of wine and water, difclofed numerous bubbles, efpecially towards the top, and the fpirit of urine appear'd to fwellinear an inch and a half above the mark, and yielded plenty of bubbles, which made a kind of froth at the upper part of it ; and above that, there appear'd eight or ten great bubbles, one higher than another, each of them conftituting, as it were, a cylinder of about half an inch high, and as broad as the internal cavity of the neck; fo that all the upper part of the neck feem'd to be divided into equal parts, by tranfverfe
verfe partitions, confifting of the coats of the bubbles, whofe edges api-Przuratics. pear'd like fo many rings, fufpended one above another.
In the fpirit of wine, there arofe a great multitude of bubbles, all the while the experiment was in hand, which afcended with a great velocity, and being arriv'd at the top, made no ftay there; yet, notwithftanding the great fluidity and volatility of the liquor, before they broke they lifted up the upper furface of it, and for a moment or two, form'd thereof, a thin film, which appear'd protuberant, above the reft of the fuperficies, like a fmall hemifphere: thefe alfo afcended in ftrait lines, whilft thofe produced at the lower part of the veffel, containing the mixture of the water and fpirit of wine, afcended with a wavering motion, defcribing an indented line. Laftly, it was obfervable in the fpirit of wine, as alfo in the oil of turpentine, lately mention'd, that not only the bubbles feem'd to rife from determinate places, at the bottom of the glafs; but that, in their afcent, they kept an almoft equal diftance from each other, and fucceeded in a certain order, whence they feem'd part of fmall bracelets, confifting of equally fmall feparate beads; the lower end of each bracelet being, as it were, faften'd to a point, at the bottom of the glafs.

The air being fparingly let into the receiver, the great bubbles incumbent upon one another, in the glafs that contain'd the fpirit of urine, were by regular degrees leffen'd, till at length, they wholly fubfided. Notwithftanding the recefs of fo many bubbles as broke on the top of the fpirit of urine, during all the time of the experiment, yet it fcarcely appear'd, at all funk below the mark. Nor did the mixture of fpirit of wine and water confiderably fubfide. But the firit of wine, not only vifibly expanded itfelf in the neck of the veffel, that contain'd it, whilft the bubbles broke at the top of it, almoft as foon as they arrived there; but upon the re-admiffion of the external air, it retain'd its new expanfion. And, tho' we let it alone, for near an hour together, yet when we took it out, it ftill fwell'd between a quarter and half an inch above the mark. Repeating the experiment with frefh fpirit of wine, it fwell'd in the neck as formerly; and leaving it all night in the receiver, and allowing free accefs to the external air at the ftop-cock, I found it, the next day, ftill expanded, as before; only it feem'd a little lower; which decreale, perhaps, proceeded from the avolation of fome of the fugitive parts of the liquor. And for farther fatisfaction, having taken out the glafs, and confider'd it in the open air at a window; I conld not find, that there was any remaining bubble to orcafion the continuance of this ftrange expanfion.
26. We took two very fmall vials, of the fize and fhape exprefs'd in Fig. 36. and into one of them, put fo much of a certain ponderous mercurial mixture, that, the mouth being ftop'd with a little foft wax, the glafs would but juft fink in water: this we let fall to the bottom of a widemouth'd cryftal jar, filld with about half a pint of common water ; and into the fame veffel, we funk the other glafs, unftop'd, with as much water in it as was more than fufficiedt tomake it fubfide. Both thefe funk with their mouths downwards; the former being about three quarters full of air, Kkk_{2} and

Pby/fco-mechanical Experiments.

Prevmazios.

and the latter containing in it a bubble of air as big as half a pea; then the wide-mouth'd glafs was let down into the receiver, and the engine being work'd, the bubbles began to appear in the water, as in the former experiments; but continuing long to ply the pump, that little glafs, whofe mouth was open'd, came to the top of the water; being, as it were, buoy'd up by a great number of bubbles, that had faften'd themfelves to the fides of it; and fwimming thus, with the mouth downward, we could eafily perceive, that the internal air above-mention'd, had much dilated itfelf, and thereby feem'd to have contributed to the emerging of the glafs, which remain'd floating, notwithftanding the breaking, and vanifhing of moft of the contiguous bubbles. And perfifting in pumping, we obferv'd, that at each time the key was turn'd, the air, in the little glafs, manifeftly expanded itfelf, and thruft out the water; generally retaining a very protuberant furface, where it was contiguous to the remaining water. And when, after feveral exfuctions of the air in the receiver, that in the vial fodilated itfelf, as to expel almoft all the water, it turn'd up its mouth towards the furface of the water in the jar, and there deliver'd a large bubble, and then relaps'd into its former floating pofture.

This experiment taught us, that it was a work of more time and labour, than we imagin'd, to exhautt our receiver as much as it may be exhaufted; for tho' before the fmal viall emerged, we thought the receiver confiderably emptied, becaufe there feem'd to come but very little air at each exfuction, out of the cylinder ; yet, afterwards, the air included in the vial, manifefly dilated itfelf upon each ftroke, fo long, that for nine times it turn'd its mouth upwards, and difcharg'd a bubble about the bignefs of a pea. But that vial which had the weight in it, rofe not at all: then leifurely letting in the air, that within the vial frinking into a very narrow compais, the glafs fell down to the bottom of the jar.

But being defirous to try once more, whether the little glafs with the weight in it, might not alfo be rais'd; after we had fuffer'd the engine to remain clos'd, as it was, for five or fix hours, the pump was 2gain ply'd fo vigorounly, that not only about the upper-part of the jar, there appear'd a large number of fmall bubbles; but afterwards, there came from the bottom of the jar, fome as large as fmall peas, which, the pump being ftill kept going, follow'd one another, to the number of forty, coming from the ftop'd vial; whofe mouth, it feems, had not been thut fo clofely, but the included air found a paffage betwixt the wax and the glafs. After this, the unftop'd glafs began to float again ; the air thut up in it, being fo dilated as to expel a large part of the water, but not fo much as to break quite thro'. And, at length, the heavier of the two vials began to rife, but immediately fubfided again: which feem'd owing to the, air within it, whofe bulk and fpring being weakned by the recefs of the forty bubbles, it was no longer able to break thro' the incumbent water; but forming a bubble, at the mouth of the glafs, buoy'd it up towards the top, and there getting away, left it to fink again; till the pref-
fure of the air in the receiver, being farther taken of, the air, in the vial, was permitted to expand itfelf farther, and create another bubble, by which it was again, for a while, carry'd up. And tho', after having empty'd the receiver as far as we well could, we ceafed from pumping; yet the vefiel, continuing more ftanch than ufual, this afcent, and fall of the vial were repeated to the ninth time; the included air, by reafon of the fmallnefs of the vent at which it muft pafs out, being not able to get away, otherwife than by fmall degrees, and, confequently, in feveral fuch parcels as were able to conflitute bubbles, each of them big enough to raife the vial, and keep it fufpended, till the bubble flew off. Hence it may appear, that a body, lighter than an equal bulk of water, will float in that fluid, when the preflure of the atmolphere is, in very great meafure, taken off from the liquor, and the body : tho' it were worth inquiring, what it is, that fo plentifully concurs to fill the bubbles made, in our experiment, by the air fo much expanded.

In this experiment, as in the former, the external air being let in, foon precipitated the floating veffel. And the water which, in the heavier vial, fucceeded in the room of thofe forty, or more, great bubbles of air, which, at feveral times, got out of it; was of a very inconfiderable bulk.
27. It having been obferv'd, that pendulums vibrate more flowly, and 1 penamwn that their motion fooner ceafes in a thicker, than in a thinner medium jin vecous. to swing we thought proper to try if a pendulum would move fafter, or vibrate longer, in our exhaufted receiver, than out of it. We, therefore, took two round polifhed fteel-pendulums, of equal bignefs, each of them weighing twenty drams, bating fo many grains. One of thefe we fufpended in the cavity of the receiver, by a very flender ftring, about feven inches and: a half in length, from the cover of the receiver whereto it was faften' A . 'Then we made the pendulum fwing, and, counting the returns of the other that hung in the open air, by a fring, of about the fame length, we fhorten'd and lengthen'd this, till it appear'd to keep the fame pace with that in the receiver. Then, having carefully drawn away the air, we again made the pendulum in the receiver, vibrate; and, giving the other fuch a motion, as caus'd it to defcribe an arch, apparently equal to that of the included pendulum, we counted the recurfions of both; and we reckon'd two and twenty vibrations of the included pendulum, whilft but twenty were obferv'd of the other. And at another time, alfo, the former was found to have made twenty-one returns, whilft the other made but twenty. Yet this experiment feem'd to teach us little, except that the difference betwixt the motion of fuch a pendulum, in common air, and in 2 medium exceedingly rarify ${ }^{2} d$, is fcarce fenfible in veffels no bigger than our receiver ; efpecially, fince we could not fuppofe that to be altogether free from air. We obferved, alfo, that, when the receiver was full of air, the included pendulum continu'd its recurfions about fifteen minutes; before it left off fwinging; and that, after the exfuction of the air, the vibration of thefame pendulum appear'd not to laft fenfibly longer.
28. That

Phyfico-méchanical Experiments.

28. That the air is the medium whereby founds are convey'd to the ear, was a current opinion, till fome pretended, that if a bell, with a fteel clapper, be faften'd to the infide of a tube, upon making the experiment de vacuo, with it, the beli remaining fufpended in the deferte fipace, at the upper end of the tube ; if a vigorous load-ftone be apply'd on the outfide of the glafs, it will attract the clapper; which, upon the removal of the load-ftone, falling back, will ftrike againft the bell, and thereby produce a very audible found: whence, feveral have concluded, not the air, but fome more fubtile body, to be the medium of founds. But fufpending a watch, freed from its cafe, in the cavity of our receiver, by a packthread; and then, clofing up the veffel with melted plaifter; we liften'd near the fides of it, and plainly heard the balance beat, and obferv'd, that the noife feem'd to come directly in a ftreight line, from the watch to the ear. We found, alfo, a manifeft difference in the noife, by holding our ears near the fides of the receiver, and near the cover of it; which feem'd to proceed from the difference between the glafs, the cover, and the cement, thro' which the found was propagated. But, upon working the pump, the found grew gradually fainter; fo that, when the receiver was emptied as much as ufual, we could not, by applying our ears to the very fides of it, hear any noife from within; tho' we could eafily perceive, that, by the motion of the hand which mark'd the feconds, and by that of the balance, the watch neither ftood ftill, nor feem'd irregular. And, to fatisfy ourfelves farther, that it was the abfence of the air about the watch, that hinder'd us from hearing, it, we let in the external air at the ftop-cock; and then, tho' we turn'd the key, and ftopp'd, the valve, yet we could plainly hear the noife made by the balance ; tho' we held our ears, fometimes, at the diftance of two feet from the outfide of the receiver. And this experiment, being repeated, fucceeded after the like manner: which feems to prove, that the air is, at lealt, the principal medium of founds. And, by the way, it is very well worth noting, that, in a veffel fo exactly clofed as our receiver, fo weak a pulfation as that of the balance of a watch, fhould propagate a motion to the ear, in a ftreight line, notwithftanding the interpofition of glafs, fo thick as that of our receiver. We, afterwards, took a bell of about two inches in diameter at the bottom, which was fupported, in the midft of the cavity of the receiver, by a bent ftick, preffing with its two ends againft the oppofite parts of the infide of the veffel; which, being clofed up, we obferved the bell to found more dead than in the open air. And yet, when we had empty'd the receiver, we could nett difcern any confiderable change in the loudnefs of the found : whereby it feem'd, that, tho' the air be the principal medium of found; yet, either a more fubtile matter may be, alfo, a medium of it; or elfe thatan ambient body, that contains but few particles of air, is fufficient for that purpofe. Whence, perhaps, in the above-mention'd experiment, made with the bell and the load-Itone, there might, in the deferted part of the tube, remain air enough to produce a found.

But as, in making the experiment of firing gun-powder with a piftol in Provancict: our evacuated receiver, the noife made by the fint, ftriking againft the fteel, was exceeding languid, in comparifon of what it would have been in the open air: fo, on feveral other occafions, it appear'd, that the founds produced there, if they were not loft, feem'd to arrive at the ear very much weakned.
29. We have a liquor which, tho' moft of its ingredients be metals, and all of them ponderous, is yet of fuch a nature, that, whilf the vial where4 furing liper in it is kept, remains ftopp'd, appears tranfparent, as, alfo, the upper part of the glafs, to which the liquor reacheth not ; but as foon as ever the ftopple is taken out, and full accefs given to the external air ; both the under part of the cork, and the liquor itfelf, prefently fend upwards, and diffife a fume, as thick and white as if a quantity of alabafter-duft were thrown up into the air. And this fmoking of the liquor lafts, till the vial be ftopp'd again; and then the afcent of the fumes fuddenly ceafes.
To a vial of this fuming liquor, we faften'd a weight of lead; and, having ty'd to the ftopple one end of a ftring, whilft the other was made faft to the cover of the receiver, the liquor was carefully clofed up; and, the air being diligently pump'd out, we unftopp'd the vial. And tho, immediately upon drawing out the cork, there appear'd fome white fumes, which feem'd to proceed from the air being imprifon'd in the vial, and diffufing itfelf fuddenly into the receiver; yet we afterwards obferv'd, that the fumes did not mount, and difperfe themfelves, as they ufed to do in the open air ; but, afcending to the lip of the vial, they ftopp'd there, and ran down along the outfide, and thence along an inclining piece of lead, on which the vial refted, like a little ftream, that quitted not the vial, till it was come to the bottom of it, and there forfook it, like a ftream of water of the fame bignefs. Then, letting in fome of the external air, the ftream run a-frefh, tho 'not altogether fo large : and, after the receiver was fill'd with air, I found, to my furprize, that, tho' the ftream difappear'd, yet no white fumes arofe, either from the cork, or out of the vial ; no, not when the cover was removed from the receiver: tho', after a while, there afcended white fumes from the receiver. But, having immediately taken out the vial into the open air, it emitted white exhalations, as before; and having, prefently after, unftopp'd it in an open window, we found both it, and the cork, immediately yielded a much more plentiful fmoke; tho ${ }^{{ }^{3}}$ it were now feveral years fince this parcel of liquor was prepared.
30. Into one of our fmall receivers, we convey'd a piece of well-lighted Smone in newo. match; and, letting it remain there, till it had filld the receiver with fmoke, we took it out, and immediately clofed the receiver again, that the fmoke might not get away. Then faying, to let thefe fumes leifiriely fubfide, we found, that, after fome time, they fettled themfelves in the lower half of the receiver, in a darkifh body; leaving the upper half tranfparent, and, as to fight, full only of clear air. And, inclining the veffel that containd this fmoke, fometimes to one fide, and fometimes to the other; we obferv'd the fume to keep its furface almoft horizontal, as wa-

Pbyffco-mechanical Experiments:

Preveafres. ter, or any other liquor, would have done in the like cafe. And if, by a 1 quicker rocking of the engine, the fmoke were more fwiftly fhaken, it would, like water, either vibrate from one fide to the other of the glafs; or elfe have its furface manifeftly curl'd, like waves, and preferve itfelf, in an entire and diftinct body, from the incumbent air ; and, being permitted to reft a while, would foon recover its former fmooth and level fuperficies. If, alfo, the key were turn'd, and the valve unftopp'd, fo that there was a free paffage open'd betwixt the external air, and the cavity of the receiver; then would fome of this fmoke fall down, as it were, in a ftream, into the fubjacent cylinder; and a proportionate quantity of the outward air, would, manifeftly, afcend thro' it, into the incumbent air; after the fame manner, as, when a vial, with a long neck, fill'd with red wine, being inverted into a glafs of fair water, the water and wine, by degrees, mix, as it were, in little curl'd ftreams with each other; the one falling down, and the other afcending in its place. And if, when the fuperficies of our fmoke lay fmooth, and horizontal, a hot iron were held near the outfide of the receiver; the adjacent part of the included fumes, being rarify'd by the heat, would readily afcend in a large pillar of fmoke, to the very top of the receiver; yet, without feeming to lofe its diftinct furface, or to be confounded with the air, below which, upon the recefs of the adventitious heat, it would again fubfide.

Since, then, there is fo vaft an inequality in the denfity and weight of liquors; we may confider the atmofphere as a peculiar kind of thin fluid, much lighter than firit of wine. And as waves appear'd upon the furface of our agitated fmoke; fome fuch thing may, poffibly, happen on the fuperficies of the atmofphere: as may be conjectur'd from thofe ftrange inequalities that often appear, efpecially when the air abounds with exhalations and vapours, upon the limb of the fun in its rifing and fetting. And if this phenomenon be owing to the refraction, which the fun's rays fufter in our air ; 'tis eafy to fuppofe the furface of the atmofphere to be often, as we faid, exceedingly curl'd, or wav'd. And, certainly, it is furprizing to fee how, thro' a good telefcope, there will not only appear inequalities in the edge of the fun, which often feems to be indented; but thofe inequalities vanifh in one place, and prefently appear in another, and feem perfectly to move, like waves fucceeding and deftroying one another: only their motion frequently feems to be quickeft; as if, in that vaft fea, they were carry'd on by a current, or a tide. And this, alfo, appears to the eye, when a large, and well defined image of the fun, is, by the telefcope, caft upon white paper.

The cobesion of polif'd marbles in vacuo.
31. It hath been thought Atrange, that, the perfectly polih'd furfaces of two flat pieces of marble being apply'd to each other, they fhould ftick fo faft together, that the lower may be raifed, by taking hold of the upper. But, as this feems owing to the unequal preflure of the air upon the undermoft ftone, the lower fuperficies of that being freely expofed thereto, and prefs'd upon by it, whilit the upper furface is defended therefrom; which, confequently, prefling the lower fone againft the upper, hinders

Pbyfico-mechanical Experiments.

it from falling ; we therefore conjectur'd, that two marbles, being exactly ground to one another, and together fufpended in our evacuated receiver, the lower fone would fall from the upper: but we could not procure marbles to be ground fo true, as to fuftain one another in the air for above a minute ortwo, which is a much fhorter time, than is required to empty our receiver. We did, indeed, try to make our marbles ftick clofe together, by moiftning their furfaces with rectified fpirit of wine; but to little purpofe; for having convey'd into the receiver two black fquare marbles, the one with its fide two inches and a third, and fomewhat morethan half an inch in thicknefs, the other of equal furface, but not above half fo thick, faftned together by means of that fpirit; and having fufpended the thicker by a ftring from the cover, we found not, that the exfuction of the air would feparate them, tho' a weight of four ounces were faften'd to the lower, to facilitate its falling.

I would gladly have the experiment try'd with marbles, fo well polifh'd, as to need no liquor to make them cohere, and in a veffel, out of which, the air may be more perfectly drawn, than it was out of ours. But, tho ${ }^{\text {a }}$ we will not determine, whether the firit of wine contributed to the ftrong cohefion of thefe ftones, otherwife than by keeping the fubtileft parts of the air from getting in between them; yet it feem'd, that the reafon, \sim why the lower marble fell not, was, probably, becaufe of the preffure of the air remaining in the receiver; which, as we formerly noted, being able to fuftain a cylinder of water, of above a foot in height, may be fuppofed capable of keeping fo broad a marble from defcending. And, tho this may feem a ftrange proof of the ftrength of the fpring of the air, even when rarified ; yet it will fcarce appear incredible to him, who hath obferv'd, how exceeding ftrong a cohefion may be made, betwixt broad bodies, only by immediate contact. A notable inftance of this, is given us by the learned Zucchius, who tells us, that "a young fellow, bragging " of his ftrength, fome body fet him to pull at the ring in the middle of a " brafs-plate, that lay upon a polifh'd marble, whereto, it was exactly " ground : this he thought a trivial matter ; but after his utmoft endeavour, " found it impoffible to feparate them by direct pulling; which made him " imagine they were faftned together, by means of fome vehement ftrong "s glew, till he faw the plate, afterwards lifted by another, who, firft flipt it " along the marble ".
33. Our receiver being exquifitely clos'd, and the air, in a good meafure, $\alpha_{\text {n }}$ nerat prof.
 ftop-cock, fpeedily apply'd a tapering valve of brafs, made fit to go with Fig. 37. its narrower end into the cavity of the branch, and to fill the orifice of that cavity with its broader part. And, that the air might not get in at the little intervals, between the convex furface of the ftopple, and the internal edge of the branch, they were ftop'd with diachylon. And, to the door of the valve, there was, at a button of brafs, faften'd a broad fcale, wherein weights were to be put. This done, the key of the ftop-cock was turn'd, and the external air beating like a forcible ftream upon the valve to get in

[^2]L 11
there,
pravanties there, it fuddenly fhut the valve, and kept it foclofe; that we had time to caft in feveral weights, one after another, into the fcale, till at length, the weight overpowering the preflure of the atmofphere, drew down the valve by the ftrings that ty'd the fcale to it, and gave liberty to the outward air to rufh into the receiver. 'Tho', another time, when the valve had but little weight hanging to it, being, by accident, drawn down beneath its former place, it was, by the impetuous current of the external air, fuddenly impell'd up into it again, and kept there. But, in the former experiment, tho ${ }^{\text {b }}$ the receiver were not well exhaufted; tho' it leak'd, whilft the reft of the experiment was in hand; and tho' the valve, whereon the cylinder of the atmofphere could prefs, were not above an inch and a half in diameter; yet the whole weight, fupported by the air, amounted to about ten pounds, of fixteen ounces each : fo that, had the experiment been made with favourable circumftances, the air endeavouring to prefs in, at the orifice of the ftop-cock, would very probably have kept a much greater weight from falling out of it.

The prefore of tbe ateoflerre computed.
33. But our pump, alone, may afford us a nobler inftance of the force of the air ; fo that, by means of this part of our engine, we may conjecture at the ftrength of the atmofphere, computed as a weight. For, firft, the fucker, brought to move eafily up and down the cylinder, being impell'd to the top of it, and the receiver taken off from the pump, that the upper orifice of the cylinder remaining open, the air may freely fucceed the fucker, and, therefore, readily yield to its motion downwards; and there being faften'd to one of the iron teeth of the fucker, fuch a weight, as may juft fuffice to draw it to the bottom of the cylinder; we may hence find the weight neceffary to draw down the fucker: and when the atmofphere makes the ordinary refiftance againft its defcent, the fucker being again forc'd to the top of the cylinder, whofe upper orifice muft now be exactly clos'd; we may eafily, by hanging a fcale to the above-mention'd iron, that makes part of the fucker, caft in known weights, till the fucker be drawn down; then, to thefe weights in the fcale, that of the fcale itfelf being added, the fum will give us the weight of a column of air, equal in diameter to the fucker, or to the cavity of the cylinder, and, in length, to the beight of the atmofphere.

According to this method, we attempted to meafure the preffure of the atmofphere, but found it more difficult, than we expected, to perform it accurately; for tho', by the help of the handle, the fucker mov'd up and down with great facility ; yet, when it came to be mov'd by a dead weight, we found, that the little inequalities, and, perhaps, the unequal prefure of the leather againft the cavity of the cylinder, now and then ftop'd the defcent or afcent of the fucker; tho' a very little external help, would eafily furmount that impediment. We found then, that a weight of twenty-eight pounds, being faften'd to one of the teeth of the fucker, drew it down clofe, when the upper orifice of the cylinder was left open; but, by the help of oil, and water, and the frequent working of the fucker with the handle, its motion in the cylinder had been before purpofely facilitated
cilitated. Then the upper orifice of the cylinder was very carefully ftop'd; the valve being likewife fhut, with its flopple well oiled, after the fucker had been again impell'd up to the top of the cylinder. To the former weight we now added a hundred and twelve pounds, which forcing down the fucker, though but leifurely, we took of the 28 pound weight, and hung on, inftead of it, fourteen pound; but found that, with the reft, unable to carry down the fucker. And to fatisfy ourfelves it was the refiftance of the ambient air, that hinder'd the defcent of fogreat a weight; after we had try'd, that upon unftopping the valve, and thereby opening an accefs to the external air, the fucker would be immediately drawn down, having forcibly deprefs'd the fucker, to the bottom of the cylinder, and then faften'd weights to the iron, the preflure of the external air, finding little refiftance, in the cavity of the cylinder, prefently began to impel the fucker, with the weights that clogg'd it, towards the upper part of the cylinder, till fome fuch accidental impediment, as we formerly mention'd, check'd its courfe ; and when that was remov'd, it would continue its afcent to the top. And tho', poffily, there might remain fome particles of air in the cylinder, after the fucker was drawn down; yet the preffure of a cylinder of the atmofphere, fomewhat lefs than three inches in diameter, uncomprefs'd, not only fuftain'd, but drove up a weight of a hundred and odd pounds: for, befides the weight of the whole fucker itfelf, which amounts to fome pounds, the weights annex'd to it, made up a hundred and five pounds; yet all this falls flort of the weight juft faid to be furpended, by the refiftance of the air, in the cavity of the cylinder. This experiment was made in the winter, the weather neither frofty nor rainy, about the change of the moon; and at a place whofe latitude is about 91 degrees and a half: for, perhaps, the force, or preffure of the air, may vary, according to the fealons of the year, the temperature of the weather, the elevation of the pole, or the phafes of the moon; any of them feeming able to alter either the height, or confiftence of the atmofphere. And therefore, it would not be amifs, if this experiment were try'd carefully, at feveral times and places, with variety of circumitances. It , might, alio, be try'd with cylinders of feveral diameters, exquifitely fitted with fuckers; that we might know what propoption feveral pillars of the atmofphere, bear to the weight they are able, to fuftain, or lift up; and confequently, whether the increafe, or decreafe of the refiftance of the ambient air, can be reduced to any regular proportion, to the diameter of the fuckers. Thefe, and other experiments, which may be made with this cylinder, might, moft of them, be more exactly try'd by the Torricellian tube; if glafs could be blown, and drawn perfectly cylindrical.

Here we may obferve, that as many other phenomena of our engine, , foch netime of fo efpecially the two laft experiments, feem to fhew the nature, or caufe of fuction. It's true, indeed, in fucking, we commonly ufe fome manifeft endeavour, by a peculiar motion of our mouths, chefts, ${ }^{\circ}$ c. yet it appears not how the upper-part of the emptied cylinder, that remains at reft all the while, or any part of it, endeavours to draw the deprefs'd L112

444

Pbyfico-mechanical Experiments.

Pustantics. fucker, and the annex'd weights to it ; tho' fuch as behold the afcent of the fucker, without confidering the caufe of it, readily conclude it to be rais'd by fome fecret thing, that powerfully fucks or attracts it. Whence it feems not abfolutely neceffary to fuction, that there be in the body, which is faid to fuck, an endeavour, or motion in order thereto; but rather that fuction may be reduced to trufion, and its effects afcribed to a preffure of the neighbouring air, upon the bodies contiguous to that which is faid to attract them. To object here, that fome particles of air, remaining in the emptied cylinder, attracted this weight, to obviate a vacuum, is to no purpofe; unlefs it can clearly be made out, by what grappling inftruments the external air could take hold of the fucker ; how fo little of it obtain'd the force to raife fo great a weight ; and why, upon letting a little more air into one of our evacuated veffels, the attraction is much weakned. For that ftill there remain'd in the exhaufted cylinder many little empty fpaces, may appear by the great violence wherewith the air ruhheth in, if it be permitted to enter. In the next place, thefe experiments may teach us, what to judge of the vulgar axiom, That nature utterly abhors a vacuum; fo that no human power is able to make one in the univerfe. For, if by a vacuum we underftand a place perfectly free from all corporeal fubftance, it may be plaufibly maintain'd, that there is no fuch thing in the world. But the generality of the plenifts take not the word in fo ftrict a fenfe. For when they alledge, that by fucking water thro' a long pipe, the liquor, contrary to its nature, afcends into the mouth, only to fill up that face, made by the dilatation of the breaft and lungs, which would, otherwife, in part, be empty; and when they tell us, that the reafon why in a gardener's watering-pot, conically fhaped, and filled with water, none falls thro the numerous holes at the bottom, whilft the orifice at the top, is clos'd; muft be, that if, in cafe the water fhould defcend, the air being unable to fucceed it, there would be left a vacuum at the upper part of the veffel, they feem to mean by a vacuum, any fpace here below, that is not fill'd with a vifible body, or, at leaft, with air, tho ${ }^{2}$ it be not quite deftitute of all bodies whatfoever.

Taking then, a vacuum in this vulgar and obvious fenfe, the common opinion about it feems liable to feveral exceptions, whereof fome of the chief are fuggefted by our engine.

It feems unintelligible, how hatred, or averfion, which is a paffion of the foul, can either for a vacuum, or any other object, be fuppofed in water, or any inanimate body, which cannot be prefum'd to know when 2 vacuum would enfue, if they did not attempt to prevent it; nor to act contrary to what is moft conducive to their own particular prefervation, for the good of the univerfe. The meaning, therefore, of this metaphorical expreffion feems to be, that by the wife author of nature, the univerfe, and the parts of it, are fo contriv'd, that it is as hard to make a vacuum in it, as if they ftudioully confpired to prevent it.

But our experiments teach, that this fuppofed averfion of nature to a vacuum, is merely accidental, or confequent upon the weight, fluidity, or

Pby/fco-mechanical Experiments.

fluxility of the bodies here below; and, perhaps, principally of the fpring trivatice of the air, whofe contant endeavour to expand every way, makes it either rufh, or compel the interpofed bodies, into all fpaces where it finds no greater reffifance than it can furmount; and fhew, that the power, exercifed by nature, to avoid, or replenifh a vacuum, is limited, and may be determined even to pounds and ounces *.

And the experiment we are now upon, affords us a notable proof of the unheeded ftrength of the preffure fuftain'd by the free air, which we prefume to be uncompref'd: for hence we fee, that even in our climate, and without any other compreffion than what is natural, or ordinary, iz bears fo ftrongly upon contiguous bodies, that a cylinder of it, not exceeding three inches in diameter, is able to raife, and carry up a weight, amounting to between fixteen and feventeen hundred ounces. In more northern countries, the air may be much thicker, and able to fupport a greater weight ; fince the Hollanders, who were forced to winter in Nova Zembla, found the air there fo condens'd, that they could not make their clock go, by a very great addition to the weights that ufed to move it.
34. We took a dry bladder, ftrongly ty'd at the neck, and about half filled with air, and faftening it to one part of a very exact balance, we put a metalline counterpoife into the oppofite fcale; and fo the two weights being brought to an equilibrium, the balance was convey'd into the recei- Bodies of diffover, and fufpended from the cover of it : when we obferv'd, that prefently rent feecific praafter laying on the cover, the bladder appear'd to preponderate; where- 6 quxil.brime in upon the fcales being taken out, and reduced very near to an equilibrium, vacna.
yet fo, that a little advantage remain'd on that fide to which the metalline weight belong'd; they were again let down into the receiver, which was prefently clofed. Soon after this, before the pump was work'd, the bladder feem'd again a little to preponderate; and the air in the glafs beginning to be drawn out, the bladder expanded itfelf, and greatly raifed the oppofite weight, by drawing down the fcale to which it was faften'd, efpecially when the air had fwell'd it to its full extent. This done, we very leifurely let in the external air, and obferv'd that, upon the flagging of the, bladder, the fcale whereto it was faften'd, not only, by degrees, return'd to an equilibrium with the other; but, at length, was a little outweigh'd by it ; tho the bladder, after a while, began again to preponderate, and, by degrees, to fink lower for feveral hours : wherefore, leaving the veffel clofed up alt night, we; next morning, found the bladder fallen

*"All the parts of fpace," fays Sir Ifaac

Newton, " are not equally full; for if they
" were, the fpecific gravity of the fluid,
" which would fill the region of the air,
"could not, by reafon of the exceeding
"great denfity of its matter, give way to
${ }^{4}$ st the fpecific gravity of quick-iilver, gold,
" or any body how denfe foever; whence
"ne.ther gold, nor any other body, could
"defcend in the air. For no bodies can "defcend in a fuid, unlefs they bel
" Specifically heavier than it. But, if a
${ }^{66}$ quantity of matter may, by rarifa-
" Ation, be diminifh'd in a given fpace,
"s why may it not diminifh in imfinitum
"s If all the folid particles of bodies,
"s are of the fame denfity, that is, have
"their vires inertia as their magnitudes,
"6 and cannot be rarified, without leaving
${ }^{66}$ pores, there mutt be a vacuum". Newton.
Princit. p. 368.

446

Pbyficomechanical Experimums.

Promarrea; yet lower: as if the very fubtance of it, had imbibed fome of the moifure wherewith the air then abounded; as the ftrings of mufical inftruments, are known to fwell fo much in rainy weather, as to break. This conjecture is the more to be regarded, becaufe having a little warm'd the bladder, we found it lighter than the oppofite weight. And, without removing the fcales, or the cover of the receiver, we again caus'd the air to be drawn out ; the weather continuing very moilt but found not any manifeft alteration in the balance.

But to make the experiment with a body, lefs apt to be alter'd by the temperature of the air, than:a bladder, we brought the fcales again to at equilibrium with two weights, the one lead, and the other cork. And, having exhaufted the receiver, obferv'd, that both upon the exfuction, and after the return of the air, the cork manifetty preponderated: and much more, a while after the air had been let in again, than whilt it was kept out. Wherefore, for the cork, we fubftituted a piece of charcoal, as lefs likely to imbibe any moifture from the air ; but the event proved much the fame; fo that this experiment feems very liable to cafualties.

The afcemt of liquers in for tras, ebemes.
35. The true caufe of the afcent of liquors, in fiphons and filtres, remiaining unknown; we were defirous to try whether the preflure of the 'air might reafonably be fuppofed to have any confiderable thare in it. But, becaufe we could not fo far evacuate our receiver, but the remaining'air would impel the water to a greater height than is ufual in filtrations; inftead of a lift of cotton, or the like filtre, we made ufe of a fiphon of glais, confifting of three pieces, two Arait, and the third crooked, Fig. so. to join them together; whofe junctures were carefully clofed, that no air might find entrance at them: one of the legs of this fiphon was fomewhat longer than the other, and pervious at the bottom of it, only by a hole almoft as nender as a hair, that the water might drop very gently out of it. The lhorter leg of the fiphon was quite open at the end, and of the fame diameter with the reft of the pipe; that is, about a fourth of an inch. The whole fiphon was defign'd to be about a foot and a half long, that the remaining air, when the veffel was exhaufted, might not impel the'water to the top of it: then the fiphon, being inverted, was fill ${ }^{3}$ d with water, and the fhorter leg let down, two or three inches, into a glars-veffel; whilft the upper part remain'd faften'd to the infide of the cover of the receiver.

And, till a confiderable quantity of theair had been evacuated, the water dropp'd freely out at the lower end of the lower leg of the Giphon; as if the experiment had been made in the free air : but, afterwards, the bubbles began to appear in the water; and, afcending to the top of the fiphon, run into one, which wàs gradually augmented by the rifing of other bubbles, that, from time to time, broke into it, but much more by its own difatation, which increafed, proportionably, as the receiver was evacuated fo that, at length, the water, in the:fhorter leg, was reduced, by 'the extraction of the ambient air; and the expanfion of the "great bubble, at the upper part of the fiphon, to the height only of a:feot; Whence, the courfe
courfe of the water, in the fiphon, was interrupted, and that which re- Pxivantion. main'd in the longer leg of it, continued fufpended there, without dropping any longer. But, upon turning the ftop-cock, the external air got into the fiphon, by the little hole at which the water formerly dropp'd out : and, traverfing all the incumbent cylinder of water, in the form of bubbles, join'd itfelf with that air which before poffeffed the top of the fiphon.

To prevent the inconveniences arifing from thefe bubbles, two glafspipes, fike the former, were fo placed, as to terminate together in the midit Fis. 38 . of the belly of a glafs-vial, into whofe neck they were cemented; and then both the vial, and the pipes, being filled with water, the fiphon was placed with its thorter leg in the glafs of water, as before; and the experiment being profecuted after the fame manner, much more air was now drawn out before the bubbles caufed any difturbance; becaufe there was room enough in the vial for them to ftretch, without depreffing the water below the ends of the pipes; and during this time, the water continued to drop out of the lower leg of the fiphon. But, at length, the receiver being very much emptied, the water ceafed to run thro' the fiphon; the upper ends of the pipes beginning to appear above the remaining water in the vial, the dilated air wherein, feem'd likewife to prefs down the water in the pipes, and fill the upper part of them.

Hence, the experiment being interrupted, we let in the air again, which, according to its various proportions of preffure, to that of the air in the vial, and the pipes, exhibited a pleafing variety of phenomena. And upon the whole, there feem'd little caufe to doubt, if the bubbles had not difurb'd the experiment, that the courfe of water, thro' fiphons, would have appear'd to depend upon the preffure of the air.

An eminent mathematician lately told me, fome French gentlemen had Their foom in obferv'd, that, if one end of a flender open pipe of glafs, be dipp'd in water, the liquor will afcend to fome height in the pipe, tho' held perpendicular to the plain of the water; and, foon after, brought me two or three fmall pipes of glafs, which gave me the opportunity of trying it: tho' I had often before, in the long and flender tubes of fome weather-glaffes; made after a peculiar manner, taken notice of the like afcent of liquors; but, prefuming it to be cafual, I made little reflection upon it. But, after this trial, fuppofing that tho the water, in thefe pipes, rofe not above a quarter of an inch; yet, if the tubes were flender enough, it might afcend to a much greater height; I caufed feveral of them to be dextroully drawn at the flame of a lamp, in one of which, that was almof incredibly. nender, we found, the water afcended five inches, tho the pipe were. held erect: but, if it were inclined, the water would fill a greater part thereof. We alfo found, that, when the infide of the pipe was wetted before-hand, the water would rife much better than otherwife. And fome of thefe flender pipes, being bent, like fiphons, we immers'd the fhorter leg of one in a glais of fais water; and found, that the water, sifing to. the top of the fiphon, of itfelf, ran down the longer leg, and continued.
prevantic.running, like an ordinary fiphon. The caufe of this afcent of the water, appears very difficult to difcover*. We try'd, indeed, by conveying a very flender pipe, and a fmall veffel of water, into our engine, whether the exfuction of the ambient air would affift us herein; but, tho ${ }^{\circ}$ we employ'd red wine, inftead of water, yet we could fcarce certainly perceive, thorough fo much glafs as was interpofed betwixt our eyes and the liquor, what happen'd in a pipe fo flender, that the rednefs of the wine was fcarce vifible in it. But, as far as we could difcern, there happen'd no great alteration to the liquor ; which feem'd the lefs ftrange, becaufe the fpring of that air, which might deprefs the water in the pipe, was equally debilitated with that which remain'd to prefs upon the furface of the water in the little glafs. Wherefore, in favour of that conjecture, which afcribes this phenomenon to the greater preffure upon the water by the air, without the pipe, than by that within, it was thewn, that, in cafe the little glafs-veffel of water were fo clofed, that the air might, by the mouth, be fuck'd out of it, the water would :immediately fubfide in the fmall pipe. Hence, we might infer, that it afcended before, by the preffure of the incumbent air; only it may be objected, that this, perhaps, would not happen, were the upper end of the pipe in a vacuum ; as alfo, that, 'tis very probable, the water may fubfide, not becaufe the preffure of the internal air is taken off by fuction, but becaufe the fpring of the external air impels the water in its way to the cavity, deferted by the other air; and would as well impel the fame water upwards, as make it fubfide, were it not for the accidental pofture of the glaffes. 'Twere here, likewife, proper to inquire, why the furface of water, in pipes, fhould be concave; and, on the contrary, that of quick-filver, convex; and why, if the end of a flender pipe be dipp'd in the latter, the furface of that fluid will be lower within the pipe, than without.
4 percel of air 36. We caufed a glafs-bubble to be blown at the flame of a lamp, about migb'd. the fize of a fmall hen-egg, and of an oval form ; only, at one end, there
> * This phenomenon, the fufpenfion of water in capillary tubes, is, with great frgacity, accounted for by Dr. Furin; who proves it owing to the attradion of the upper periphery, or fetion, of the concave fuperficies of the sube; that is, a fmall furface, or annulus, whofe bafe is that periphery, and height the diftance, whereto the attrative power of the glafs extends For the gravity of the water that enters the orifice of the tube, upon its immerfion, being immediately taken off, by the attraction of the annulus, wherewith its upper furface is in conta Q, the water muft neceffarily rife higher, by rearon of the preffure of the ftagnant fluid, and the attralion of the periphery. immediately above that whereto the up-
per furface of the water is already contiguous. The confideration of this phenomenon, and the experiments made with relation to it, both in water and quickfilver ; thofe made with the latter, proving exa@ly the reverfe of the former; led the Dodor to clear the whole matter, by fhewing, that the particles of water attrad each other ; that the particles of quick-filver attral each other ; that water is attracted by glafs; that quick-filver is attracted by glafs; that the particles of water are more ftrongly attructed by glafs, than by one another; and, laftly, that the particles of qui k-filver are more Arongly attraded by each other, than by glass. See all there proved in the Pbilor. Tramf. No 355. p. 739.
was drawn out an exceeding flender pipe, that the bubble might be feal'd up, with as little rarifation, of the air included in the great cavity, as poffible. This glafs, being feal'd, was faften'd to one of the fcales of an exact balance; and, being counterpois'd with a weight of lead, was convey'd into the receiver, and clofed up in it. The beam appearing to continue horizontal, the pump was fet on work; and, after two or three exfuctions, the balance inclined to that fide on which the bubble hung ; which, as the air was farther drawn out, preponderated more manifeftly : at length, the air being gradually let in again, the fcales, by degrees, return'd to an equilibrium. Then we took them out, and cafting into that fcale, to which the lead belong'd, three fourths of a grain, we again placed them in the receiver; which, being clofed and exhaufted as before, as the air was drawn out, fo the glafs-bubble came nearer to an equilibrium with the other weight, till the beam ftood horizontal : which, by another trial, we could not bring it to do, when one fourth of a grain more was added to the fcale whereto the lead belong'd. Tho', without doubt, if we could have perfectly evacuated the receiver, the air included in the bubble, would have weigh'd above a grain ; tho' it were fomewhat rarify'd by the flame wherewith the bubble was feal'd. And, upon the return of the excluded air, the lead, and the weight caft into the fame fcale, did again very much preponderate.

We, likewife, convey'd into the receiver, the fame bubble, open'd at the end of the flender pipe above-mention'd; but, having drawn out the air as ufual, we found not, as before, the bubble to out-weigh the oppofite lead: fo that by the help of our engine, we can weigh the air, as we weigh other bodies, in its natural or ordinary confiftence, without condenfing it. Nay, having convey'd a lamb's bladder, half full of air, into the receiver, we obferv'd, that tho' upon working the pump the imprifon'd air expanded, till it feem'd ready to burft the bladder ; yet this rarified air, manifeftly depreffed the fcale whereto it was annexed.

And, having once caus'd the pump to be obftinately ply'd, in repeating whetber ghafibe the former experiment, the imprifon'd air broke the containing glafs-bub--proins io air. ble, and threw the greateft part of it againft the fide of the receiver, whereby 'twas fhatter'd into a multitude of pieces. Hence we may difcern, of how clofe a texture glafs is, fince fo very thin a film of it, as this bubble was, prov'd fo impervious to the air, that it could not get away thro' the pores, but was forced to break the glafs in pieces, to free itfelf; and this, notwithftanding the time, and advantage it had, to force thro' the pores. This I mention, that our experiments may receive no prejudice from one I happen'd to make long fince; which might be drawn to countenance their opinion, who would perfuade us that glafs is pervious to air, properly fo calld : for, in diftilling a certain fubflance, greatly abounding with fubtile fpirits, and a volatile falt, in a frong earthen veffel, of an unufual fhape, to which was luted a large, receiver of green glafs; the fire was, by accident, fo exceffively increas'd, that we found the fpirituous and faline corpufcles, thrown over fo hot, and in fuch plenty, into the re-
Vol. II. however, to approach it, and obferv'd, on the outfide thereof, at a great diftance from the juncture, there was fettled a round, whitifh fpot, or two, which, at firft, we thought might be fome ftain upon the glafs; but after finding it, in feveral qualities, like the oil and falt of the concrete diftill'd, we fufpected, that the moft fubtile, and fugitive parts of the impetuous fteams, had penetrated the fubftance of the glafs, and, by the cold of the ambient air, were condenfed on the furface of it. And, indeed, upon examining the whole matter, a number of us unanimounly concluded, that the fubtile parts of the diftill'd matter, being violently agitated by the exceffive heat, had pafs'd through the pores of the glafs made wide by the fame heat. But this having never happen'd, more than once, in any of the diftillations we have either made, or feen, it is much more reafonable to fuppofe, that the pervioufnefs of our receiver, to a body much more fubtile than air, proceeded from the loofer texture of that particular parcel of metal, the receiver was made of; for all glafs is not equally compact, and folid; and from the prodigious heat, which, together with the vehement agitation of the fubtile fpirits, open'd the pores of the glafs; than to imagine, that fuch a fubftance as air, fhould be able to permeate the body of glafs, contrary to the teftimony of a thoufand chymical and mechanical experiments; and, of many made in our engine.

The penctrating

 porver of air, compered wuith that of water.And, the following experiment feems to teach, that tho' air, when fufficiently comprefs'd, may, perhaps, get entrance into fmaller cavities, than water ; yet, unlefs the air be forc'd in, it will not pafs them, whilf they may admit of water. I took a glafs fiphon, the lower end of whofe longeft leg was drawn fo flender, that the orifice, at which the water was. to fall out, would hardly admit a very fmall pin. This fiphon being inverted, we fo order'd it, that a little bubble of air was intercepted in the flendereft part, betwixt the little orifice, juft mention'd, and the incumbent water ; whence the air, being not to be forced thro' fo narrow a paffage, by fo light a cylinder of water, as refted upon it, hinder'd the farther efflux of the water, as long as we let it ftay in that narrow place: but when, by blowing a little at the wider end of the fiphon, that fmall parcel of air was forc'd out, with fome water; the remaining water that before continued fufpended, began freely to drop down again, as before. And a glafs pipe, either in the form of a fiphon, or otherwife, half an inch in diameter, but at one end fo flender, as to terminate in an orifice. almoft as fmall as a horfe-hair, be fill'd with water, it will drop down freely thorough the flender extremity. But if the pipe be inverted, the air will not eafily get in at the fmall hole, thro which the water pafs'd. For, in the fharp end of the pipe, fome inches of water will remain fufpended; which, probably, would not happen, if the air could get in to. fucceed it ; fince, if the orifice were a little wider, the water would immediately fubfide. And tho when the pipe is many inches long, a great part of the water will run down at the wider orifice ; yet that feems,
to happen for fome other reafon, than becaufe the air fucceeds it at the ${ }^{\text {Prsumarice. }}$ upper and narrow one; fince all the flender part of the pipe, and, perhaps, fome inches more, will continue full of water.

And, tho' we have formerly fhewn, that the aerial corpufcles cannot pafs thro' the pores of a lamb's bladder ; * yet, particles of water will; as may eafily be try'd, by very clofely tying a little alkaline falt in a fine bladder, and dipping its lower end in water: for, if it be held there for a competent time, there will ftrain thro' the pores of the bladder, water enough to diffolve the falt into a liquor.

But, to return to our bubble; we endeavour'd to meafure its capacity by filling it with water, to find how much water anfwer'd, in weight, to $\frac{3}{4}$ of a grain of air; but all the diligence we ufed to preferve fo brittle a veffel; could not prevent its breaking, before we had gain'd our point.

But, there occurs a problem, upon occafion of the flow breaking of the glafs bubble in our evacuated receiver. For, it might feem ftrange, fince the air, as we have feen, expands itfelf by its own internal fpring, twice as much as Merfennus was able to rarify it by a red-hot zolipile; that yet, the fpring of the air was fcarce able to break a very thin glafs bubble; and utterly unable to break one fomewhat thicker, within whofe cavity it was imprifon'd ; whereas, air pen'd up, and agitated, is able to perform effects fo much more confiderable, that the learned jefuit Cabeus tells us, he faw a vaft ftrong marble pillar quite broken off in the middle, by the heat proceeding from wood, which happen'd to be burnt juft by it; which fo rarified fome air or fpirituous matter fhut up in the cavities of the marble, that it burft thro' the folid body of the ftone by the force of expanfion. But, probably, the reafon why the included air did not break the feal'd bubbles, in our exhaufted receiver, was, that being fomewhat rarified by the flame employ'd to feal the glafs, its fpring upon the recefs of the heat grew weaker than before. Yet, this will not, alone, ferve the turn, becaufe, much fmaller glafs bubbles, exactly clos'd, will by the included air be made to fly in pieces.

We took an rolipile of copper, weighing fix ounces, five drams, and for- Tbepropertio, of ty-eight grains; and being made hot, we remov'd it from the fire, and the tre to ithat of immediately ftop ${ }^{\text {a }} \mathrm{d}$ it with hard wax, that no air might get in at its orifice. wattor. Then the æolipile, being fuffer'd leifurely to cool, 'twas again weigh'd, together with the wax, and found to be fix ounces, fix drams, and thirtynine grains. Laftly, the wax being perforated, without taking any of it out of the fcale, the external air was fuffer'd to rufh in; and then the æo-

[^3]that the air, for want of a wetting property, cannot do. As a proof of this doatrine, he fill'd a bladder with air, and comprefs'd it with a ftone, and found no air to come out; but, placing the bladder, thus comprefs'd, in water, that air eafily efcaped. Hif. del'Acad. A, i zo. p. i 7 .

Phyfico-mechanical Experiments.

lipile, and wax, being again weigh'd, amounted to fix ounces; fix drams, and fifty grains. So that the zolipile, freed as far as our fire could free it, from its air, weigh'd lefs than when replenifh'd with air, full eleven grains; that is, the air containable within the cavity of the æolipile, amounted to eleven grains, and fomewhat more. And, by the way, if there be no miftake in the observation of Merfennus, it may feem ftrange that it Should fo much differ from two or three of ours; in none of which we could ratify the air in an rolipile, though made red-hot, almoft all over, and immediately plung'd into cold water, to half that degree which he mentions, viz. feventy times its natural extent; unlefs the rolipile, he employ'd, was able to fuftain a more vehement heat than ours *.

This way of weighing the air, by the help of an rolipile, feems formewhat more exact, than that which Merfennus ufed, becaufe we weigh'd not the rolipile till it was cold ; whereas he weigh'd it red-hot, whereby it is fubject to lofe of its weight in cooling : for, copper heated red-hot, throws off, in the cooling, little thin fcales in fuch plenty, that, having pourpofely watch'd a copper eolipile, during its refrigeration, we have feen the place round about it, almoft cover'd with them every way. Perhaps, too, the rolipile, in cooling, may not receive forme little increafe of weight, either from the vapid, or faline fteams that float in the air. We employ'd, to weigh our eolipile, both when fill'd with air, and when replenifh'd with water, 2 pair of fcales that would turn with the fourth part of a grain. As to the proportion of weight betwixt air and water, fome learned men have attempted to fettle it, by ways fo inaccurate, that they feem to have been much miftaken. Ricciolus having purpofely endeavour'd to difcover this proportion, by means of a thin bladder, eftimates the weight of the air, to that of the water, as about I to 10,000 ; and, indeed, having once weigh'd a large bladder, full of air, and found it to contain 14 grains; the fame bledder, afterwards fill'd with water, contain'd near 14 pounds; whence the proportion of air to water, feem'd, almoft, as a grain to a pound, that is, as I to above 7600. On the other hand, Galileo makes the air to water, as 1 to 400 . But our way of weighing the air by an æolipile, feems, by much, the more exact. And, according to our obfervations, the water it contain'd, amounting to 21 ounces and a half; and as much air as was requifite to fill it, weighing eleven grains; the proportion in gravity of air, to water of the fame bulk, will be as i to 938 . And tho' we could not fill the eolipile with water, very exactly; yet, as we neither could perfectly drive the air out of it

* It may be pretended, that ${ }^{\text {ais not the air, }}$
but forme vapour, or exhalation, contained
in it, that here weighs upon the balance.
To obviate this obj ${ }^{\text {sion, }}$ M. Musfbenbrock
contrived the following experiment. 'Til
a known thing in chymitry, that dry ala-
line falls attract, and absorb the moisture
of the air, and thereby run, per deliquixm,
as 'ais called. That philosopher, there-
fore, having exhausted a proper veffel of
its air, fitted another veffel, wherein wrap
lodged a large quantity of very dry fast of
tartar, reduced to fine powder, and made hot, to the neck of the former ; fo that the external air muff pars flowly throw this fall, before it could poffibly ger into the exhaufted veffel; wherchy the air that enred, was trained, and perfealy freed from any moifture that might have been lodged therein. The veffel being thus fill'd with pure air, and put into the feale, was found to weigh as much as when fill d with uppurged air. De Mater. Subtle. po To
by heat, we think the proportion may hold good: however, in a round fum we may fay, water is near 1000 times heavier than air. And accordingly, having, at another time, put fome water in the rolipile, before we fet it on the fire, that the vapours of the rarified liquor might the better drive out the air, we found, upon trial carefully made, that when the xolipile was refrigerated, and the included vapours, by the cold, turn'd again into water ; the air being let in, increas'd the weight of the xolipile, eleven grains, as before ; tho there were already in it, twelve drams, and 32 grains of water, which remain'd of that we had put into it, to drive out the air. Merfennus, indeed, tells us, that, by his account, air is in weight to water, as I to 1356 ; and adds, that we may, without any danger, fuppofe, the gravity of water to that of air of a like bulk, as 1300 to 1 ; and, confequently, that a quantity of air, to a quantity of water, equiponderant thereto, is as 1300 to I. But why we fhould relinquifh our own carefully repeated trials, I fee not; yet I am unwilling to reject thofe of fo accurate and ufeful a writer; and therefore furpect, that the difference in our obfervations, proceeds from the different confiffence of the air at London, and at Paris : for, our air being more cold and moift than theirs, may be fuppofed, alfo, to be a fourth, or a fifth part heavier. Perhaps it may be of moment, too, that our obfervations were made in the midft of winter, whilf his might be made in fome warmer part of the year.
It might be expected, that we fhould, from thefe and other obfer- Thb bighb of vations, decide the controverfy about the height of the atmofphere; ; couputed. but, tho' it feems eafy to fhew that many famous writers have been miftaken in affigning this height; yet, 'tis very difficult, precifely to define its extent.
Now, we have, already made it appear, that at leaft about London, the proportion of fpecific gravity betwixt water and air, is, as 1000 to I. And, to determine the difference in weight betwixt water and quickfilver; we took a glafs-pipe, in the form of an inverted fiphon, and pouring into it a quantity of quick-filver, we held it fo, that the fuperficies of the liquor, both in the longer and fhorter leg, lay in the horizontal line E F; then Fie. 40, pouring water into the longer leg of the fiphon, till that was almolt fill'd, we obferv'd the furface of the quick-filver in that leg to be, by the weight of the water, deprefs'd from E, to B, and in the fhorter leg, to be as much impell'd upwards from F , to C . And having, before-hand, made marks, as well at the point B , as at the oppofite point D , we meafur'd both the diftance DC, to have the height of the cylinder of quick-filver, which was rais'd above the point D, by the weight of the water, and the diftance BA, which gave us the height of the cylinder of water. So that the diftance DC, being $2 \frac{3}{3} \frac{3}{5}$ inches, and the height of the water $30 \frac{45}{\frac{5}{4}}$ inches, the proportion appear'd to be as 12 I to 1665 , or as I to $\frac{92}{9,2}$.

We alfo meafured the proportion betwixt quick-filver and water by the help of a balance, which would turn with the hundredth part of a grain. But, becaufe an over-fight is ufually committed in weighing quick-filver, and water; efpecially, if the orifice of the containing veffel be wide ; fince

Pbysco-mechanical Experiments.

Paromatics the furface of water in veffels, will be concave, but that of quick-filver confiderably convex; to avoid this inconvenience, we made ufe of a glafs-bubble, blown very thin, that it might not be too heavy for the balance, and terminating in a very flender neck, wherein the concavity or convexity of a liquor could not be confiderable. This glafs weighing $23^{\frac{8}{2}}$ grains, we almoft fill'd it with quick-filver, and faftning a mark over againft the middle of the protuberant fuperficies, we found that the quick-filver alone, weigh'd $299 \frac{7}{\frac{1}{3}}$ grains; then the quick-filver being pour'd out, and the fame glafs fill'd to the fame height with common water, we found it to weigh $2 \frac{7}{8}$ grains: whereby, it appear'd, that the weight of water to quick-filver, is, as I to $13 \frac{19}{28}$; tho the illuitrious Verulam, merely for want of exact inftruments, makes the proportion betwixt them greater than of 1 to 17 . And, by the way, fince quick-filver, and well rectified fpirit of wine are accounted, one the heavieft, and the other the lighteft of fluids; with the fame glafs, and fcales, we found, the difference betwixt them, to be, as 1 and $16-\frac{6}{9} \frac{4}{3} \frac{1}{4}$; whence, the difference betwixt highly rectified firit of wine, and common water, is, as betwixt 1 and $1-\frac{4}{7} \frac{4}{1}$. But to avoid fractions, let us fuppofe quick-filver is fourteen times as heavy as water. We have then given us, the proportion of air to water, and of water to quick-filver; from whence, it is eafy to find the proportion betwixt air and quick-filver; if we fuppofe the atmofphere to be uniformly of fuch a confiftence as here below. For, fince our engine hath fufficiently manifefted, that 'tis the equilibrium with the external air, that, in the Torricellian experiment, fuftains the quick-filver; and, fince by our accurate experiment, formerly mention'd, a cylinder of mercury, able to balance a cylinder of the whole atmofphere, amounted to about thirty inches; and, fince, confequently, we may affume the proportion of quick-filver to air, to be as 14000 to 1 ; it will follow, that a cylinder of air, able to maintain an equilibrium with a mercurial cylinder of two feet and a half in height, muft amount to 35000 Englifb feet, and confequently to feven miles.

But we cannot fafely conclude, that the air is every where of the fame confiftence we found it, near the furface of the earth; not only becaufe, as Seneca fays, "the air is more grofs, the nearer it comes to the earth, as the feces fall to the bottom in water"; but becaufe the fpringy texture of the aerial corpufcles makes them capable of a very great compreflure, which the weight of the incumbent part of the atmofphere exerts upon the undermoft, near the furface of the earth. And as we have feen, that air, much rarify'd without heat, may eafily admit a farther rarifaction with it; and that, even without being expanded thereby, it is capable of being rarify'd to above a hundred and fifty times the extent it ufually poffeffeth here below; pertiaps :he atmofphere may rife to the height of fome hundred miles : nay, exhalations may afcend much higher, if there was no miftake in that Itrange obfervation made at Toloufe, in a clear night in $A u$ guft, by the diligent Emanuel Magnan; who, as Ricciolus tells us, "faw, Sf from eleven a-clock at night, till twelve, while the moon was under the " horizon,
" horizon, a littele lucid cloud, near the meridian, and almoft in the ze" nith, which could be illumin'd by nothing but the fun ; and, therefore, " muft have been higher than the whole fhadow of the earth. And," fays Ricciolus, " the like phenomenon was obferv'd by the great mathematician " Riccius."
Various obfervations, made at the feet, tops, and interjacent parts of high mountains, might, perhaps, affift us to make an eftimate, in what proportion the higher air is thicker than the lower ; and to guefs at the different confiftence, as to laxity and compaetnefs, of the air, at feveral diftances from us. And, if the difficulties about the refractions of the celeftial luminaries were fatisfactorily determined; that might, alfo, conduce to affign proper limits to the atmof phere. But, at prefent, we dare not pronounce any thing, peremptorily, concerning the height of it.
37. We have often obferv'd, that, when the fucker of our pump was drawn down, immediately upon turning the key, there appear'd a kind of light intime reciver of in the receiver, almoft like a faint flafh of lightning, in the day-time ; and bb airpump. almoft as fuddenly did it appear, and vanifh. When we firft took notice of this phenomenon, the day was clear, the hour about ten in the morning, and the only window in the room faced the north; and we found that, by, interpofing any opake body between the receiver, and the window, tho' the reft of the room were fufficiently enlighten'd, yet the flafhes did not appear as before. As foon as night was come, we made the room very dark, and plying the pump, as in the morning, could not find, upon turning the key, the leaft glimmering of light. Whence we inferr'd, that the flafh, appearing in the receiver, did not proceed from any new light, generated there; but from fome reflections of the light of the fun, or other luminous bodies, placed without : tho', whence the reflection Mhould happen, was hard to fay.
Wherefore, the next morning we went about to repeat the experiment; but tho' we could, as well as formerly, exhauft the receiver; tho' the place wherein we made the trial, was the very fame; and tho' other circumftances correfponded ; yet we could not difcover the leaft appearance of light all that day, no more than on feveral others: nor can we, to this very time, be fure, a day before-hand, that thefe flafkes will appear in our great receiver. Nay, having once found the engine difpofed to exhibit this phenomenon, we fent notice of it to Dr. Wallis, who was then very near at hand, and made hafte to fatisfy his curiofity; yet, by that time he arrived, the appearance was ceafed: and having long, in vain, endeavour'd to exhibit it again, we were, after all, unexpectedly prefented with a few flafhes.
And this contingency, whereto our experiment is liable, being fuch, that, in all conflitutions of the weather, times of the day, ϵ_{c}. it will fometimes anfwer, and fometimes difappoint our expectations; we are much difcouraged from framing an hypothefis to folve it ; tho' it might be attempted from confidering the following phenomena. (s .) The-appearance may as well be exlibited by cande-light, as by day-light, and in what- light be not hinder'd from falling upon the veffel. (2.) The flafh appears immediately upon turning the key, to let the air out of the receiver into the empty'd cylinder; fo that, I remember not, that the falh appear'd, when at any time, in our great receiver, the ftop-cock was open'd, before the cylinder was exhaufted. (3.) When, inftead of the great receiver, we made ufe of a fmall glafs, not containing above a pound and a half of, water; the phenomenon might be exhibited, tho' the ftop-cock remain'd open, provided the fucker was drawn nimbly down. (4.) When we began to empty the vefiel, the appearances of light were much more confpicuous, than towards the latter end, when little air, at a time, could paifs out of the receiver. (ς.) When the fucker had lately been well oil'd, and, inftead of the great receiver, the fmaller veflel, above-mention'd, was emptied; upon opening the ftop-cock, as the air defcended out of the glafs into the emptied cylinder, there afcended out of the cylinder into the veffel, a certain fteam, which feem'd to confift of very little bubbles, or other minute corpufcles, thrown up from the oil, rarify'd by the attrition it fuffer'd in the cylinder. For, at the fame time that thefe fteams afcended into the glafs, fome of the fame kind manifeftly iffued out, like a little pillar of fmoke, at the orifice of the valve, when that was occafionally open'd. And thefe fteams, frequently prefenting themfelves to our view, we found, by expofing the glafs to a clear light, that they play'd up and down in it ; and, by their whitifnefs, in fome meafure refembled the appearance of light. (6.) For, when the faft was great, the receiver, at the very inftant, loft of its tranfparency, by appearing full of fome kind of whitilh fubftance; and, for a flort time after, the fides of the glafs continu'd opake, and feem'd to be darken'd, as if fome whitifh fteam adhered to the infide of it.

But he who would fairly account for the phenomenon, whereof thefe are not all the circumftances, muft fhew from whence the apparent whitenefs proceeds; and why that whitenefs fometimes appears, and fometimes not. Now, had our phenomenon been conttant, and uniform, we fhould fufpect it to have been produced after the following manner ; for tho' what we faw in our receiver, feem'd to be a kind of light, yet it was, indeed, but a whitenefs, which render'd the infide of the glafs opake.

Now our common air abounds with particles, able to reflect the rays of light, as appears from that vulgar obfervation, the mores in the air, when the fun-beams fhooting into any fhady place, difcover them, tho', otherwife, the eye cannot diftinguifh them from the air. And, I particularly remember, that being at fome diftance from London, at a time when numerous bonfires happen'd to be made there; tho' we could not fee the fires chemfelves, yet we could plainly perceive the air all enlightned near the city: which argued, that the rays, thot upwards from the fires, mer, in the air, with corpuictes opake enough to reftect chem to our eyes.

White may be produc'd, when the continuity of a tranfparent body hape pens to be interrupted by a great number of furfaces, which, like fo many little looking-glaffes, confufedly reprefent a multitude of fmall and feemingly contiguous images of the lucid body. For, water, or the whites of eggs, beaten to a froth, lofe their tranfparency, and appear white. And, having, out of one of our fmall receivers, carefully drawn out the air, and left a very little hole, by which the water was to get in, we obferv'd that the neck, being held under water, and the little hole open'd, the water that rufh'd in, was fo broken, and acquired fuch a multitude of new furfaces, that the receiver feem'd to be full rather of milk, than water. And farther, by heating a lump of cryftal, and quenching it in fair water, it will be difcontinued by fuch a multitude of cracks, which create new furfaces within it, that tho' it will not fall afunder, yet it lofes its tranfparency, and appears white.
Hence we might imagine, that upon the rufhing of the air out of the receiver, into the empty'd cylinder, the air in the receiver, being fuddenly, and vehemently expanded the texture of it was as fuddenly alter'd; and the parts made fo to fhift places, and, perhaps, fome of them, to change poftures, as during their new and vehement motion, and their varied fituation, to difturb the ufual continuity, and, thereby, the tranfparency of the air ; which ceafing to be a tranfparent body, muft eafily degenerate into white.
Several things there are which make this conjecture feem the more probable; as, firft, the whitenefs always appear'd greater, whilt there was much air in the receiver, than when the air was in geteat part drawn out. Secondly, having exhaufted the receiver, and applied to the hole in the ftop-cock, a large bubble of clear glafs; fo that we could, at pleafure, let the air pafs out, at the fmall glafs, into the great one, and eafily fill the fmall one with air again; we obferv'd, that upon opening the communication betwixt the two glaffes, the air, in the fmaller, finding fo much room in the greater, to receive it, flew out with fuch force, that the fmall vial feem'd to be full of milk : and this experiment we repeated feveral times. And, thirdly, having provided a fmall receiver, with its upper orifice fo narrow, that I could ftop with my thumb, I obferv'd, that when, upon the exfuction of the air, the capacity of the glafs appear'd white ; if, by a fudden removal of my thumb, I let in the outward air, that whitenef's would immediately vanifh. It may, indeed, be objected, that when water turns from tranfparent to white, the air intervenes, which converts it into bubbles. To this I reply, there are two very volatile liquors, which being gently put together, are as clear as rock-water, and yet will inftantly, without the help of air to turn them into bubbles, fo alter the difpofition of their infenfible parts, as to become a white confiftent body. And this happens not as in the precipitation of benjamin , and fome other refinous fubftances; which being diffolv'd in fpirit of wine, may, by the affufion of fair water, be turn'd into a milky fubitance: for this whitenefs belongs not to the whole liquor, but to the corpufVol. II.

Nnn
cles

Phyffco-mechanical Experiments.

Pxumatice. cles of the diffolved gum, which, after a while fubfiding, leave the liquor tranfparent, themfelves only remaining white. But, in our cafe, 'tis from the varied texture of the whole tranfparent fluid; and not from any particular part, that this whitenefs refults : for the body is white throughout, and will long continue fo ; and yet may, in procefs of time, without any addition, be totally reduced into a tranfparent body, as before.

Another conjecture, we grounded upon this obfervation: having convey'd fome fmoke into our receiver, placed againft a window, we obferv'd, that, upon the exfuction of the air, the corpuicles floating in it, manifeftly enough made the receiver feem more opake, at the very inftant the air rufhed out. For, confidering that the whitenefs, whofe caufe we enquire after, did but fometimes appear, it feem'd not impoffible, that, at fuch times, the air in the receiver, might abound with particles capable of reflecting the light, in the manner requifite to exhibit a white colour, by being put into a certain unufual motion; as the new motion of their former fumes, made the infide of the receiver appear darker than before; and as our fmoking liquor, formerly mentiond, whofe parts, tho' they feem'd tranfparent, whilft they compos'd a fluid; yet when the fame corpufcles, upon unftopping the glafs, were put into a new motion, and difpos'd after a new manner, they render'd that part of the air opake, wherein they mov'd, and exhibited a greater whitenefs than fometimes appears in our receiver.

But as to the reafon why our phenomenon appears not conftantly, I remember not that we ever made the experiment in a fmall veffel, without finding the expeeted whitenefs. But it remains to be explain'd, why in our great receiver, the phenomenon hould fometimes be feen, and ofren not. All I have to fay on this head is, that the air about us, and much more that within the receiver, may be much alter'd by fuch cafes, as few are aware of. The learned Fofephus Acofta tells us, that "in America there "are winds which naturally trouble the water of the fea, making it green ". and black, and others as clear as cryftal." And, tho' we convey'd into the receiver, the fcales and the pendulums, formerly mention'd, clear and bright; yet, after the veffel had been emptied, and the air let in again, the luftre of both appear'd tarnifh'd by a beginning ruft. And, laftly, having, with pure fpirit of wine, drawn a tranfparent tincture out of a certain concrete, commonly reckon'd among minerals, we put it into a cryftal-vial, carefully ftop'd it, and lock'd it up in a prefs; and this liquor, being a chymical rarity, and of a plealing golden colour, we had often occafion to view it ; and took notice that once it feem'd to be very thick: whereupon, we imagin'd it poffible, that fome of the mineral corpufcles were then precipitating. But finding, after fome days, that tho' no precipitation had been made, and that the liquor, retaining its former vivid colour, was grown clear again, as before ; we lock'd it up again in the fame prefs, and refolv'd to obferve whether the like changes would again appear in our tincture; and, in cafe they thould, whether they might be afcribed to the alterations of the weather. But tho' during the greateft part of a winter,

Phyfico-mechanical Experiments.

winter, and a fring, we obferv'd the liquor would often grow turbid; and, after a while, clear again ; yet we could not find, that it depended upon any manifeft changes in the air ; which would be often dark and cloudy, when the tincture was clear and tranfparent ; as, in clear weather, the liquor would, fometimes, appear troubled, and more opake.
38. Into a glafs vial, open at the top, we put a mixture of fnow, and com-Wrater made 10 mon falt ; and, in the midft of this mixture, fet a cylindrical glafs, clofely fre ftopp'd at the lower-end, and open at the upper, where we fill'd it with common water; then let them all down into the receiver; and the pump being fet on work, the fnow began to melt fafter than we expected. However, by that time the receiver had been confiderably exhaufted, which it was in lefs than a quarter of an hour, we perceiv'd the water, near the bottom of the glafs cylinder, to freeze; and the ice, by a little longer ftay, feem'd to increafe, and to rife fomewhat higher than the furrounding furface of the liquor whereinto, almoft all the fnow and falt were diffolved. The glafs being taken out, it appear'd that the ice was as thick as the infide of the veffel it fill'd ; tho', into that, I could put my thumb. The upper furface of the ice was very concave, and, held againft the light, appear'd not deftitute of bubbles; tho' they were fewer than if the water had been frozen in the open air. The like experiment we made, alfo, in one of our fmall receivers, with like fuccefs.

But, whence proceeds that ftrange force, we may fometimes obferve in frozen water, to break the bodies that imprifon it, tho hard and folid? A. ftone-cutter, lately complain'd to me, that, fometimes, thro' the negligence of his fervants, the rain being fufter'd to foak into marble, the violent frofts coming on, would burft the ftones. And, another tradefman complain'd, that,even implements made of bell-metal, being carelefsly expos'd to the wet, have been broken and fpoil'd by the water, which, having enter'd at the little cavities of the metal, was there, afterwards, froze, and expanded into ice. And Cabeus tells us, that he faw a huge veffel of exceeding hard marble fplit afunder, by congeal'd water. I know it will be faid, to folve this problem, that congelation doth not reduce water into lefs fpace, than it before poffefs'd, but, rather makes it take up more. But, tho' we grant, that water fwells in freezing; yet how cold, which, in weatherglaffes, manifeftly condenfethair, fhould expand either the water or the intercepted air, fo forcibly as to perform what we have here related, remains to be difcover'd.
39. We took an oval glafs, clear, and pretty ftrong, with a fhort neck 4 waterdernoo at the obtufer end, thro which we thruft, almoft to the bottom, a pipe of glafs, and clofely cemented it to the neck : the upper part of the pipe was drawn, in fome parts, more flender than a crow's quill, that the changes of the air in the glafs-egg, might be the more confpicuous; then we convey'd into the glafs, five or fix fpoonfuls of water, part of which, by blowing air into the egg, was rais'd into the flender part of the pipe; fo that the water was interpos'd between the external air, and that included in the egg. This weather-glafs, was fo placed, and clos'd ${ }^{\text {Fig. }} 48$.

Pbyfico-mechanical Experiments.

$\underbrace{p x r v a n t i c t .} u$ in the cavity of a fmall receiver, that only the flender part of the pipe to the height of four or five inches, paffing thro' a hole in the cover, remain'd expos'd to the open air.

In evacuating the receiver, the water, in the pipe, defcended about a quarter of an inch; and this upon two or three repeated trials; which feem'd to argue, that there was no heat produced in the receiver, upon the exfuction of the air : for even a little heat would, probably, have been difcover'd by that weather-glafs ; fince, by the bare application of my hand to the outfide of the receiver, the warmth, after.fome time, having been propagated thro' both the glaffes, and the interval betwixt them, to the imprifon'd air, fo rarify'd it, that, by preffing upon the fubjacent water, it impell'd that in the pipe much higher than it had fallen downwards, upon the exfuction of the air.

Yet we do not hence conclude, that in the cavity of the receiver the cold was greater after the extraction of the air, than before.

If it be demanded, what then could caufe the water to fubfide; we anfwer, that, probably, it was the ftretching of the glafs-egg, which, upon the exfuction of the ambient air, was unable to refift, as formerly, the preffure of the included air, and of the atmofphere, which, by the intervention of the water, prefs'd upon its concave furface. This feems probable, as well from the experiment about breaking a glafs, by the force of the atmofphere, as becaufe, when by drawing the air out of the receiver, the water, in the pipe, was fubfided, upon the re-admifion of the external air, to prefs againft the convex furface of the egg, the water was prefently re-impell'd to its former height : for, if a glafs-egg be blown exceeding thin, and afterwards broken, you may, by degrees, confiderably bend fome narrow parts of it ; and upon the removal of what kept it bent, it will readily recover its former ftate. From our experiment, then, it appears either that there fucceeds no body in the room of the air drawn out of the receiver; or r_{2} that every fubitance is not fubtile enough, readily to pafs the pores of glafs, tho always fufficiently agitated to produce heat, wherever it is found in plenty. So that if we admit no vacuum, this experiment requires us to allow a great difparity, either as to bulk, or agitation, or both, betwixt fome parts of the atherial fubftance, and thofe which, here below, produce heat and fire.

Wetry'd, alfo, what operation the extraction of the air would have upon camphire ; which confifts of fuch volatile parts, that they will exhale without any greater agitation, than that of the open air. But we found not, that even this loofe body, was fenfibly alter'd thereby.
 time, fhut into a great receiver, a humming-bee, that appear'd frong and lively; we alfo procur'd a white butter-fly, and inclos'd it in a fmall receiver; where, though at firft, he flutter'd about, yet, prefently, upon the exfuction of the air, he fell down, as in a fwoon; retaining no other motion, than fome little trembling of the wings. The fly, after fome exfuctions of the air, drop'd down from the fide of the glafs, whereon the

Pbyfico-mechanical Experiments.

was walking: but, that the experiment of the bee might be more in-Pxzymarict. ftructive, we convey'd in with her a bundle of flowers, which remain'd fufpended by a ftring, near the upper-part of the receiver; and having provoked the bee, we excited her to fly up and down the veffel, till, at length, fhe lighted upon the flowers, when we prefently began to draw out the air, and obferv'd, that tho', for fome time, fhe feem'd to take no notice of it, yet, withina while after, fhe fell down from the flowers, without making any ufe of her wings.
41. To fatisfy ourfelves, in fome meafure, why refpiration is fo ne- Birds and wite ceflary to the animals, that nature hath furnifh'd with lungs, we took a ${ }_{\text {receivr }}$ in lark, one of whofe wings had been broken by a fhot ; but, notwithftanding this hurt, the bird was very lively; and put her into the receiver, wherein the, feveral times, fprung up to a confiderable height. The veffel being carefully clofed, the pump was diligently ply'd, and the bird, for a while, appear'd lively enough ; but, upon a greater exfuction of the air, fhe began manifeftly to droop, and appear fick; and, very foon after, was taken with as violent, and irregular convulfions, as are obferv'd in poultry, when their heads are wrung off, and died ; (tho' when thefe convulions appear'd, we let in the air,) with her breaft upward, her head downward, and her neck awry; and this within ten minutes, part of which time had been employ'd in cementing the cover to the receiver. Soons after we put a lively hen-fparrow, which was not at all hurt, into the receiver; and profecuting the experiment, as with the former, fhe appear'd to be dead within feven minutes; one of which was employ'd in cementing on the cover: but, upon fuddenly turning the key, the frefh air, flowing in, began flowly to revive her; fo that, after fome pantings, fhe open'd her eyes, and regain'd her feet, and, in about a quarter of an hour after, attempted to elcape at the top of the glafs, which had been unftop'd to let in the air upon her : but the receiver being clofed the fecond. time, the died, violently convuls'd, within five minutes from the firft ftroke. of the pump.

Then we put in a moufe, newly caught, and, whilft he was leaping upvery high in the receiver, we faften'd the cover to it; expecting, that an animal, ufed to live with very little frefh air, would endure the want of it better than the birds; but tho', for a while after the pump was fet on work, he continu'd leaping up, as before; yet 'twas not long e'er he began to appear fick, giddy, and to ftagger; after which, he fell down as dead, but without fuch violent convulfions as the birds had: when, haftily letting in fome freth air upon him, he recover'd his fenfes, and his. feet, but feem'd to continue weak and fick; at length, growing able to skip, as formerly, the pump was ply'd again, for eight minutes; about the middle of which fpace, a very little air, by mifchance, got in at the ftop-cock; and, about two minutes after that, the moufe, feveral times, leap'd up lively; tho', in two minutes more, he fell down quite dead; yet with convulfions far milder than thofe wherewith the birds expired. This alacrity, fo little before his death, and his not dying fooner than

Pbyfico-mechanical Experiments. than at the end of the eighth minute, feem'd owing to the air that pafs'd into the receiver : for, the firft time, the convulions feiz'd him, in fix minutes after the pump began to be work'd. Thefe experiments feem'd the more ftrange, becaufe, during a great part of thofe few minutes, the engine could but confiderably rarify the air, and that too by degrees; and, at the end thereof, there remain'd in the receiver, a large quantity : for, as we formerly faid, we could not draw down water in a tube, within much lefs than a fcot of the bottom. And, by the exfuction of the air, and interfperfed vacuities, there was left in the receiver, a fpace fome hundreds of times exceeding the magnitude of the animal, to receive the fuliginous fteams, from which, expiration difcharges the lungs, and which, in the other cafes, may be fufpected, for want of room to ftifle thofe animals that are clofely pent up in too narrow receptacles.

Having caufed thefe three creatures to be open'd, I could difcover little of what we fought for, and might, poffibly, have found in larger animals: for tho' the lungs of the birds appear'd very red, and, as it were, intamed; yet that colour is ufual in the lungs of fuch winged animals : but in almoft all the deftructive experiments, made in our engine, the animals appear'd to die with violent convulfive motions. From whence, whether phyficians can deduce any thing towards the difcovery of the nature of convulive diftempers, I leave to them to confider.

And, to obviate objections, and remove fcruples, about the fuliginous fteams of pent up animals, which are fuppofed to kill them; we fhut up another moufe, as clofe as poffible, in the receiver, where it liv'd about three quarters of an hour; and might, probably, have done fo, much longer, had not a perfon of quality defired to fee whether the moufe could be kill'd by the exfuction of the ambient air. Upon this, we open'd, for a while, an intercourfe betwixt the air in the receiver, and that without, whereby the moufe might be refrefhed, tho' without uncementing the cover at the top; to avoid the objection that, perhaps, the veffel was more clofely ftopp'd for the exfuction of the air than before.

The event was, that, after the moufe had liv'd ten minutes, the pump being a little out of order, he died with convulfive motions; wherein he made two or three bounds into the air, before he fell down dead.

I, alfo, caufed a moufe, that was very hungry, to be thut up all night into a well-clofed receiver, with a bed of paper for him to reft on; and caus'd the engine to be placed by the fire-fide, to keep him from being deftroy'd by the immoderate cold of a frofty night ; and, the next morning, I found he had devour'd a large part of the cheefe that had been put up with him. And, having thus kept him alive full twelve hours, we, by fucking out part of the air, brought him to droop, and to appear fwell'd; but, by letting it in again, we foon reduced him to his former livelinefs.

It may be here expected, I thould attempt to clear the nature of refpi-

The mature of refiration confider'd.
ration; but I pretend to go no farther in it, than our engine leads me.
'Tl's alledged by thofe who would have the lungs rather paffive than active, in refpiration, that as the lungs, being deftitute of mufcles and fibres,
fibres, are unfit to dilate themfelves; fo, without the motion of the tho-Pxzoxatice. rax, they would not be filid with air: fince, as Dr. Highmore hath well obferv'd, if a live dog have a great wound made in his cheft, the lobes of the lungs, on that fide of the mediaftinum, will collapfe, and lie ftill; whilf the thorax, and the lobes on the other fide of the mediaftinum, continue their former motion. And if, at once, the mufcles of the cheft be on both fides diffected; upon the ingrefs of the air, the whole lungs, tho' untouch'd, will remain without motion, at leaft as to any expanfion, or contraction of their fubftance.

And Bartboline affirms, that if the diaphragm be wounded, the lungs will fall together, and refpiration ceafe; which appears to be true, provided the wound be large. And, indeed, the diaphragm feems the principal inftrument of ordinary refpiration ; tho' the intercoftal mufcles, and, perhaps, fome others, may be allow'd eminently to concur in extraordinary cafes. But it is not yet decided, what conveys air into the lungs; for 'tis demanded, what fhould bring the air into the lungs, if they do not attract it ? To this queftion, fome of the beft modern philofophers anfwer, that, by the dilatation of the cheft, the contiguous air is thruft away ; and that, preffing upon the next air to it, and fo onwards, the propulfion is continu'd, till the air be drawn into the lungs, and fo dilates them. It is, again, objected by Barttoline, that, according to this doctrine, a man could not fetch his breath from a great veffel, with a flender neck, full of air ; becaufe, when his mouth covers the orifice of the neck, the dilatation of his thorax could not propel the air of the veffel into his lungs; being feparated by the inclofing veffel, from the ambient air: and yet, it will be faid, experience witnefferh, that out of fuch a veffel a man may fuck air. But this difficulty our engine can eafily folve; fince many of the preceding experiments fhew, that, in this cafe, there needs no propulion of the air, by the fwelling thorax, or abdomen, into the lungs: fince, upon the bare: dilatation of the thorax, the fpring of that internal air, which poffeffes as much of the cavity of the cheft, as the lungs fill not, being much weaken'd, the external and contiguous air, muft necefliarily prefs thro' the open wind-pipe into the lungs, as finding there the leaft refiftance.

And hence, by the way, we are affifted to judge of that famous controverfy, among naturalifts and phyficians, ever fince the time of Galen; fome maintaining, that the cheft, with the contain'd lungs, refembles a pair of bellows, which are, therefore, fill'd, becaufe dilated: and others pleading, that the comparifon fhould be made with a bladder, which is, therefore, dilated, becaufe it is fill'd. For, as to the thorax, it feems evidently, like a pair of bellows, to be partly fill'd with air, becaufe it was dilated; but as for the lungs, which want fibres to diftend them, they may fitly be compared to a bladder; fince they are dilated, by being fill'd with that air which rufhech into them, upon the dilatation of the cheft, in the cavity whereof, it finds lefs refiftance to its fpring, than elfewhere. And this calls to mind that ftrange obfervation of Nicholaus Fontanus, a phyfician at Amferdam, who declares, that, in a boy of the fame city, four years old,

Pbyfico-mechanical Experiments.

Prevmatics, there was found, inftead of lungs, a certain membranous bladder, which, being fill'd with air, and furnih'd with little veins, had its origin from the wind-pipe. This being fuppofed true, I leave it to be confider ${ }^{3} d$, how well it will agree with moft of the opinions, as to refpiration.

And thus may the grand objection of Bartholine, and others, be anfwer'd ; but I leave anatomifts to confider what is to be faid to fome obfervations, that feem to contradict thofe anatomical experiments above-mention'd: fuch was, particularly, that in Sennertus, of a melancholy ftudent, who, having ftabb'd himfelf, and pierc'd the diaphragm in the tendinous part, lived feven months after the wound was made; but, dying at length, it appear'd fo grear, being, perhaps, dilated by his ftraining to vomit, that the whole ftomach was found to have got by it, into the left fide of the thorax. And fuch, alfo, was the accident which happen'd to a nobleman whom I have feen, and who is yet alive; in whofe cheft, there hath, for thefe many years, remain'd a hole fo great, that the motion of his heart may be perceiv'd thro' it. An ingenious conjecture hath been made, at the caufe of the fudden death of animals in the exhaufted receiver; which fuppofes it to be, not the want of air that deftroys them, but the preffure of that in the cavity of the cheft; as if the fpring thereof, being no longer balanced by the ambient air, thereby becomes fo ftrong, as to keep the thorax forcibly diftended, hinder its wonted contraction, and fo comprefs the lungs and their veffels, as to obitruct the circulation of the blood. But Wallaus relates, that he often obferv'd, in the diffection of live bodies, the membrane which invelts the lungs, had pores in it, as big as the larger fort of peas: which agrees with the obfervations of chirurgeons and phyficians, that matter, collected in the thorax, hath penetrated into the lungs, and been difcharged by coughing. And moft of the animals, kill'd in our engine, were birds; whofe lungs, Dr. Harvey has obferv'd, very manifeftly to open, at their extremities, into the abdomen: and, by fuch perforations, we may well fuppofe the paffage free, betwixt the external air, and that in the abdomen. Befides, to thew that the animals, which expired in our glaffes, need not be fuppofed to have been kill'd by the want of air; we forefee another argument, which ought not to be conceal'd. The poffibility of a vacuum is, frequently, deny'd; and the fpaces void of air, and other groffer bodies are, all of them, fuppofed exactly replenifhed with a certain ethereal matter, fo thin and fubtile, that it can freely penetrate the pores of the moft compact, and clofe bodies, even glafs itfelf. Hence it may be faid, that the animals, included in our receiver, died not fo much for want of air, as becaufe the air pumped out, was neceffarily fucceeded by an ethereal fubftance; which, confifting of parts vehemently agitated, and fo very fmall, as, without refiftance, to paifs in and out, thro' the pores of glafs; a confiderable quantity of this reflefs matter, meeting together in the receiver, may be quickly able, by the exceffive heat of it, to deftroy a little animal, or, at leaft, make the air too hot to be fit for refpiration.

But we have already anfwer'd this objection, by the late experiments; which thew no heat to be generated in our exhaufted receiver.

It might, alfo, feem probable, that, upon the fudden removal of the wonted preffure of the ambient air, the warm blood of our animals was f_{0} vehemently expanded, as to difturb the circulation, and fo diforder the whole ceconomy of the body ; did fuch aninuls, adone, as are of a hot constitution, lofe their lives in the exhaufted engine. But as to the ufe of air, in refpiration, 'tis known to ferve in, the production and modulation of the voice; the expulfion of excrements, by coughing; the conveying in of odours, by infpiration, drc. which are rather convenient for the well-being of an animal, than neceflary to life. Hippocrates fays, of the air in animals endow'd.with lungs, that "tis the caufe both of life, and difeafes; "that 'tis fo peceffary, a man cannot live part of a day .writhout it ; and "t that rafpiration, alone, is the action which can never be fufpended.: But, as to the reafon. why the infpiration, and expiration of air, are fo very neceffary to life, both naturalifts, and phyficians, differ $f 0$ widely, that it .will be very difficult, either to reconcile, their opinions, or determine their controverfies.

Many fuppofe the chief ufe of xefpiration, is to cool and temper that :beat in the heart and blood, which iwould, ouherwife, be immoderate. They, alfo, fuppqle, that the air is neceflary, byjits coldnefs, to condenfe the blood that pafleth out of the right ventricle of the heart into the lungs; whereby it may, gain fuch a confiftence, as is requifite to make it.fit fewel for the vital flame in the left ventricle of the heart. And, indeed, filh, and other cold creatures, whofe hearts have but one cavity, are unprovided of lungs. But, tho', pofibly, the air infpined, may, fometimes, be of ufe in refrigerating the beast; yet, it may be objected, that. feveral cold creatures, as, particularly frogs, Atand in need of refpiration; which feems -unneceflary for refrigeration to them, who are deftitute of any fenfible heat, and live in the cold water; , that even decrepid old men, whofe natural heat is very languid, and almoft extinguifhed, have, yet, a neceflity of ,frequent refpiration; that a temperate air, is firteet for the generality of breathing. creatures; and as an air too hot, fo alfo, an air too cold, may be inconvenient for them; that in fome difeafes, the natural heat is fo wweaken'd, that were the ufe of refpiration to cool, it would be more thurtful, than beneficial, toc. Thefe, and other objections, might be oppos'd, and prefs'd, againft the recited opinion ; but, we thall only add, -that it,appears not, by our foregoing experiments, in the exhaufted receiver, where animals die fo fuddenly, for want of refpiration, that the ambient body is fenfibly hotter, than the common air.

Others. will have the very fabitance of the air to get, by the veffels of ,the lungs, to the left ventricle of. the heart, not only to temper its heat, but :ta provide for the generation of fpirits. And, thefe alledge the authority of the ancients, among.whom, Hippocrates feems, manifefly, to favour their opinion; and both Ariftatle, and Galen, fometimes appear inclinable : to it. But, jt, feems very difficult. to. Shew, how the air is convey'd into
.Vo 1 . II.
000
the the left ventricle of the heart; efpecially, fince the fyftole and diaftole of the heart, and lungs, are very far from fynchronal : belides, the fpirits appearing to be, but the moft fubtile, and unctuous particles of the blood, feem of a very different nature, from that of dry incombuftible corpufcles of air:

Another opinion of refpiration makes the genuine ufe of it to be the ventilation of the blood, in its paffage thro' the lungs; whereby, it is difburthen'd of thofe excrementitious fteams, proceeding, for the moft part, from the fuperfluous ferofities of the blood, and chyle. But, this hypothefis may be explain'd two ways. For the neceflity of air in refpiration; may be fuppos'd to proceed from hence; that, as a flame cannot long fubfift in a narrow, and clofe place, becaufe, the fuliginous fteams, it continually throws out, cannot be long receiv'd into the ambient body, which, after a while, growing too full of them, to admit any more, ftifles it; fo the vital fire in the heart requires an ambient body of a yielding nature, to receive into it the fuperfluous ferofities, and other recrements of the blood; the feafonable expulfion whereof, is requifite to depurate the mafs, and make it fit, both to circulate, and to maintain the vital heat refiding in the heart. The other way, is, by fuppofing, that the air doth, not only as a receptacle, admit into its interftices the excrementitious vapours of the blood, when they are expell'd thro the wind-pipe; but, alfo conveys them out of the lungs; becaufe, the infpired air, reaching to all the ends of the Afpera Axteria, there affociates itfelf with the exhalations of the circulating blood: and, when 'tis exploded, carries them away with itfelf, as winds fpeedily dry up the furfaces of wet bodies.

Now, to the firf of thefe two ways, our engine affords us this objection; that upon the exfuction of the air, the animals die a great deal fooner, than if it were left in the veffel; tho ${ }^{2}$, by that exfuction, the ambient fpace is left much more free to receive the fteams, that are either breathed out of the lungs of the animal, or difcharg'd by infenfible tranfpirasion.

But, if the hypothefis be taken in the other fenfe, it feems agreeable to that grand obfervation, which the phenomena of our engine, and the relations of travellers fuggeft, that there is a certain confiftence of air, requifite to refpiration; fo that, if it be too thick, and already over-chargd with vapours, it will be unfit to unite with, and carry off thofe of the blood; as water will diffolve, and affociate, but a certain proportion of faline corpufcles; and, if it be too thin, the number or fize of the aerial particles is too fmall to receive, and carry off the excrements of the blood in due quantity.

Now, that air too much thicken'd with fteams, is unfit for refpiration, appears by what happens in the lead-mines of Deronfire, and, perhaps, of fome other countries; for, I am credibly inform'd, that damps often rife here, which fo thicken the air, as fuddenly to ftifle the workmen. And, that this proceeds, not from any arfenical, or poifonous exhalation contain'd in the damp; but ${ }_{2}$ from too great a condenfation of the air; feems.

Pbyfico-mechanical Experiments.

feems probable, becaufe it often leifurely extinguifhes the flames of their pusoxarics. candles, or lamps; and alfo, becaufe in thofe cellars, where large quantities of new wine are fet to work, men have been fuffocated by the feams exhaling from the muft, and too much thickening the air : for this reafon, in fome hot countries, thofe who have occafion to go into fuch cellars, carry with them a quantity of well-kindled coals, which they hold near their faces, whereby, the fumes being diffipated, and the air rarified, the ambient body is reduced to a confiftence fit for refpiration.

And, by way of confirmation hereof, we may add, that in a fmall receiver, we carefully clos'd a bird, which, tho' for a quarter of an hour, he feem'd not much prejudiced, by the clofenefs of his prifon, he, afterwards, began to pant vehemently, keep his bill open, and appear very fick ; and, at length, after fome long, and violent ftrainings, he caft up a little matter out of his fomach: and this he did feveral times, till growing fo fick, that he ftagger'd, and gafp'd, and was ready to expire. Now, we perceiv'd, that within three quarters of an hour, from the time he was put in, he had fo thicken'd, and tainted the air, with the fleams of his body, that it was become altogether unfit for the ufe of refpiration; which is no wonder, fince, according to Sanclorius, that part of our aliment, which goes off by infenfible perfiriation, exceeds, in weight, all the vifible, and groffer excrements, both folid, and liquid.
That air too much dilated, is unfit for refpiration, the fudden death of animals kill'd in our exhaufted receiver, fufficiently manifefts. And, it may well be doubted, whether if a man were rais'd to the very top of the atmofphere, he would be able to live there many minutes. Fofephus Acofta tells us, that when he himfelf pafs'd the high mountains of Peru, to which, he fays, the Alps feem'd but as ordinary houfes, compared with high towers ; he, and his companions were furpriz'd with extreme pangs of ftraining, and vomiting blood, and with fo violent a diftemper, that he concludes, he hhould undoubtedly have died, but, that this lafted not above three, or four hours, before they came into a more natural temperature of air. Our author adds, that he is, therefore, perfuaded, "the element of the air is there fo " fubtile, and delicate, as to be inconfiftent with the refpiration of man, " which requires a more grofs, and temperate air."
But, perhaps, the air doth fomething more, than barely help to carry of what is thrown out of the blood, in its paffage thro' the lungs, from the right ventricle of the heart to the left. For in phegmatic conftitutions, and difeafes, the blood will circulate tolerably well, notwithftanding its being exceffively ferous; and in afthmatical cales, tho' the lungs be greatly ftuffd with vifcid phlegm, yet the patient may live for fome years: whence it is fcarce probable, that either the detention of the fuperfluous ferum of the blood, for a few moments in the lungs, thould be able to kill a perfectly found and lively animal; for we commonly found, upon repeated trials, in a fmall receiver, that, within half a minute, a bird would be furpriz'd by mortal convulfions, and, within a minute more, would die, beyond a poffibility of recovery from the air, tho' never fo haftily let in. And,
what thews it was not the clofenefs of the veffel, but the fadden exfuction of the air, that killed thofe creatares for foon; we once inclos'd a bird in a fmail receiver, where, for a while, he eat very chearfully forna feeds that we convey'd in with him $;$ and not only liv'd ten minutes, but hiad, probably, furviv'd machlonger, tho' he had not been refct'd. Atother bird being, within half a minute, caft into violent convulfons, upon the exfuction of the air ; we haftily turn'd the ftop-cock, to let it in again, whereby the gafping animal was piedently recover'd. And, at another time, we, at night, fhut up a bird in orie of our fmall receivers, and obferv'd, that, for a while, he was fo infenfible of the altertion of the tir, that he fotl alleep, with his head under his wing; and tho he afterwards awaked fick, fet he continued upon his legs, for above forty minutes; and then feeming ready to expire, we took him out, and foon found him lively. Upon the whole, there appears reafon to fafpect, that there is fome ufe of the dir, which we do not yet thoroughly underftand, that makes it fo neceffary to the life of atimals.

Paracelfus; indeed, tells us; that "as the ftomach concoots the aliment; «s and makes part of it ufeful to the body, rejecting the other; fo the " Iungs confume part of the air, and reject the reft." Whence, according to him, we may fuppofe a little vital quintéfence in the air, which ferves to refrefh and reftore our vital fpirits; for which purpofe, the groffer, and far greater part of the air, being unferviceable, it is not frange that an animal thould inceffantly require frelh air. This opinion, indeed, is not abfurd; but it requires to be explain'd and prov'd: befides, fome objections may be made to it, from what has been already argued againtt the tranfmutation of air, into vitad feirits. Nor is it probable, that the bare want of the generation of the ufual quantity of vital fpirits, for lefs than one minute, fhould be able to kill a lively animal, without the help of any external violence. And, upon this fuppofition, Cornelius Drebell, is affirm'd, by many credible petfons, to have contrived a veffel to be row'd under water: for Drebell conceiv'd, that it is not the whole body of the air, but a certain fpirituous part of it, that fits it for refpiration; which being fpent, the remaining groffer Body of the air, is unable to cherifh the vital flame refiding in the heart. So that, befides the mechanical contrivance of his boat, he had a chymical liquor, which, by unftopping the veffel wherein it was contain'd, the fumes of it would fpeedily reftore to the air, foul'd by refpiratron, fuch a proportion of vital parts, as would make it again fit for that office ; and having made it my bufinefs to learn this ftrange liquor, his rew lations conftantly affirm'd, that Drebell would never difclofe it, but to one perfon, who himfelf told me what it was. I have, therefore, been fometimes, inclined to fuppofe, the air neceffary to ventilate and cherifh the vital flame, which fome imagine to be continually burning in the heart : for that, in our engine, the flame of a lamp will vanifh almoft as foon after the exfuction of the air, as the life of an animal. We have made a hard body, in the form of a clove, but twice as long, and proportionably thick, of fuch a compofition, that if it be kindled at the upper end, it will
moft certainly burn away to the bottom, much better than a match : thisprivenatice. we often convey'd, kindled at the upper end, into a fmall receiver; but ftill found, that tho' prefently, upon the exfuction of the air, it would leave fmoking, and feem quite gone out ; and again begin to fmoke, as foon as the air was let in upon it; yet, if the air were kept out but four or five minutes, the fire would be totally, and irrecoverably extinguifh'd. And, conveying a fmall lamp into a large receiver, with highly rectified firit of wine, we could not, upon feveral trials, make the flame laft two minutes, after the air was began to be drawn out. This latter opinion, however, has its difficulties: for tho', in the hearts of many animals, the blood be a warm liquor, and, in fome, even hot; yet it is hard to conceive either how the air can get thither; or how, in cafe it could, it Chould increafe the heat: fince, however the air may increafe the heat of a coal, by blowing off the afhes, and making the active corpufcles penetrate farther into the kindled body, and fhatter it the more ; yet hot liquors have their heat allay'd, by air blown on them. And, fince fome naturalifts think the heat refiding in the heart, to be a true flame, but temperate as the flame of fipirit of wine ; which will long burn upon fine linen, or paper, without confuming them ; I wifh they had been more curious to make different trials with that liquor. For the flame of highly rectified fpirit of wine, will not only confume paper, and linen; but I have ufed it in lamps, to diftil liquors out of tall cucurbits, and found that it gave, at leaft, as great a heat, as oil: nay, I have readily melted crude gold, with the bare flame. of this fpirit.

Dr. Harvey demands, "why a foetus, even out of the womb, if involv"d. " in the fecundines, may live, for a confiderable time, without refpiration; " yet, if after having once began to breathe, its refpiration be ftop'd, it "prefently dies?" We pretend not to folve this problem, but made the following experiment with a view to it. We caus'd a bitch to be ftrangled, that was almoft ready to whelp; and prefently opening her, found four puppies; one of which we freed from the coats that involv'd him, and from the liquor wherein he fwam, and obferved, that he quickly open'd his mouth very wide, mov'd his tongue, and exercis'd refpiration. Then. we open'd both his abdomen, and cheft, and cut the diaphragm afunder; notwithftanding which, he feem'd often to endeavour at refpiration, and. remarkably mov'd the intercoftal mufcles, part of the diaphragm, the mouth. and tongue. But being defirous to try whether the other young ones, that had not yet breath'd at all, would long furvive this; we took them. out, and having open'd them, found none of them fo much alive as to have any perceptible motion in their hearts; whereas the heart of that which had once enjoy'd the benefit of refpiration, continued its motion fo long, that we obferv'd the auricle to contract, after five or fix bours; and is. continued about two hours longer.

It is much doubted, whether filh breathe under water. That fuch as are not of the whale kind, have no refpiration, as'tis exercifed by beafts, and birds, may be argued from their having no cavity in their hearts, and from
pxevanaries. their want of lungs, whence they are obferv'd to be mute; unlefswe fay, that their gills anfwer to lungs. But that air is neceffary even to the lives of fifh; and that therefore, 'tis probable, they have fome obfcure kind of refpiration, feems manifeft from obfervations, and experiments. Several authors tell us, that finh foon die in ponds, and glaffes quite fill'd with water, if the one be fo frozen over, and the other fo clofely ftop'd; that they cannot enjoy the benefit of the air. And our engine hath taught us, that many little parcels of interfperfed air, lurk in water; and this, perhaps, fin may make fome ufe of.

Removing a large eel, out of a veffel of water, into our great receiver, we caufed the air to be evacuated, and obferv'd, that after fome motion in the glafs, the feem'd fomewhat difcompofed, and, at length, turn'd up her belly, and afterwards lay altogether movelefs, as if quite dead; but upon taking her out of the receiver, the thew'd herfelf as much alive as before.

But, indeed, a large grey houfe-fnail, being clos'd up in one of our fmall receivers, neither fell down from the fide of the glafs, upon drawing out the air; nor was fo much as depriv'd of progreffive motion thereby: tho', except this, we never put any living creature into our exhaufted receiver, but what gave figns of death.

Hippocrates, and fome learned phyficians of late, fuppofe, that a fortus refpires in the womb; but it feems very difficult to conceive how air fhould traverfe the body of the mother, and the teguments of the child : and fince nature hath, in new-born infants, contrived peculiar temporary veffels, that the blood may circulate thro' other paffages, than if does in the fame individuals, when they come to have the free ufe of their lungs, 'tis improbable that the fretus in the womb fhould properly refpire : but, then, fince our experiments have manifefted, that almoft all kinds of liquors, as well as water, abound with interfperfed corpufcles of air, it feems not altogether abfurd, that when the foetus is grown big, it may exercife fome obfcure refpiration; efpecially fince children have been heard to cry in the mother's womb. And I know a young lady, whofe friends, when the once went with child, complain'd to me, that the was feveral times much frighted with fuch cries; which, till I difabufed her, the, and her friends, look'd upon as portentous. And 'tis no very unfrequent thing, to hear the chick pip in the egg, before the fhell is broken. This, however, I only bring as a probable argument, till I can difcover whether the motion of a rarified fubftance, tho' no true air, may not, at the top of the larynx, produce a found; fince the blade of a knife, held in feveral poftures, in the ftream of the vapours that iflues out of an xolipile, will afford various and very audible founds. I have, alfo, had thoughts of trying to make a large receiver, with little glafs windows, capable of holding a man, who may obferve feveral things as to refpiration, ©́c. and, in cale of fainting, may, by giving a fign, be immediately relieved with frefh air. And it feems not impoffible, that fome men, by ufe, may bring themfelves to fupport the want of air a pretty while; fince we fee that feveral will live much longer than others under water. Thofe who dive for pearls in

Pbyfica-mechanical , Experiments.

the Weft-Findies, are reported to be able to ftay a whole hour under water: Pruvanriet. and Cardan tells us of one Colanus, a diver in Sicily, who was able to continue there three or four times as long. We have, alfo, often feen in England, a corpulent man, who defcends to the bottom of the Thames, and thence brings large fifh, alive in his hands, out of deep holes; as A coffa tells us, he faw in Peru, the like manner of fifhing practifed by the Indians.

However, there are but few men, who, even by ufe, can fupport, for many minutes, the want of air: a famous diver, of my acquaintance, tells me, that at the depth of 50 or 60 feet under water, he cannot continue above two minutes, without reforting to the air which he carries down with him in an engine. He, alfo, told me, that by the help of fpunges dip'd in oil, and held in his mouth, he could much longer fupport the want of refpiration, under water, than without them : the true caufe of which, would, perhaps, if difcover'd, hint the nature of refpiration in fifh. But the neceffity of air to the greateft part of animals, unaccuftomed to the want of it, may be beft judg'd of by the following experiment.

We convey'd a bee, a flefh-fly, and a palmer-worm, into one of our fmall receivers, and, upon exhaufting thereof, obferv'd, that the bee and the fly fell down, and lay with their bellies upwards, and that the worm feem'd to be fuddenly fruck dead; all of them lying without motion, or any other difcernible fign of life, in lefs than one minute ; notwithftanding the fmallnefs of the animals, in proportion to the receiver, which, too, was not free from leaks: but we had no fooner re-admitted the air, than all the three infects gave figns of life, and, by degrees, recover'd. When we had again drawn out the air, their motions prefently ceafed, and they fell down, feemingly dead, as before ; continuing movelefs, as long as, by pumping, the veffet was kept exhaufted. Herein appears the wife conduct, and goodnefs of the creator, who, by giving the air a fpring, bath made it very difficult to exclude a thing fo neceffary to animals. And bere we may fufpect, that -if infects have no lungs, nor any part anfwering thereto, the ambient air affects, and relieves them, at the pores of their skin; for, as Hippocrates well faid, "a living body is every where perfpirable.". Thus the moiftea parts of the air readily infinuate themfelves into, and recede from the pores of the beards of wild oats, and of other wild plants, which almoft continually wreath and untwift themfelves, according to the lighteft variations in the temperature of the air.
We, particularly, took notice in this experiment, that, when, at any time, upon the re-admiffion of the air, the bee began to recover, the firt fign of life fhe gave, was 2 , vehement panting, which appear'd near the tail ; the like we have obferv'd in bees drown'd in water, when they firft come to be revived, by a convenient heat ; as if the air were, in one cafe, as proper to fet the firits, and alimental juice in motion, as heat, in the other.
This experiment, alfo, feems to manifert, that, even living creatures, man always excepted, are a kind of very curious machines. For, here we fee animals lively, and perfectly found, immediately deprived of motion,
praveraries; and all difcernible figns of life, and reduced to a condition that differs from, death, only, in being not abfolutely irrecoverable: and this is perform'd without the leaft external violence, more than is offer'd to a windmill, when, the wind ceafing to blow on the fails, all the feveral parts remain movelefs, and ufelefs, till a new breeze puts them again into motion.
'Tis known, that bees, and fome other infects, will walk, and fly, for a great while after their heads are off, and fometimes one half of the body will, for feveral hours, walk up and down, when it is fever'd from the other; yet, upon the exfuction of the air in this experiment, not only the progreffive motion of the whole body, but the very motions of the limbs immediately ceafe; as if the air were more neceffary to thefe animals, than their own heads.

But, in thefe infects, that fluid body, in which life chiefly refides, feems nothing near fo diffipable, as in perfect animals. For, the birds convey'd into our fmall receiver, were, within two minutes, brought paft recovery; but, we were unable to kill our infects, by the exfuction of the air : for, tho' as long as the pump was kept working, they continued immoveable, yet, when that refted, the air, which preis'd in, at the unperceiv'd leaks, flowly.reftored them to the free exercife, and functions of life. Without denying, then, that the air may be, fometimes, very ufeful, by condenfing, and cooling the blood, that paffeth thro' the lungs; I am of opinion, that the depuration of that animal fluid, is one of the ordinary, and principal ufes of refpiration.

Wrbetber the asiom of meno Atrunems depowd an diffotving bodies, may be confiderably varied by the gravitation, or prefof tow the aprof fure of the incumbent air, and the removal of it ; I examined my conjecture by the following experiment.

I calt ten whole pieces or fprigs of red coral, into as much fpirit of vinegar as reach'd an inch above them; then putting thefe, together 'with the menftruum, into a long-neck'd vial, whereof they fcarce fill'd a third part, we convey'd that vial into one of our fmall receivers, and having faften'd on the cover, we let the liquon remain unmov'd a while. But finding, there only arofe, as before, a number of fmall bubbles, that caufed no fenfible froth upon the furface of the vinegar; we made two or three exfuctions of the-air, upon which there rofe, from the coral, fuch a multitude of bubbles, as made the whole body of the menitruum appear white $;$ and foon after, yielded a froth, equal in magnitude to the reft of the liquor ; the menftruum plainly appearing to boil : tho', if we defifted but one mintte from pumping, the decreafe of the froth, and ebullition, upon the getting in of a little air, at fome leak or cther, feem'd to argue, that the removal of the preffure of the external air, gave occafion to this effervefcence. Bat, for farther fatisfaction, we let in the external air at the ftop-cock, when, immediately, the froth vanifhed; and fo many of the bubbles, within the body of the liquor, difappear'd, that it loft its whitenefs, and became tranfparent again; the menfruam, alfo, working as languidly upon the coral, as before they weraput inco the receiver: but, when

Pbyfico-mechanical Experiments.

when we had again drawn out the air, firft the whitenefs re-appear'd, and Prevastrec. then the ebullition was renew'd; which, at length, grew fo great, that, for three or four times fucceffively, when the air was let out of the receiver into the emptied cylinder, the froth overflow'd the glafs, and ran down the fides of it : and yet, upon re-admitting the excluded air, it grew, immediately, calm and tranfparent; as if its operation upon the coral, had been facilitated by the exfuction of the incumbent air; which, on its recefs, left it eafier for the more active parts of the liquor to fhew themfelves, than whilft the preffure of the air continued. It may, indeed, be fufpected, that thofe vaft and numerous bubbles proceeded not from the action of the menftruum upon the coral, but from the fudden emerfion of thofe many little parcels of air, which are difperfed in liquors; but, having had this fufpicion before we made the experiment, we convey'd our diftill'd vinegar, alone, into the receiver, and kept it a while there, to free it from its bubbles, before ever we put the coral into it. It may be fufpected, likewife, that the agitation of the liquor, confequent upon fhaking the glafs, by pumping, might occafion the ebullition; but, upon trial, there appear'd no confiderable change in the liquor, or its operation, tho' the containing veffel was thaken, if no air were drawn out. The experiment was again made in a fmall receiver, upon coral grofly powder'd, with a fuccels very like the former; only the coral, being now reduced to fmaller parts, fo many little Iumps of it would, upon the ebullition of the liquor, be carry'd, and buoy'd up, by the emerging bubbles, as fometimes to darken the vial ; tho' they would fall again, upon letting in the air. We muft not omit, that, when the fpirit of vinegar was boiling upon the coral, we took out the vial, but could not find that the liquor was fenfibly hot.
43. We caufed water to be long boil'd, that it might be freed from its the clullition of air ; then, almoft filling a four-ounce glafs-vial with it, we convey'd that, vaarua ligwors in whilft the water was yet hot, into a fmall receiver; and having luted on the cover, the air was drawn out: upon the two firf exfuctions, there fcarce appear'd any change in the liquor ; nor was there any great altera-. tion made by the third; but at the fourth, and afterwards, the water appear'd to boil in the vial, as if it had ftood over a very ftrong fire; for the bubbles were much greater than are ufually found,' upon the ebullition of large quantities of water. And this effervefcence was fo great, that, the liquor, boiling over the top of the neck, much of it ran down into the receiver, and, fometimes, continued to boil there. In profecuting the experiment, we obferv'd, that, fometimes, after the firft ebullition, we were obliged to make feveral exfuctions, before the liquor could be brought to boil again : but, at other times, as often as the air was fuffer'd to pais from the receiver into the pump, the effervefcence would begin afrelh; tho' the pump were ply'd for a pretty while together: which feem'd to argue, that the boiling of the water proceeded from hence, that, upon withdrawing the preffure of the incumbent air, either the fiery corpufcles, or rather the vapours agitated by the heat in the water, were permitted Vol. II.
provarice: greatly to expand themfelves in the evacuated receiver; and, in their tu\sim multuous dilatation, lifting up the higher part of the water, and, turning it into bubbles, made it appear to boil; for the effervefcence was confined to the upper part of the water; the lower remaining quiet, unlefs the liquor were but hallow. And tho', fometimes, as we faid, the ebullition began again, after it had ceafed a pretty while ; whence it feem'd that fome concurrent caufe did a little modify the operation of heat; yet, when the water, in the vial, could, by pumping, be brought to boil no more, the fame water, being, in the very fame vial, convey'd back to the teceiver, was quickly brought to boil afrefh, with vehemence, and for a confiderable time ; whilit a new parcel, taken out of the fame boil'd water with the former, and put in cold, could not, by pumping, be brought to thew the leaft effervefcence. And hot fallet-oil Thew'd no effervefcence in our receiver ; but the chymical oil of turpentine was prefently made to boil up, till it reached four or five times its former height in the vial ; and continued boiling, till it was almoft but luke-warm. Wine, alfo, being convey'd in hot, did, at the very firf exfuction, begin to boil fo vehemently, that, in a thort time, while the pump was kept moving, four parts of five boil'd over the vial, tho' it had a long neck. And even of the water itfelf, near one half would, fometimes, boil over into the receiver, before it became luke-warm. It was, alfo, remarkable, that once, when the air had been drawn out, the liquor did, upon a fingle exfuction, boil fo long, with prodigioully vaft bubbles, that the effervefcence lafted almoft a quarter of a minute. Hence it appears, that the air, by its ftronger, or weaker preffure, may very much modify feveral operations of that vehement and tumultuous agitation of the fmall parts of bodies, wherein the nature of heat feems to confift : fo that if a heated body were convey'd above the atmofphere, 'tis probable, that the heat would have a different operation, as to the power of diffipating the parts of it, from what it hath here below.

S ECT. II.

$T_{\text {fauther }}^{\text {airpum }}$ father

HAving now prefented my great engine to the royal fociety, I was obliged to procure another; wherein, tho the conftruction, in general, be the fame in böth, there were fome alterations, and improvements made.
Jiga* 43. The figures reprefent this engine, as ready for work; and, becaufe the fucker is to be always under water, and the perforation $P Q$, that is continu ${ }^{\text {d }}$ perpendicularly quite thro' it, and ferves, together with the ftick RS, for a valve is to be ftopp'd at the bottom of the cylinder, as at NO, when 'tis full of water; 'twas requifite to make the flick RP, two or three feet long. But the chief thing is, that, in the fecond figure, the pipe A.B, whofe end B, bends upwards, lies in a groove, purpofely made, in the flat wooden board CDEF, on which the receivers are to reft. This fquare board, I caufed to be overlaid with very good cement, on which was applied a frong plate of iron, of the bignels and lhape of the board, leaving only a
fmall hole, for the erect part of the pipe to come out at; which I added, Prroxarict. not only to keep the board from warping, but becaufe the preflure of the atmofphere on the fide of it, when there is none, or very little, on the other, will enable many aerial particles to ftrain thro' the wood, tho' thick, and moiften'd with oil. To this iron-plate, we can fit a lip, turning up about it, to prevent the water, that, on fome occafions, comes from the receiver, from falling on the floor. And, by the way, tho' the flopcock GHIK, that belongs to the pipe, may be inferted at I, into the cylinder L M NO, by the help of folder; yet we chofe to have the branch 1 , of the ftop-cock, made like a fcrew, which, being once firmly fitted to the barrel, is not apt to be broken cff, and may be more eafily mended, if any thing happen to be out of order; which the engine is moft liable to, in, or about the pipe.
The fquare, and hollow wooden part of this engine difcernible in the firft figure, is fo made, not only to contain the cylinder, but as muchz water as will always keep it quite covered, by which means, the fucker lying, and playing always under water, is continually kept plump, and turgid; and the water being ready to fill up any little interval, that may happen, between the fucker, and the infide of the barrel, farther conduces to keep out the air. But, if great care be not taken in turning the ftopcock, the water will be impell'd into the receiver, anid prejudice feveral experiments, when the included bodies may be fooild, or impair'd by that liquor.
The flat plate, lately mentioned, has this great conveniency in many experiments, that the receiver needs no ftop-cock of its own; for fuch a veffel being made of an entire piece of glais, and laid upon the plate, well cover'd with cement, can better keep out the air, than if there were a ftop-cock, at which the air too frequently gers in.

A good cement, wherewith to faften the receivers to the iron-plate, is a thing of great moment in making the following experiments, and we employ different compofitions for different purpofes; but, in general, only a mixture of bees-wax and turpentine, made with equal parts for the winter, and three parts of the former to two of the latter, for the fummer.
I. We took a vial with a fmall neck, and having fill'd about a fourth part of Mmanr, naised it with quick-filver, we fo erected, and faften'd a long and nlender pipe of glafs, by bithffing imad open at both ends, in the neck thereof, with hard fealing wax, that the lower ini: end reach'd almoft to the bottom of the quick-filver, and the upper more than Fi. . 4 a yard above the vial ; then, having blown in a little air, we conveg'd the whole into a long flender receiver: upon evacuating whereof, we found, that the fpring of the air included in the vial, impell'd the quick-filver into' the erected pipe, to the height of 27 inches'; and fuffering the external air to return into the receiver, the quick-filver fubfided in the tube, fometimes almoft, and fometimes quite as low as the ftagnant mercury in the vial.
This experiment we made feveral times; and having once blown in fo much, air, that what was in the cavity of the vial rais'd and kept the quick-filser

476

Pbyjico-mechanical Experiments.
parumarice: three inches high in the pipe, we found, by emptying the receiver, that the quick-filver rofe 30 inches, or more, above that in the vial.

Sometimes it may happen, that the mercury, when taken very foon out of the receiver, will not appear to have fubfided to its firft ftation; which is not to be wonder'd at ; fince, in a receiver, containing but little air, the heat of the cement, and of the iron employ'd to melt it quite round the glafs, may impart a little warmth to the air in the vial, which will afterwards return to its former temper.
' Γ is very remarkable, if the receiver be properly ftopp'd and flender enough, that upon the turning of the ftop-cock to let out the air at the firft exfuction, the mercury will be impell'd up by the fpring of that in the vial, fo as to rife feveral inches above the height it will afterwards reft at, and make feveral vibrations up and down before it comes to fettle; juft as the mercury does in the Torricellian experiment: and fuch motions of the mercury will be made for four or five fubfequent exfuctions; but they grow gradually lefs, as the fpring of the included air is weaken'd.

At the firft exfuction, when the fpring of the included air was yet ftrong, we found the mercury would be rais'd above half, if not $\frac{2}{7}$ of the whole height, whereto 'twill, at length, afcend : but the fubfequent ftrokes add a lef's proportion of height to the mercurial cylinder, fuccefively ; becaufe the more mercury is impell'd into the tube, the greater weight preffes upon the included air; and becaufe the air hereby gains the more room, in the vial, to expand itfelf: whence the fpring muft be, proportionably, weakned.

Laftly, in making of thefe trials, I obferved the mercury in a good barometer, and found its greateft height twenty-nine inches, and $\frac{1}{5}$; and foon after we had finifhed, but twenty-nine.

To eftimate the quantity of air, that had raifed the quick-filver to twenty-feven inches; we counterpois'd the vial, employ'd about this experiment, whilft it was empty; afterwards filled it with water, and found the liquor to weigh five ounces, two drams, and twenty grains; then having pour'd out the water, till it was funk to a mark, we made on the outfide of the glafs, we weigh'd the remaining water, equal in bulk to the quickfilver, and found it one ounce, two drams, fourteen grains : fo that the air, which had rais'd up the mercury, poffefs'd, before its expanfion, the fpace but of four ounces, and a few odd grains in the vial. The bore of the pipe ufed in this experiment, was about $\frac{\Gamma}{\mathrm{T}}$ inch in diameter.
Mnch inumded 2. Into a ftrong glafs bottle, capable of holding a quart, we put a conair raijes merer 7., but to the $n-7$
 venient quantity of quick-filver, and erected in it a very long flender pipe of glafs, open at both ends, and reaching with the lower beneath the furface of, the ftagnant mercury; and having well cemented this pipe in the neck of the bottle, we convey'd the whole into a receiver, much larger than the former; and then the engine being work'd, the quick-filver was prefently rais'd to a greater height than before; and when it ftood ftill, we, by the help of fome marks made before-hand on the pipe, and a very long and well-divided ruler, carefully meafured the height of the mer-
curial cylinder, which we found to be 29 inches and about $\frac{7}{8}$; but deduct-Puronatice. ing half an inch, which was rais'd, before wre employ'd the pump, by fome air, that had been blown into the bottle, to try whether it were ftanch, there remain'd 29 inches and near $\frac{3}{8}$ for the hei ht of the mercury rais'd by the fpring of the air thut up in the bottle; and then, confulting the barometer, which ftood in another part of the houfe, I found the weight of the atmofphere fuftain'd a mercurial cylinder, of about twenty-nine inches, and a half.

We caufed the pump to be well ply'd, to try whether the quick-filver would not rife higher; but were confirm'd, that the fpring of the air was infufficient for that purpofe.
3. Taking the glafs-bottle, ufed in the former experiment, and erecting The pring of inin it, after the manner above-defcribed, a cylindrical pipe of glafs, much dumded air raifes larger than the other; we profecuted the experiment, as with the flender to an equal tube before-mention'd, and found, that, by the fpring of the air in the guwat ixbs. bottle, the quick-filver was raifed twenty-eight inches, and one eighth; that is, above an inch thort of the mercurial cylinder in the barometer, at the fame time; a difference no greater than I expected; confidering the weight of the atmofphere, remains the fame, when the mercury is at its full height, in a feal'd tube, whether great or fmall; whilft the fpring of our included air muft needs be weaken'd, the larger the tube, and the higher the mercury is impell'd in it. Whence, 'tis confiderable, that the fpring of fo little air fhould raife the mercury within an inch as high in a wide, as in a flender tube; for the diameter of the bore of the former, was double to that of the latter : and the greater mercurial cylinder may be fuppofed to have weigh'd near four times as much as the lefs; allowance being made for an ineh difference in their heights. But, in cafe thefe had been equal, then the folidity of the cylinders would have been as their bafes; that is, as the fquares of their diameters, or as I to 4.

We thought it worth trying, whether, when the included air had raifed this great cylinder of mercury to the utmoft height it could, by the fpring it then had, heat would not force it ftill higher. And, having caufed a hot iron, and a fhovel of kindled coals, to be held near the oppofite parts of the receiver; we perceived, after a while, that the mercury. afcended one eighth of an inch, or more, above the greateft height it had reached before; and, caufing the pump to be ply'd again, to withdraw the air I fufpected to have ftole in; the mercury was quickly raifed five eighths of an inch, by virtue of the additional force which the included air acquired by the heat.
4. We took a glafs-bottle, furnifhed with a convenient quantity of wa- A fowtain. ter, and fitted it with a flender glafs-pipe, about three feet long, open at mping off the both ends; which was fo placed, that the lower orifice reached far be-comprefad air. neath the furface of the water, and the pipe itfelf paffed, perpendicularly, upwards, thro the neck; which, by the pipe, and hard cement, was fo firmly clofed, that no water, or air, could get out of the bottle, or external air get into it, but by paffing thro the pipe. This inftrument

Phyfico-mechanical Experiments.

Pxzunatice. we convey'd into a large receiver, thaped like a pear; of which a great part of the obtufe end, and a fmall portion of the fharp one, were cut off by fections parallel to the horizon. And, becaufe this receiver was not long enough to receive the whole pipe, there was cemented on, to the upper part of it, a fmaller, of fuch a length and bignefs, that the higher end of the pipe might reach to the middle of its cavity; and that the motions of the fpringing water might have a convenient fcope, and be the better obferved.

This double receiver, being cemented on to the engine, a little of the air was, by one ftroke of the pump, drawn from it; by which, the preflure of the remaining air being weaken'd, that included in the bottle, having not its fpring, likewife, weaken'd, expanded itfelf; and, confequently, impell'd up the water, in the fame bottle, thro' the pipe, fo as to make it ftrike briskly, at firf, againft that part of the top of the fmall receiver, which was juft over the orifice of the tube. But, after the water was, for a while, thus forced up, in a perpendicular line, it would be impell'd up lefs ftrongly, and lefs directly, till the air, in the bottle, being as much expanded, as that in the receiver, it quite ceafed to afcend, unlefs by pumping a little more air out of the receiver, we renew'd it again. The
Fig. 46. other figure is defigned to reprefent the -difference that would happen, if, inftead of making thlis experiment with water, it were made with quick-filver.

In making this experiment, 'ris convenient that the upper part of the pipe be very flender; whence the water, having but a very fmall orifice to iffue out at, may be fpent but flowly, and thereby make the experiment laft fo much the longer: or, inftead of making the upper part of the pipe flender; a top, confifting of three, or more, very flender pipes, with a fmall hole at the end of each, may be cemented on to it ; that one of thefe, pointing directly upwards, and the others to the right hand, and to the left, the water may fpin out feveral ways at once; by which kind of branched pipes, we have, fometimes, imitated a Fet d'eau, and the artificial fountains of gardens, and grotto's.

Hence we infer, that, had we not wanted convenient veffels, we might, by the preffure of the air, included in the bottle, have raifed water fourteen times as high as we did quick-filver in the former experiment ; fince, upon weakening the preffure of the air, but a little, in the double receiver, that within the bottle was able to impel the water, forcibly, and for 2 confiderable time, to the top of a pipe a yard long, and higher.

Hence, too, it appears, that, in thofe hydraulo-pneumatical engines, where water is placed between two parcels of air, the water may be put in motion, as well by the mere dilatation of one of the parcels, as by giving a new force by heat, or compreffion, to the other. And, whether this mechanical principle of motion may not prove ufeful in engines, we leave to be confider'd.

But if, when fome of the air had been pumped out of the receiver, we removed that double veffel from the bottle, the external air would, by its weight,
weight, fuddenly deprefs the water in the pipe, till, having driven it to the very bottom, it afcended in numerous bubbles thro' the water, and joined it felf with the air incumbent on that liquor. 'Twas here obfervable, that all the external air, which got into the bottle, did not come in fuddenly; but, after the firft irruption, we could perceive, from time to time, new portions of air, leifurely infinuate themfelves thro' the pipe into the bottle, and emerge thro' the flagnant water in bubbles, that fucceeded one another very flowly; as if the fpring of the included air, having been once deprived of its natural conftitution, by its late expanfion, could be but gradually reduced to it, by the weight of the atmofphere, which was fill the fame; or rather, as if between the fpring of the included, and the preffire of the external air, balancing each other, there happen'd fome fuch thing as is obfervable in fcales, of which one is too much deprefs'd ; whilft the motion becomes flower, as the weights are nearer to an equilibrium.

But, our principal defign, in this experiment, was to obferve, whether the lines made by the water, in its efflux, would retain the fame figure, notwithftanding the rarifaction of the air, in the upper part of the receiver ; and, for this purpofe, it is beft to make the obfervation towards the latter-end of the experiment ; becaufe, then, the receiver being moft exhaufted, the difference, made by the change of the denfity of the medium in which the ftreams of water move, is likely to be beft difcern'd. And this convenience we had, by our way of making the experiment, that we could obferve the lines, defcribed by the flowing water, as the projection. thereof grew fainter. But, for want of a large upper receiver, we could not be fatisfied in the nature of the curve ; tho' both Dr. Wallis, and my felf, found it to be, fometimes, part of a parabola.
5. We provided a brafs ring of a confiderable thicknefs, in height three Flat flafesbove inches; and the diameter of its cavity, as well at the upper as the lower by tbe woijbbof. orifice, was fomething more than three inches. To this ring we fucceffively faften'd, with cement, feveral round pieces of window-glafs, and thereby made the ring a kind of receiver, whofe open orifice we carefully cemented on to the engine; and found, that ufually, at the firft exfuction, the glafs plate would be broken inwards, with fuch violence, as to be fhatter'd into a great multitude of fmall fragments; and the irruption of the external air, driving in the glafs conftantly, made a loud report, like that of a piftol.
6. If, inftead of the brafs ring, above-mention'd, both orifices whereof are equal in breadth, you employ a taller hollow piece of brafs, or latton, Faga vani. fhaped like a truncate cone; and the two orifices be made very unequal; as if the larger be as wide as that of our brafs ring, and the ftraiter were lefs than an inch in diameter; and this piece of metal be made ufe of, as that in the preceding experiment the flat glafs will be eafily broken when cemented to the wider orifice: but, if the narrower orifice be turn'd upward, the glafs thereon, if it be of a due ftrength, tho no thicker than the former, notwithftanding the air is withdrawn from beneath it, will

Provasties.remain entire: which fufficiently argues, that nature's abhorrence of a vacuum, is not the caufe why glaffes are ufually broken in fuch experiments, fince, whether the iwider, or narrower orifice be uppermoft, and cover'd, the capacity of the exhaufted veffel, will be equal ; and therefore nature ought to break the glafs, in one cafe, as well as the other.

This phenomenon, therefore, is more properly explain'd, by faying, that when the wider orifice lies uppermoft, the glafs that covers it, muft ferve for the bafis of a large column of the atmofphere, which, by its great weight, may eafily force thro' the glafs; whereas, when the fmaller orifice is uppermott, there refts upon its cover, fo flender a pillar of air, as cannot, by its weight, furmount the natural cohefion of the parts of the glafs.

Blown bladders burat by the Spring of the air imeluded im tbew.

A confiderable weigbt lifted by the bare Spriug of a little air, included in: bladder.
7. We feldom fail'd of burting blown bladders in our exhaufted receiver, by tying their necks very clofely, and keeping them, for a pretty while, in the glafs, whilft the air was exhaufting, and then taking them out again; that the fibres being ftretch'd, and relax'd, and the capacity diminish'd by a new ligature, tho the air were the fame, and the membrane being not fo able to yield, as before ; upon the fecond exhauftion of the receiver,they would break far more eafily, than otherwife ; and fometimes be oddly lacerated.
8. We took a middle-fized bladder, and having prefs'd out the air, till there remain'd but about a fourth or fifth part, we caus'd the neck to be very ftrongly ty'd again; and, about the oppofite part of the bladder, within an inch of the bottom, we fo ftrongly tied another ftring, that it would not be nip'd off, by a confiderable weight hung at it. Then faftening the neck to the turn-key, we convey'd the bladder, and the weight hanging at it, into a large receiver; when, by plying the pump, the air, within the bladder, being freed from the preffure of the air without it, manifeftly fwell'd by its own fpring, and thereby greatly fhortned the bladder that contain'd it, and lifted up the weight, which exceeded 15 pounds.

After this, we took a large bladder, and having let out fo much air, that it was left lank, we faften'd the two ends of it to the upper part of the receiver, and hung a weight from the middle of the bladder; then exhaufting the receiver, as before, tho' the bladder, and this new weight, which ftretch'd it, reach'd folow, that, for a while, we could fcarce fee whether it hung in the air or no; yet, at length, we perceiv'd the bladder to fwell, and concluded it had lifted up its clog about an inch; as was confirm'd by the return of the air into the receiver ; upon which, the bladder became more wrinkled than before; and the weight, amounting to about 28 pounds, defcended.

Perhaps this experiment may conduce to explain mufcular motion*.

[^4]loarned Dr. Pemberton, after Shewing the infufficiency of all other methods, accounts for it, from that fubtile medium whereby the great Sir If. Newtom folves various other phenomena of nature.

P.Pyyfacospecihanical Expreximeinds.

9. A large glafs bubble, hermetically feal'd, being put into the receiver, paevmatros and the air drawn out fomewhat more than ufual; tho'I had, feveral times, Glats bubbles obferved, that fuch bubbles would not break immediately, upon evacuating the receiver ; yet this continued fo long entire, after we had left off pumping, that prefuming it had been blown too ftrong, I began to defpair of fuccefs in the experiment; when, about four minutes after the pump had been let alone, the bubble furpriz'd us with breaking fo violently, by the fpring of the included air, that the fragments of it were dafh'd every way againft the fides of the receiver, and broke to powder.

Io. We took the brafs-ring, lately mention n°, , whereto were fitted fome The external plates of window-glafs, as covers; and, having carefully fatten'd one of force of the fpring them, with cement, to the upper orifice of the ring; and cementing the of an ancompron fois lower orifice to the engine, fo that the veffel, compofed of metal and ${ }^{\text {bodics. }}$ glafs, ferv'd for a fmall receiver, we whelm'd another over it that was large and ftrong; which was alfo faften'd to the engine, with cement, after the ufual manner. By this contrivance, when the pump was fet on work, the fmall included receiver muft have its air withdrawn, while that, in the larger, could not get out, but by breaking through the glafs; fo that the internal air of the fmall receiver, being eyacuated, the glafs plate, that made part of it, muft lie expofed to the preffure of the ambient air, fhut up ia the other receiver, without having the former affiftance of the air, now withdrawn, to refift the preflure; wherefore, at the firft or fecond exfuction of the air, included in the fimall receiver, the glafs plate was, by the preflure of the incumbent air, contain'd in the larger one, broken into a hundred pieces, which were beaten inwards into the cavity of the ring.

But to fhew that there needed not the fpring of fo great a quantity of included air, to break fuch glaffes, we took another roundifh one, which, tho' wide enough at the orifice, to cover the brafs ring, and the new glafs plate, that we had cemented on it, was yet fo low, that it held but a fixth part of what the large. receiver, formerly employ'd, would contain; and having whelm'd this veflel, which was haped like a tumbler, over the little receiver, and well faften'd it to the engine with cement, we found, that tho' the externalireceiver had a:great part of its ceavity fill'd by that included, yet when this internal one wast evacuated, by, an exfuction or two, the fpring of the little air that remain'd, bisoke the plate inte a multitude of fragments.

And becaule the glafs plates, hitherto mention'd, feem'd not fo thick, but that the preffare of the inchided air might give greater inftances of its force ; inftead of the fmall metaline receivers, before employ'd, we took a ftrong, fquare botrle of glafs, able to contain a pint, inverved it, and applied it to the engine, as a receiver; over which we whelm'd, and cemented the large one, formerly mention'd ; and fetting the pump on work, to vempty the fquare bottle, the figure of the veffel allow'd the preflure of the aiir, included in the external receiver, to cruhh it into a great number of чіесез:

Vol. II.
Qqq
We,

We, aff, rook another glafs, of the fhapegand about the bigtrefs of the former; and having applied it to the emgine, as before, and cover'd it with a receiver, that was a little higher than itfelf; upon exhaufting the air, this was, likewife, broken into many fragments, fome of them very thick: tho', probably, the cracks that reach'd thereto, wrere begus in mach weaker parts of the glafs.

The bottoms, and the necks of both thefe fquare bottles, were entire; by which it feem'd probable, that the vefteds had been broken, by the preflure of the air againet the fides, which were not only thinner than the other parts, but expos'd a larger fuperficies to the tateral preflure of the air, than to the perpendicular. We obferv'd, in one of thefe experiments, that the veffel did not break prefently, upoa the lant exfuetion of the inctuded air, bat a confiderable rime after.

To confirm chat it is the fpring of the air, in the external receivers, that breaks the glaffes, and to prevent fome fcruples, we apply'd a plate of glafs, like thofe formerly memtion'd, to the brafs ring; but, in the cemencing of it on, we placed, in the thickinefs of the cement, a fmall pipe of glats about an inch long, whofe cavity wasnot fo big as that of a feraw, and which, being left open at both ends, might ferve for a little channel, for the air to pafs thro', from the external receiver, to the internal ; over this we whelm'd a fmall receiver, and then, tho' we work'd the pump mach loager shan woutd have been necefary, if the little pipe had nor been made afe of, we found the intermal receiver continue entire; becaufe the air, whofe fpring fhould have broken it, having liberty to pafs thro' the pipe, and, confequently, to expand itfelf, into the place delerted by the air pump'd out, thereby weaken'd its fpring too much for that purpofe.

Bat, eicher the pipe muft be made bigger, than that lately mention'd, or the exfuction of the air muft not be fudden, by the pump; otherwife the plate of glafs may be broken, notwithftanding the pipe : becaufe the air contain'd in the external receiver, having a force much greater than is neceffary to break fuch a plate, it may well happen, as I have fometimes found it, that if the air be haftily drawn out of the internal receiver, that which fhould fucceed in its room, cannot get fatt enough out of the external receiver, thro' fo fmall a pipe ; whift the air remaining in the fame, will yet retain a fpring ftrong enough to break the ghafs. Thus, fometimes, when at the flame of a lamp, glafs-bubbles are blown with flender flems; if they be fuddenly remov'd out of the flame, they either Break, if cool'd too faft; or are comprefs'd inwards, if they long retain the foftnels given them by furion. For the air in the babble, being exceedingly rarified, and expanded, whiltt the glafs is kept in the flame, and coming to cool haftily, when remov'd from thence, lofes, upon refrigeration, the fpring which the heat had given it ; and fo, if the external air cannot prefs in faft enough, thro' the too flender pipe, a fufficient quantity of air will not get in to refint the preffure of the atmofphere; and therefore, if this preffure find the bubble yet foft, it will prefs it a little inwards, and
eicher flatten it, or make a dent, though the orifice of the pipe be left Prevmarice. open.
ir. We took a brafs pipe, bent like a fiphon, and fitted at the meremy rías
 end, with cement, the upper end of a cylindrical glafs pipe, about fifty weiph the fitbeatinches long, open at both ends, and having the lower plung'd into a mop pher impls wefiel of ftagnant quick-filver, whofe upper fuperficies reach'd confidera-it. tly higher than the immers'd orifice of the glafs tube: then, caufing the ${ }_{\text {Fig. } 4 \text { - }}$ pump to be work'd, the air was, by degrees, drawn out of the fiphon, and, confeqently, out of the glafs tube that open'd into it ; and the flagnant mercury, proportionably impell'd up into the glafs tube, till it had atrain'd to its due height, which exceeded not thirty inches. And, then, tho' there remain'd in the upper part of the pipe, above twenty inches unfill'd, with quick-filver, we could not, by further pumping, raife it higher.

Hence it appears, that the fancied power of nature, to prevent a vacu$u m$, has its bounds; and thofe depending upon the fpecific gravity of the liquor, to be rais'd by fuction. For, fubfituting, inftead of the ftagnant mercury, a bafon of water; and, inftead of the many ftrokes, in vain employ'd, to raife the quick-filver above the height juft mention'd, making fcarce one exfuction, which only, in part, emptied the fiphon; yet the water, upon opening the ftop-cock, was not only impell'd to the very, top of the glafs tabe, but continu'd running, for a confiderable time, thro' the fiphon, and thence fell upon the plate of the engine : fo that it appear'd Atrange to thofe, who knew not the reafon of it, that the water thould run very briskly, of its own accord, out of the leg of a fiphon; which, perhaps, was not above a quarter fo long as the other. I muft not here omit, that tho', fometimes, in the Torricellian experiment, I have obferv'd the mercury to ftand at thirty inches, and, now and then, above it ; yee the height of the mercury in our glafs tube, appear'd not to reach full twenty-nine inches, and a quarter. But, confulting the barometer, I found the quick-filver at twenty-nine inches, and one eighth; which, probably, would have been the very height of that, rais'd by the engine, had it been freed from bubbles.

Hence we may conclude, that fuction will elevate liquors in pumps, no higher than the weight of the atmofphere is able to raife them; fince the clofenefs requifite in the pump of our engine, makes it very unlikely, that a more accurate fuction can be effected by an ordinary pump.
Tho' the exhaufting fiphon, ufed in this experiment, may be cafily conceiv'd by an attentive infpection of the figure; yet, becaufe I frequently employ it in pneumatical experiments, 'tis proper to intimate, once for all, that though the bended pipe irfelf, may be, on fome occalions, more conveniently made of glafs, for the fake of tranfparency; yet, for the moft part, we chofe to employ pipes of brafs, becaufe the others are fo very fubject to break; that 'tis convenient to make the longer leg of the fiphon, a little larger at the bottom, than the seft of the pipe ufually needs which is to be very carefully inferted, with cement ; feafonably turning:and returning whereof, the paffage between the encine and the veffel to beiexhaufted, is to be open'd and fhut ; and, laftiy, that tho' we fometimes immedi-: ately apply the brafs fiphon to the engine by cementing the external Mank of the ftop-cock to the orifice of the little pipe, thro' which, the exfuction of the air is made; yet the bended pipe alone, is fo apt to beloofen'd by the motion of the engine and the turning of the ftop-cock, that, for the moft part, we ufe a fiphon confifting of a brafs-pipe, 7 ftop-ccck, and a glafs eight or ten inclies high, and of fome fuch thape as is expreffed in the figure; for, by, this means, tho' the exhaution is longer in making, yet it is more fecurely and uninterruptedly carried on ; becaufe of the fability, which the breadth of the lower orifice of the glafs gives to the whole inftument. Befides, not only:the fiphon is thus much lengthen'd, but we may, commodioully place a gage in the glafs'part of this compounded fiphon, to fhew, from time to time, how far the air is drawn out of the veffel to be exhaufted.

Liguars afcend to difforent beigbts byy u uction, according to absir \int pexfic grapities.
12. I caus'd to be made and inferted to the Thorter leg of the abovemention'd fiphon a fhort pipe; which branch'd itfelf equally to the right hand and to the left; forthat I might exhauft two glafs tubes, at the fame time, and prevent any fufpicion, that the engine was not equally applied to both.' This additional brals pipe, being carefully cemented into the liphon; to each of its two branches were well faften'd, with the fame cement, a cylindrical glafs of about forty two inches in length; the lower orifice of one of thefe glaffes being immers'd in a veffel of ftagnant mercury; and that of the other in a veffel of water; when care was taken, that as the tubes were chofen near of a fize, fo the furfaces of the two different liquors fhould be near of a height. This being done, we, began to pump warily and flowly, till the water in one of the pipes was elevated about fortytwo inches; and then meafuring the height of the quick-filver in the other pipe above the furface of the ftagnant mercury, we found it to be almoft three inchees, fo that the water was about fourteen times as high as the quick-filver. And, to profecute the experiment further, we very warily let in a little air to the exhaufting fiphon, and faw the two fluids proportionably defcend; till turning the fop-cock, when the water was about fourteen inches high, we thereby kept them from finking any lower, before we had meafur'd the height of the quick-filver, which we found to be about one inch.

But, we obferv'd, that the quick-filver, for the moft part, feem'd to be a very little higher ${ }_{2}$ than the proportion of one to fourtcen required; and accordingly, I had long before, by particular trials, found, that, tho ${ }^{2}$ fourteen and one be the neareft of fmall integer numbers, that exprefs the proportion between the fpecific gravities of mercury and water; yet the former is not quite fo heavy as this proportion fuppofes.

This experiment evidently thews that the fluids rofe by the weight of the air, and leaves no pretence of a Fuga vacui. It may alfo be made ufeful to eftimate the different gravities of liquors: for which purpofe,
pofe, I caus'd. the afore-mention'd glafs pipes, to have their ends plang'd, the one in frefh water, and the other in fome impregnated with a large proportion of fea-falt; and found, that when the frefh water was rais'd to about forty-two inches, the faline folution had not fully reachd to forty.

But, to make the difparity more evident, I prepar'd an unufual brine, by faffering fea-falt to diffolve in the moift air: and, having apply'd this diquor, and freh water to the two pipes, and proceeded after the former manner ; wefound, that when the pure water was elevated to near for-ry-two inches, the liquor of fea-falt wanted about feven inches and one fourth of that height; and when the water was made to fubfide to the middle of its pipe, the faline liquor in the other pipe was between three and four inches lower than that. I alfo took fair water, and a liquor made of the falt of pot-afhes fuffier'd to run per deliquium, and proceeding as before, found, that when the common water was about forty-two inches high, the folution wanted of thirty inches; and when the water was made to fubfide to the middle of its tube, the other liquor was between fix and feven inches lower.
13. We took a frong glafs bottle, that would contain above a pint, and haviag in the bottom of it lodg'd a convenient quantity of mercury, we pour'd on it a greater quantity of water; and providing two flender glafs. pipes, open at both ends, we fo plac'd and faften'd them clofe by cement, that the fhorter of the pipes had its lower orifice immers'd beneath the furface of the quick-filver, and the longer reach'd not quite fo low. as that furface; and fo was immers'd but in the water. This done, we convey'd the bottle into a proper receiver, and having begun to pump out the air; we took notice to what heights the quick-Gilver and water were impell'd up in their refpective tubes, on which, we had before made marks; and found, that when the quick-filver was impell'd up to two inches, the water was rais'd to about twenty-eight; and when the quick-filyer ftood at 'about one inch, the water ftood at about fourteen.
14. We convey'd into a fitly fhaped receiver two glafs pipes.very. une- And the beights qual in length; but each of them feal'd at one end : the fhorter tube was wherete they filld with mercury, and inverted into a fmall glafs jar, whenein a fuffici- wiill whafatidengon it. ent quantity of that fluid had been before lodg'd, the longer pipe was fill'd writh common water; and inverted into a larger glafs, which likewife conrain'd a fit proportion of the fame liquor. Then the receiver being clofely cemented to the engine, the air was pump'd out for a pretty while-before the mercury began to fubfide; but when it was fo far withdrawn, that its prefure could no longer keep up a mercurial cylinder of that height; the quick-filver began to fink; the water inthe other tube, tho three times as long, ftill retaining its full height. But when the quick-filver was fallen to between three and four inches above the furface of that in the veffel, the .water alfo began to fubfide; but fooner than according to the laws of ftatics it ought to:have done: becaufe many aerial particles emerging from

Pbyfico-mechanical Experimants.

 the body of the water to the upper part of the glafs, by their foring concarr'd with the gravity of the water to deprefs this liquor. And fo when the quick-filver was three inches above the ftagnant mercury, the water in the pipe was fallen feveral inches beneath forty-two ; and feveral beneath twenty-eight, when the mercury had fubfided an inch lower. But after the pump had been ply'd, to free the water from the latent aerial bubbles, we let in the external air; and having thereby impelld both the fluids up again into their pipes, and remov'd the receiver; we took them both out, to free them from the air, and fill'd each of them with a little of their refpective ftagnant liquors; then inverting them again into their proper veffels, we ropeated the experiment, and found it to require more pumping than before, to make the liquors begin to fubfide: fo that when the mercury was fallen to three inches, or two, or one, the water fubfided fo near to the heights of forty-two, twenty-eight, or fourteen inches, that we fuppos'd the little diffierences which appear'd between the feveral heights of the quick-filver, and fourteen times as great heights of the water, proceeded from fome aerial corpufles yet remaining in the water, and, by their fpring. when once they had emerg'd, promoting the depreffion of it.
The crandef budgk to wbisb eater can be sis'd by atricatimen or fucking meps.
 ${ }^{4} 48$.

15. Having procured feveral tin pipes above an inch in bore, very carefully folder'd together, to make one whole tube, about thirty-two feet long $;$ and cas'd it over firft with cement and then with plaifter of Paris; we very carefully cemented a ftrong pipe of glafs, between two and three feet in length to the upper part of it; and to the upper end of this pipe, by means of cement and a fhort elbow of tin, we very clofely faften'd another pipe of the fame metal, confifting of two pieces making a right angle; whereof the upper part was parallel to the horizon, and the other, which lay parallel to the glafs pipe, reach'd down to the engine that was placed on the flat roof of a houfe thirty feet high from the ground, and was to be cemented to the lower end of this defcending part of the pipe, whofe horizontal leg refted upon a piece of wood nail'd to the rails on the tep of the building: the tube, alfo, was kept from fhaking by a board faften'd to the famt rails, with a deep notch for it to be inferted in.

This apparatus being made, and the whole tube, with a pole to fuftaia it, erected along the wall, faften'd there, and the defcending pipe carefully cemented on to the engine; there was placed under the bottom of the long tabe a convenient veffel, whereinto fo much water was pour'd, as reach'd far above the orifice of the pipe; and providing, that the veffel might ftill be kept competently full, we, at length, rais'd the water to the middle of the glafs pipe; but not without numerous bubbles, made by the air conceal'd in the pores of the water, which, for a time, kept a kind of foam upon the furface of it. And finding the engine, and tube as buunch as could be expected; I thought fit to try what was the utmoft height, to which, water could be elevated by fuction: and therefore, tho' the pump feem'd to have been fufficiently ply'd already ; yet, for further fatisfaotion, when the water was within a few inches of the top of the glafs, I caus'd awenty.sxfuctions more to be fuddenly made. And, having taken notice where

Pbyfico-mechanical Experiments.

where the furface refted, we meafured the height of the cylinder of water, and found it thirty-three feet, and about fix inches; the barometer then flanding at twenty-nine inches, and between two and three eighths of an inch. Now, fuppofing the fpecific gravity of water, to that of quick-filver, as P to 14 ; the height of the water ought to have been thirty-four feet, and about two inches; that is, about eight inches more than we found it. But, then, I formerly noted, that the proportion betwixt mercury and water, is not altogether fo great ; and, therefore, in fo tall a cylinder as ours was, the difference muft be confiderable. If, therefore, inftead of making an inch of quick-filver, equivalent to fourteen inches of water, we abate a quarter of an inch; which is but a fifty-fixth part of the height of the water; this abatement, being repeated twenty-nine times and one quarter, will amount to feven inches, and above a quarter; which, added to the former height of the water, thirty-three feet, fix inches, will make thirtyfour feet, and above an inch: fo that the difference between the height of the mercury, fuftain'd by the weight of the atmofphere in the barometer, and that of the water, rais'd, and fuftain'd, by the preflure of the fame in the long tube, did not appear to differ more than an inch or two, from the proportion they ought to have, according to their feecific gravity: nor could we, by obftinately plying the pump, raife the water higher.
This experiment, being foon repeated, in my abfence, by Dr. Wallis, Dr. Wren, and Dr. Millington; they, prefently after, afliured me, that the greateft height, whereto they could raife the water, was thirty-three feet and a half: and, as it happen'd, within lefs than an hour before, I had obferved the barometer to ftand fomewhat below twenty-nine inches, and three eighths; when, now, confulting the fame inftrument again, the mercury appear'd to be rifen a little higher. Hence appears the impoffibility of: making water pafs over the higheft mountains, by the help of inflected pipes, and fuction. For, if the water be to rife above thirty-five, or thirty-fix feet, a fucking-pump will not, ordinarily, here in England, fuffice for that purpofe.
16. To try whether the air contributes to the elafticity of bodies, we din elffic. wishtook a piece of whale-bone, of a convenient length, and, having faften' $d_{h a n d e d ~}^{\text {ben mexivr. }}$ one end of it into a thick heavy trencher, to be placed on the plate of the engine ; to the other end we tied a weight, whereby the whale-bone was moderately bent, which reached down to a flat body, placed under it, fo that if the fpring were but a little weaken'd, the weight muft either reft upon, or touch the horizontal plane; or if, on the other fide, the fpring fhould grow fenfibly ftronger, it might be eafily perceived, by the diftance of the weight, which was fo near the plane, that a little increafe of it muft be vifible. Thefe things we convey'd into the receiver, and took care to fhake the engine as little as poffible, that the weight might not hit againft the body which lay under it; or, we be hinder'd from difcerning, whether it were depreffed by the bare extraction of the air. And, when the air had been well pumped out, I watched attentively, whether any notable change, in the diftance of the weight from the plane, would happen upon

Phy fco-mechanical Experiments.

its being let in again ; for the weight was then at relt : and the roturning air, flowing in much fafter than it could before be drawn out, this feem'd the likelieft time to difcover, whether the abfence, of the air had, fenfibly, alter'd the fpring of the whale-bone. But, tho the experiment were made more than once, I could only fatisfy myfelf, that the depreftion, or elevation; of the weight; owing to the mere change of the fpring, was not very confiderable; for I do not think myfelf fure, that I perceived any at all: tho, fometimes, when the receiver was well exhaufted, the weight feem'd to be a little deprefs'd; yet this, I thought, might well be afcribed to the abfence of the air, not confider'd as a body that had any thing to" do directly with the fpring, but as a body that had fome gravity; whereby it made the medium, wherein the experiment was try'd, contribute to fupport the weight that bent the fpring; which weight, when the air was abfent, mult have its gravity increafed, by as much weight, as a quantity of the exhaufted air, equal to it in bulk, amounts to.

To make gages for effimating .bow fap the receiver is exbanfed.
17. The air, being invifible, it is not always eafy to know, whether it be fufficiently pumped out of the receiver, to be exhaufted; we, therefore, thought it very convenient to have fome inftrument within the receiver, that might ferre for a gage, or ftandard, whereby to judge when it was fufficiently evacuated. The firf attempt, made to this purpofe, was by means of a bladder, very ftrongly tied at the neck; after having had only fo much air left in its folds, as might fully diftend it, when the receiver was very well exhaufted. And this way, in fome cafes, is ufeful; but, in others, a bladder takes up too much of the receiver, and hinders the objects from being obferv'd on all fides.

Another fort of gage we made with quick-filver, pour'd into a very fhort pipe, which was, afterwards, inverted into a little glafs of ftagnant quick-filver, as in the Torricellian experiment. For this pipe, being but a véry few inches long, the mercury in it would not begin to defcend, rill a very great proportion of air was pumped out of the receiver; becaufe, till then, the fpring of the remaining air would be ftrong enough to fuftain To fhort a cylinder of mercury. And this kind of gase, is no bad one. But, becaufe it cannot eafily be fufpended, and the mercury in it is apt to thake, by the motion of the engine, another was fubftituted in its place, confifting of a kind of fiphon, to the fhorter leg whereof belong'd a large glafs-bubble.

But none of thefe gages having the conveniences, that fome of our experiments require; Idevifed another, after the foltowing manner.
Fig. 4\%
Take a cylindrical 'pipe of glafs, fix, eight, ten, or more inches in length, and not fo thick as a goofe-quill ; and, by the flame of a lamp, melt ir but not too near the middle, ard make it into a fiplion ; the legs whereaf are to be parallet, and as near to each other, as poffible. In one of thefe legs, ufually the longer, leate at the top, either half an inch, or a whole inch, more or lefs, according to'the length of the gage, "or the defign of the experimenter, of air in fis natural ftate; and till the reft of the domger

Pbyfico-mechanical Experiments.

leg, and as great a part of the fhorter as fhall be thought proper, with Przvenarice. quick-filver. This done, there may be marks placed on the outfide of the longer, or feal'd leg, whereby to meafure the expanfion of the air included therein.

This inftrument, being convey'd into a receiver, and the air very diligently pumped out, notice muft be taken, to what part of the gage the mercury is depreffed, that we may know, when the mercury fhall, afterwards; be driven fo far, that the receiver, wherein the gage is placed, is well, exhaufted. And if it be defired to know, more accurately, what ftations of the mercury, in the gage, are anfwerable to the degrees of the rarifaction of the air in the receiver; this may be gain'd, by letting in water, as often as is neceffary, into a receiver, whofe entire capacity is firft meafured; and in which there might be marks made, to fhew when the water to be let in, fhall have filld a fourth, a half, ecc. of the cavity. For if, when the quick-filver in the gage, is depreffed to a certain mark, you let in watter, which appears tofill a fourth part of the receiver; you may conclude, that about one fourth of the air was pumped out; or that a fourth of the 'fpring of the whole included air was loft. And if the water either falls confiderably fhort of, or exceeds the quantity expected; you may, the next time, let in the water, either after the mercury has a little pals'd the former mark, or a little before it is arrived at it. And when once you have, this way, obtain'd one long, and accurate gage, you may divide others by the help of this, placed with them in a fmall receiver: when, the mercury in the former, being depreffed to any determinate divifion, obtain'd by obfervation; you may, thence, conclude, how much the air, in the receiver, is rarify'd; and, confequently, by taking notice of the place where the mercury refts in the other gages, determine what degree of exhauftion, in a receiver, is denoted by that ftation of the mercury.
That leg of the gage which includes the air, may be feal'd up, either before the pipe is bent into a fiphon; or, which is much better, by firt drawing out that end of it you defign thall be feal'd, to a fhort, and very flender thread: then, having made the tube into a fiphon, pour into the leg, which is to remain open, as much quick-filver as you judge convenient, which will rife to an equal height in the other leg ; and, by gently inclining the fiphon, you may pour the fuperfluous mercury out of it, if there be any ; and when there is an inch, or the proper fpace, unfill'd with mercary, next the end that is to be clofed; and the reft of that leg, and as much of the other as is necefliary, fill'd with quick-filver; you may, by keeping the fiphon in the fame pofture, and warily applying the flender apex, above-mention'd, to the upper part of the flame of a lamp, blown horizontal, conveniently feal it up.
But there are fome experiments, wherein it is not neceflary that the receiver fhould be fully exhaufted; but, rather, that the degrees of the air's rarifaction fhould be well meafured. And, in many cafes, we may ufe gages, fhaped like thofe hitherto defcribed, made as long as the receiver will admit, and furnih'd, inftead of quick-filver, either with tinged fpirit
Voz. II. water, and heighten'd with a little fpirit of vitriol. For the lightnefs of thefe liquors, in comparifon of quick-filver, will allow the expanfions of the air, included in the gage, to be very manifeft; tho', perhaps, a quarter of the air be not pumped out of the receiver.

We may, alfo, in fuch cafes, and where the receiver is fufficiently large, and not to be quite exhaufted, make ufe of a mercurial gage, differing from the former in this, that the fhorter leg need not be above an inch, or half an inch long, before it widens into a bubble, about half an inch, or an inch in diameter; and having, at the upper part, a very thort and flender open pipe, whereat the air may get in and out: and here we need not include fo much air as, otherwife, would be requifite, at the top of the longer leg; becaufe the mercury, in the fhorter, cannot, by reafon of the breadth of the bubble, into which the expanfion of the air drives it, be confiderably raifed; whereby the degrees of the included air's rarifaction become very vifible.
An cafy way to 18. I caufed a hollow ftrong piece of brafs to be made, two or three make tbo prequares of the sir senfiinches high, opening, at both ends, in orifices circular and parallel, but not equal; which, being cemented, as a fmall receiver, to the engine ; whoever doubted the preffure of the air to be confiderable, needed only lay the palm of his hand upon the upper orifice, and prefs it clofe thereto : for, upon withdrawing, by a fingle ftroke, the greateft part of the preffure of the internal air, that, before, counter-balanced the external; the hand, being left alone, to fupport the weight of the atmofphere, would be prefsd inwards very forcibly; efpecially, if, by a fecond ftroke of the pump, the little receiver were farther exhaufted : and this preffure continues, till the air be re-admitted into the receiver. If a more fenfible conviction be defir'd, tis eafy to give it, by turning the larger orifice uppermoft, and proceeding, as before; but this ought not much to exceed two inches and a half in diameter, left the great weight of the air fhould break, or confiderably hurt the hand : as I once much endanger'd my own, thro' miftake of the pumper, who fell to his work, while I held it upon the orifice of a veffel too large in diameter.

Merceny fubfrding is the Torsicellian tube to a lovel witb tbe alamemt, by ax-
19. A barometer being included in a receiver, made of a long bolthead, with the lower part of the ball cut circularly off; upon the firtt exfuction of the air, the quick-filver, that before ftood at twenty-nine inches, would fall, and reft, at nine or ten inches; and, in about three ftrokes more, it would be brought quite down to the level of the ftagnant quickfilver, and fomewhat below : but the air, being let into the receiver, the mercury would be impell'd up flow, or faft, as we pleas'd, to the former height of twenty-nine inches.

If the air were fuffer'd to go haftily out of the receiver, the mercury would, at the very firft ftroke, defcend, till it reach'd within an inch or two of that in the veffel ; tho it would, prefently after a few rifings and fallings, fettle at the height of nine, or ten inches, till the next ftroke brought it down lower.

And if, when the mercury was re-impell'd up to its due height, inftead of rarifying the air, it were a little compress'd; the quick-filver would be eafily made to rife an inch, or more, above the former ftandard of twentynine inches.

We, alfo, took a glafs-tube, feal'd at one end, much fhorter than the due length, and having fill'd it with mercury, and inverted it into a veffel of ftagnant mercury, we placed all in the former receiver; where the mercurial cylinder, for want of the requifite height, remain'd totally fufpended; but, upon the firf, or fecond ftroke, fubfided, and, after two or three more, fell to a level with the ftagnant mercury, or a little below it: and, upon the letting in the air, it would be again impell'd to the very top of the tube, bating an aerial bubble, which feem'd to come from the mercury itfelf; and was fo little, as not to be at all difcernible, but to a very attentive eye.
20. Into a very large glafs-tube, hermetically feal'd at one end, and In small amd
 of three or four fingers; then we took two cylindrical pipes, of very un-vecican bugat equal bores, and open at both ends, and plung ${ }^{2}$ d the lower ends of both ${ }^{\text {tomdad, tho }}$ into the quick-filver; faftening them to the former tube, that they might vijpst of waich fil not be mov'd out of their pofture; in which the convex furface of the mer-vor the cury, in both, feem'd almoft to lie in a level; the tube, alfo, being placed, perpendicularly, in a frame: then, by the help of a funnel, we pourd water, by degrees, in at the top of the tube ; and obferv'd, that, as the water gravitated, more and more, upon the ftagnant mercury; fo the included mercury rofe equally, in both the pipes; till the tube, being almoft fill'd with water, the mercury appear'd to be impell'd, and fuftain'd in both, at the height of about two inches above the furface of the ftagnant quick-filver. And, having caus'd about half the water, in the large tube, to be fuck'd out at the top; we obferv'd the quick-filver, in both the others, to fubfide uniformly, and to re-afcend alike upon the re-affufion of the water.

We, alfo, took a very wide tube of glafs, a foot long, and pour'd into it a convenient quantity of quick-filver; then we took two pipes, of an equal length, but unequal bores, as before; and thefe, being fill'd with quick-filver, as in the Torricellian experiment, were let down into the tube, and unftopp'd, under the furface of the ftagnant mercury: when, that in the pipes, falling to its wonted ftation, and refting there, we pour'd into the tube about a foot height of water, whereby the quick-filver appear'd equally impell'd above its ftation, and fuftain'd there, in both the pipes; and, upon withdrawing fome of the water, it began to fubfide alike, as to fenfe, in both : and water, being a fecond time pour'd down into the tube, the mercury, in both pipes, rofe uniformly, as before. By which, and the former experiment, it appears, that a gravitating liquor, as air, or water, may impel, or fuftain mercury, at the fame height, in tubes of very different capacities; and that liquors balance each other, according to their altitude, and not barely according to their weight. For, was manifeftly rais'd, and kept up by the water incumbent on the ftagnant mercury. And the fame parcel of water counterpois'd, in the different pipes, two mercurial cylinders, which, though of the fame altitude, were very unequal in weight.

The beight whereat pure mercury, sund mercury amal g_{am} mated witb Bim, will fand in beromaters.

2 I. Amalgamating mercury with a convenient proportion of pure tin, that the mixture might not be too thick, we therewith fill'd a cylindrical pipe, feal'd at one end, and of a fit length; and then inverted it into a little glafs, furnifh'd with the like mixture. The event was, that the amalgam did not fall down to twenty-nine, but ftop'd at 31 inches, above the furface of the ftagnant parcel. Hence, it appears, that the height of the liquor, fufpended in the Torricellian tube, depends fo much upon its equilibrium, with the external air, that it may be varied as well by a change of gravity in the fufpending liquor, as we formerly faw it might by an alteration in the atmofphere.

It might be worth while to try, by comparing the height of the amalgam to what it ought to be by the fpecific gravities of the mercury, and the tin mix'd in a known proportion, whether thefe metals penetrate each other, in the fame manner as copper and tin have been obferv'd to do ; when being melted down together, they make a more clofe and ponderous body than their refpective weights feem'd to require.
22. We took a hollow cylinder of glafs, feal'd at one end, and four or five feet in length; and, by the flame of a lamp, bent it after the manner of a fiphon, one of the legs whereof is three or four times longer than the other; whence the fhorter leg may ferve, inftead of the veffel, ufually employ'd to contain the ftagnant mercury. To fill this, take a fmall glals funnel, with a long and flender fhank, fo that it may reach three or four inches, or farther, into the fhorter leg of the barometer; and, by the funnel, pour into the fhorter leg, as much mercury as may reach about two or three inches, in both legs ; then ftopping the orifice with your finger, and flowly inclining the tube, the mercury, in the longer leg, will fall to the feal'd end, and the air that was there before, pafs by, and give it room. The mercury, in the fhorter leg, which oughe to be held uppermoft, will, by the fame inclination of the tube, fall towards the orifice; but being, by the finger, kept from falling out, if you flowly ereat the glafs again, and then ftop it, as before, the mercury will pafs out of the Thorter leg into the longer, and join with that which was there before: and if all the mercury do not fo pafs, the orifice is to be ftop'd again with the finger, and the tube inclin'd as formerly. This done, the tube is to be erected, and, by the help of the funnel, more mercury is to be pour'd in; and the fame procefs of ftopping the orifice, inclining the tube, \mathcal{U}^{\prime} c. is to be repeated, till all the mercury, pour'd into the fhorter leg, be brought to join with that in the longer; and then the open leg is to be furnifh'd with frefh mercury; obferving that the nearer the longer leg comes to being fill'd, the lefs you muft raife it, from time to time, when you pour mercury into the fhorter $;$ as alfo, that when the longer leg is
quite full of mercury, you need not pour in any more., if the longer much privantica; exceed a yard ; becaufe, upon erecting the tube, there will fubfide, from the taller leg into the other, a confiderable quantity of mercury. And to free it from bubbles, you mut, once more, ftop the orifice with the finger, and incline, and re-erect the tube feveral times, till you have thereby brought moft of the fmaller bubbles into a fingle large one ; then making this pafs leifurely, two or three times, from one end of the tube, to the other, it will unite all the fmall bubbles to itfelf :'and this may, afterwards, by one inclination more of the tube, be made to pafs into the fhorter leg, and thence into the free air.

But there is another fort of funnels, with which, if skilfully ufed, the bended tubes of our portable barometers, may be very expeditioufly fill'd. For, if the flender part of the funnel be bent in an obture angle, and fo long, that the part which is to go into the fhorter leg of the fiphon, may reach to its flexure ; you may, by holding the tube fo, that the fealed end be fomewhat lower than the other, and by pouring in mercury at this obtufe end of the angular funnel, eafily make it run over the flexure, into the longer leg of the fiphon; provided you, now and then, as occafion requires, erect, and Thake the tube, to help the mercury to get by the air, and expel it.

We accomplifh'd another part of our defign, by means of a piece of wood, fomewhat longer than the tube, and confiderably broader in the lower part, than in the upper, to receive the fhorter leg of the fiphon. In fuch a piece of wood, which was about an inch thick, we caus'd fuch a channel to be made, that our fiphon might be placed in it fo deep, that a flat piece of wood might be laid on it, without touching the glafs; fo that this piece of wood may ferve for a cover to defend the glafs, to be put on when the inftrument is to be tranfported; and taken off again, when 'tis to be hung up for obfervation; the channel ${ }^{2} d$ piece of wood ferving both for part of a cafe, and for an entire frame; which may, for fome ules, be a little more commodious, if the cover be join'd to the reft of the frame, by two or three little hinges, and a hafp, whereby the cafe may be readily open'd and thut, at pleafure.

The third thing we propofed, is not fo eafy as the fecond; nor have we yet had opportunity to try whether the way we made ufe of, will hold, if the barometer be tranfported into very remote parts; tho', by fmaller removes, we found reafon to hope 'twill fucceed in greater.

The grand difficulty was, to prevent the fpilling of the mercury; for, the upper part of the tube being deftitute of air, if the quick-filver, by the: motion of the inftrument, be made to vibrate, it will hit fo violently a-. gainft the top of the glafs, as to break it. To obviate this inconvenience, we incline the tube, till the mercury be impell'd to the very top of it ; when. yet there will remain a competent quantity in the fhorter leg of the glafs, if that be not too fhort; then the remaining part of the fhorter leg, is to be fill'd up either with water, or mercury, and the orifice of it very carefully ftop'd with cement : by this means, the mercury in the longer leg, having no room to play, cannot ftrike with violence againft the top of the glals.

Pbyfico-mechanical Experiments.

When the inftrument is to be tranfported, the height of the mercurial cylinder being taken for that place, day, and hour, and compared with that of another good barometer, which is to continue in the fame place; as much of the channel, as is unpoffers'd by the glafs, may be ftuffed with cotton, or the like; and fome of the fame matter may be put between the reft of the frame, and the cover, which ought to be well bound together. And when the inftrument is arrived at the place defign'd, the water, that is added, may be taken off again, by, pieces of fpunge, linen, b_{c}, but, if inftead of water, mercury be employ'd, it ought to be taken out, till you have juft the weight that was put in. The chief ufe of this barometer is, by keeping a diary of the heights of the mercury herein, and comparing them with thofe in the barometer, that was not remov'd, to difcover the agreement, or difference of the weight of the atmofphere, in diftant places. The ftructure of this inftrument, alfo, fits it to be fecurely let down into wells, or mines; to be drawn up to the top of towers, and other elevated places; and, perhaps, by a convenient addition, fuch barometers may fhew very minute alterations of the atmofphere's preffure.

Whether this barometer, furnif'd, at its upper end, with a ball and focket, and at the lower, with a great weight, may be ferviceable at fea, notwithftanding the rolling of a ihip, I have not try'd ; but it may, at leaft, be apply'd in flat calms, to thew the weight of the atmofphere, in different climates, upon the fea ; which may, perhaps, prove ufeful to navigators, by enabling them to foretel the end of the calm. Befides, having one of thefe inftruments ready, whenever they come on fhore, they can prefently take notice of the gravity of the atmofphere, in that place; and this, perhaps, compared with other obfervations, may, in time, help them to guefs where they are, and to forefee fome approaching changes of weather.
23. Two perfons, whom I employ'd, found the mercury, in a portable
arometer, fall a little, as they afcended a hill ; at the top whereof they

Merexry in a baremetor, will led bext fuspond boteon tbay at the top of a bill

The waigb of the air. will fuffait the yerciey in the it teras but at aspery frall orifice. let the fluid fettle, and carefully noted the place whereat it refted, which was one quarter of 2 n inch beneath its former ftation; tho the hill was not high, and the air and wind feem'd, to them, much colder at the top, than below. And as they defcended, they obferved that the mercury rofe gradually.
24. Take the bent tube, mention'd in the twenty-fecond experiment, a d inclining it, till the greateft part of the mercury pals from the fhorter leg into the longer, the upper-end of the fhorter leg, may, by the flame of a lamp, be drawn out fo flender, that its orifice fhall not be above an eighth, or tenth part as big as 'twas before. This being done, and the tube erected again, if the tall cylinder of mercury be of the ufual, or former height, as we found it, 'twill appear that the weight of the external Iotb an obligme air may prefs as much upon the ftagnant mercury, thro' a little hole, prefire of the as when all the upper fuperficies of that mercury, was directly expofed atmofphere, and Littionembed dir, will futaim to it.
25. If, inftead of drawing the fhorter leg of our fiphon directly upwards, or parallel to the longer, as in the foregoing experiment, you bend off the flenabo bermiter.
der part, fo that, were it continued, it would make a right angle with the Puzuantict. longer leg of the fiphon, or an acute one, tending downwards; and when $\frac{1}{\text { Fig. so. }}$ the tube is erected, the mercury refts at its ufual ftation; 'twill appear, that the preffure of the atmofphere, may be exercis'd upon it as well obliquely, when the pipe that conveys it, is either horizontal, or opens downwards.

And, if inftead of bending this flender pipe, you feal it up hermetically, Fig. ss. the continuance of the mercurial cylinder, at the fame height, will thew, that the fpring of a very little air, thut up with the preffure of the atmofphere upon it, is able to fupport as tall a cylinder of mercury, as the weight of that part of the atmofphere, which can come to exercife its preflure againft the mercury.

If, when the fhorter leg of the barometer is fealed, you move the inftrument up and down, the mercury will vibrate, by reafon of the yielding fpring of the imprifon'd air; but, becaufe of the refiftance of the fpring, the motion will be diverfified after an odd manner ; which may be eafily perceiv'd by the imprefion it makes upon the hand, but not fo eafily defcribed. And as, when the fhorter leg is drawn out flender enough, after the inftrument is furnifh'd with quick-filver, 'tis eafy to feal it up with the flame of a candle, without the help of any inftrument at all; I might here obferve, that it may, on fome occafions, be convenient to feal up the barometer, before it be tranfported; and, in fome cafes, to incline the tube before-hand, till the quick-filver have quite filld the longer leg: for by this means, the vibrations of the quick-filver will be lefs; and 'tis eafy, when the inftrument is brought to the defign'd place, to break off the flender apex of the fhorter leg, and fo expofe, again, the mercury to the preflure of the atmofphere.

Having caus'd a portable barometer to be made, with the fhorter leg of a more than ordinary length ; I afterwards, caufed the upper part of this leg to be drawn out very flender; and laftly, the fame to be, about the middle, bent downwards, fo that the fmall orifice of the fender apex, pointed towards the ground; when neither I, nor fome others, took notice that the mercury ftood lower than in ordinary barometers: whence we concluded, that the atmofphere could prefs, not only at a very fmall orifice, but, when the air muft, at this little orifice, tend upwards, to prefs upon the furface of the itagnant mercury.
26. When it appear'd, by a good barometer, that the atmofphere was To mane asoi confiderably heavy, I caus'd a glafs pipe, hermetically fealed at one end, bumeter wfoffil. and in length about two feet and a half, to be fill'd with quick-filver; tiemot except a very little part, wherein fome drops of water were put, that we might the better difcern the bubbles, if any thould be left, after the inverfion of the tube into an open glafs, containing ftagnant mercury. Having, by this means, freed the tube from bubbles, we fo order'd the matter, that the quick-filver, and the little water about it, exactly filld the tube, without leaving any vifible interval at the top; and yet the mercurial cylinder was but very little higher than that of our barometer at that

Pbyjco-mechanical Experiments.

pueveatice, that time. Then the pipe was left erected in a quiet place, where the liquors retain'd their former height for feveral days. A fchool-philofopher would confidently have attributed this fuftentation of fo heavy a body, to nature's dread of a vacuum ; but either fhe is not always equally fubject to that fear, or fome other caufe of the phenomenon muft be affign'd : for, when, long after, I had obferv'd, by the barometer, that the atmofphere was grown much lighter than before, I found the quick-filver, in the fhort tube, confiderably fubfided; leaving a cavity at the top, which afterwards grew lefs, as the atmofphere became heavier.

The afcemt of liquors in very flender tubes in vacua.

A Ppontaneous ficent of wastor ins atube filled witb compart body.
27. Some fpirit of wine, ting'd with cochineal, being put into the receiver, and the air withdrawn, it bubbled exceedingly for a confiderable time. Then, little hollow pipes, of different fizes, were put into it, when the red liquor afcended higher in the more flender, than in the others; but upon extracting the air, there fcarce appear'd any fenfible difference in the heights of the liquor, nor upon the letting it in again.

Afterwards, two fuch tubes, of different fizes, being faften'd together with cement, were let down into the fame fpirit of wine, when the receiver was well exhaufted : notwithitanding which, the liquor afcended in them, for ought we could plainly fee, after the ordinary manner; only when the air was let in again, there feem'd to be fome little rifing, at leaft in one of the tubes.

In this experiment, tho' there appear'd no bubbles at all in the fpirit of wine in the veffel, yet, for a confiderable time, there arofe bubbles in that part of the liquor which was got into the flender pipes.
28. I took a ftrait pipe of glafs, open at both ends, and of a moderate bore; and having tied a linen rag to one end of it, that the water might have free paffage in, and the powder not be able to fall out, we carefully fill'd the cavity with minium ; and then having erected the tube, fo that the bottom of it refted upon that of a fhallow, open-mouth'd glafs, containing water enough to rife an inch or two above the bottom of the tube, it infinuated itfelf, by degrees, into the cavity thereof, as appear'd by a little change of colour in that part of the minium which it reach'd ; till the open glafs being, from time to time, fupplied with freth liquor, it attain'd to.the height of about thirty inches.

Taking, afterwards, another tube, and fome minium, carefully prepared, I profecuted the experiment, fo as to make the water rife in the pipe about forty inches above the furface of the ftagnant water.

Making the experiment with beaten glafs, pieces of fpunge, putty, © c_{0} I did not find any of them fucceed fo well as the minium. Ting'd liquors, as ink, tincture of faffron, ©́c. feem'd not to rife near fo high as water; as if the difiolved ingredients gradually choaked the pores of the minium.

To have the grains of our powder more minute, and the intervals between them fmaller, I chofe the beft fort of minium, fifted it very fine, and fo put it, by little and little, into the tube; that by ramming it, from time to time, it might be made to lie the clofer: and this method fucceeded
ceeded well. 'It feem'd, by a trial or two, that if the tube were very ${ }^{\text {Prwuanatics. }}$ flender, the experiment would not fucceed.
It may be worth while to obferve, in what times the water afcends to certain heights; for, at the beginning, 'twill afcend much fafter than afterwards, and fometimes continue rifing for thirty hours, or longer.
One end, propofed in this experiment, is, to difcover a miftake in the modern explication of filtration ; which fuppofes, that the parts of the filtre, which touch the water, being fivell'd, by the ingrefs of it into their pores, are thereby made to lift up the water, till it touch the higher parts of the filtre; by which means, thefe being alfo wetted and fwell'd, raife the water to the other neighbouring parts of the filtre, till it have reach'd to the top of it, whence its own gravity makes it defcend : but, in our cafe, we have a filtre made of folid, metalline corpufcles; where 'twill be very hard to fhew, that any fuch intumefcence is produced, as this explanation requires.
Water afcends fo few inches, even in very flender pipes, that the rife of the fap in trees, feems hardly accountable for, from the fame caufe. In the laft trial, above-mention'd, I made water to afcend above three feet and a half : and, if by fo fight an expedient, water may be rais'd as high as is neceffary for the nutrition of fome thoufands of plants; for fuch 2 number there is, that exceed not three feet and a half, in height ; I ask why nature may not have ufed other contrivances, to make liquors afcend to the tops of the talleft trees; effecially, fince befides heat, and fomething equivalent to valves, C c. many other things, perhaps not yet dreamt of, may probably concur to the effect?

As formerly, by bending thefe flender pipes, we made finort fiphons, thro' which the water would run, without being at firft affifted by fuction; fo I try'd whether I could, in larger pipes, make much longer fiphons, by the help of minium. But tho', when the orifices pointed upwards, fine minium were ramm'd into both the legs, and both the orifices clofed, yet, when they came to be again turn'd downwards, the weight of the minium would make fome fuch difcontinuation, as to hinder the farther progrefs of the water. This impediment, however, I judg'd fuperable, but had no opportunity to profecute the experiment.
29. Having in fhallow, wide-mouth'd glaffes, expofed a ftrong folution of common fea-falt, or of vitriol, to the air, which reach'd not, by fome inches, to the tops of the veffels; and, having fuffer'd much of the aqueous

Tbe foentaneons
afcent of falts α. afceme of falts aafcent of falts a-
loug the fides part to exhale very flowly; the coagulated falt, at length, appear'd to have lined the infide of the glafles, and to have afcended much higher than where the furface of the remaining water then refted; or the part whereto the liquor reach'd, when 'twas firt pour'd in. And if the experiment were continued long enough, I fometimes obferv'd this afcent of the falt, to be of fome inches; and that the falt did not only line the infide of the glafs, but getting over the brim of it, cover'd the outfide, alfo, with a faline cruft; fo that, confidering what a little liquor remain'd in the glafs, 'twas furprizing how it could pofibly get thither. Other falts, alfo, befides thefe Vol. II. S ff men-

Phyfico-mechanical Experiments.
Purvxariet. mention'd, will exhibit the fame phenomenon. The caufe of this odd effect may be referr'd to that of the afcent of liquors in pipes.
I obferv'd in water, and aqueous liquors, that part of the furface next the fides of the glafs, to be fenfibly more elevated, than the reft of the fuperficies : and if very minute clippings of ftraw, or other fmall and light bodies, floating upon the water, approach near enough to the fides of the glafs, they will be apt to run up, as 'twere, this afcent of water, and reft againft the fides of the glafs.
We may, alfo, obferve, that fea-falt ufually coagulates at the top of the water, in fmall and oblong corpufcles; fo that, as to thefe, 'tis eafy to conceive, how numbers of them may fatten themfelves a-round the infide of the glafs. And befides fea-falt, I have found feveral others, which, if their folutions be flowly evaporated, will, whillt yet there remains a large proportion of liquor, afford faline concretions at the top of the water. And the faftening of faline particles to the fides of the glaiss, may, perhaps, be promoted by a coldnefs, communicated by corpufcles contiguous to the glafs; becaufe the glafs may be fuppofed more cold, upon account of its denfity, than water: but by the evaporation of the aqueous parts of the folution, the furface of the remaining liquor muft neceffarily fubfide; and thofe faline particles that were contiguous to the infide of the glafs, and the more elevated part of the water, having no longer liquor enough to keep them diffolv'd, will be apt to adhere to the fides of the glafs; and upon the leaft farther evaporation of the water, become a little higher than the greater part of the fuperficies of that liquor: whence, by reafon of the little inequalities, that will be on the internal furface of the adhering corpufcles of the falt ; and perhaps, alfo, on the internal fuperficies of the glass; there will be intercepted between the falt and the glafs, little cavities, into which the water, contiguous to the bottom, will afcend, or be impell'd by the fame power that raifes it in flender pipes. And when the liquor is thus got to the top of the falt, and lies expofed to the air ; the faline part may, by the evaporation of the aqueous, be brought to coagulate there ; and confequently, to increafe the height of the faline film, which, by the like means, may, at length, reach to the very top of the glafs; and thence it may eafily be brought over to the outfide of the veffel, where the natural weight of the folution will facilitate its progrefs downwards : whence the pellicle of falt, together with the contiguous furface of the glafs, may, at length, conftitute a kind of fiphon.
Thus I have ufually obferved the faline film to be very eafily feparable from the glafs in large flakes; which argues, that they did not ftick clofe to one another, except in a few places; but had a thin cavity interpofed between them, thro' which the water might afcend.

Nor is it repugnant to this explanation, that in cafe the water afcended, is Thould diffolve the falt ; for the liquor being already upon the point of concretion, it is fo faturated with falt, that it can diffolve no more. Whence we may alfo fee, why, when the faline film reaches to the outfide of the glafs, the liquor does not run down to the bottom, but coagulates

Pbyfico-mechanical Experiments.

by the way. And I have fufpected, that when the concretion is once be-Pxerantrict. gan, the film may be raifed, and propagated, not only by the motion of the liquor between the infide of that and the glafs; but by the fame liquor infinuating itfelf on the outfide of the film, into the fmall interftices of the faline corpufcles; as ink rifes into the flit, and along the fides of the nib of a pen, though nothing but the very point touch the furface of the liquor. And, by this means, the impregnated folution may, as it were, climb up to the top of the faline concretion, and, by coagulating there, add to its height. 30. Having caus'd a cylindrical piece of brafs to be very carefully turn'd, Toeffimate the of an inch in diameter, three inches in length, and open at both ends; to linders of bes
 faften'd it very clofe with little fcrews on the outfide.

This inftrument, being balanc'd in an exact pair of fcales, was carefully fill'd with pure mercury, which we found to weigh one hundred thirty-feven drams, and forty-five grains ; and multiplying that by ten, there will arife, for the weight of a mercurial cylinder of one inch in diameter, and thirty inches in height, about fourteen pound, two ounces, and three drams, troy.

The weight of a mercurial cylinder in an equilibrium with the atmofphere, and of an inch in diameter, being thus fettled, we may eafily compute the weight of a cylinder of quick-filver of another diameter, and confequently the force of the preffure of an atmofpherical column of the fame diameter. For, fince cylinders of equal heights are to one another, as their bafes; and the bafes of cylinders to each other as the fquares of their diameters; and laftly, fince we here fuppofe mercury a homogeneous body; the mercurial cylinders will be to each other in weight, as they are in bulk: if then, for inftance, we would know the weight of a cylinder thirty inches high, whofe diameter is two inches, the rule is this: as the fquare of the diameter of the ftandard cylinder, whofe weight is known, to the fquare of the diameter of the cylinder propos'd; fo is the bulk of the former to the bulk of the latter, and the weight of that to the weight of this. Thus the fquare of one inch, the diameter of the ftandard cylinder, being one, and the fquare of two, the diameter of the cylinder given, being four; the bulk or folid content of this latter cylinder, and confequently its weight, will be four times as great as thofe of the ftandard cylinder.
31. We took a fmall vigorous load-ftone, cap'd and fitted with a loofe Tbe attrative plate of fteel, fo fhaped, that when fuftain'd by the ftone, we could hang, bitad ffone on in at at a little crook that came out of the midft of it, and pointed downwards, exbeavfed recio a fcale ; into which, we put weights; and then, by thaking the load-ftone, as much as we guefs'd it would be by the motion of the engine, we found the greateft weight, that we prefum'd it would fupport, notwithftanding the agitation whereto 't would be expos'd, was, befides the iron plate and the fcale, fix ounces troy: and, if we added half an ounce more, the whole weight appear'd too eafy to be fhaken off. This done, we hung the load-ftone with all the weight it furtain'd, at a button of glafs faften'd to the top of

Przumatics, the infide of the receiver, when 'twas firft blown; and, tho' in about twelve exfuctions we ufually emptied fuch receivers, as much as was' requifite for moft experiments; yet, this time, we made above twice that number: when, violently fhaking the engine, without thereby fhaking off the weight that hung at the load-ftone, the iron feem'd to be very nearly as firmly fuftan'd by it, as before the air began to be pump'd out ; for the extraction of the air, tho' it be not fuppos'd to weaken the precife power of the load-ftone; yet, it muft leffen its power to fuftain the fteel, becaufe this in fo thin a medium muft weigh heavier than in the air.

The prefore of the external air being taken off, the jucker of a fyringe is cafily dratun up, tbo' the buver erifice be foopp'd.

Fis. 520
32. We took a brafs fyringe, the barrel about fix inches in length, and the diameter about an inch and three eighths; and having, by placing a thin bladder about the fucker, and pouring oil into the barrel, made the inftrument ftanch, whilft the fucker mov'd without much difficulty; we thruft this to the bottom of the barrel to exclude the air ; and having laid alide the flender pipe of the fyringe, we carefully ftopp'd the orifice to which the pipe, in thefe inftruments, is ufually fcrew'd; then drawing up the fucker, we let it go, to judge, by the violence with which it would be driven back again, whether the fyringe were fit for our purpofe; and finding it to be fo, we faften'd a ponderous piece of iron to keep it down; and then fixing to the handle of the rammer one end of a ftring, whofe other end was ty'd to the turn-key, we convey'd this fyringe and the weight belonging to it, into a receiver ; and having pump'd out the air, we began to turn the key, thereby to fhorten the ftring that ty'd the handle of the fyringe to it, and found no refiftance in drawing up the fucker from the bottom of the cylinder.

And repeating the experiment with the like fuccefs, when the receiver being exhaufted, we had drawn up the fucker, almoft to the top of the barrel by a weak ftring, we kept the parts of the fyringe in that pofture, till a paffage was open'd to the outward air; upon which, the fucker was fo forcibly deprefs'd, that it broke the ftring, and was violently driven back to the lower part of the barrel; tho' the ftring had fuftain'd between four and five pound weight, and broke long before all the air, that flow'd in to fill the receiver, had found entrance.

Again, we took the fame fyringe, and having found it tight enough for our purpofe, we carefully clos'd the vent with a cork and cement, and havingty'd a weight of two pound two ounces to the barrel, we fufpended the rammer of the fyringe, by a ftring, in a large receiver; and caufing the pump to be ply'd, we made eleven or twelve exfuctions, without finding any appearance of change in the fyringe : but caufing the pumping to be continued, I perceiv'd, within two or three exfuctions more, the cylinder began to be drawn very flowly down, by the weight hanging at it; and likewife try'd, that, juft upon a frefh exfuction, the delcent would be manifeftly accelerated. And, when we had fuffer'd the barrel and weight to flide down as far as we thought fit, we let in the external air, which rais'd them both again, much fafter than they had fubfided.

And, fubfituting a far heavier weight for the former, the depreffion of Pxzumatics: the barrel of the fyringe fucceeded for two or three times, fucceffively, much fooner than before.
33. Having cemented up the hole at the bottom of the fyringe, we ty'd 4 fringecan-
 put weights, fucceffively, to try if, when the fucker was forcibly drawn facifa a antifide up , and held fteddily, in its higheft fation, the weight, faften'd to the rabu wigibt. barrel, which was held down whilf the fucker was drawn up, and, af- rig. s2. terwards, let go, would be confiderably rais'd. And, when we perceiv'd, that the addition of half a pound, or a pound, more, would make the weight too great to be fo rais'd; we forbore to put in that increafe of weight: and, having ty'd the handle of the rammer to the key, we convey'd the fyringe, together with its clog, into a receiver; out of which, a convenient quantity of air being punp'd, we were, thereby, eafily enabled to draw up the fucker, without the cylinder: after which, having let in the air, fo that the weight was rais'd a little, I caufed two pound to be taken out; and then the receiver, being fomewhat exhaufted, and the air admitted; the clog, which amounted to about fixteen pound, was fwiftly rais'd, and, as it were, fnatcl'd up from the middle, to the upper part of the rammer.
34. We took a fmall receiver, fhaped like a pear, cut off, horizontally, The aferent of

 half a foot in length, we put this fyringe in at the narrow end of the re- twa air. ceiver; to whofe orifice was, afterwards, carefully cemented the brafscap, with the key, whereto we ty'd the handle of the rammer: then, Fig. s3. having conveniently placed, upon the engine, a very fhort thick conical glafs, containing a fufficient quantity of quick-filver; we fet the receiver over it, fo that the lower end of the pipe of the fyringe reach'd almof to the bottom of this glafs; and, conlequently, was immers'd far beneath the furface of the quick-filver: when, all things being prepared, the air was pump'd out of the receiver, and, confequently, out of the little glafs that held the mercury ; the fucker being warily drawn up; we could not fee the quick-filver afcend to follow it; but the air, being let flowly into the receiver, the mercury was quickly impell'd up to the top of the glafspipe.

And, for farther fatisfaction, when the experiment was repeated, we plainly obferv'd, that tho', when the receiver, being not yet exhaufted, the fucker was drawn up but one inch, the mercury would be rais'd to the upper part of the glafs-pipe of the fyringe; yet, after the exhautting of the receiver, tho' the fucker was drawn up twice as high, there appear'd no afcent of the mercury in the pipe.

To confirm this experiment, we caus'd the fyringe to be ty'd faft to a ponderous body, that might keep the cylinder unmov'd, when the fucker fhould be drawn up; we, alfo, cemented to the vent, or fcrew, at the bottom of the fyringe, a pipe of glafs, about two inches long; and, having: placed.

Pbyfro-machanical Experiments.

$\underbrace{\text { wrumaries; }}$ placed the heavy body upon a pedeftal of a convenient height, that the glafs-pipe might be all feen beneath it; and a very low vial, almoft fill'd with quick-filver, might be fo placed underneath the pipe, that the ftagnant mercury reach'd far above the immers'd orifice of the faid pipe : when things being thus provided, and the handle of the rammer ty'd to the key, belonging to the brafs-cover of the receiver, this veffel was cemented to the engine, and exhaufted.

We then look'd upon the glafs-pipe, above-mention'd, and, being able to fee thro' it, we, by the ftring, drew up the fucker to a confiderable height, but could not perceive the pipe to be fill'd with any fucceeding mercury; but, warily letting in fome air, we quickly faw the mercury impell'd to the very top of the pipe; and concluded, from the quantity rais'd, that fome was, alfo, driven into the cavity of the cylinder. This experiment, alfo, we fuccefsfully try'd with tinged fpirit of wine. Hence it appears, that, if a fyringe were made ufe of above the atmofphere, neither the ftopping of the pipe would hinder the eafy drawing up of the fucker; nor the drawing up the fucker, tho' the pipe were not ftopp'd, raife, by fuction, the liquor wherein the pipe was immers'd.

The adbefion of cupping giafles depenems mpan the pregive of the air.
Fig. 540
35. We took a glafs, about an inch and a half in diameter, but much longer than an ordinary cupping-glafs of that breadth; we, alfo, provided a receiver, fhaped like a pear, and open at both ends, at the fharper whereof, there was a fmall orifice; but, at the obtufer, a fhort neck, wide enough to admit the cupping-glafs, without touching the fides of it. The fmaller orifice of the receiver, being cemented to the engine, I caus'd the cupping-glafs to be well faften'd, with the mouth upwards, to the palm of a perfon's hand ; then caus'd him to put it into the receiver, and lay his hand fo upon the orifice, that it might ferve for a cover to it, and hinder any air from getting in between them : but, upon the firft fuck, the cupping-glafs fell off; the weight of the atmofphere preffing fo ftrongly upon the perfon's hand, that he complain'd, he could very hardly take it from the glafs, into which it was almoft thrult. We repeated the experiment, faftening the cupping-glafs more ftrongly than before; the tumour, occafion'd whereby, was very vifible: but now, alfo, as before, at the very firft turning of the ftop-cock, to let the air out of the receiver, the cuppingglafs fell off.
 rais'd by a cup. pingriafs witbo ent bent.

Fig. 55.
36. We took the brafs-ring, formerly mention'd, and cover'd it with a wet bladder, which was fo ty'd on, that the bottom of the bladder cover'd the upper orifice of the ring, and lay ftretch'd upon it, whilf the neck of the bladder was ty'd with a ftring, near the middle of the lower orifice of the ring; and, in this lower part of the bladder, we made two or three fmall holes, for the air to pafs in and out at : then, having placed, at the bottom of our capp'd receiver, a thick piece of wood, perforated to receive the neck of the bladder; we placed the cover'd ring upon this piece of wood, fo that the upper part of the bladder lay parallel to the horizon; then we fufpended, at the key belonging to the cap of our receiver, a blind glafs-head, inftead of a cupping-glafs, which name it may bear; and
and to the upper part of this glafs, we faften'd a large ring of metal to prefs it againft the bladder. The receiver being now cemented on to the engine, we, by the help of the key, let down the cupping-glafs till it almoft touch'd the level fuperficies of the bladder; and when the receiver was moderately exhaufted, we let down the cupping-glafs a little lower, fo that it refted upon the bladder, and touch'd it with all the parts of its orifice ; whence the cupping-glafs with its fubjacent bladder was become an internal receiver wherein the air was confiderably expanded. Then we warily let the air into the receiver, and thereby the air that furrounded the cup-ping-glafs or internal receiver, having now a ftronger preffure than that in the cupping-glafs could refift, the bladder on which the cupping-glafs refted, was confiderably thruft into the cavity of the glafs, and made to flick very clofe to the orifice of it.
Repeating the experiment, and exhaufting the receiver further than Fiz. ${ }^{56}$. before, we took out the cupping-glafs and the bladder, which, together with the included brafs-ring was hanging at it; and having ty'd the glafs to the book of a ftatera, and a large fcale to the neck of the bladder; we put weights, by degrees, into the fcale, till we thus forced off the bladder from the glafs; which hapned not till the weight amounted to thirty-five pound.
37. W.e caus'd a pair of bellows to be made different from ordinary ones, Bullows, with bbe

 fix inches in diameter, the leather being limber; fo that when the bellows were furneof off: open'd to their full extent, by drawing up the upper bafis at a button purpofely Figer $_{6}$. made in the midft of it , they refembled a cylinder fixteen or eighteen inches. high; but there was fome little, and unperceiv'dleak in them, whereat air had. paflage, when the nofe was accurately ftopp'd; however, if we drew up the upper bafis from the lower, the external air would, on all fides, prefs the leather inward, and render the fhape of the inftrument very far from cy-lindrical. Then carefully ftopping the nofe, after we had brought the bafes to touch each other, and conveying the inftrument into a large receiver, it quickly appear'd, when the pump was fet on work, that, at every exfuction, the air in the folds of the leather, and the reft of the little cavity left between the bafes, made the upper of them manifeftly rife ; tho' its own weight would foon after deprefs it again, either by driving out fome of the air, where the inftrument was not fufficiently tight, or by making it, as it were, ftrain thro' the leather itfelf: and if the pump were ply'd fafter than ordinary, the upper part of the bellows, would be foon raisd to a confiderable height ; as appear'd more evidently, if we battily let in the external air, whereby the bafes would be clapt together, and the upper of them confiderably depreff'd; fo that the imperfection of the bellows render'd the experiment rather more than lefs conclufive: for fince there was no external force apply'd to open them, if, notwithftanding fome of the incladed air could get out, the fpring of the internal air was ftrong enough to open

An attempt to

 examine the bypotbefis of atber, pos to its exiftEnce.the bellows, when the ambient air was withdrawn, much more would the effect have been produced, if the bellows had been perfectly ftanch.
38. Since, if there be fuch a thing as a celeftial matter, or ather, it muft compofe far the greateft part of the univerfe known to us; it deferves to be enquir'd, whether we can, by fenfible experiments, difcover its exiftence, or qualities. To this end I thought our pneumatical engine might contribute, if I could manage therein fuch a pair of bellows as I defign'd; for I propofed to faften a convenient weight to the upper bafis, and clog the lower with another, able to keep it horizontal, and immoveable, fo that when, by the help of the turn-key, the upper bafis Thould be rais'd to its full height, the cavity of the bellows might be brought to its full dimenfions. This done, I intended to exhauft the receiver, and, confequently, the bellows, thus open'd; fo that both the receiver, and they, might be carefully freed from air: after which, I purpos'd to let go the upper bafe of the bellows, that being haftily deprefs'd by the incumbent weight, it might fuddenly fall down to the lower; and by thus greatly leflening the cavity, expel thence the matter, if any there were, before contain'd in it ; and that, if it could, by this way, be done, at the hole of a flender pipe, faften'd either near the bottom of the bellows, or in the upper bafis, againft, or over the orifice of which pipe, there might be placed, at a convenient diftance, either a feather, or the fail of a little wind-mill, made of fome other light body, fit to be puit into motion by the impulfe of any matter which hould be forc'd out of the pipe.

Now, if by this means, notwithttanding the abfence of the air, it fhould appear, that a ftream of other matter, able to fet vifible bodies in motion, fhould iffue out at the pipe of the comprefs'd bellows, it would alfo appear, that there may be, plentifully, found a much fubtiler body than common air, in places deferted by fuch air ; and that it is not fafe to conclude, from the abfence of the air, in our receivers, and the upper part of the Torricellian tube, that there is no body, but an abfolute vacuity. But if, on the other fide, there fhould appear no motion at all to be produc'd, fo much as in the feather, it fhould feem, that either the cavity of the bellows was abfolutely empty; or that it would be very difficult to prove, by any fenfible experiment, that it was full. And if, by any other means, it be demonftrable, that it was replenifh'd with x ther, we might fuppofe, from our experiment, that 'tis not ealy to make it fenfible by mechanical experiments; and that 'tis really fo fubtile, and yielding a matter, as does not either eafily impel light bodies, or fenfibly refift, like air, the motions of other bodies thro' it ; but is able, freely, to pafs the pores of wood, leather, and clofer fubftances, which the air, in its natural ftate, doth not.
Fig. 58.
And, to make the trial more accurate, I caus'd a fmall pair of bellows to be made with a bladder; and that this might remain entire, we glued the two bafes, the one to the bottom, and the other to the oppofite part thereof; fo that the neck came our at a hole, purpofely made for it, into the upper bafis; whence, into the neck it was eafy to fix what pipe we judgd fit. We had, alfo, thoughts of procuring another pair of tight bellows, made
made with a very little clack in the lower bafis; that, by haftily drawing up the other bafis, when the receiver and bellows were very carefully exhaufted, we might fee whether the fubtile matter that was expell'd by the upper bafis, in its afcent, would, according to the modern doctrine of the circle, made by moving bodies, be impell'd up, or not.
We, likewife, thought of placing the little pipe of the bladder-bellows, beneath the furface of water, exquifitely freed from air, to fee whether, upon the depreffion of them, by the incumbent weight, when the receiverwas carefully exhaufted, there would be any thing expell'd at the pipe, productive of bubbles in the liquor, wherein its orifice was immers'd.

To bring our conjectures to a trial, we put into a capp'd receiver, the bladder, accommodated as already mentioned, containing between half a pint, and a pint ; and to deprefs the upper bafis of thefe little bellows the more eafily, and uniformly, we cover'd the round piece of paft-board, that made the upper bafis, with a pewter plate; a hole being made in it for the neck of the bladder: which, upon trial, prov'd not ponderous enough without weight of lead. And to fecure the feather above-mention'd, from being blown afide, we made it to move in a perpendicular llit in a piece of paftboard, faften'd to one part of the upper bafis; as that whereto we glued the feather, was to another part. Things being thus provided, the pump was work'd ; and as the ambient air was, from time to time, withdrawn, that in the bladder expanded itfelf fo as to lift up the metalline weight, and yet, in part, to fally out at the little glafs pipe of our bellows; as appear'd by its blowing up the feather, and keeping it fufpended, till the Epring of the air in the bladder was too far weakned. In the mean time, we did, now and then, by the help of a ftring faftned to the turn-key, and the upper bafis of the bellows, let down the bafis a little, to obferve how, upon its finking, the blaft, againft the feather, would decreafe, as the receiver was further exhaufted. And when we, judg'd it to be fufficiently freed from air, we let down the weight, but could not perceive that, by fhutting the bellows, the feather was at all blown up as before; tho' the upper bafis were more than ufually deprefs'd. And yet it's fomewhat odd, that when, in order to a further trial, the weight was drawn up again ; as the upper bafis rofe from the lower, the fides of the bladder were fenfibly prefs'd, or drawn inwards. The bellows being thus open'd, we let down the upper, bafis again, but could not perceive that any blaft was produced; for tho' the feather, which lay juft over, and near the orifice of the little glafs pipe, had fome motion, yet this feem'd plainly to be but a Shaking, and almoft vibrating motion, whereinto it was put by the upper bafis, which the ftring kept from a fmooth and uniform deícent ; but not to proceed from any blaft, iffuing out of the cavity of the bladder. And, for further fatisfaction, we caufed forae air to be let into the receiver ; becaufe there was a poffibility that the flender pipe might, by fome accident, be choaked: but tho', upon the return of the air into the receiver, the bafes of the bellows were prefs'd clofer together, yet it feem'd that fome little air got thro' the pipe, into the cavity of the bladder; for

Voi.II. Ttt when

506

Pby/ico-mechanical Experiments.

privmatics. when we began again to withdraw the air that was let into the receiver, \sim the bladder began to fwell again, and, upon letting down the weight, to blow up, and fuftain the feather, as happen'd before the receiver had been fo well exhaufted.

Contiuned.
Fig. 59.
39. I caus'd a crooked pipe to be made for the fyringe, formerly mention'd, inflead of its ftrait one, whofe fhorter leg was parallel to the longer. And this pipe, after being fcrew'd on carefully, was cemented to the barrel; and becaufe the brafs-pipe could fcarce be made fmall enough, we caufed a fhort and flender pipe of glafs, to be put into the orifice of the fhorter leg, and carefully faften'd to it with cement. Then the fucker being made to go fmooth, without leffening the flaunchnefs of the fyringe, there was faften'd to the handle of the rammer, a weight made in the form of a ring, or hoop; which, by reafon of its figure, might be fufpended from the handle of the rammer, and hang loofe on the outfide of the cylimder, and which, both by its figure and weight, might eafily, and fwiftly deprefs the fucker, when drawn up. The fyringe, thus furnifh'd, was faften'd to a broad, heavy pedeftal, to keep it in its vertical pofture, and to hinder it from tottering, notwithftanding the weight that clogg'd it. Befides all this, we took a feather, about two inches long, of which there was left, at the end, a part about the breadth of a man's thumb-nail, to cover theorifice of the flender glafs pipe of the fyringe; for which purpofe, the other extremity of it was fo faften'd, with cement, to the lower-part of the fyringe, that the broad end of the feather ftood juft over the little orifice of the glafs, at fuch a convenient diftance, that when the fucker was a little drawn up, and let go again, the weight would deprefs it faft enough to blow up the broad part of the feather. The handle of the rammer, being now ty'd to the turn-key of a capp'd receiver, the ryringe, and its pedeftal, were inclofed in a capacious receiver; and the pump, being fet on work, we, after fome quantity of air was drawn out, rais'd the fucker a little, by the help of the turn-key: and, then, turning the fame key the contrary way, we fuffer'd the weight to deprefs the fucker, to fee how the feather would be blown up ; and, finding that it was impell'd, forcibly, we continu'd to pump, by paufes ; during each of which, we rais'd and deprefs'd the fucker, as before; and oblerv'd, that as the receiver was gradually exhaufted of air, the feather was lefs briskly driven up, till, at length, when the receiver was well empty'd, the ufnal elevations and deprefions of the fucker would not blow it up at all, tho they were far more frequently repeated than before.

After we had long tried, in vain, to raife the feather, fome air was let into the receiver; and tho, when but very little air was admirted, the motions of the fucker had fcarce any fenfible effect upon the feather; yet, when the quantity began to be confiderable, the feather began to move a little upwards; and fo letting in air, not all at once, but fucceffively , and moving the fucker up and down, in the intervals of thofe times of admiffion; we obferv'd, that as the receiver containd more air, the feather was more briskly blown up.

Pbyfico-mechanical Experiments.

But, not content with a fingle trial, we caus'd the receiver to be again exhaufted, and profecuted the experiment with the like fuccefs; only having, after the receiver was exhaufted, drawn up, and let fall the fucker, feveral times, ineffectually ; having, hitherto, not, ufually, rais'd it by more than one turn of the hand; we now ufed an inftrument, that was tolerably long, and fit to take hold of the turn-key, fo that we could eafily raile the fucker between two and three inches at a time, and fuddenly deprefs it again : yet, for all this, which would much have increas'd the blaft, if there had been a matter fit for it in the cavity of the fyringe, we could not, fenfibly, blow up the feather, till we had let a little air into the receiver. But, now, inftead of the brafs-pipe, hitherto employ'd, we cemented one of glafs to the fyringe ; its fhorter leg, after Fie co. it had, for a while, run parallel to the other, being bent off fo, that above an inch and a half of it tended downwards; whereby the orifice of it might be immers'd in the water contain'd in a fmall open jar. The defign of this contrivance was, that when the receiver fhould be well exhaufted, we might try whether, by raifing and depreffing of the fucker, any fuch matter would be driven out at the nofe of the pipe, as would produce bubbles in the incumbent water; which, air, tho' highly rarify'd, is capable of doing.

The only particulars, wherein this experiment differ'd from the former, were thefe. As the air was here pump'd out of the receiver; that in the glafs-pipe made its way thro' the water, in bubbles. And a little air having once, by a fmall leak, got in, and forc'd fome of the water out of the jar into the pipe; when the receiver was again well empty'd, both that water, and the little ftagnant quantity contain'd in the immers'd part of the pipe, produced fo many bubbles, of feveral fizes, as quite difturb'd our obfervations. Wherefore, we let alone the receiver, exhaufted as it was, for fix or feven hours, that the water might free itfelf from air ; and then caufing what air might have ftolen in, to be again pump'd out, till we perceiv'd, by the gage, that the receiver was well exhaufted, we caus'd the fucker of the fyringe to be rais'd and deprefs'd feveral times; and tho', even then, a bubble would, now and then, difturb our obfervations, yet, when we were not thus confounded, we fometimes obferv'd, that the elevation and fall of the fucker, tho' repeated, did not drive out at the pipe, any thing that made difcernible bubbles in the incumbent water: for tho fome fmall bubbles would rarely appear on the furface of the water, yet I could not perceive, that the matter which made them, iffued out of the pipe; and fome of them manifeftly proceeded from aerial particles, ftill lurking in the water, as I concluded from the place and time of their rifing. But, at length, we obferv'd, the water, in the immers'd part of the pipe, which was very flender, to be about an inch higher than the reft of the ftagnant water, and to continue at that height in the pipe, tho' the fucker were, feveral times together, rais'd and deprefs'd, between two and three inches at once; which feem'd to argue, that there was a vacuum in the cavity of the fyringe: or if it were full of xther, this was fo fubtile, that the impulfe it

$$
\text { Ttt } 2
$$

Puogarioa; receiv'd from the falling fucker, would not make it difplace that very fiender thread of water in the fmall pipe ; though it appear'd by the bubbles;. which fometimes difclos'd themfelves in the water, after the receiver had, been exhaufted, that far nore water would be difplaced, and carried up by a fmall bubble, confifting of air, fo rarified, that, according to my efti mate, the particles of it did not, before the pump was firft fet on work; polieds, in the water, a five hundredth part of the fpace of a pin's head.

Atight body fal- 40. We took a receiver twenty-two inches high; and, that we might ling in tbe ex. let a body fall therein, we fo faften'd a fmall pair of tongs to the int fide of its brafs-cover, that, by moving the turn-key, we might, by
Fig. 61. a Ating, open them ; which their own fpring would, otherwife, keep frut: we then join'd, crofs-wife, four broad light feathers, each about an inch. long, at their quills, with a little cement ; into which we, alfo, ftuck, perpendicularly, a fmall label of paper, about the eighth of an inch in breadth, and fomewhat more in height; by which the tongs might take hold of our light inftrument, without touching the cement, which, elfe, might fick to them. By the help of this. fmall piece of paper, the little inftrument, of which it made a part, was fo held by the tongs, that it hung horizontal; and then the receiver, being cemented to the engine, the pump was diligently ply'd, till it appear'd, by a gage, that the receiver had been thoroughly exhaufted. Laftly, our eyes, being attentively fixed upon the connected feathers, the tongs were, by the help of the turn-key, open'd, and the little inftrument let fall; which, tho', in the air; it had made fome turns in its defcent from the fame height, whence it now fell; yet it here defcended like a dead weight, withour being perceiv'd to make a fingle turn, or a part of one. However, I catufed the receiver to be taken off, and put on again, after the feathers were taken hold of by the tongs; whence, being let fall in the glafs, unexhaufted, they made fome turns in their deIcent; as they, alfo, did, being let fall a fecond time, after the fame manner.

But when, after this, the feathers being placed, as before, we repeated. the experiment, carefully pumping out the air, we could not perceive any turning in the defcent; yet, for farther fecurity, we let them fall twice more, in the unexhaufted receiver; and found them to turn in falling: butwhen we did, a third time, fet them loofe in the receiver, well exhaufted; they fell, after the fame manner they had, in the fame cafe, done before.
41. We caus'd a cylinder of box to be turn'd of a length fuitable to that of the receiver, wherein it was to be employ'd. Out of the lower bafis of this cylinder, which was about an inch and a half in diameter, there came a frnaller cylinder or axle-tree, not a quarter fo thick as the other, and lefs. than an inch long: this was turn'd rery true, that it might move fmoothly in a little ring of brafs made for it in the midft of a fix'd trencher, or pieceof folid wood, fhap'd like a mill-ftone; being four or five inches in breadth, and between one and two in thicknefs: and the large round groove, purpofely made, in the lower part of this trencher, I icaufed to be filld up with lead, to keep the trencher fteady: and in the uppermoft part of this trencher we intended to have holes made, to place bodies in at feveral diflances, as occafion fhould require. The upper bafis of the cylinder had, alfo, another axde-tree coming out of the middt of it, but wider than the former,
that into its cavity it might receive the lower end of the turn-key, to which 'twas to be faften'd by a fender peg of brafs, thruft thro' two correfpondent holes, the one made in the turn-key, and the other in the focket of the axletree. There were alfo feveral horizontal perforations made in the pillaritfelf, to which this axis belong'd; which pillar we call the vertical cylinder. The general ufe of this contrivance, is, that the end of the turn-key being put into the focket, and the lower axis of the vertical cylinder into the trencher; by the motion of the key, a body faften'd at one of the holes to the cylinder may be brought to, or remov'd from, or made to ftrike againft another body, faften'd, in a convenient pofture, to the upper part of the trencher.

We caus'd then a hand-bell without its handle and clapper, to be fo faften'd, to a ftrong wire, that one end of the wire being fixed in the trencher, the other, which was bent downwards, took hold of the bell. In another hole, made in the circumference of the fame trencher, was wedg'd a fteel fpring, to the upper part whereof was wedg'd a gad of fteel lefs than an inch long, but confiderably thick; the length of this fpring made the upper part of the hammer, or piece of fteel, of the fame height with the bell; and the diftance of the fpring from the bell was fuch, that when forc'd back the other way, it might, at its return make the hammer ftrike briskly upon the outfide of the bell. The trencher being, thus furnifh'd and plac'd in a.capp'd receiver, the air was diligently pump'd out, and then, by the help of the turn-key, the vertical cylinder was made to go round, by which means, as often as one of the two ftiff wires, or fmall pegs, that were faften'd at right angles into holes made near the bottom of the cylinder, pafs'd by the fpring, they forcibly bent it in their paffage from the bell, fo that as foon as the wire was gone by, and the fpring ceas'd to be prefs'd, it would fy back with violence enough to make the hammer give a fmart ftroke upon the bell. And, by this means, we could both continue the experiment at difcretion, and make the percuffions more equally ftrong than it would ot therwife have been eafy to do.

Now, when the receiver was well emptied, it fometimes appear'd doubtful whether any found were produc'd or no; butto me, for the moft part, it feem'd, that, after great attention, I heard a very faint and languid found, and yet methought it had fome fhrilnefs in it, and feem'd to come from afar. But letting in the air, at competent intervals, it was eaIy to obferye, that the vertical cylinder being ftill made to go round, when a little air was let in, the ftroke of the hammer upon the bell became very audible: when more air was admitted, the found grew greater, and fo increas'd till the receiver was again replenifh'd with air; tho', even then, the found was obferv'd to be much lefs than when the receiver did not interpofe between the bell and the ear.

We now, alfe, fufpended in the receiver a watch with a good alarum ;and to make this experiment the more accurate, we employ'd a receiver that confifted of but one piece of glafs furnifh'd on the infide witha glafs knob or button, to which a ftring might be ty'd : we alfo hung the watch, not by its chain, but by a very flender thread, whofe upper end was faftend ta the glafs button. Then the air being carefully pumg'd out; we filently expec- had not contriv'd a way to difcern its motion: wherefore, I defired a gentleman to hold his ear exactly over the button, at which the watch was fufpended, and very near to the receiver; who told us, that he could juft perceive fomething of a found, which feem'd to come from far; tho', neither we, who liften'd very attentively near other parts of the receiver, nor he, if his ears were no more advantageoully plac'd, were fatisfied, that we heard the watch at all. Then letting in fome air, we did, with attention, begin to hear the alarum, whofe found was odd; and by returning the ftop-cock, to keep any more air from entering, we kept the found thus low for a confiderable time; after which, a little more air, that was permitted to enter, made it become nore audible; and when the air was yet more freely admitted, we could plainly hear the alarum at a confiderable diftance from the receiver*.

Aglafs-drop

 broke in an ex. haxfted reciver.42. The blunter part of a glafs-drop being faften'd to a ftable body, of convey dinto the receiver, and the crooked ftem being ty d to one end of a ftring, whofe other end was faften'd to the turn-key, we carefully pump'd out the air; when the ftem, by fhortning the ftring, being broken off, the glafs-drop was Shatter'd into a thoufand pieces.

This experiment was, afterwards, repeated with the like fuccefs; and having, at that time, no gage to try how far the air had been drawn out, we let the external air impel up the water out of the pump into the receiver, and thereby found, that the veffel had been well exhaufted.

Light moanced in tho exhen fed reciver.

Ifig. 6.
43. Knowing, that hard fugar, being briskly fcraped with a knife, affords fparkling light; fo that one would fometimes think fparks of fire flew from it; we caus'd a lump of hard loaf-fugar to be conveniently, and firmly plac'd in the cavity of our capp'd receiver ; and, to the vertical cylinder, formerly mentioned, we faften'd fome pieces of a fteel-fpring, which, being but thin, might, in their paflage along the fugar, grate or rub forcibly againft it ; and, then the receiver being well exhaufted, in the nighttime, and in a dark room, the vertical cylinder was made, for a pretty while, to move round, by help of the turn-key. Thus the irons that came out of the vertical cylinder, making, in their paffage, vigorous impreffions upon the fugar, that ftood in their way, there were manifeftly produced many little Hailhes; and fometimes too, tho' not frequently, there feem'd to be ftruck off fmall fparks of fire. t.

* That found cannot be propagared. thro' a vacuum, appears more fully from an experiment of the late Mr. Hauksbee, Who included a large bell in a receiver full of common air, and cover'd them both with mothernglafs, out of which, the air being extracted, tho found was actually produced in the innermoft, it could not be heard by the by-tanders. Pbilof. Trapf. N.. 321. p. 36%

From fome other experiments of the fame perfon, 'tis alfo evident, that founds are as well augmented in condenfed air, as diminiff'd in that, which is rarified. See his Phyfuo-mechan. Experiments. p. 129. 234.

[^5]44. We took a large inverted cucurbit for a receiver, made very clear prevantico. by wiping, and obferv'd, that when the pump began to be work'd, if a haind of bat, large candle were held on the other fide of the glafs, upon turning the ftop-and colurss pros cock to let the air out of the receiver into the cylinder, the glafs would anafod rociver. feem to be full of fumes, and a kind of halo appear about the flame of the candle ; and this, at firt, was commonly between a blue and a green, but after fome fucks, turn'd of a reddifh or orange colour, both very vivid. The phenomenon, in my opinion, procceded from hence, that the cement being fomewhat fuft, and abounding with turpentine, and having a hot iron apply'd to it, whereby it was both foften'd and heated, it feems rational to expect, that, upon withdrawing the air in the receiver, the aerial particles in the cement freed from their former preffure, would extricate themfelves, and with the loofer fteams of the turpentine, and perhaps of the bees-wax, expand themfelves, with a kind of explofion, in the receiver; and by their interpofition between the light and the eye, exhibit thofe delightful colours we had feen. And, I afterwards found, that I could plainly perceire the colouring fteams, juft upon turning the ftop-ccck, to Hy up from the cement towards the top of the glafs; and, if we continued pumping, the receiver would grow clearer, and the colours more dilute, pofibly becaufe the aerial and volatile particles of the upper part of the cement did, in that time, fpend themfelves; and alfo, becaufe the agitation they receiv'd, from the heat communicated by the iron, continually decay'd. Befides, when the receiver is more exhaufted, the want of air makes it more difficult for fteams to float, and be fupported in it.

But, for a farther confirmation, I caus'd fome cement to be put into a fmall crucible, warm enough to melt it; and conveying this into a clear receiver, I caus'd the pump to be work'd: upon which, it manifeftly appear'd, that, opening the ftop-cock, to let out the air, the fteams would copioully be thrown about from the crucible into the capacity of the receiver; and, after having play'd there a little, fall down again. But, in thefe phenomena, the rividnefs, and fometimes the kind of the exhibited colours feem'd much to depend on circumftances, fuch as the degrees of heat, the magnitude and Chape of the receiver, the quantity of air that remain'd therein, and the nature of the cement itfelf.
45. Crofs the ftable trencher, formerly mention'd, we faften'd a ftrong Foom maducad. fpring of fteel, fhaped almoft like the lathe of a crofs-bow; and to the midety attrition io of this fpring was ftrongly fix'd on the outfide a round piece of brafs, hollow'd almoft like a concave burning-glafs. To this piece of brafs, which was thin, and about two inches in diameter, we fitted a convex piece of the fame Fig. 63. metal, almoft like a gage for a tool to grind glaffes in, which had belong-
that differcut forts of bodies afford lights greatly differing in colour, force, and wigour ; that the effeas of attrition vary with the different preparation and management of the bodies which fuftain it; that bodies, which have yielded a parti-
cular light, may, by attrition, be brought to yield no more thereof; and that a confiderable light is producible, ty the attrition of glafs on glafs, both in vacuo, in common air, and even in water. Hamks. Pbyfico-mechan. Exp. p. 4c-44

Eranaricoing to it a fquare handle, whereinto, asinto a focket, was inferted a fquare piece of wood, proceeding from the balis of a Square wooden pillar, which we made ufe of, on this occafion, inftead of our vertical cylinder. By the help of another piece of wood, coming from the other balis of the fame pillar, the turn-key was join'd to this pillar, and made of fuch a length, that when the turn-key was foncibly kept down as low as the brafs-cover, it was a part of, would permit, the convex piece of metal juft defcrib'd, deprefs'd the concave piece a pretty way, notwithftanding a vigorous refiftance of the fubjacent fpring. A little fine powder of emery was alfo put between the convex and concave pieces of brafs, to make them fit the better, and to facilitate the motion that was to be made ; and, to the upper part of the turn-key was faften'd a good wimble, without which, we prefum'd, that the turning of the key would not produce a fufficient motion. Things being thus in readinefs, and a mercurial gage convey'd into the receiver, we caus'd the air to be diligently pump'd out, and then order'd a ftrong man to turn the wimble, and to continue to lean a little on it, that he might be fure to keep the turn-key from being lifted up by the fpring. Whilft the man, with much agility and ftrength was moving the wimble, I watch'd the gage, to obferve, whether the agitation of the ftop-cock, and confequently the engine, did not prejudice the experiment; and for greater caution, I caus'd the pump to be almoft all the while kept working. When the man was almoft out of breath, we let in the air at the cover of the receiver, by lifting up the turn-key; and nimbly removing the receiver, we felt both the pieces of brafs, betwixt which the attrition had been made, and found them very fenfibly warm.

We afterwards caus'd the man to lay hold of the wimble again, when, by the gage, it appear'd, that the receiver was well exhautted; fo that by further pumping the quick-filver feem'd not to be further deprefs'd. And, in this. fecond trial, when we did, as before, haftily let in the air, and take out the bodies that had been rubb'd againft one another, they were both of.them, efpecially the uppermoft, fo hot, that I could not endure to hold my hand on either; and they did, for fome time, retain a confiderable degree of warmth. I alfo caus'd two bodies of wood to be turn'd, for fize and thape like thofe of brafs, which we had juft before employ'd; the upper of thefe was of hard oak, the other of beech: but, tho the wimble.was fwiftly turn'd, as before, by the fame perfon, the wood feem"d not to me to have manifeftly acquired any warmth; yet, that there had been 2 confiderable attrition, appear'd by the great polioh, which part of the wood had evidently acquired : however, upon repeating the experiment, with more obftinacy than before, the wood, efpecially the upper piece of it, was brought to a warmth unqueftionably fenfible.
46. Into an evaporating glafs, we put a convenient quantity of water; and having convey'd it into a receiver, and well drawn out the air, we let down into it, by the turn-key, a large lump of ftrong lime; and obferv'd not, that, at the firft emerfion, nor for fome time after, there appear'd any confiderable number of bubbles; but within about a quarter of an bour, the lime began

贯tallizu Maned in the \%

 much violence, and with bubbles wonderfully great, appearing at each new exfuction; fo that the infide of the receiver, tho' large, was, at length, lined with lime-water; and much of the mixture did, from time to time, overflow the veffel, a great part whereof was purpofely left unfill'd: nor did any thing, but our wearinefs, put a period to the bubbling of the mixture, whofe heat was fenfible even on the outfide of the receiver, and continued confiderably hot, in the evaporating glafs, for a quarter of an hour after the receiver was remov'd. The lime, employ'd in this experiment, was of a very good and ftrong kind, made of hard ftones, and not of chalk, as is that commonly ufed at London, which, probably, would not have been ftrong enough to have afforded us the fame phenomenon.
47. To try, by means of our fyringe, formerly mention'd, what weight meafluet thet to a cylinder of uncomprefs'd air included in it, and confequently of the fame fereay of the the diameter with the cavity of the barrel, would be able to fuftain; we ded ditif imper provided a ftable frame, wherein the fyringe might be kept firm and erect : we alfo provided a weight of lead, fhaped like our brafsring, formerly defrib'd, that, by the advantage of its figure, it might be made to hang down, by ftrings, from the top of the handle of the rammer, and fo prefs evenly on all fides, without rendring the upper part of the infrument top-heavy. We took care to leave between the bottom of the fyringe, which was firmly clos'd with ftrong cement, and that part of it, where the fucker was, a convenient quantity of air to expand itfelf, and lift up the weight, when the air external to that included, fhould be pump'd out of the receiver. And laftly, the handle of the rammer, from which the annular weight depended, was fo faften'd to the turn-key of the cover of the receiver, that the weight might not comprefs the air included in the fyringe, but leave it in its natural fate, till the air was withdrawn from the receiver.

By this method, the included air would lift up a weight of feven, or eight pound; yet, when the rammer came to be clogg' d with a greater, the inftrument prov'd not fo ftanch, but that it was ealier for fome particles of air to get away between the fucker, and the infide of the barrel, than to raife fo great a weight. But, if an exact fyringe can be procured, this feems to be one of the likelieft, and leaft exceptionable ways of meafuring the force of the air's fpring.

But, being unable to procure fuch a fyringe as I defired, I got two hol- Fig. 64 . low cylinders to be turn'd, whofe fides were of a fufficient thicknefs to refift the prefliure of the air to be imprifon'd in them; one an inch in diameter, and the other two : their depths were alfo unequal, that the one might receive a much larger bladder than the other. With the leffer of thefe, 1 made a diligent trial ; but found it very difficult to procure a bladder fmall, and fine enough for the cylinder : and that which we,at length, procured, would not continue ftanch for many trials ; but, after a while, parted with a little air in the well exhaufted receiver, when 'twas clogg'd with the utmoft weight it could futtain: but whilft it continued fanch, we made

Vol. II.
Uuu
one

514

Pbyfico-mechanical Experiments.

$\underbrace{\text { Preventics.one fair trial with it ; from whence we concluded, that a cylinder of air of }}$ an inch in diameter, and lefs than two inches in length, was able vifibly to raife a weight of above ten pound, averdupoize.

At another time, into a hollow cylinder of wood four inches deep, and two in diameter, furnih'd with a broad and folid body or pedeftal, we put a lamb's-bladder very ftrongly ty'd at the neck; on which, we fer a wooden plug, mark'd with ink, where the edge of the cylinder was contiguous to it: this plug being loaded with weights, amounting to thirty-five pound, the recciver was exhaufted, till the mark appear'd very manifeftly above the brim of the cylinder; and then, tho' the ftring was, by turning the key, quite flacken'd, yet the mark on the plug continued very vifible. And, when fo much air was let into the receiver, as made the weight deprefs the plug quite beneath the mark, upon pumping out the air again, the weight was, without the help of the turn-key, lifted up; and by degrees, all the mark of the plug was rais'd above three eighths higher than the edge of the cylinder. Wherefore, we fubftituted for the feven pound weight, one of fourteen; and ufing the fame bladder, we repeated the experiment; only a little fupporting the uppermoft weeight by the turn-key, till the bladder had attained its expanion; and then the weight, being gently let go, deprefs'd not the plug fo low, but that we could yet fee the mark on it; tho' that part of the plug where the mark was, appear'd manifeftly more deprefs'd than the other.

Am eafy way of making a feall quantity of $i n$ cluled air raije a grat žeighb. 3IG. 6:

1:8 66.

48. We took a brafs-veflel, made like a cylinder, and having one of its orifices exactly cover'd with a flat plate firmly faften'd to it, the other orifice being wide open : the depth of this veffel was four inches, and the diameter three and three quarters. To this hollow cylinder we fitted a wooden plug, like cne of thofe defcribed in the foregoing experiment; only it was not quite fo long, and was furnifhed with a lip, which we, purpofely, made of a confiderable breadth, that it might aftord a ftable bafis to the weight that hould reft upon it : then, taking a middle-fized limber bladder, ftrongly ty'd at the neck, but not near full blown; we preffed it, by the help of the plug, into the cylinder, that it might the better fit itfelf to the figure thereof: then, taking notice, by a mark, how much of the plug was extant above the orifice of the veflel, we laid the weights upon the plug, whofe lip hinder'd it from being depreffed too deep into the cavity of the veffel; and, having convey'd them into the receiver, we found, that a common half hundred weight would very foon be manifeftly raifed by the fpring of the included air.

In another experiment, the bladder in a cylinder four inches broad, raifed 75 pound weight, till the wooden plug difclofed the mark defign'd to fhew the height at which the air kept the plug, before it was compreffed; and this, vilibly, at the fifth exfuction ; and at the feventh, that mark was raifed. $\square^{3}{ }^{3}$ above the edge of the cylinder. In the gage, where the mercury, in the open air, ufually ftood, about an eighth above the uppermoft glafsmark, it was deprefled an eighth below the fecond mark; and after we let in the air, it was a pretty while before the weight manifeftly began ta fubfide. The bladder being taken out t_{2} and the place it had poffeffed in the cylinder
cylinder being fupply'd with a fleeve, or fome fuch thing, and the weight Przowares. -laid again upon the plug; we found, that, at twenty-four exfuctions, the mercury was depreffed to the loweft mark of the gage; and the thirty--fourth, or thirty-fifth exfuction was made, before the receiver appear'd to be fo exhaufted, as to ftop the finking of the mercury, which was then above one eighth beneath the loweft mark. But, having caufed leadenweights to be, purpofely, caft flat, and as broad as we could conveniently put into the receiver, that, by the advantage of this fhape, we might be able to pile up the more of them, without much danger of their being shaken down; we laid feveral of them one upon another : and, then, the upper part of the receiver growing too narrow to admit any more; we added a weight, or two, lefs broad; when, exhaufting the receiver, till we perceiv'd, by the gage, that the air was manifeftly withdrawn; we found, by the help of a mark, and a pair of compaffes, the plug to be fo far rais'd, that 'twas concluded, the elevation would have been much greater, if the included air had not found it eafier to produce fome leak at the neck of the bladder, than to lift up fo great a weight; which was about a hundred pounds, averdupoize.
49. We weigh'd a feal'd bubble in the receiver, and found it abore half $T_{\text {To }}$ Stere the a grain heavier when much of the air was exhaufted, than when it was thaigh of waitto full : afterwards, we took out this bubble, and found it to weigh fixty ${ }^{-}$ eight grains and a half; then, breaking off the fmall tip of it under water, we found, that the heat, by which it was feal'd up, had rarify'd its included air, fo that it admitted a hundred and twenty-five grains of water: for the admitted water and glafs weigh'd a hundred ninety-three grains and a half. Then, filing it full of water, we found it to contain, in all, feven hundred and thirty-nine grains; for it weigh'd eight hun--dred and feven grains and a half: whence, 'tis evident, that the difference between the weight of water and air, was lefs than 1228 and I . We, alfo, weigh'd, in the receiver, a bubble, the glafs of which amounted to fixty grains; the air that filld it, weigh'd, in vacuo, $i^{\frac{27}{3} \frac{7}{3}}$ of a grain ; the water that fill'd it, weigh'd feven hundred twenty grains and a quarter: fo that, by this experiment, the proportion of the weight of water to air, is as $853 \frac{1.7}{2 y}$ to 1.

But it is fo defirable a thing, and may prove of fuch importance, to know the proportion in weight betwixt air and water, that I thall here mention an attempt tI made to difoover it by another way.

A fmaH receiver, being exhaufted of air by the engine, and counterpois'd; whilft it contim'd fo, the ftop-cock was turn'd, and the air readmitted; which made it weigh thirty-fix grains more than before : and this happen'd, alfo, upon repeating the experiment.

We, next, took a fmall glafs-receiver, fitted with a ftop-cock; and, having exhaufted it of the air, counterpoiz'd it, and let in the outward air; we found the weight of the veffel to be increas'd, by that admiffion, thirty-fix grains. This done, we took the receiver, after having well countexpoiz ${ }^{\circ}$ dit, out of the fcale; and having apply'd it a fecond
Unu2 time

Pizuanties. ime to the engine, we once more withdrew the air; and then turaing the flop-cock, to keep out the external air, we took care that nome of the cement employ'd to join it to the engine, hould ftick to it : when, weighing it again, we found it thirty-five grains heavjer, than when 'twas laft counterpois'd in the fame balauce. Then we immers'd the stop-cock into a baton of fair water, and let in the liquor, that we might find how much of it would fucceed in the place of the air drawn out. When no more water was impell'd in, we turn'd the ftop-cock once more, to keep it from falling out ; and, then, weighing it in the fame fcales, we found the water to be forty-feven ounces three drams, fix grains; which, divided by thirty-five grains, the weight of the air, equal in bulk to this water, the quotient, is, nearly, fix hundred and fifty grains, for the proportion of weight between air and water, of the fame bulk, at the time when the experiment was made: the atmofphere then appearing, by the barometer, wherein the mercury ftood, at twenty-nine inches three quarters, to be very heavy.

Two marbles Arengly join'd togetber, Separa ted dy wiithtraw ing the air from t them.
so. We took a pair of flat round marbles, each of them two inches, and about three quarters, in diameter; and, having put a little oil between then, to keep out the air ; we hung, at a hook faften'd to the lowermoft, a pound weight, to furmount the cohefion which the tenacity of the oil, and the imperfect exhauftion of the receiver might give them : then, having fufpended them in the cavity of a receiver, by a ftick that lay crofs it, and the engine being made ready to work, we thook it more ftroagly than we concluded it would be by the operation; and, beginning to pump out the air, we obferv'd the marbles to continue join'd, till it was fo far drawn out, that we fufpected they would not feparate. But, at the fixteenth froke, upon turning the ftop-cock, which let the air pals out of the receiver int the pump, the thaking of the engine being over, the marbles, fpontaneoully, fell alunder; tho' they hung paralled to the horizon, and adhered very firmly together, when they were put in : and tho* a weight, of above eighty pounds, fatten'd to the lowermoft marble, might be drawn up, together with the uppermoft, by virtue of their firm cohefion.

But, faftening to the lowermoft of the two marbles, a weight of a very Fig. 67. few ounces, and having cemented a capp'd receiver, with the marbles in it, as before, to the pump; we, by means of a ftring, (whereaf one end. was tied to the bottom of the turn-key, and the other to the uppermoft marble, and paffing shro' the hook belonging to the brafs-cover) and by curning round the key, drew up the upper marble; and, by reafon of their coherence, the lowermoft, alfo, together with the weight that hung at it. Being thus fure that the two marbles fuck clofe tacetber, we began: to pump out the air; and, after a while, the marbles fell, afunder.

But, having fo order'd the matter, that the lower could fall but a little way from the other; we were able, by inclininf and fhaking the engine, to place them together again : and, then, letting in the air haftily, that, by its fpring, it might prefs them bard together; we could not anly, by

Ply frownechanical Experiments.

turning the key, make the uppermof marble take up the other, and the Papomarics. annex'd weight; but were oblig'd to make a much more laborious exhauftion of the air, to procure the disjunetion of the marbles, this fecond time, than was neceffary to do it at the firft.

And, when the marbles were thus afunder, and the receiver exhauted, we did not let in the air, till we made them fall upon one another, as before ; but the little highly expanded air, that remain'd in the receiver, having not a fpring near ftrong enough to prefs them together, we very eafily, by turning the key, rais'd the uppermof marble alone, without finding it to ftick to the other. We, therefore, once more join'd the marbles together, and, then letting in the external air, found them, afterwards, to ftick fo clofe, that a very ftrong man could not feparate them.

5 r. Into a fmall earthen melting-pot of a cylindrical figure, and well glaz'd, That'tis diffr we convey'd a fmall cylinder of iron, about an inch long, and an inch cell to produce and a half in diameter, made red hot in the fire; and having fuddenly ex-air, fuemonty
 per, containing a convenient quantity of flowers of fulphur, upon the in vacuo. heated metal; whereby, the paper being immediately deftroyd, the included fulphur would lie upon the iron, whofe upper part was a little concave, to contain the flowers, when melted. But all the heat of the iron, tho' it made the paper and fulphur fmoke, would not actually kindle either.

Into a glafs-bubble of a convenient fize, furnifh'd with a neck fit for our purpofe, we put a little flower of brimftone, and having exhaufted the glafs, and fecur'd it againft the return of the air; we laid it upon burning coals, where the fulphur did not take fire, but rofe to the oppofite part of the glafs in the form of a fine powder ; and that part being turn'd downward, and laid on coals, the brimftone without kindling rofe again in the form of an expanded fubftance, which, when remov'd from the fire, was, for the moft part, tranfparent like a yellow varnifh.

52 . To examine whether, when a heated iron would not keep the the efficaty of melted brimftone fo hot, as was requifite to make it burn, without air, or with very little, it would yet fuffice to kindle the fulphur, if the air had accefs to it, we made two or three feveral thials; and found, that, if foon after the flame was extinguifh'd the receiver were remov'd, the futphur would prefently take fire again, and flame as vigoroully as before. But, wefufpected, that the agency of the air, in the production of the flame, might be fomewhat lefs, than thefe trials would perfuade ; becaufe, by taking off the receiver, the folphur wasnot only expos'd to frefh air, but alfo advantaged, by a free liberty for the avolation of thofe fumes, which, in a clofe veflel might be unfavourable to the flame.

And, to try at how great a degree of rarifaction of the air, it was pof fible to make fuiphur flame, by the affitance of an adventitious heat, we repeated the fame experiment; the punping being continued for fore time after the flame of the melted brimfone feem'd quite extinguift d , till the receiver was judg'd to be very well exhaufted : then, without firring the glafs, we very warily let. in a little air; upon which we could per-

Phyffico-mechanical Experiments.

$\underbrace{9 \text { mevatics. }}$

 ceive, tho not a conftant flame, yet feveral little flafhes, as it were, difclofe themfelves, by their blue colour, to be fulphureous; yet the air that had Cufficed to re-kindle the fulphur, was fo little, that two exfuctions drew it out again, and put an entire ftop to the phenomenon. And, when a. little air was cautioully let in again, the like flalhes began again to appear; which, upon two exfuctions more, quite vanifhed : tho', upon letting in a little frefh air, the third time, they, once more, re-appear'd.
4mabtompto fire $g^{n m-p e m d e r}$ in vacuo, by tbe fwn's rays.

53. Having conveniently placed three or four grains of gun-powder in our receiver, and carefully drawn out the air, we threw the fun-beams, united by a good burning-glafs, upon the powder, and kept them there, for a confiderable time, to little purpofe; till, at length, the powder, inftead of tâking fire, only melted, like a metal. And this was not the only experiment we then made, which difcover'd a great indifpofition, even in gun-powder, to be fir'd in vacuo.

By means of a hat iron.
54. We took a convenient weight of gun-powder, that was extraordinary ftrong, and well made.; and, having placed a red-hot iron in our raceiver, that was capable of holding fixteen pounds of water; when the air appear'd, by the mercurial gage, to have been well exhaufted, we let down a fmall piece of thin paper, wherein the powder had been put, till it reach'd the plate; by whofe heat, we hoped, the paper would be deftroy'd, and the powder made to go off. But, tho' both of them had been previoully well dry'd by the fire, no explofion of the powder enfued ; yet there appear'd, upon the iron-plate, a broad blue flame, furprizingly durable, and refembling that of brimftone. At length, taking off the receiver, we.found, that the paper, contiguous to the iron, was, in part, deftroy'd by the heat; but moft of the grains of the powder feem'd unalter'd, and retain'd their difpofition to be fir'd, notwithftanding the confumption made of their brimftone.

Upon repeating this experiment, we found no explofion to be made for fo long a time, that, thinking it in vain to wait, we let in the air; and, after we had, allo, defpair'd of any efiect from hence, the powder fud--denly went off, with a great flaih, and a confiderable fhake of the receiver, that was yet ftanding on the engine : which thews, that fuch experiments -Thould be made with caution; for tho this receiver would contain two gallons of liquor, the powder, here employ'd, weigh'd but one grain.

.2. beated selffo

55. Into a large ftrong glafs-bubble, we put a few fmall corns of gunpowder; and, baving carefully exhautted the glafs, and fecured it againft the return of the air, we put it upon live-coals, fuperficially cover'd with alhes; by the heat whereof, the fulphureous ingredient of the powder was, in part, kindled, and burn'd blue for a pretty while, and with a flame confiderably great; upon the ceafing whereof, the powder, which, after all, did not take fire, appear'd to have fent up, befides the flame, a large quantity of fulphureous fublimate, that fuck to the upper part of the glafs: and, being held againft a lighted candle, it exhibited reveral vivid colours, like thofe of the rain-bow.
56. We took a fmall, and very fhort piftol, and having well faften'd it, with ftrings, to a great weight, that was placed upon the iron-plate of our engine, we drew up the cock, and primed the pan with dry powder; then, over both the weight and piftol, we whelm'd a receiver, capable of containing two gallons of liquor; and, having carefully cemented it on, we caufed the air to be diligently pump'd out; having, before, put in'z mercurial gate, to hetp us to difcern when it was well exhaufted. Lafty, ordering the pump to be plied, in the mean time, for fear fome air fhould fteal in ; we, by fhortning a ftring that was tied to the trigger of the piftol, did all we could towards firing of the powder in the pan : but tho ${ }^{\text {² }}$ the pan were made to fly open, the powder did not go off; then, letting in the air, and cocking the piftol again, we drew out a little air, to be fure that the receiver was clofely cemented on; when, letting in the air at the top of the receiver, and ftopping it in, we pull'd the trigger again: whereupon, tho' there had been no new powder put into the pan, nor any left in it, but the little that remain'd after the late trial; yet that little readily took fire, and flafh'd in the pan: which made it the more probable, that, in the former trial, fparks of fire had been ftruck out, by the collifion of the flint and fteel. Befides, in another trial, made, the fame hour, in the fame exhaufted receiver, a fpark, or two, were feen to fy out, upon the falling of the cock. It appears, therefore, that, notwithftanding the great indifpofition of gun-powder to be reduced into flame, in vacuo, yet even folid matter is not incapable of being fir'd these; if put into a motion fufficiently vehement.
57. The rays of the fun, being thrown upon fome Aurum fulminans, pla- $\tau_{\text {wo raxy }}$ of ced in an exhaufted receiver, made it go off, and violently fcatter about mating Ansun, the cavity of the glafs a yellowifh duft, which other trials, in the free in vasuo. air, made us look upon as particles of the gold, that was the principal ingredient of this odd compofition.

This experiment we repeated, long after, in another place, with other: veflels, and found the like fuccefs. And once, in the night-time, putting upon a heated iron, $\frac{1}{8}$ of a grain of good Aurum fulminans, of our own preparing, lcofely tied up in a piece of thin paper, we found, that after the. powder had lain long enough upon the iron, to be throughly heated; it went off all together, and with a confiderable flaft.
53. Upon a thick, metalline plate, we put a convenient quantity of flow- Fhamoliffichlys ers of fulphur ; and, having kindled them in the air, fuddenly convey'd profrod, writbthem into a receiver, and made hafte to pump out fome of the included ${ }^{2}$ bur. air; as foon as the pump began to be ply'd, the flame appear'd to be fenfi \rightarrow bly decay'd; and continued lef's at every exfuction of the air ; and, in effect, expired before the air was quite drawn out. And, upon the fudden removal of the receiver, it only afforded, for a very little time, Comewhat. more fmoke in the open air, than it appear'd to do before.
59. Upon a larger cylinder of iron, than the former, made red-hot, we let down a moderate lump of brimftone, in a receiver moderately exhaufted; when, being kindled, it fent. up a great flame, . with. large fumes..

> How- mueh fulphureous, and offenfive fmoke; whereby, though the flame feem'd fomewhat gradually impair'd, yet it manifeftly continued burning much longer than, by the Ghort duration of ocher flames in our receivers, one could expect. And once, particularly, in making this experiment, the Elame lafted, till the receiver was judg'd to be throughly exhaufted; and fome thought it fo furviv'd the exhauftion, that is went not out for want of air-fewel; the brimftone appearing, when we took off the receivar, either to have been confumed by the fire that fed on it, or to have cafually ran off from the iron, the heat whereof had kept it conftantly melted.
Adxrable fame 60. Having obtain'd a faline Epirit, which, by an uncommon way of of a metalline -jujftance in va. suo. preparation, was made exceeding tharp, and piercing, we put into a via, capable of containing three or four ounces of water, a convenient quantity of new filings of pure fteel; which, being moiften'd in the vial, with a little of the faline menftruum, were, afterwards, drench'd with more; whereupon the mixture grew very hot, and yielded large and fetid fumes. And fo inflammable was this fmoke, that, upon the approach of a lighted candle, it would readily take fire, and burn with a bluifh, and fomewhat greenifh flame, at the mouth of the vial, for a confiderable time together; 'and that, tho' with little light, yet with more ftrength than one would eafily fufpect.

This flaming vial, therefore, we convey'd into a receiver, which he who ufed to manage the pump affirm'd, would be exhaufted by about fix ex:fuctions; and the receiver being well cemented on, upon the firft fuck, the flame fuddenly appear'd four or five times as great as before; becaufe, as we fuppofed, upon the withdrawing of the air, and, confequently, the weakning of its preffure, numerous bubbles were produced in the menftruum; which breaking, fupply'd the neck of the vial with inflammable tteams; and thefe, we thought, toak fire, with fome noife. Upon the fecond exfuction of the air, the flame blazed out, as before; and fo it, likewife, did upon the third; but, after that, it went out : nor could we re-kindle any, fire, by fuddenly removing the receiver; only we found, that there remain'd fuch a difpofition in the fmoke to inflammability, that holding a lighted candle to it, a flame quickly enfued.
61. Having fo united highly rectified fpirit of wine with a prepared metal, that they would afford a vifibly ting'd flame; we put this mixture into a fmall glafs lamp, furnifh'd with a very flender wieck, which the mixture would not burn, whilft there was liquor enough left to moiften it well; and putting this lighted lamp into a convenient part of a receiver, able to hold two gallons of water, we made hafte to cement on the glafs to the engine ; yet found not, in two or three feveral trials, that, afrer the pump beganto be work'd, fo little a quantity of ting'd Hame lafted more than half a minure.

We alfo obferv'd, in repeating this experiment, that when the flame ibegan to decay, the turm-key, being now and then drawn almoft ont, the seing'd flame once lafted a minute and half, and another time longer;
loager; that the turn key being; from the frift, taken out, the flame lafted two minutes; that, in the fame cafe, a pipe being bedded in the cement, at the bottom of the glafs, and open at both ends, each almoft as big as the orifice fill'd by the turn-key, the ting'd fpirit feem'd to burn as if the flame would have lafted very long, had we permitted it; and laftly, that the orifice, at the top, being ftopp'd with the turn-key, tho' the pipe were left open at the bottom, it plainly, in a fhort time, feem'd greatly to decay, and ready to expire $;$ but caufing one to blow in gently at the pipe, with a pair of bellows, tho' this did not keep the flame vigorous, yet it continued alive for above four minutes; and then obferving it to be manifeftly fronger than it was, when we began to refrefh it with the bellows; we ceas'd from blowing, and found, that tho' the glafs pipe was itill left open, yet, within about one minute, the flame entirely vanifh'd.
62. Eminent writers, both ancient and modern, tell us, without fcru \rightarrow Fhm profoid ple, that naptha and camphire will burn under water; but I had never ${ }^{\text {a }}$ the good fortune to fee them do fo ; and doubt, thefe writers deliver not what they affirm from experience. And tho', in celebrated authors, I have met with many compofitions, that will not only burn under water, but be kindled by it; yet I found thofe I have had occafion to confider, to be fo lamely, or fo darkly, and fome of them, I fear, fo falfely fet down, that by the following compofition, how flight foever it may feem, I have been able to do more than with things they fpeak very promifingly of.

We took of gun-powder, three ounces; of well burn'd charcoai, one dram; of good fulphur or flower of brimftone, half a dram ; of choice faltpeter, a dram and half: thefe ingredients being reduced to powder, and diligently mix'd without any liquor, we fill'd a large goofe-quilh with it; for the kindling whereof, the open orifice of the quill, or pipe, was carefully ftopp'd with a convenient quantity of the fame, made up with as little chymical oil, or water, as would bring it to a fit confiftence. This wild-fire we kindled in the air ; and the quill, together with a weight to which 'twas tied, to keep it from afcending, we flowly let down to a convenient depch, under water; where it would continue to burn, as appear ${ }^{\circ} d$ by the great fmoke it emitted, and orher figns, as it did in the air; becaufe the Hhape of the quill kept the dry mixture from being accefible to the water, at any other part than the orifice; and there the ftream of fired matier iffudd out with fioh violence, as inceffantly beat off the neighbouring water, and kept it from entering into the cavity that contain'd che mixture, which, therefore, would continue burning, till 'twas confumed.
63. In trying to kindle a combuftible fubstance, in our exhaufted recei- 1 oda phemver, it happen'd to fall befide the iron, whereby our intended experiment fenom of tbe was defeated; but whilt we were confidering what was to be done on this in vase ofe. occafion, and had not yet let in the air, nor brought in the lights that were remoned out of the room, we were furprized to fee fomething burn tike a pale, bluifh flame, almoft in the midft of the cavity of the receiver; and, at firft, fufpected it tobe fome deception of the fight: but, all the by\therefore Vol. II. $\mathbf{X x x}$ ftanders look'd at it with great attention, and found it to laft much longer, than I remember to have feen any flame in an exhautted receiver. I fhould have expected that it proceeded from fome brimftone ficking, unobferv'd, to a part of the iron we had formerly employ'd to kindle fulphur, had we not, juft before, kept it red-hot in the fire. But tho' we much wonder'd whence this flame proceeded, we did not haften its extinction; and at length, when it expired of itfelf, we let in the air, and perceiv'd, upon the concave part of the iron ${ }_{2}$ which we judg'd to be the place where the flame had appear'd, a piece of melted metal, fuppofed to have been faften'd to the ftring whereto the fewel we defign'd to kindle, had been tied, in order to let it down the more eafily; and this made us conceive, that the ftring happening to be burned, by the exceffive heat of the iron, the piece of metal fell into the cavity of it ; and, that by the fame heat, the more combuftible part, which the chymifts call the fulphur, was melted, and kept on fire, and continued burning, as we have related. The piece of metal was judg'd to be lead, but having not, formerly, oblerv'd fuch a difpofition in lead, to be inflam'd, I confider'd it attentively, and perceiv'd, that 'twas fome fragment of a mixture of lead and tin, that I caus'd to be melted in a certain proportion. Upon this account, it feems, the mixture of the ingredients had-acquired fuch a new texture, as fitted the mals to afford this odd phenomenon; which argues, that there may be flames of metalline fulphurs produced as eafily; without the concurrence of the air, as that of common fulphur; and continue to burn longer than that in our vacuum.

AETual flumo.

 propegated with aiffocichy in van ©64. Having placed our cylindrical plate of iron, firt brought to be redhot, in a receiver, capable of containing two gallons of water ; and having, alfo, diligently pump ${ }^{3} d$ out the air, we kindled a little fulphur, upon the heated plate ; and then a piece of dry ${ }^{*} d$ fpunck, tied to a ftring, was let down to the flame. When the experiment was finif'd, and the fpunck taken out, we found it, in feveral places, not manifeftly alter'd fo much as in colour; and, in thofe parts that had been moft expos'd to the flame, it was turn'd to a fubftance very different from afhes; being black, and brittle as tinder, and, like that, exceedingly difpofed to kindle, upon the touch of fire.

An attompto maks fleme minde campibire, citbout the bolp? of air.
65. Into the fame receiver, we convey'd the fame cylindrical plate of iron; and, when the air had been thoroughly pump'd out, we let a piece of fuch brimftone down upon the hot iron, as would there kindle with the heat. A little above this fulphur, we had tied to the fame ftring, a piece of camphire ; that being a body exceedingly apt to take fire, or, as it were, to draw it at the flame of lighted brimftone : but our fulphur, melting with the heat of the iron, dropp'd from the ftring 'twas faften'd to. As foon as it came to the bottom, where it was diftant from the vehement heat of the metal, the flame expired ; but a part of it, that happen'd to ftick to the fide of the iron, was inflamed by it, and the flame reach'd the camphire, without being able to make it blaze.

We, alfo, attempted to kindle one piece of fulphur in vacuo, by the flame provanrice: of another, tied a little lower on the fame ftring, that it might firft touch the heated iron, and be thereby fet on fire ; but tho' we could find nothing amifs in the kind of fulphur, we then ufed, yet we were not able, even by a repeated trial, to make it take fire upon the iron; where, neverthelefs, it melted, and feem'd, a little to boil.
A third trial was not fo unfuccefsful; for, having, in the receiver, well exhaufted, let down a card-match, upon a very hot iron, the lower extreme of it was kinded thereby. But though the fulphurated part of the match thusflamed away, yet the remaining part, which was a mere piece of card, was not thereby turn'd into flame ; nor, in moft places, fo much as fenfibly fcorch'd, or black'd, though it had been purpofely dry'd be-fore-hand.

- 66. Upon a paper, laid on a convenient part of the plate of the engine, we made a train of dry powder, as long as the glafs would well cover; then, carefully faftening on the receiver, we exactly pump'd out the air : which done, we took a good burning-glafs, and, about noon, caff the funbeams thro ${ }^{3}$ it, upon a palt of the train ; but the indifpofition of the powder to fire was fo great, that it fmoked, and melted, without going off. We afterwards employ'd a thinner, and more traniparent receiver, which fo little weaken'd the fun's rays, that being kept obftinately upon the fame part of the train, they were able to fire feveral parts, one after another, tho' they could not caufe the flame to propagate ; only thofe parts that were melted, did, at length, kindle, and fy away, leaving the reft unalter'd : fo that I found feveral little mafies of diffolved matter, in feveral parts of the train, with the powder unchang'd in all the others. And fome of thefe maffes were contiguous to grains of the powder, which both appear'd unchang'd, and kindled readily, and flafh'd all away, as foon as I caus'd the burning-glafs to be applied to them in the open air.

67. For farther confirmation of fo odd an experiment, I hall add, that to try whether by the help of one of thofe little inftruments, wherewith the ftrength of powder is commonly examin'd, we could find any difference made by the abfence and prefence of the air, in the refiftance of the inftrument, or the effects of the powder on it; we faften'd it to a competently heavy, and commodiounly fhaped weight of lead: and when 'twas carcfully fill'd, and primed with powder, we placed it in a receiver of a convenient bignefs; whence we pump'd out the air after the ufual manner, tho', perhaps, with more than ufual diligence. But tho', at length, after the powder had long refifted the beams of the fun, thrown on it by a good double convex-glafs, it took fire at the touch-hole, and fill'd the receiver with fmoke; yet this kindled powder could not propagate the flame, to that which was in the box, how contiguous foever the parcels were to one another: though, when the inftrument was taken out into the air, where the touch-hole appear'd to be free; as foon as ever new priming, with the fame fort of powder, was put in, the whole very readily went off: .And when we cays'd the inftrument to be new charged; and, upon its

Pbyfoco:mechanical Experimeats.

Puynamics. firing only at the touch-hole in the exhaufted rectiver, onder'd new priming to be added, without fo much as taking the inftrument out of the glafs; tho', afterwards, this was clos'd again, but, without being exhaufted, the powder, clofely but up in the glais, readily went off; as wrell that which was in the box, or cavity, of the powder-tryer, as that which lay on the outward part of it. And this experiment was repeated, with the like fuccefs.

Two diffirent trials with different events, to kindle gex-pownder in vacwo.
68. A few corns of gun-powder, being included in a very fmall bubble, freed from air, and fecured againtt the recurn of it, and then apply'd warily to coals cover'd with alhes, did neither go off, nor burn; but afforded a little yellow powder, that feem'd to be fulphur, fublimed to the upper part of the glafs. But two larger bubbles, tho ftrong, whereof one had the air but in part, and the other totally evacuated, being provided, each of them, with a greater quantity of powder ; a while aftuer they were pat upon quick-coals, they were both blown to pieces, with a report almoft like that of a mufquet : but, tho' this was done in a dark place, yet we did not perceive any real liame produced.

Experiments, Ahering the no Lation betruixt air, and tbe Flamma vitalis of animals ${ }_{3}$ and, frift', an animal, inclusded with tbe flame of \int pirit cime
69. We put a fpoonful of highly rectify'd fpirit of wine, into a fmall glafs-lamp, conveniently ghaped, and purpofety blown, with a very fmall orifice, at which we thruft in a flender cotton-wieck; we, alfo, provided a tall glats-receiver, in length eighteen inches, that contain'd above twenty pints of water. This receiver, which was open at both ends, had its upper orifice cover'd with a brafs-plate, faften'd on very clofe with good cement ; and, for the lower orifice, which was far the wideft, we had provided a brafs-plate, furnifh'd with a competent quantity of the cement we employ'd to keep the air out of the pneumatical engine; by means whereof, we could fufficiently clofe the lower orifice of our receiver, and hinder the air from getting in at it. We, then, lighted up the fmall glafslamp, and placed it, together with a green-finch, upon the brafs-ptate, and, in a trice, faften'd it to the lower orifice of the receiver, and then watch'd the event; which was, that, within two minutes, the flame, after having, feveral times, almoft difappear'd, was utterly extinguin'd: but the bird, tho', for a while, he foem'd to clofe his eyes; as tho' be were fick, appear'd lively enough, at the end of the third minute, when I caus'd him to be taken out.

After he had, by being kept in the free air, recover'd, and refref'd himfelf, the former trial was repeated; and, at the end of the fecond minute, the flame of the lamp went out: but the bird feem'd not to be endanger'd, by being detain'd a while longer.

After this, we put in, with the fame bird, two lighted lamps at once, whofe flames lafted not one whole minute, before they went out together; but the bird appear'd unhurt, after having been kept five or fix times as long, before we took off the receiver.

In the tall receiver, above-mention'd, we included a moufe, with a lighted lamp, fill'd with the fpirit of wine; but, before the experiment was near finim'd the moufe, being of biberty withim the glafs, made fift ∞ ex-
extinguifh the flame; which, being revived, without taking out either the Pususarics: lamp, or the animal, the fpirit of wine burned about a minute longer; during which time, the moufe appear'd not be grown fick, no more than when, for fome minutes after the extinction of the flame, he had been kept in the fame clofe and infected air.

We, afterwards, placed the fame moufe in another receiver, which feem'd lefs, by a third, than the former; and in it we, alfo, fix'd a piece of flender wax-candle, which continu'd burning, in this receiver, but for one minute ; and, during that, it emitted much fmoke: the animal, neverthelefs, appear'd lively, even after we had kept him much longer in that infected air. And the fame candle, without being taken out, was. lighted again, but burned not fo long as before; yet it fufficed to darken the receiver, and, therefore, probably, much clogg'd the included air: in which, neverthelefs, the moufe being kept for eight or ten minutes longer, he appear'd, neither when taken out, nor a while before, to have receiv'd any confiderable harm from his detention.
70. We included a green-finch, and a piece of lighted candle, in a the deration of great capp'd receiver, capable of containing two gallons of water, and very abird's liff, carefully cemented on to the pump: in this glafs, we fuffer'd the candle to tompararestion of burn, till the flame expired, which it did within lefs than two minutes; abrwing coel whilft the bird feem'd to be in no danger of fudden death; and, tho' kept vacoo. a while longer in that clogg'd and fmoaky air, he appear'd well, when the receiver was remov'd. We, afterwards, put the fame bird into the receiver, with a piece of a fmall wax-taper; whofe flame, tho it lafted; longer than the other, yet the bird out-liv'd it: and, 'twas judged, he would have done fo, tho' the flame had been much more durable. After this, we included the fame bird, with the former candle, in the receiver, which we had caus'd to be often blown into with a pair of bellows, to drive out the fmoke, and infected air ; and, then, beginning to pump, we found, that the flame began to decay more fuddenly, and the bird to: be much more difcompos'd, than in the former experiments: but ftill hefurviv'd the flame, tho' not without convulfive motions.

We repeated the experiment with a piece of wax-taper, and the fame bird, which, tho' caft into dangerous fymptoms, apon the gradual evacuation of the air, out-liv'd, not only the flame, but the fmoke too, that iffued from the kindled wieck; a circumftance that was, alfo, obferv'd in the preceding trial. Laftly, having freed the receiver from fmoke, and fupply'd it with frefh air; we put in, with the fame bird, a piece of charcoal, of about two inches in length, and half an inch in breadth, whichy juft before, had been well blown with a pair of bellows; immediately pumping out the air, till none of the fire could be difcern'd, and till it. feem'd irrecoverable, by the admiffion of the outward air; which being, afterwards, admitted, the bird was, indeed, very fick, yet capable of 2 , very quick recovery. And this experiment we, with the fame animal,. and re-kindled coal, made over again, with the fame fuccefs.

Pbyfico-mechanical Experiments.

 and tbeir lumi mous matter, in vacuo.71. We took two glow-worms, that thone vividly, efpecially one of them, whofe light appear'd Atrong, and ting'd, as if it had been tranfmitted thro' a blue glafs; thefe we laid upon a little plate, which we included in a fmall receiver, of finer glafs than ordinary; and, having remov'd the candles, that no other light might obfcure that of the infects, we waited in the dark, till it was confpicuous, and then order'd the air to be pump'd out ; and, upon the very firft exfuction, there began to be a diminution of the light, which grew gradually dimmer, as the air was more withdrawn; till, at length, it quite difappear'd. This darknefs, having been fuffer'd to continue a long while in the receiver, we let in the air again, whofe prefence reftor'd, at leaft, as much light as its abfence had depriv'd us of. This experiment was repeated, with the addition of one more of thofe infects; when they all three gradually loft their light, by the exhauftion of the receiver, and regain'd it, by the return of the air. And here we let in the air by degrees, and with an interval or two; and obferv'd, that as the light was gradually diminifh'd, upon withdrawing the air ; fo the returning fplendor was gradually increas'd, as we let more in upon the worms.
72. 'Tis known, that if glow-worms be kill'd, whilt they are fhining, their luminous matter may continue to thine long after 'tis taken out of their bodies. And, having put fome of that, we took out of the foremention'd infects, upon a little paper, and included it in the receiver we employ'd; the candles being remov'd; we perceiv'd it to thine vividly, before the pump was fet on work; and, afterwards, to grow dimmer, by degrees, as the air was exhaufted, till, at length, it quite vanifid: but it re-appear'd immediately upon the air's return. This experiment was repeated twice more, with the fame fuccefs. But we took notice, that the luminous matter, after the air was let in, feem'd not only to have regain'd its former degree of light, but to have acquir'd a greater ; as it once happen'd, alfo, in the experiment made on the living worms. It was fomewhat ftrange, to obferve, that fo very fmall a quantity of air, as we at firf let in, before the light revived, was fufficient to make it become plainly vifible, tho' dim : in which ftate it continu'd, till we thought fit to admit more air.
73. Having, at another time, procured two more of thofe infects, whereof one was judg'd to be as large as three ordinary ones; when we had brought them out of the country to London, the great worm appear'd to be dead; but, finding him to retain a confiderable degree of light, in the under part of his tail, we put him into the fmall receiver, formerly mention'd, to try whether, after the death of the animal, the fhining matter would retain its former properties; and, at the firft froke of the pump, the light was not abolifh'd, but continu'd rivid: and fo it did, when the air being let in, and again withdrawn, the trial was made a fecond time. I, afterwards, caufed the receiver to be exhaufted, once or twice more; and, at length, perceiv'd, that the light began to diminih, as the air was withdrawn; and, at laft of all, it fo difappear'd, that we could not fee it: but, upon the re-admiffion of the air, the light thone vividly, as before, if not more bright.

This

Pbyfcc-mechanical Experiments.

This experiment was repeated, with the fame fuccefs, and both times, the like happen'd to the light of the dead one, and of the living one, that we included with it; tho' there was this difparity betwixt them, that the luminous part of the dead worm appear'd much larger than that of the living one : and the light of the latter was of a very greenifh blue; but of the former, a white yellow.
74. A moufe, weighing about three drams and an half, being put in one fcale of a very nice balance, was counterpoisd, together with a fring, put about his neck in a noofe; and foon after, by drawing the ends of that, we ftrangled him: when we judg'd him quite dead, we weigh'd him again; and, tho' nothing was feen to fall from him ; yet, contrary to the receiv'd tradition, that bodies are much heavier dead than alive, we found his weight diminim'd about ${ }^{7 \frac{7}{7}}$ of a grain; which, probably, proceeded from the avolation of feveral fubtile particles, upon his violent and convulfive ftrugglings in death.

Afterwards, in a larger balance, made for nice experiments, we took a very young kitten, between ten and eleven ounces in weight, and caus'd him to be ftrangled on the fame fcale, wherein he had been put. But, being not immediately difpatch'd, as young animals of this kind are not eafily deftroy'd for want of refpiration; we found him, by that time he was quite dead, lighter, by four grains.
75. Nature, having furnifh'd water-fowl with a peculiar ftructure of fome veffels about the heart, to enable them, when they dive, to of nfivation fufpend, for a while, the act of refpiration under water, without preju- ede wen dice ; I thought fit to try, whether fuch animals, would, much better than others, fuftain the want of the air in our exhaufted receiver.

We put a full grown-duck into a receiver, whereof the filld, about a third part; but was unable to ftand in any eafy pofture therein: then pumping out the air, tho' the feem'd, at firft, to continue well, fomewhat longer than a hen in her condition would have done ; yet, within one minute, fhe appear'd much difcompos'd, and, between that and the fecond minute, her convulfive motions encreafed fo much, that, her head, hanging carelelly down, the feemed to be juft at the point of death; from which, we prefently refcued her, by letting in the air. And, to manifent, that it was not the clofenefs and narrownefs of the veffel, that produced this great, and fudden change, we, foon after, included the fame bird in the fame receiver ; and; having cemented it on very clofe, we fuffer'd her to ftay, thus fhut up with the air, five times as long as before, without perceiving her to be difcompos'd; and, the might, probably, have continued. longer in the fame condition.
76. Having procured a duckling, that was yet callow, we convey'd her into the fame receiver, wherein the former had been included, and obferved, that, tho', for a while, the appear'd not much diforder'd, whilft the air was pumping out ; yet, before the firft minute was ended, the gave manifett figns of being much difcompofed : and the operation being continued a while longer, convulfive motions enfued fo faft, that, before the
fecond minute was expired, we were obliged to let in the air, whereby the quickly recover'd.

When the receiver was pretty well exhaufted, the included bird, appear'd manifeftly bigger, than before the air was withdrawn, efpecially about the crop; tho that was very turgid before. We, alfo, kept the fame duckling, in the fame receiver, very clofe, for above fix minutes, without perceiving her to grow fick upon her imprifonment; which, yet lafted above thrice the time, that before fufficed to reduce her to a gaiping condition.

It not being intended, that water-fowl, thould, any more than other birds, live in an exceeding rarified air, but, only be able to continue, upon occafion, under water, it may fuffice, that the contrivance of thefe parts relating to refpiration, be barely fitted for that purpofe.

Vipers being endowed with lungs, tho' of a different ftructure from thofe of other animals; and their blood being, as to fenfe, actually cold; I thought, it might be worth trying, what effect the abfence of the air would have apon them.
77. Fan. 2. We included a viper in a fmall receiver, and as we drew out the air, the began to fwell, and afforded us thefe phenomena.

1. It was a long while after we had left pumping, before the began to fwell, fo much as forced her to gape, which, afterwards, the did.
2. She continued, above two hours and a half, in the exhaulted receiver, without giving clear proof of her being killed.
3. After the was once fo fwelled, as to be compell'd to open her jaws, the appear'd flender and lank again; and yet, very foon after, appear'd fwell'd again, and had her jaws disjoin'd as before.
4. Including a viper in a fmall receiver, we emptied it very carefully; when the viper moved up and down within, as if it were to feek for air ; and, after a while, foamed a little at the mouth, and left of the foam, fticking to the infide of the glafs: her body fwelled, not confiderably, and her neck lefs, till a pretty while after we had left off pumping; but afserwards the body and neck grew prodigioully rumid, and a blifter appear'd upon her back. An hour and an half after the receiver was exhaufted, the diftended viper, gave, by notion, manifeft figns of life; but, we obferved none afterwards. The tumor reach'd to the neck, but did not feem much to fwell the under-jaw. Both the neck, and a great part of the throat, being held betwixt the eye and the candle, were tranfparent, where the fcales did not darken them. The jaws remain'd mightily open'd, and fomewhat diftorted; the Epiglottis, with the Rimula Laryngis, (which remain'd gaping) was protruded almoft to the further end of the under-jaw. As it were, from beneath the Epiglortis, came the black tongue, and reached beyond it, but feemed, by its pofture, not to have any life; and the mouth alfo was grown blackinh within: but, the air being re-admitted, after twenty-three hours in all, the viper's mouth was prefently clofed, tho', foon after, it was opened again, and continued long fo; whilf fcorching or pinching the tail, made a motion in the whole body, that argued fome life.

Pbyfico-mechanical Experiments.

79. April 25. We included an ordinary, harmlefs fnake, together with Przowarice. a gace, in a portable receiver, which, being exhaufted, and well fecured a-4 make. gainft the ingrefs of the air, was laid afide in a quiet place, where it continued from about ten or eleven a-clock in the forenoon, till about nine the next morning: and then, looking upon the fnake, though he feemed to be dead, and gave no figns of life, upon the fhaking of the receiver, yet, upon holding the glafs, at a convenient diftance, from a moderate fire, he, in a fhort sime, manifelted himfelf alive, by feveral tokens; and even by putting out his forked tongue. In this condition I left him, and came not to look upon him again, till the next day, early in the afternoon; at which time, he was grown patt recovery, and his jaws, which were formerly fhut, gaped exceeding wide, as if they had been ftretched open by come external violence.
80. Sept.9. We included a large, lufty frog, in a fmall receiver, drew out the Frogs air, and left her not very much fwell'd, and able to move her throat; tho ${ }^{\circ}$ not fo faft as when the breathed freely, before the exfuction of the air. She continued alive for about two hours, that we took notice of, fometimes removing from one fide of the receiver to the other; fhe fwell'd more than before, and did not appear, by any motion of her throat, or thorax, to exercife refpiration ; but her head was not very much fwell'd, nor her mouth forced open. After the had remained there above three hours, perceiving no fign of life in her, we let in the air, upon which the tumid body fhrunk very much, but feemed not to have any other change wrought in it ; and tho we took her out of the receiver, yet, in the free air, the continued to appear ftark dead. But, having caufed her to be laid upon the grafs, in a garden, all night, we found her, the next morning, perfettly alive again.
81. Fune 29. About eleven of the clock in the fore-noon, we put a frog into a fimall receiver, containing about fifteen ounces, and one quarter, troyweight, of water; out of which we had, tolerably well, drawn the air: (fo that when we turn'd the cock under water, it fuck'd in about thirteen ounces, and one quarter, of water,) the frog continued, the receiver being all the while under water, lively, till about five of the clock in the afternoon, when the expired. At the firft the feemed not to be much alter'd by the exfuction of the air, but continued breathing, both with her throat and lungs.
82. Sept. 6. We included into a pretty large receiver, two frogs newly taken; the one not above an inch long, and proportionably flender; the other, very large and lufty. Whilft the air was drawing out, the leffer frog skipp'd up and down very lively, and, feveral times, clamber'd up the fides of the receiver, fo that he fometimes wrefted himfelf againft the fides of the glafs. When his body feemed to be perpendicular to the horizon, if not in a reclining pofture, he continued to skip up and down a while, after the exfuction of the air; but, within a quarter of an hour, we perceived him to lie ftark dead, with his belly upwards. The other frog, that was very large and Atrong, tho' he began to fwell much upon withdrawing the air, and
[^6]
Pbyfco-mechanical Experiments.

provarica.feemed to be diftrefs'd, yet he held out half an hour; when it was remarkable, that the receiver, though it had withftood the preffure of the outward air, during that fpace, notwithftanding a piece of it had been crack'd out, but cemented in again, yet at the end of the half hour, the weight of the outward air fuddenly beat it in, and thereby gave the imprifon'd frog relief.
83.Sept. 1 r. We convey'd a fmall frog into a very fmall portable receiver, and began to pump out the air. At firft the was lively, but when the air was -confiderably withdrawn, fhe appear'd to be very much difquieted; yet not fo, but that, after the operation was ended, and the receiver taken off, fhe was perfectly alive, and continued to appear fo, for near an hour, tho' the abdomen was very much, and the throat fomewhat extended; the latter having, alfo, left off the ufual panting motion, which is fuppofed to argue and accompany the refpiration of frogs. At the end of about threehours and a quarter, after the removal of the receiver from the pump, the air was let in ; whereupon the abdomen, which, by that time, was ftrangely fwell'd, not only fubfided, but feemed to have a great cavity in it, as the throat, alfo, proportionably had; which cavities continued after the frog was gone paft all recovery.
84. April 14. A large frog was convey'd into a plated receiver, and the air being withdrawn, her body, by degrees, diftended. The receiver, with the gage, was kept under water near feven hours; at the end of which, I found it tight, but the frog dead, and exceedingly fwell'd: upon letting in the air, the became more hollow and lank than ever.

Eitingo

85. We took a kitling one day old, and put him into a very fmall receiver, that it might be the fooner exhaufted; and within about one minute after the air firft began to be withdrawn, the little animal, which, in tho mean time, gafped for life, and had fome violent convulfions, lay as dead, with his head downwards, and his tongue out; but, upon letting in the air, he, in a trice, thew'd figns of life; and, being taken out of the receiver, quickly recover'd. We then fent for a kitling of the fame litter, which being put into the fame receiver, quickly began, likethe other, to have convulfions, and after to lie as dead ; but, obferving very narrowly, I perceived fome little motions, which made me conclude him alive. And accordingly, tho' we continued pumping, and could not perceive that the engine leaked, the kitling began to ftir again, and, after a while, had ftronger and more general convulfions than before; till at the end of fudl fix minutes after the exfuction of the air was begun, the animal feeming quite dead, the outward air was re-admitted into the receiver; which not reviving him, as it had done the other, he was taken out of the veffel, and lay with his mouth open, and his tongue lolling out, without any fenfible refpiration and pulfation; till having order'd him to be pinched, the pain, or fome internal motion, produced by the external violence, made him, immediately, give manifeft figns of life; tho' there was yet no fenfible motion of the heart, or lungs: but afterwards gaping, and fetching his breath in an odd manner, and with much ftraining, as I have feen fome fortus's do_{2} when cut out of the womb, he,
he, by degrees, within about a quarter of an hour, recover'd. We, afterwards, fent for another, kittend at the fame time; and inclofing that, alfo, in the receiver, obferv'd the violent convulfions, and, as it were, gafping for breath, into which he began to fall, at the fecond or third fuck, ended in a feeming death, within about a minute and a half. But, caufing the pump to be ply'd, the kitling gave manifeft figns of life, after he had endured feveral convulfions, as great as thofe of the firft fit, if not greater. When feven minutes, from the beginning of the exhauftion, were compleated, we let in the air ; upon which, the little creature, that feem'd ftark dead before, made us fufpect he might recover : but, tho' we took him out of the receiver, and put Aqua Vita into his mouth, yet he, irrecoverably, died in our hands.
86. To determine the quantity of air harbour'd in the pores of fluids, Exppriments ${ }^{\text {ont }}$.
 tain'd in water, would appear to leffen the bulk of the water, if it were tor, pores of who fuffer'd to fly away in an open tube ; we let it efcape, in an exhaufted receiver, without any artifice to catch it : in which trial, the water did not part with any thing of its bulk, that made a diminution fenfible to the eye. We, therefore, endeavour'd to make this lofs vifible, by fome other experiments.

A glafs-tube, feal'd at one end, and about thirty-fix inches in length, being fill'd with water, and inverted into a glafs-veffel, not two inches in diameter, and but a quarter of an inch, or little more, in depth; the glaffes were convey'd into a fit receiver, and the air leifurely pump'd out, and fomewhat flowly re-admitted; when, the numerous bubbles, that had afcended, during the operation, conftituted, at the top, an aerial aggregate, amounting to $-\frac{1}{9}$, wanting about an hundredth part of an inch.
87. Prefently after, another tube was fill'd with the fame water, and inverted; when, the water, being drawn down to the furface of that in the veffel, and the air let in again, the water was impell'd up to the very top, within a tenth, and half a tenth of an inch.

The latter tube was forty-three inches and a half above the furface of the ftagnant water; the air, collected out of the bubbles, at the top of the water, was, the firft time, above three quarters of an inch; and the fecond time we eftimated it, at one half, and one fixteenth. The firft time, the water, in the pipe, was made to fubfide full as low as the furface of the ftagnant water; the fecond time, the loweft that we made it fubfide, feem'd to be four or five inches above the furface of the water in the open veffel.

But the air, at the top of the tube, poffefs'd more room than its bulk abfolutely required; becaufe it was fomewhat defended from the preffure of the atmofphere, by the weight of the fubjacent cylinder of water, which, perhaps, was about three or four feet long.
88. We provided a clear round glafs, furnifh'd with a pipe, or ftem, about nine inches in length; the globular part of the glafs being, on the outfide, about three inches and a half in diameter: the pipe of this glafs
was, within an inch of the top, melted at the flame of a lamp, and drawn out, for two or three inches, as flender as a crow's quill, that the decreafe of the water, upon the recefs of the air, harbour'd in its pores, might be the more eafily obferv'd, and eftimated. Above this flender part of the pipe, the glafs was, nearly, of the fame fize with the reft of the pipe ; that the aerial bubbles, afcending thro' the flender part, might there find room to break, and fo prevent the lofs of any part of the water.

This veffel being filled, till the liquor reach'd to the top of the flender part; where, not being uniformly enough drawn out, it was fomewhat broader than elfewhere ; we convey'd the glafs, together with a pedeftal for it to reft upon, into a tall receiver; and, pumping out the air, there difclofed themfelves numerous bubbles, afcending nimbly to the upper part of the glafs, where they made a kind of froth: but, by reafon of the figure of the veffel, they broke at the top of the flender part, and fo never came to overflow.

This done, the pump was fuffer'd to reft a while, to give the aerial particles, lodg'd in the water, time to feparate themfelves, and emerge; when, the pump was ply'd again. Thefe vicifitutes of pumping, and refting, lafted for a conliderable time; till, at length, the bubbles began to be very rare: foon after which, the external air was let into the receiver; when, it appear'd fomewhat ftrange, that, notwithftanding fo great a multitude of bubbles as had efcaped out of the water, I could not, by attentively comparing the place where the furface of the water refted at firft, (to which a mark had been affix'd) with that where it now ftood, difcern the difference to amount to above an hair's breadth: and the chief operator in the experiment profefs'd he could perceive no difference at all.
89. Filling a glafs of the fame fhape, and much of the fame bignefs as the former, with claret-wine, and, placing it upon a convenient pedeftal, in a tall receiver, we caus'd fome of the air to be pump'd out; whereupon there emerged, thro' the flender pipe, fo very great a multitude of bubbles darred, as it were, upwards, as both pleas'd and furpriz'd us; but forc'd us to go warily to work, for fear the glafs thould break, or the wine overflow : wherefore, we, feafonably, left oft pumping, before the receiver was near exhaufted, and fufter'd the bubbles to get away as they could, till the danger was paft : then, from time to time, we pump'd a little more air out of the receiver; the withdrawing a moderate quantity of air at a time fufficing, even at the latter end, to make the bubbles copiounly and fwiftly afcend, for above a quarter of an hour together.

The little inftrument made ufe of in thefe experiments, being defign'd to examine, among other things, the quantity of bubbles lurking in feveral liquors, may be apply'd to fpirit of wine, and chymical oils. And fome circumftances of our trials made us think, that it might be worth examining, what kind of fubftance may be obtain'd by this way of treating aerial and fpirituous corpufcles.
90. An oyfter, being put into a very fmall receiver, and kept there long Pxzomarice. enough to have, fuccelfively, kill'd three or four birds, or beafts, ' 'cc. was skrlffh in an not thereby kill'd, nor, for ought we could perceive, confiderably di-cesuaxtited rem fturb'd; only at each fuck we perceiv'd, that the air, contain'd between ${ }^{\text {ne }}$ the two fhells, broke out at their commifiure; as we concluded from the foam which, at thofe times, came out all around that commiffure. About twenty-four hours after, I found, that both this oyfter, and another, that had been put, at the fame time, into the receiver, were alive.
On the fame day we put a pretty large craw-fifh into a large receiver, and found, that tho' he had been before injur'd by a fall, yet he feem'd not to be much incommoded, by being included, till the air was, in great neafure, pump'd out; and then his former motion prefently ceas'd, and he lay as dead, till, upon letting in a little air, he foon began to move afreh ; and, upon withdrawing the air again, he prefently, as before, became movelefs. Having repeated the experiment two or three times, we took him out of the receiver, when he appear'd not to have fuffer'd any harm.
91. Having put an oyfter into a vial, full of water, before we included it in the receiver, that thro the liquor the motion of the bubbles, expetted from the fifh, might be the better feen, and confider'd; this oyfter prov'd fo ftrong, as to keep itfelf clofe fhut, and reprefs'd the eruption of the bubbles, that, in the other, forc'd open the fhells, from time to time; and kept in its own air, as long as we had occafion to continue the trial.
92. A craw-fifh, that was thought more vigorous, being fubftituted in the place of the former craw-filh, tho' once he feem'd to lofe his motion together with the air; yet, afterwards, he continu'd moving in the receiver, in fight of our pumping.
93. We took a receiver, thaped almoft like a bolt-head, containing near A fcaloff is a pint; and the globular part of it, being almoft half full of water, we receivem. put into it, at the orifice, a fmall gudgeon, about three inches long; which, when it was in the water, fwam nimbly up and down therein: then, having drawn out the air, fo that about nineteen parts of twenty, or mose, were exhaufted; we fecur'd the return of the air from injuring our experiment

Now the neck of the glafs, bcing very long, tho' there appear'd numerous bubbles all about the fifh; yet the reft of the water, notwithftanding the withdrawing of fo much air, emitted no froth, and but few bubbles.

The fifh, both at his mouth and gills, for a long time, difcharg'd fuch a quantity of bubbles, as appear'd ftrange; and for about half an hour, when ever he refted a while, new bubbles would adhere to many parts of his body, (as if they were generated there) efpecially about the fins and tail; fo that he would appear almoft befer with bubbles: and if, being excited to fwim, he was made to fhake them off, he would quickly, upon a little reft, be befet with new ones, as before.

Almoft

Almoft all the while, he would gape, and move his gills, as before he was included; tho', towards the end of the time, I watch'd him, he often neither took in, nor emitted any aerial particles that I could perceive.

After a while, he lay almoft conftantly with his belly upwards; and, yet, would, in that pofture, fwim briskly, as before. Nay, foon after, he feem'd to be more lively than at firft putting in.

In about an hour and a half after he had been feal'd up, I found him almoft free from bubbles, with his belly upwards, and feeming fomewhat tumid, yet lively as before. But, an hour and a quarter after that, he feem'd to be movelefs, and fomewhat fiff; yet, upon thaking the glafs, obferving faint figns of life in him, by fome languid motions he attempted to make, when excited; I open'd the receiever, under water, to try if that liquor, and air, would recover him; when, the external water rufhing in, till it had fill'd the vacant part of the ball, and the greateft part of the ftem, the fifh furk to the bottom of it, with a greater appearance than ever of being alive: in which ftate, after he had continu'd a pretty while, I, by the help of the water he fwam in, got him thro' the pipe, into a bafon of water, where he gave more manifeft figns of life. But, yet, for fome hours, he lay on one fide or other, without being able to fwim, or reft on his belly, which appear'd very much fhrunk in.

All the while he continu'd in the bafon of water, tho' he mov'd his gills, as before he had been feal'd up; yet I could not perceive, that he did, even in his new water, emit, as formerly, any bubbles; tho', two or three times, I held him by the tail in the air, and put him into the water again; where, at length, he grew able to lie conftantly upon his belly; tho' that retain'd much of its former lanknefs. And he lived, in the bafon, eight or ten days longer; tho' feveral gudgeons, fince taken, died there, in'a much lefs time.

Tronaminals, woith large roommds in their abdomen, inchanded it tbe prenmatical receiver.

Pbyfico-mechanical Experiments.

dead; the abdomen and thigh being very much fwell'd, as if fome rarify'd Previatica air, or vapour, forcibly diftended them. But as, when the frog was put in, one of the lobes was almoft full, and the other almoft fhrunk up; fo they continu'd to appear, after the receiver had been exhaufted: but, upon, letting in the air, not only the body ceas'd to be tumid, but the plump . bladder appear'd, for a while, Thrunk up as the other; and the receiver being remov'd, the frog prefently revived, and quickly began to fill thelobe again with air.
96. The heart of an eel being taken out, and laid upon a plate of tin, the metion of: in a fmall receiver; when we perceiv'd it to beat' there, as it had done the feparated in the open air, we exhaufted the veffel, and faw, that tho the heart animitin the grew very tumid, and, here and there, fent out little bubbles, yet it cexiounfod ro continued to beat as manifeftly as before, and feemed to do fo more fwiftly ; as we tried by counting the pulfations it made in a minute, whilft it. was in the exhaufted receiver, and when we had re-admitted the air, and alfo, when we took it out of the glafs, and fuffer'd it to continue its motion in the open air. The heart of another eel, being, likewife, taken out, continued to beat in the empty'd receiver, as the other had done.
97. The heart of another eel, after having been included in an exhaufted. receiver, and then accurately fecured from leaking, tho' it appear'd very tumid, continu'd to beat there an hour; after which, finding its motion wery languid, and almoft ceas'd; by breathing, a little upon that part of the glafs where the heart was, it quickly regain'd motion, which I obferv'd. a while; and, an hour after, finding it almoft quite gone, I was able to renew it, by the application of a little more warmth. At the end of the third hour, a bubble, that appear'd to be placed between the auricle and. the heart, feem'd to have, now and then, a little trembling motion; but it was fo faint, that I could no more, by warmth, excite it, fo as plainly: to perceive the heart to move: wherefore; I fuffer'd the outward air ta rufh in, but could not difcern, that, thereby, the heart regain'd any fen-. fible motion, tho' affifted with the warmth of my breath and hands.
98. Sept. 10. A green-finch, having his legs and wings tied to a weight, Tto timesuberwas gently let down into a glafs body fill'd with water; the time of his ${ }_{b c}^{i n}$ killd k by total immerfion being mark'd. At the end of half a minute after that time, droming, or the ftrugglings of the bird feeming finifh'd, when being fuddenly drawn up withdrawing of
again, he was found quite dead.

A fparrow, very lufty and quarrelfome; was tied to the fame weight, and let down after the fame manner; but tho' he feem'd to be. more vigorous under water than the other bird, and continued ftruggling almoft to the end of half a minute, from the time of his total immerfion; (during, which, there afcended, from time to time, large bubbles from his mouth) yet, being drawn upas foon as ever the half minute was compleated, we found him, to our wonder, irrecoverably gone.
99. A fmall moufe, being held under water by the tail, emitted, from time to time, feveral aerial bubbles out of his mouth; and, at laft, as a fpectator affirm' d_{2} at one of his eyes: being taken out ${ }_{2}$ at the end of half a minute.

Pbyfico-mechanical Experiments.

 nute, and a few feconds, he yet retain'd fome motions: but they prov'd. only convulfive ones, which, at laft, ended in death.roo. We fo tied a confiderable weight of lead to the body of a duck, as not to hinder her refpiration, yet keep her under water; which we had found a fmall weight unable to do, by reafon of her ftrength; and even a great one, if ty'd only to her feet, in fuch a middle-fized vefiel as ours was; becaufe of the height of her neck and beak. With this clog, the duck was put into a tub full of clear water, under the furface whereof, the continued quietly for about a minute ; but afterwards began to be much difturb'd : the fit being over, and perceiving no motion in her, at the end of the fecond minute, we took her out of the water; and, finding her in a good condition, after we had allow'd her fome breathing-time, to recruit herfelf with frefh air, we let her down again into the tub, which, in the mean time, had been fill'd with frefh-water ; left the other, which had been troubled with the fteams and foulnefs of the body of the animal, might either haften her death, or hinder our perceiving what thould happen.

The bird being thus under water, after a while, began, and, from time to time, continued to emit bubbles at her beak. There, alfo, came out at her noftrils feveral real bubbles, from time to time ; and when the animal had continued about two minutes under water, the began to ftruggle very much, and to endeavour either to emerge, or change pofture ; the latter of which, the had libetty to do, but not the former. After four minutes, the bubbles came much more fparingly from her: then, alfo, the began to gape, from time to time; which we had not obferv'd her to do before, but without emitting bubbles; and fo the continued gaping till near the end of the fixth minute; at which time all her motions, fome whereof were judg'd convulfive, and others that had been excited by rouzing her, appear'd to ceafe, and her head to hang carelelly down, as if the were quite dead. Notwithftanding which, we, for greater fecurity, continued her under water a full minute longer; and then, finding no fizns of. life, we took her out ; when, being hung by the heels, and gently prefs'd in convenient places, fhe was made to void a confiderable quantity of water: but whether any of it had been received into the lungs themfelves, we wanted time and opportunity to examine. All the means we ufed to recover the bird, proving ineffectual, we concluded, the had been dead a full minute before we removed her out of the water: fo that, even this waterfowl, was not able to live in cold water, without taking in freh air, above fix minutes.
101. A duckling, having a competent weight ty'd to her legs, was let down into a tub of water, which reached not above an inch or two above her beak: during the moft part of her continuance wherein, there came out numerous bubbles at her noftrils; but there feem'd to proceed more and greater, from a certain place in her head, almoft equi-diftant from her eyes, tho' fomewhat lefs remote from her neck than they. Whilft the was kept in this condition, fhe feem'd, frequently, to endeavour at diving lower under water ; and, after much ftruggling, and frequent gaping, the had, fe-

Phyfco-mechanical Experiments.

Eeral convulive motions, and then let her head fall down backwarl, with Pysuearice. her throat upwards. To this movelefs pofture the was reduced at the end of the third minute, if not fooner ; but, a while after, there appear'd a manifeft tremulous motion in the two parts of her bill ; which continued for fome time, and was, perhaps, convulfive : but this alfo, ceafing, at the end of the fourth minute, the bird was taken out, and found irrecoverable.
102. A viper, that we kept in an exhaufted receiver, till concluded to have been quite dead, was, neverthelefs, not thrown away, till I had ury'd what could be done, by keeping her all night in a glafs-body, and a warm digeftive furnace : upon which, this viper was found, the next morning, not only reviv'd, but very lively.

We, therefore, put her into a tall glais-body of water, fitted with a cork to its orifice, and deprefs'd it with a weight, fo that the could have no air. In this cafe, we obferv'd her, from time to time ; and, after the had been duck'd a while, fhe lay, with very little motion, for a confiderable time. After an hour and a quarter, the often put out her black tongue : at the end of near four hours, the appear'd lively; and, as I remember, about that time, alfo, put out her tongue ; fwimming, all this while, as far as we obferv'd, above the bottom of the water. At the end of about feven hours, or more, the feem'd to have fome life; her pofture being manifeftly chang'd in the glafs, from what it was a while before. Not long after, the appear'd guite dead; her head and tail hanging down movelefs, and directed towards the bottom of the veffel; whilft the middle of her body floated as much as the cork would permitit.
103. In the generality of our pneumatical experiments upon animals, it Amimals in air fuited with our purpofe, to rarify the air as much, and as fuddenly as we foomght to "e could ; but I had other trials in view, wherein an extraordinary degree of gevereoferable derifararifaction, yet not near the higheft to which the air might be brought by Eiom. our engine, feem'd likelieft to conduce ; as particularly to afford fome light in the nature of thofe difeafes, that are thought, primarily, to affeat refpiration, or its organs.

Wherefore, having gages, by help of which fuch experiments might be much the better perform'd, I attempted feveral of them in the following manner.

Aug. 16. A linet being put into a receiver, able to hold about 4 pints and a half of water, the glafs was well clos'd with cement and a cover; but none of the air drawn out with the engine, or otherwife. And tho' no new air was let in, nor any change made in the imprifon'd air, yet the bird continued there three hours, without any apparent approach to death : and tho' fhe feem'd fomewhat fick, yet being afterwards taken out, the recover'd, and liv'd feveral hours.
104.Aug. 18. From the receiver above-mention'd, we drew about half the air, whilf a linet was in the glafs; and in that rarified air (which appear'd by a gage to continue in the fame ftate) the bird liv'd an hour and near a quarter before the feem'd in danger of death : after which, the air being let in, with-

[^7]Zz_{2}
out
 scde of the glafs ; 'and being'totken'out into che open-air, the tiew out of why hand to ia confiderable diftance.

1es. Stpt. 9. Into a receiver, inble:to holdiabout 4 pints and a haif of wrer, we convey'd a laink, together axith a gage, by the help whereof dre -out $\frac{3}{4}$:of whe air ; :then obferwing the bird, we perveiv'd it wo pant wery much. Having continued thus for a little above a minute and a haff, the ibird fell into: a 'oonvulfive motion, that caft it upon the back. And atho' we made great hafte to let in the rir ; yet, before the expiration of the focond.minute, preceding the convulion, the lark toas gone paftall weco very, tho various means were ufed to effect it.
106. Sept. 9. Prefently after, we:put into the Came receiver, survenfinch; and having withdrawn'half the air, foon began to dbferve the bird, and: took notice, that, within a minute after, fire appeared to b very fick; and, Thaking her head, vomited a cortain fubstance egaint the infide of the glafs. 'Upon this' evacuation, the bird feem'd to recover, wod continue pretty well, but not without panting, till about the end of the fourth minute ; when, growing very fick, The vomited again, but much noue unqueftionably than before; and, Soon after, eat up again a litte ofifer womit ; upon which, the wery'much recover'd. Andithough Theikad, indil, chree fits of vomiting; yet, for the halt feven or eight minutes, that we her her in the receiver, fie :feemd to be much more lively than was expected: which may, in part, be attributed to a little air that, byian accident, got in, tho it were immedintely pump'd out again. At:the end of a full quarer of an hour, from the firft exhaution, the bird pappearing not-liktly 10 de in in great while, we took'her out.
107. April 12. A new-caught viper was included, 'rogether'with argage, in a portable: receiver, able to hold about three pints and an half of water. This veffel being exhauted, and fecured againft the ireturn of the air, rtie animal was obferv ${ }^{2}$ d, fromitime to time, not only to be alive, but nimbly ito put out, and to draw back her:tongue, for about thirty-fix hours, aftor the was thut up: we, therefore, continued the veffel longer, in the fame Thady place; where, over-night, at the end of fixty hours. fhe appeard ve ry dull and faint, and not likely to live much longer. And, the nett, 'by the afternoon, I found her ftark dead, with her mouth open'd to a furange 'widenefs; wherefore, 'fuffering water'to be impeli'd, by the outward-air, into the cavity of the receiver, we found, by the water that was driven in, and afterwards pour'd out again, and meafur'd, 'that five parts in fix of the air in the veffel, had been pump'd out : fo that in an air sarify ${ }^{\circ} d$, tillit expanded itfelf to five or fix times its ufual dimenfions, our viper was able to live fixty hours, and, perhaps, might have done fo longer.

Aminals in the fame parcel of

 air cbanged, as to parity ${ }^{\text {and }}$ denfity.108. In the preceding experiments, the animals were recover'd from a gafping condition, by letting in frefh air, and not the fame that had been withdrawn from them : wherefore, I thought proper, to try, whether the fame portion of air, without being renew'd, would, by being expanded much beyond its'ufial degree, and reduced to it aggain, ferve to bring an
animal to near the point of expiring, and revive him again ; fince, by the pozomatios. fuccefs of fuch a tryal, it would notably appear, that the bare change of the confiftence of the air, as to rarity and denfity, may fuffice to produce the above-mention'd effects.

We included a moufe in a fine, limber, clear bladder, made more tranfparent by oil, rubb'd on the outfide, that the fmell of it might lefs offend the animal, to be included; clipping off as much of the bladder, at the neck, as we judg'd abfolutely neceflary for letting in a moufe: we, alfo, provided a round ftick, fomewhat lefs than the orifice; that, the wood being laid over, with a clofe and yielding cement, we might tye the bladder faft, and clofe enough, upon the ftopple thus fitted. In the bladder was left as much air, as we thought might fuffice him, for the time the experiment was to laft. Then, putting this limber, or dilatable receiver into an ordinary one of glafs, and, placing this engine near a window, that we might fee through both of them; the air, was, by degrees, pumped out of the external receiver, and, thereupon, the air included in the bladder proportionably expanded itfelf, and fo diftended the internal receiver, till, being arriv'd at a degree of rarifaetion, which rendred it unfit for refpiration, I perceived figns, in this animal, of his being in great danger of fudden death. Whereupon, the outward air being haftily let into the external receiver, comprefs'd the fwell'd bladder to its former dimenfions, and thereby, the included air to its former denfity; by which means, the moufe was quickly revived. Having given him fome convenient refpite, the experiment was repeated with the like fuccefs.
109. We put a large parcel of tadpoles, with a convenient quantity of water, into a portable receiver, of a round figure, and obferv'd, that, at the firft exfuction of the air, they rofe to the top of the water; tho', moft of them fubfided again, till the next exfuction raifed them. They feem'd, by their active and wrigling motion, to be very much difcompos'd. The receiver being exhaufted, they, all of them, continued moving, at the top of the water; and, tho' fome of them feem'd to endeavour to go to the bottom, and dived part of the way, efpecially with their heads, yet, they were immediately buoy'd up again. Within an hour, or a little more, they were all movelefs, and lay floating on the water; wherefore, I open'd the receiver; upon which, the air ruffing in, almoft all of them prefently funk to the bottom, but none of them recover'd life.
110. We, afterwards, included a lefs number of tadpoles in a fmaller glafs, which was alfo exhaufted, with the like circumftances, as the former. And, when I found the other tadpoles to be dead, I hafted to thefe, which did not, except, perhaps, one, give any figns of life; but, upon letting in the air, thefe having not been long kept from it, fome few of them recover'd, and fwam up and down lively enough; tho ${ }^{\circ}$, after a while, thefe alfo died.

111 . I repeated the fame experiment in a portable receiver, of a convenient kind; and, tho, after the exhauttion was perfected, the tadpoles, fora while, moved briskly enough, on the top of the water, only; yet, the air ; yet all the effect of it was, that the moft of them, immediately funk to the bottom, as the reft, foon after, did ; nozie of them, that I could obferve, recovering vital mo tion.
112. We procur'd, by preferving fome rain-water, four or five of thofe odd infects, whereof gnats have, by fome, been obferved to be generated about the end of Auguft, or beginning of September. Thefe, for fome weeks, live all together in the water, as tadpoles do; fwimming up and down therein, till they are ripe for a tranfmigration into flies : but including. them, with fome of their water, in a fmall glafs-receiver, which being exhaufted, and very exactly clofed, we kept, in a fouth-window; thele little creatures continued to fwim up and down therein, for fome few days, without feeming to be much incommoded; but at length, and all much about the fame day, they put off the habit they had, whilft they lived as fifhes, and appeared with their Exuvia, or caft-coats under their feet ; fhewing themfelves to be perfect gnats, that ftood, without finking, apon the furface of the water, and difcovering themfelves to be alive, by their motion, when they were excited to it; but I could not perceive them to fly in that thin medium : to which inability, whether the vifcolity of the water might contribute, I know not ; tho they lived a pretty while, till hunger ${ }_{2}$ or cold deftroyed them.
The expenflon of 113 . The warm blood of a lamb or a theep, being taken as it wras, immos blood and odiately, brought from the butcher's, where the fibres had been broken, cills. to hinder the coagulation, was, in 2 wide-mouth'd glafs, put into a receiver, made ready for it; and the pump being fet on work, the air was diligently drawn out: but the operation was not always, efpecially at firf, fo early manifeft, as the fpirituoufnefs of the liquor would make one expect; yet, after a long expectation, the more fubtile parts of the blood would begin to force their way thro' the more clammy, and feem to. boil in large clufters, fome as big as great beans or nutmegs; and, fometimes, theblood was fo volatile, and the expanfion fo vehement, that it boiled over the containing glafs; of which, when it was putin it did not fill above a quarter.
114. Having, alfo, included fome milk, warm from the cow, in a cylindrical veffel, about four or five inches high, tho' the pump was long ply'd, before any intumefcence appear'd, yet, afterwards, when the external air was fully withdrawn, the milk began to boil, in a way, that was not fo ealy to defcribe, as pleafant to behold: and this it did for a pretty while, with fo much impetuofity, that it threw feveral of its parts out of the widemouth'd glafs that contain'd it; tho' there were not above two. or three ounces of the liquor, whichonly half fill'd the glafs.

A yet greater difpofition to intumefcence, we thought, we obferv'd in the gall; which was but fuitable to the vifcofity of its texture.

The two laft experiments were made with a defign to thew, how far the deftructive operation of our engine, upon the included animals, might
be imputed the withdrawing of the air, whereby, the little bubbles gene-Pravanaris: rated in the blood, juices, and foft parts of the body, may, by their vaft namber, and confpiring diftenfion, varioufly contract the veffels in fome places, and ftretch them in others; efpecially the fmaller, that convey the blood and nourifhment; and fo, by choaking up fome paffages, and vitiating the figure of others, ditturb, or hinder the due circulation of the blood: for, fuch diftenfions may caufe pains in fome nerves, and membranous parts, which, by irritating them into convulfions, may haften the death of animals, and deftroy them fooner by that irritation, than they. would be deftroy'd by the bare abfence or lofs of what the air is neceffary to fupply them with. And, to thew, that this production of bubbles reaches, even to very minute parts of the body, Ifhall add, that, I once obferved in a viper, furioully tortured in our exhaufted receiver, the creatare had a conficicuous bubble moving to and fro, in the aqueous humour of one of its eyes.
115. To fhew, that not only the blood and liquors, butalfo the other foft parts, even in cold animals, have aerial particles latent in them; we took the liver and heart of an eel, as, alfo, the head and body of another fifh of the fame kind, cut afunder, crofs ways, beneath the heart; and putting them into a receiver, upon withdrawing of the air, we perceiv'd, that the liver manifeflly fwell'd every way; and, that both the upper part and lower of the fifh, did fe, likewife. At the place, where the divifion had been made, there came out, in each portion of the fifh, various bubbles; feveral of which feem'd to rife from the Medulla Spinalis, the cavity of the back-bone, or the adjoining parts : and the external air being let in, both the portions of the eel prefently funk; fome of the skin feeming to be grown flaccid in each.
116. We included, in a vial with a wide neck, (the whole glafs being able The poner of to contain about eight ounces of water, a fnall young moufe; then we to emblit tyed ftrongly upon the upper part of the glafs's neck a fine thin bladder, wowt bbusflues. ont of which the air had been carefully exprefs'd; and convey'd this ian ant mio veffel into a middle-fiz'd receiver, in which, we alfo plac'd a mercurial fayizityon mefirem gage. This done, the air was, by degrees, pump'd out, till it appear'd tiowby the gage, that there remaind but a fourth part in the external receiver; whereupon, the air in the internal receiver, expanding itfelf, appear'd to have blown the bladder almoft half full; and the moule feeming very illat eafe, by leaping, and otherwife endewouring to pals out at the neck of his prifon; we, for fear the over-thin air would difpatch him, let the air fow into the external receiver; whereby the bladder being comprefs ${ }^{3} \mathrm{~d}_{\text {, }}$ and the air in the vial reduced to its former denfity, the litcle animal quickly recover'd.
117. A while after, without removing the bladder, the experiment was repeated, and the air, by help of the gage, reduced to its former degree of rarifaction; when, the moufe, after fomefruitlefs. endeavotrs to get out - of the glafs, was kept in that thin air for full four minutes; at the end of which, he appeard fo fick, that, to prevent his dying immediately, we

Pbyframenchaminat Exdmimprar.

Prevystice remov'd the oxterral, and teok out the internat recoiver s whenetinan than He recover'd ; yet 'twas not without much dificulty; being unable to fond any longer upon his feet; and, for a great while after, he consina'd, manifenly trembling.
118. But, having fuffer'd him to reft for a peafonable time; prefaning chat ufe had imured him to greater hard/hips, we convey'd him, again, into the external receiver; and, having brought the air to the former depree of rarifaction, we were able to freep him there for a full quarter of an hour ; tho' the external receiver did not at all confoderably leat; as ap pear'd both by the mercurial gage, aod by the remaining difionfion of the bladder. And, 'tis worth poting thet, till near the laveer end of the quartér of an hour, the'animal featce at all appear'd difreff'd, remainiag ftill very quiet. And tho', when he was pur in, bis tremblings wose yet upon him, and continu'd fo for fome time; yet, afterwards, in fright of the expanfion of the air he was then in, they foon left him. And, when the internalreceiver was taken ous, he not ontry recower'd from his faincing fooner than before, but efcaped thofe fubrequepe tremblings.
119. Encouraged by this fuccefs, afiter we allowed him fome time to rea cover his ftrength, we re-convey'd him, and the veffel wherein he was iscluded, into the former receiver, and pump'd out the air, till the mercury, in the gage, was drawn down near half an inch bower than before, that the air might be yet farther expanded. And, tho' this, al firf, feem'd to difcompofe the litcle creature; yet; after a while, he grew very quiet, and continu'd fo for a full quarter of an hoor; when, we caus'd three exfuctions more to be made, before we difcover'd him to be inmanifeft danger, (at which time, the bladder appear'd much fulter that before:) but, then, we were obliged to let the air into the outward receiver; whereupon, the moufe was more fpeedily revived, than one would bave fufpected.

Now the air, in which the moufe liv'd all this while, had been clogg d, and infected, with the excrementious effluvia of his body; for 'twas the fame all along; we having, purpofely, forborn to take of the bladder, whofe regular diftenfions, and frinkings, fufficiently manifefted, that the veffel, whereof 'twas a part, did not leak.
airi, bumenes 120. We took a moufe, of an ordinaty fise, and, having convey'd him
fit for mofice tiom, mimil profio Sits numal 1 mof. givo.
into an oval glafs, fitted with a fomewhat long, and confiderably broad neck, that it might be wide enough to admit a moufe, in fpight of his fruggling; we convey'd in, after him, a mercurial gage, in which we had carefulity obferv'd, and mark'd the flation of the mercury; and which was fo faftien'd to a wire, reaching to the bottom of the oval glafs, that the gage, remaining in the neck, was not in danger of being broken by the mocions of the moufe in the oval part. The upper part of the long neck of the ghafs was, notwithftanding the widenefs of it, hermetically feal'd; by means of a lanup; and a pair of bellows, that we might be fare the imprifon'd animal fhould breathe no other air, than what filld the ro ceiver, at the time when it was feal'd. This done, the moufe was watched,
watched, from time to time : and tho', by reafon of thellargenefs of the veffel, he feem'd rather drooping, than very near death, vat the end of the fecond hour ; yet, in about half an hour after, he was judg'd to be quite dead, tho we fhook the veffel, to rouze him. The gage manifefted no fenfible change in the fation of the mercury; but, caufing the feal'd part of the glafs to be broken off, I obtain'd, after a while, fome faint tokens of life: tho', I am not fure, that they would have continu'd in a veffel, where the air was fo cloggid and infected, if frefh air had not been frequently blown in by a pair of bellows, whofe nofe was inferted into the neck of the glafs. This frefh air feem'd evidently, tho' but flowly, to revive the gafping animal, which I could not, conveniently, take out of the glafs, till he had gain'd ftrength enough to make ufe of his legs; but, after that, without breaking the glafs, we itook him out, and foon found. tim able to walk up and down.
121. A like experiment we, alfo, made with like fuccefs, upon a fmallbird, included, with a gage, in a receiver that would hold about a quart of water. The bird, in about half an hour, appear'd to be ifick, and drooping; the faintnefs, and difficulty of breathing, increafing for about. two hours and a half after; at which time, the animal died; the gage being not fenfibly alter'd, unlefs, perhaps, the mercury appear'd to be impell'd up a little higher than when put in; which, yet, might proceed from fomeaccidental caufe.
122. To fhew, that it is not want of coldnefs, but fomething elfe imthe included air, that makes it deftroy birds pent up therein, which, by the hot exhalations of their bodies, may be fuppofed to over-warm it; ;wemade the following experiment.

In a glats-vial, able to hold about three quarts of water, we, hermetically feal'd up a fmall bird; and found, that, in a few minutes, fhe began to be fick, and pant. Thefe fymptoms I fuffer'd to continue, and increafe, till they had lafted juft half an hour; at which time, having provided a veffel of water, with fal-armoniac, newly put therein, to refrigerateit; and the liquor being thus made exceeding cold, the vial, with the fick. bird, was immerfed in it, and fo kept there for fix minutes: yet it did not appear, that the great coldnefs which muft be thins procured to the imprifoned air, ferifibly revived or refrefh'd the drooping animal, who manifeftly continued to pant exceedingly. So that this remedy, proving ineffectual, the vial was remov'd out of the water; and the bird, fome time after, many tinses ftrain'd to vomit: and, afterwards, had revacuations downward, 'before fhe quite expired; which fhe did, in almoft an hour, from the beginning of her imprifonment.
123.We made, by diftillation, a blood-red liquor, chiefly confifting offfuch $T_{\text {be }}$ ufe of tie faline, and fpirituous particles, as may be obtained from human blood; ${ }^{a}{ }^{\text {ait }}$ to raife and
 well ftopp'd, it will reft as quietly as an ordinary liquor, without fend- derd, with ree ing up any fmoke, or vifible exhalation; but, if the vial be open'd fo, that gavs. the external air is permitted to come in, and touch the fusface of the liquors.
with

Phyffca-mechanical Expariments.

Inguarres, within a quarter of a minute, or tefs, there will be elevated a copious white fmoke, which not only fills the upper-part of the glafs, but plentifully paffes out into the open air, till the vial be agaia ftopp'd.

When this yial has lain ftopp'd and quiet for a competent time, the upper half of it appears deftitute of fumes, whereof the air, it feems, will imbibe, and conitantly retain but a certain moderate quanrity; which may give fome light towards the reafon, why the fame air, quite clogg'd with feams, will not long ferve for refpiration. And if the unftopp'd vial were placed in our vacuum, it would emit no vilible fteams at all, not fo much as to appear in the upper part of the glafs itcelf that held the liquor ; but when the air was, by degrees, reftored at the ftop-cock, without moving the receiver, to avoid injuring its clofenefs, the returning air would prefently raife the fumes, firt into the vacant part of the vial, whence they would afcend into the capacity of the receiver: and likewife, when the air, requifite to fupport them, was pumped out, they alfo accompanied it, as their unpleafant fmell made manifeft; whillt this red fpirit, though it remain'd unfopp'd, emitted no more fumes, till new air was let in.
124. Two ordinary white fnails, withowt thells, differing in fize, (the Mm, in maseo biggeft being about an inch and Ω half, and the other about an inch in length) were included in a fmall portable receiver, which was carefully exhaufted, and fecured againft the return of the air; and prefently after, being - Iemovedefrom the engine, it was eafy to difcern, that both the fnails thruit aout, and drew.in their horns, at pleafure; though their bodies had, in the fofter places, numerous newly generated bubbles fticking to them: and tho' they did not lofe their motion near fo foon, as other animals, in our vacuum i yet, after fome hours, they appear'd movelefs, and very tumid; and, atthe end of twelve hours, the inward parts of their bodies feemed to be almoft vanifh'd, whilf they appear'd to betwo fmall full-blown bladders: and, on lewing in the air, they immediately fo thrunk, as if the bladders having been prick'd, the receding air had left behind it nothing but skins: nor did either of the fnails, afterwards, tho kept for many hours, give any figas of life.
125. We included in a receiver, whofe globular part was about the bignefs of a large orange, one of that fort of animals, vulgarly call'd, efts, or, flow-worms: having withdrawn the air, and fecur'd the veffel againtt the return of it, we kept him there about forty-eight hours; during which, he continuod alive, but appeared fomewhat fwelld in his belly ; his underchap moving on the very firft night, but not the day and night following. At leagth, by opening the receiver, under water, we perceiv'd, that about half the air had been drawn out. As foon as the water was impell'd into the glafs, the animal, which was before dull and torpid, feem'd, by very nimble and extravagant motions, to be ftrangely revived.
:126. We took a leech, of a moderate bignefs, and having included it, : rogether with fome water, in a portable receiver, able to hold about ten ar twelve ounces of that liquor; the air was pump'd out, after the ufual

Phyfco-mechanical Experiments.

manner, and the receiver being remov'd to a light place, we obferv'd, that, the leech keeping herfelf under water, there emerg'd from feveral parts of her body, numerous bubbles, fome of them in a difperfed manner, but others, in rows, or files, that feem'd to come from determinate points. Tho' this production of bubblês lafted a pretty while, yet the leech did not feem to be very much difcompofed. This done, we fet the receiver, which was well fecur'd from the outward air, in a quiet place, where we vifited it, at leaft, oncea-day; and found the leech fomewhat faftned by her tail, to that part of the glafs which was under water, and fometimes wandring about that which was quite above water ; and always, when we endeavour'd to excite her, the quickly manifefted herfelf to be alive; and, indeed, appear'd fo lively, after the full expiration of five natural days, that expecting fomething might have happen'd to the receiver, I open'd it under water; when the outward air, impell'd in fo much of that liquor, as fatisfy'd me the receiver was well exhaufted.
127. Five or fix caterpillars, all of the fame fort, being put into a fepara-Creeping inseds ble receiver of a moderate fize, had the air drawn away from them, and carefully kept from returning. But, notwithftanding this, I found them, about an hour after, moving to and fro in the receiver ; and even above two hours after that, I could, by fhaking the veffel, excite fome motions in them, that I did not fufpect to be convulfive. But looking upon them again, about ten hours after they were firft included, they feemed to be quite dead ; and, tho' the air were forthwith refored to them, they continued to appear fo: yet, leaving them all night in the receiver, I found, the next day, that three, if not four of them, were perfectly alive.
128. We took from an hedge a branch, that had a large cob-web of caterpillars in it, and dividing it into two parts, we put them into like receivers; and in one of them thut upehe caterpillars, together with the air, but from the other it was exhaufted. Now, in that which had the air, the little infects, after a fmall time, appeared to move up and down as before, and fo continued to do for a day or two: but in that glafs, whence the air had been extracted, and continued kept out, they fhewed, after a wery little while, no motion that we could perceive.
129. Nov. 12. About 8 a-clock at night, there were taken four middlefized flefh-flies, which, having their heads cut off, were inclofed in a por-
in vacuo. table receiver, furnifh'd with a large pipe, and a bubble at the end. As foon as the receiver was exhaufted, the flies loft their motion; an hour or two after, I approached them to the fire, which reftored not their motion: wherefore I let in the air upon them; after which, in a very fhort time, they began, one after another, to move their legs, and orre or two of them to walk. And having kept them all night, in a warm place, they manifefted, for a while, fome fmall motion.
130. Sept. 1 r. About noon we clofed up feveral ordinary flies, and a bee, or wafp; all which, when the air was fally withdrawn, lay as dead; only, for a very few minutes, fome of them had convulfive motions in their legs. They continued in this ftate forty-eight hours; after which, the

Vol. II. Aaaa air

Pbyfico-mechanical Experiments.

pusumatics.air was let in upon them; and that not producing any figns of life, theywere laid in the noon-day fun : but none of them feem'd, in any degree; to recorer.
131. Dec. 11. We put a great fefh-fly into a very fmall portable receiver, where, at firf, he appear'd to be very brisk and lively ; but, as foon as the air was drawn out, he fell on his back," and feemed to have convulive motions in his feet, and Probofiis; from whence he prefently recover'd, upon letting in the air; which being drawn out again, he lay as dead : but, within a quarter, or half an hour after, I perceiv'd, upon thaking the receiver, that he ftirr'd faintly up and down. This was done pretty late over night, and next night I found the fly not to be foon revived, either by warmth, or letting in the air. However, in a while after, he recover'd; and being, next morning, fealed up again in that glafs, and kept forty-eight hours, tho' over the chimney, he died beyond recovery.
132. We took a large grafs-hopper, whofe body, befides the horns and limbs, was about an inch in length, and of great thicknefs, in proportion to that length; and convey'd him into a portable receiver of an oval form, and able to hold about a pint of water : and having, afterwards, pumped out the air, till, by the gage, it appear'd to have been pretty well drawn out, we took care that no air fhould re-enter. The fuccefs was this. Fisf, tho' before the exhauftion of the air begun, the grafs-hopper appear'd lively, and continued fo for a while: yet, when the air began to be confiderably rarified, he feem'd to be very ill at eafe, and to fweat out of the abdomen, many little drops of liquor, which being united, trickled down the glafs like a little ftream, that made, at the bottom, a fmall pool of clear liquor, amounting to near a quarter of a fpoonful; and by that time the receiver was ready to be taken off, the grals-hopper was fallen upon his back, and lay as dead. Secondly, tho' having, a little after, laid the glais in a fouth-window, on which the fun then thone, I perceived fome flow motions in the thorax, as if he frained to fetch breath; yet, I was not fure, but they were convulfive motions; however, they lafted but a while, and then the animal appeared to be quite dead, and to continue fo for three hours, from the removal of the receiver. Thirdly, that time being expired, the glafs was open'd, and the air let in; notwithftanding which, there appear'd no fign at all of life : but lecting the glafs reft in a convenient pofture, that the water which came from him, might not endanger him, for a quarter, or half an hour; tho' I then perceived no figns of life, yet I caufed him to be carried into a fun-fhiny place, where the beams of a declining fun prefently began to make him ftir his limbs, and, in a fhort time, brought him perfectly to life again.
133. April 15. We took one of thofe fhining beetles called rofe-flies, and having included it in a very fmall round receiver, which we exhaufted, it ftruggled much whilft the air was withdrawing; yet prefently after, I could perceive but little motion : about fix hours after, the fly feemed quite dead, and difcover'd no motion upon that of the glafs. And within about an hour more, tho' I let the air ruh in, yet no fign of life enfued, neither immediately, nor for a pretty while after. So that fufpecting the beetle to

Pbyfico-mechanical Experiments.

 Whereupon, I caus'd the glafs to be again exhaufted, and fecur'd from the air ; during which time, the animal fcem'd to be much difquieted, but did not lofe his motion, foon after.134. With butter-flies I made feveral tryals, and, having obferv'd them, not only to live, but to move, longer than was expected; I chofe to include feveral of them in receivers, fomewhat large, that I might fee, whether, in fo thin a medium, fome or other of them, by help of their large wings, would be able to fly. But, tho', whilft the air continu'd in the glaffes, they flew actively, and freely up and down; and, tho', after the exhauftion of the air, they continu'd to live, and were not movelefs; nay, tho', at the bottom of the receiver, they would even move their wings and flutter a little ; yet, I could not perceive any of them to fly, or have a progreffive motion, fupported by the medium, only. And, by frequently inverting the receiver, which was long, they would fall, like dead animals, without difplaying their wings, tho, juft as they came to touch the bottom, fome of them, would, fometimes, feem to make ufe thereof, but not enough to fuftain themfelves, or to break their falls.
135. A number of ants being included in a fmall portable receiver, $\mathrm{ex}-\mathrm{T}_{\text {be }}$ neaffity of haufted about noon; between fix and feven in the evening, they feem'd to be wion, to the moall quite dead; and the rather, becaufe, tho' they appear'd very lively juft and mitss. before they were feal'd up, running briskly up and down the bubble they were in; yet, they grew almoft movelefs, as foon as the air was exhaufted; and a little while after appeared more fo: tho' I a little fufpected, that they were much incommoded, by fome glutinous fubftance, that feem'd to have got into the receiver, from the vapours of the cement. When upon opening the glafs, the air rufhed in, no fign of life appear'd, for a great while, in any of the ants: but next morning, about nine a-clock, I found many of them alive, and moving about.

We convey'd a number of mites, together with the mouldy cheefe, wherein' they were bred, into three or four portable receivers, which were, all of them, very fmall, and not much differing in fize. From all of thefe, except one, we withdrew the air; and, then, making ufe of our peculiar contrivance to hinder its return, we took them, one after another, from the engine, and Jaid them by, for further obfervation. That wherein, to obferve the difference, we left the air, was fealed at a lamp-furnace, after the ufual manner. Our tryals afforded us the enfuing phenomena.
(1.) The mites, inclofed in the fmall glafs, that never came near the engine, continu'd alive, and able to walk up and down, for above a full week after they had been put in ; and, poffibly, would have continu'd much longer, if the glafs had not been accidentally broken.
(2.) As foon as ever one of the receivers was remov'd from the engine, I look'd with great attention upon it; and, tho', juft before the withdrawing of the air, the mites were feen to move up and down in it; yet, within a few minutes, after the receiver was apply'd to the engine, I could difcern in them no life at all; nor was any perceiv'd by younger eyes than mine.

$$
\text { Aaaa } 2 \quad \text { Nays }
$$ Nay, by the help of a double convex-glafs, I was not able to fee any of them ftir up and down. And no motion was taken notice of in the otherfmall receiver of a like fhape and bignefs. About an hour after, I look'd upon the receiver attentively again, but could not perceive any of the mites to Itir; and the like unfuccefsful obfervation I made two or three fiours after that. And at firft letting in the air, to try if the mites were not quite dead; I could not perceive, upon its rufhing in, any of them to ftir: yet, I left the receiver unftopt as it was in the window, upon a fufpicion, that the ais might not be able to exercife its operation upon them, in a fhort time.

(3.) And, about two or three days after, I found a number of my little animals reviv'd; as an attentive eye might eafily perceive, by the motion of certain little white fpecks, when affifted to obferve it by little marks, that I made on the outfide of the glafs, (which was purpofely chofen thin and clear) near this, or that mite, with a diamond; by the approach to, or recefs. from which marks, the progreffive motion became, perhaps, within a mipute, plainly difcoverable ; efpecially, if, when the eye perceiv'd little white fpecks, that look'd like mites, the receiver fhould be fo turn'd, that the bellies and feet of thofe little creatures were uppermoft; notwithftanding which, they would not eafily drop down, but continue their motion : and thefe fpecks being made upon the concave furface of the thin glafs itfelf, were thereby render'd much more eafily vifible.
(4.) But becaufe it doth not, by the third phenomenon, appear, whether, in çafe our mites had been kept in a movelefs ftate, for a much longer time, than three or four hours, they would have been recoverable, by the admiffion of the air ; Ihall add, that one of the portable receivers, abovemention'd, being exhaufted and carefully fecured from the air, was kept from monday morning to thurfday morning : after all which time, being unable to difcover any figns of life, among the included nites, the air was let in upon then, which, foon, had fuch an operation upon them, that both h_{5}, and others could plainly fee them creep up and down in the glaffes, again. ari"

An attewpt to prodkee living creatkres in vacue
136. Having procured a large number of filk-worms eggs, and caufed three very fmall receivers to be purpofely made, that difer'd very little, either in fize or figure; we convey'd into each of them, together with a fmall fock of mulberry-leaves, fuch a number of eggs as, we thought, made it morally certain, that, at leaft, fome of them thould prove prolific. This done, we carefully exhaufted one of the receivers, and fecured it againt the return of the air ; and the two others we left full of air : but, having left in the one a little hole for the air to get in and out at, we ftopped the other fo clofe, as to hinder all intercourfe between the internal and external air. Things. being thus prepared, we expofed the receivers to a fouth window, where they might be quiet, and where I either came, or fent to luok on them, from time to time; the fpring being then fo far advanced, that, I fuppos'd, the heat of the fun would be, of itfelf, fufficient to hatch them, in no fong time. And both: \mathbf{I}; and others, took notice, that, in the unexhaufted receivers, there were feveral eggs hatch'd into little infects, that perforated their ihells, and crept out of them; tho', afterwards, for want

Phyfrco-mechanical Experiments.

of change of food, or air, or both, few, or none of them, proved longlived. But tho' the eggs, in thefe receivers, began to afford us little animals, in a few days; yet the eggs, in the exhaufted receiver, afforded none in fo many more, that we left off to expect any from them.
We took feveral of thofe little fwimning creatures, which in autumn, efpecially towards the end of it, are turn'd into gnats; and, having put a convenient number of them together, in a fit quantity of rain-water, wherein they had been found and kept, into a fmall receiver ; the air was pump'd out, and the veffel fecured againft its return, and then fet afide in a place, where I could obferve, that, on the day after, fome of thefe little animals were yet alive, and fwimming upiand down, not without minute bubbles adhering to them; but, in a day or two after that, I could not perceive any of them alive : nor did any of them recover, upon the admiffion of frefh air. Indeed, the weather was fo cold and unfeafonable, that a number of thefe little creatures, put up with water in another fmall receiver, all died within a few days, tho' none of the air was exhaufted. And feveral that I kept in an ordinary glafs, which was often unftopp'd, to give them frefh air, perifh'd very fatt.
137. We took a round glafs-egg of clear metal, and furnifh'd with a Tbefurkizing (thank, fome inches in length; this we fill'd with water, and convey'd both hariffefiom of it, and a vial, containing water, into a receiver, of a convenient fize; and by pumping the air out of it, we made bubbles both in the egg, and the vial, to difclofe themfelves in great numbers; fo that the liguor, in the glafs-egg, feem'd to boil, and caufed all that was in the ghank, to run over. When we thought the water was fufficiently freed from air, we took out the glaffes, and fill'd up the fhank of the egg with water taken out of the wial, and inyerted it into more of the fame water, in fuch manner, that the evegg was quire full, thank and all, excepting a frall. bubble of fains; that:we, purpofely; left, to gain the top of the egg; where we mieafured it as accurately as we could, and found it to bea tenth; and. lefs than two hundredths of an inch. Then, putting the glaffes again into the receiver; theipump was work'd, and the little bubble, after a while, begans to expand, itfelfis which, when it had once done, it, at each fiyck, Atrangely increasiddy till, at, lengothy it drove all the, water, qut of the round part of the glafs Ands left it might be objected, that 'twas only the tubfiding of the wateer, upon the withdrawing of the outward airs, that before kept it up to the top of the glafs; we caus'd the pumping to be continu'd, till the expanded air had, feveral times, driven the water; in the pipe of the egg, a pretety way beneath the devel of the external and furf rounding'water in the other iglass This done, we let in the air, by dergrees, with a defign to obferve what bubble we fhould find at the top of the egg, when the water fhould be again driven up into its cavity; But the expanced air had forced over fo much water, that there remain'd notenough to fill the globular part of the egg. We, therefore, made the ext periment again; and, when we had proceeded thas fax, cemparid, the above-mention'd diameter of the fmall bubble, with that of the fpherical:

Pirusartes part of the glafs, which we took with a pair of callaper-compaffes; and tho' we found it to be fomewhat more than twenty times as great, yet we fuppofed the two diameters to be only as 1 to 20 : and, confequently, fince the proportion between fpheres is triplicate to that of their diameters, the air appear'd to have, by expanding itfelf, poffefs'd eight thoufand times the fpace it took up before. Nor was it overfeen by us, that fuch glaffes as we ufed, are fcarce ever fpherical. But Dr. Wallis, who affifted at the experiment, concluded, with me, that the cavity of the fhank, from whence the expanded air drove the water, which we did not compute, would make abundant amends for any inaccuracies. After this, for farther fatisfaction, we took water, laborioully freed from air; and, putting it into the fame glafs-egg, we inverted it, as before, but left not any bubble in it. This we did, that, in cafe we could make the water fubfide, the experiment might prevent a fufpicion, that fome air, latent in the water, increafed the bubble, formerly left in it. Having, then, exhaufted the receiver, at leaft as much as before, the water, in the egg, did not at all fubfide : but, at length, with obftinate pumping, a bubble difciofed itfelf, and drove all the water clear out of the round part of the glafs. And tho', by reafon of fome fmall leaks, that we could not find, or fop, we were not able, as before, to make the expanded air deprefs the water in the fhank, beneath the furface of the external water; yet we wanted very little of it: and, then, giving over, we found, that when the water was impell'd up again into the egg, there was, at the top of it, a bubble, whofe diamieter we meafur'd, and found it to be to the diameter of the globular part of the glafs, as I to 14 : fo that, tho' the little bubble had been a perfect fphere, it muft, when expanded, have been 2744 times as big as when unexpanded. But Dr. Wallis, obferving the great thinnefs of the bubble, pofitively affirm'd, that he could not eftimate it to be, at moft, any bigger than the third part of a perfect fphere of that diameter: by which eftimate, the expanfion of the bubble mult have reach'd to 8232 tiffes its natural di--menfions. Yet by letting as much water into the receiver as it would ad--mit, we found, that we had not exhaufted all the air.
138. At another time, a fmall, and almoft invifible bubble, expanded itfolf, when the ambient air was pretty well exhaufted to more than ten thoufand times its former extent. We took a fmall bolt-head, blown at a lamp, which contain'd, in all, about eighty grains of water; and inverting the fmall neck into a jar of water, it was included in the receiver; and the ambient air being exhaufted, numerous bubbles rofe out of the water, and, expanding, quickly drove all the water out of the bolt-head. Then, re-admitting the outward air, the bolt-head was prefently almot fill'd, and all the expanded air fhrunk into a bubble little bigger thana fmall pin's head; when, taking the bolt-head out of the water, and inverting it, that the bubble might get out at the neck, we carefully fin'd it up with the water that had been freed from air ; and, then, inverting it, as before, into the jar with water, we again included it; and, after fome exfuctions, found, that there was got out of the water,

Phyfico-mechanical Experiments:

into the neck, a very confpicuous bubble, which, upon admitting the air, fhrunk almof into an invifible one, and afcended into the head of the glafs. Then, again exhaufting the receiver very well, we found it expand itfelf, fo as to fill the capacity of the bolt-head, and to drive out almoft all the water. And, upon re-admitting the air, it again florunk into a bubble, whofe diameter (according to our beft eftimate) was not more than a two and twentieth part of the diameter of the head of the above-mention'd glafs ; fo that, to fill the whole cavity of the head only, it expanded itfelf 10648 times: but, becaufe it fill'd, likewife, the greateft part of the neck, we found, by weighing the water which fill'd that part, and the water which fill'd the head, that the capacity of that part of the neck, was almoft a third of the capacity of the head; being as 14 I to 48 I . If, therefore, 4^{81}, the capacity of the head, contain'd it ro648 times; 141, the capacity of the neck, muft contain it $3121 \frac{18}{4} \frac{9}{8}$ times; fo that, in all, the fmall bubble of air was expanded to above 13769 times its former bulk.

The diameter of the fmall bubble contracted, was $\frac{1}{5}$ inch.
The diameter of the outfide of the head of the glafs was $\frac{39}{28}$ inch.
The water, that fill'd the head only, weigh'd fixty grains and a half.
The water that fill'd the head, and as much of the neck as the air had before expanded itfelf into, weigh'd feventy-eight grains, and one eighth; whence that part in the neck weigh'd feventeen grains, and five eighths. The bolt-head itfelf weigh'd fifteen grains.
139. We tried this experiment again, and found a finall bubble, much about one twelfth of an inch in diameter, filld not only the ball at the end of the bolt-head, (which was an inch and a half in diameter,) but the whole neck, which contain'd near as much water as the head; and beat down the furface of the water within the pipe, much below that of the water external to it.

Thefe experiments may give rife to inquire, what figures and motions in the particles of the air, can explain fuch a wonderful rarifaction, perhaps, without quite lofing its durable fpring; how the air comes to be rarifiable fo many times more without heat, than hitherto we have found it by heat ; and, laftly, what might, reafonably, be conjectur'd about that part of the cavity of an exactly clofed glafs, where, tho' the eye difcovers no vifible fubftance, it appears not, that the common air adequately fills fo much as the ten thoufandth part.
140. It has not, that I know of, been attempted to difcover, whether the, mometion of air either in the utmoft, or in the intermediate degrees of rarifaction we the frimo of can bring it to, retains a conftant and durable elafticity; and what other ${ }^{\text {pandad }}$ air. properties it either gains or lofes by confinement*.

To attempt fomething of this kind, I caufed a good bubble of glafs, with a ftem, to be foblown at the flame of a lamp, that whilft the ball was

* Mr. Hauksbee has thewn, by experi-
ment, that the fpring of the air may be
fo difturb'd by violent prelfure, as to re-
quire confiderable time to recover its
natural tone and temper; and that this tone will be as the force employ'd, or its continuance in fuch a violent fate. Hanksb. Exptrim. p. 110-112, and p. 162-166.

Phyyca-mechanical. Experiments.

Preancrrety yét exceeding hot, and, confequently, contain'd none but highly rarify'd air, the ftem was fuddenly feal'd up. This bubble, many months after, I inverted into a bafon of water; and, having broken off the feal under the furface of it, the liquor was violently impell'd into the cavity, yet was not able to fill it ; a confiderable part being defended from the farther afcent of the water, by the fpring of the remaining air ; which, for all the long ftretch it had been put to, had not, that we obferv'd, loft any thing , of its fpring. At another time, leaving a very fmall proportion of air in the fotds of a fine limber bladder, whofe neck was very clofely tied; by the help of the air-pump, it was fo expanded, that, at length, it feem'd to fill the whole bladder, and reduce it to the extent it had, juft before "twas empty"d. And the bladder, by a peculiar contrivance, was fo included in another veffel, that, being protected from the outwand air, it maintain'd its tumid figure; and in that unwrinkled ftate it continu'd for near three years.
I, afterwards, contrived an inftrument, fit to difcover how long air, - brought to the greateft expanfion I could conveniently reduce it to in my engine, will retain its fpring; and by what degrees, or ftages, and periods of time, the decreafe, if any happen, is made. But I could not, by its means, obferve any remarkable diminution in the air's elafticity, tho it was preff'd, and, as it were, clogg'd with a weight, which one would wonder how it could, when 'twas to highly rarify'd, fupport for one minute. And, in one of them, we found not, in ten weeks time, any confiderable variation; for the little flrinking of the air, difcoverable by an attentive eye, might be, probably, afcribed to the change of the weather to a far greater degree of coldnels.

I, alfo, contriv'd a little portable inftrument, wherein the air being expanded, as one may guefs, to five or fix hundred times, (perhaps a thoufand times) its wonted extent, has not only, for a long time, preferv'd its fpring ; but, alfo, tho' very much dilated, without heat, the heat of the hand, apply'd to the outfide of the vefiel, has a quick, and very manifeft operation ; and, upon the withdrawing thereof, the air quickly returns to its former dimenfions, and temper: fo that it may be enploy'd as a kind of -weather-glafs.

14I. A cylindrical glafs, blown at a lamp, and having a long ftem coming out at the unfeal'd end, was quite filld with water, and inverted into more, placed at the bottom of a large pipe, feald at one end, and of three or four feet in length : this external pipe was exhaufted, till the air, that difclofed itfelf in the water of the internal one, had forc'd out the water, in the cylindrical glafs, as low as the upper part of the ftem ; at which -great expanfion of the air, the external pipe, being fpeedily and fecurely cclofed by a certain contrivance, the air, thus rarify'd, was kept fometimes in my own chamber, that was warmer; fometimes in an under-room; and, after it had been kept, from firft to laft, about eleven weeks, or three months, without any other remarkable rariation, than that in the sold room, the water afcended a little at that part of the internal pipe, where
where the lower-end of the cylinder gradually leffen'd itfelf into the flen- Provantice: der ftem. At length we broke off the clofed apex, when the water was but leifurely (becaufe of the nendernef's of the orifice made for the air to get into it) impell'd up into the deferted cavity of the cylinder, which it wholly fill'd, except a little bubble, exceeding thallow. We made ufe of our eyes, at a fit diftance, and of compaffes, both ordinary and callaper, to obtain thefe meafures. The cylindrical part of the internal pipe was three inches in length; and three fifths of an inch, or lefs, in diameter, on the ourfide. The bubble was two tenths in diameter, and about two hundredths in depth. From all which, according to Dr. Wallis, who affifted in the experiment, the natural bubble was, to the fpace it poffefs'd, when expanded, as 1 to 1350 .
142. After the middle of September, on a fun-fhiny day, about noon, we The condenfation, took a bolt-head, or round vial, furnifh'd with a long ftem, and plac'd it of the its comprit by cofd, in a frame purpofely provided, fo that the ftem was perpendicular to the fon mithout who horizon, and the globular part fupported by fuch a veffel, that thorough a hole made in its middle, the thank reach'd downwards, till the orifice of it was a little immers'd beneath the furface of a glafs of water, placed at the bottom of the frame. This done, we took a large proportion of beaten ice, and mix'd it with a due quantity of bay-falt, and not only laid it round about the lower part of the ball; but the veffel, contiguous to that part, being purpofely made with turn'd-up brims, we heap'd up the frigorific mixture, fo as to bury the whole fpherical part of the glafs in it, and cover the very top of it therewith to a confiderable thicknefs; whereby the air within being exceedingly cooled, the water, in which the thank terminated, was made to afcend faft along the cavity of that fhank, till we perceived it would reach no higher : but, after a while, it began to fublide again; which nick of time being carefully watch'd, we made a mark at the higheft ftation of the fluid, and then taking out the bolt-head, we fill'd it with water ; allowing for that fmall part of the ftem which was immers'd at the beginning of the operation. This water weigh'd nineteen ounces, and fix drams ; then weighing as much water, as fufficed to fill the fhank up to the mark before-mention'd, we found that to be one ounce and three drams; by which number, the former being divided, the quotient is $14 T^{4}$ drams : Jo that the proportion of the two quantities of water, being as II to 158, the fpace into which the air was condenfed by refrigeration, was to the fpace it poffefs'd in its former ftate of laxity, as 147 , to 158 ; and, confequently, the greateft condenfation, that fuch a time of the year, fuch weather, and fo high a refrigeration could bring the air to, made it lofe but rit of its former extent.

But, in the following condenfation, or compreffion of air, tho cold were, indeed, employ'd, yet that could not contract the air to any thing near fuch a degree, where the frigorific mixture did not primarily, or immediately, comprefs the included air; but only fo affected the water that was thut up with it in the fame veffel, as to make it fwell, and, confequently, crowd the aerial particles into lef's room."
Vol. II.
Bbbb
The

Phyfico-mechanical Experiments.

The experiment was this. We took a new glafs bolt-head, with a neek not long, and filld it fo far with common water, that, being hermetically feal'd, the liquor reach'd within three inches of the top; and making an eftimate of the tharp end, left fo for the conveniency of fealing up the glafs, we guefs'd, it to be about a quarter of an inch in length; then, applying fnow and falt to the lower part of the bolt-head, we readily drove out the water further and further into the neck, till at length it was got up to the bafis of the fharp conical end, where the glafs was feal'd; and shen, juft as I was looking upon it, the glafs flew, with a noife, about my ears ; being broke into many pieces, which argued the comprefion of the air to have been very great. And Dr. Wallir, who was prefent, and meafur'd it from time to time, defired me to regifter the experiment, with his eftimate ; which is, that the air was reduced inte the fortieth part of its former dimenfions.

This condenfation of the air is the more furprizing, becaufe fome of the greateft mathematicians of our age, have not, with wind-guns, and other forcible engines, been able to crowd the air into lefs than the fifteenth part of its ufal extent.

The fartvizing differace in ex Haffoem of the $\int \mathrm{S}=\mathrm{m}$ of air rarifised
143. Tho' we could not find, that cold, in our climate, would reduce the air into near the twentieth part of its natural fpace, by condenfation; yet, heat will advance it to near feventy times its ufual laxity, by rarifaction.

But, as by engines, and artificial contrivances, the air may be two or three times more comprefs'd, than naturally it is, even in frofty weather ; fo, on the other fide, it may, by means of art and inftruments, be much more rarified, and expanded, than has been hitherto found, by the bare application of external heat, even that of an intenfe fire.

We may, alfo, obferve, how much the utmof degree of its rarifaction by heat, mention'd by Merfennus, falls fhort of the degree to which it has been advanced in our pneumatical engine; the proportion betwist the-two being that of about I to 70 .

But the air, we make our trials with, upon the furface of the earth, is not, properly, in a free and indifferent fate, with regard to rarifaction, and condenfation; but already highly comprefs'd by the weight of the atmofphere refting upon it : whiff the air to be rarified, has, by virtue of its fpring, a ftrong tendency to dilate itfelf.

Here, then, feems to be a furprizing mutability of the air, as to rarity and denfity; whereby the fame quantity of air being, fometimes, comprefs ${ }^{2} d$, and fometimes dilated, may change its dimenfions to a degree, that feems, almoft, to tranfeend the power of nature and art ; and, by confequence, might, probably, be rejected as incredible, if it were-abruptly, and nakedly propofed : for, we can fcarce fafely put determinate limits to the ftupendous rarity, which the upper part of the atmofphere, being, almoft totally, uncomprefs'd, by incumbent particles of air, may be fuppofed to have by nature, unaffifed with art.

But to compare together the fmalleft extent, to which we have reduc'd prizuarics. the air, by condenfation, and the greateft to which we have advanc'd it by rarifaction; the extent of the fame quantity, highly rarified, is, to leave out fome odd hundreds, 13,000 times greater than before ; which, being multiplied by 40 , the degrees of the air's compreffure, it will amount to 520,000 , for the number of times, by which the air, at one time, may exceed itfelf in bulk at another : a difference truly furprizing, tho ${ }^{\circ}$, doubtlefs, it might be-carried vaftly higher!*

S王CT. III.

BEfore we proceed to our other pneumatical experiments, 'tis neceflary topremife, what relates to the improvements of the chief engine, wherewith they were made, and to the other inftruments employ'd therein.
In our engine, with a double barrel, for exhaufting the air, AA, are two 1 dferitiourf pumps made of brafs.

BB , two fuckers or Emboli, hollow within, and open below. double barrel fou

CC, two holes in the upper part of the fuckers, with valves opening $\frac{\text { air. }}{\text { Fig }}$. 68 outwards, to let the air efcape, and hinder it from coming in.

DDDD, iron rods, ferving to move the Emboli, being annex'd to them.
EE, two flat iron ftirrups, at the top of the rods DD , on which, the operator muft ftand to work the engine.

GGG, a cord join'd to the two ftirrups, and running in the pally H.

* Air, near the earth's furface, poffeffes about 890 times the fpace of an equal weight of water; and, thercfore, rays Sir Yaac Newton, "a a cylindrical column of "a sit, 850 feet high, is of the fame weight
${ }^{46}$ with a column of air a foot in height,
$«$ and of the fame diameter. But a co-
"c lumn of air, reaching to the top of the
© atmofphere, is equal in weight to a co-
" lumn of water, of about $3 j$ feet high ; if,
"t therofore, the lower part of the whole
"c aerial column of 850 feet high, be de-
"dualed, the remaining upper part will
"c be equal, in weight, to a column of wa-
"c ter 32 feet high. Now, fince the air
.at is comprefs'd, in proportion to the
"c atmofphere that refts upon it; and
s6 fince gravity is reciprocally as the
". Square of the diftance of the place "from the earth's center; I have found," rays he, " that air, in afcending from the " furface of the earth, to the height of At one femi-diameter thereof, is rarer than
" with us in a far greater proportion; "than that of all the fpace below the " orb of Saturn, "to a rphere of an inch "diamerer. Confequently, fuch a fphere " of our air, of the rarity it has at the " height of a femi-diameter of the earth, "s would fill all the regions of the planets, "s as far as the orbit of Saturn, and vaft
" farther!" Newton. Princip. p. 470.
This prodigious degree of rarifation ${ }^{\text {P }}$ foems unintelligible to Sir Ifaac Nevton, by feigning the particles of air to be fpringy and ramous, or rolled up like hoops; or, by any other means than a repulfive power; which is much greatcr here than in other bodies, becaufe air is very diffcultly generated out of very fix'd bodies ; and fcarce withour the affiftance of fermentation ; for thofe particles recedefrom one another with the greateft force, and are moft difficulth brought together, which, upon contala, cohere moft ftrong1y. Newten. Optic. p. 371, 372.

LL, two valves at the bottom of the pumps, opening inwardly, to admit the air out of the tube MM.

MM , a tube reaching from both pumps to the plate $\mathbf{O O}$, by means of the curvature PPQQ; which ought to be fo long, that the tube PQQ , may not hinder the pumper from ftanding conveniently on the ftirrups EE.

OO, a plate bored in the middle, on which, the receivers, to be evacuated, are placed; as R, for example.

Before this engine can be fit for ufe, it is to be put into a frame of wood, to fupport it, as Fig. 69. and as much water is to be poured thro' the hole \mathbf{Q}, in the plate $\mathbf{O O}$, into the pumps, as will fill the cavities of the fuckers, and a little more : then, a perfon muft ftand on the two iron ftirrups EE, and alternately deprefs and elevate them. By this means, the fuckers, following the motion of the firrups, in their afcent, will leave the fpace in the bottom of the pumps empty; and fince, as all other paffage is denied from the air, that alone, which is contain'd in the receiver R, is convey'd into the pumps, by the tube QQPPM, and opens the valve L, which being prefently fhut, hinders the fame air from returning: wherefore, the fucker afterwards defcending, compreffeth that air ; whence of neceffity, the valve \mathbf{C}, muft be open'd, and all the air pafs out at it ; becaufe, the water in the bottom of the pumps, exactly fills all the fpace, and alfo regurgitates thro' the valve \mathbf{C}.

This double engine is, upon many occafions, preferable to a fingle one ; fince it doth, not only, produce a double effect, but, alfo, performs it much more eafily: for, in thofe engines, which are furnifh'd but with one tube, whilft the fucker is drawn up to evacuate the pump, the whole pillar of the air, incumbent on the fucker, is to be elevated by force; and again, when the fucker returns, it is alfo, by force to be reftrain'd, left it fhould be too foriftly impeli'd by the air, and fo break the bottom of the engine; but, in thefe double engines, the operator is, in a manner, wholly free from that toil. For, in the firf fuctions, the Emboli are eafily lifted up, becaufe the air, immediately derived from the receiver R, into the pumps, preffeth the fuckers downwards, almoft as ftrongly, as the external air, incumbent on the oppofite part; and, when the quantity of the internal air is diminifh'd, the fucker, to be deprefs'd, tends downward with the greater force, and fo, by means of the cord GGG, compalfing the pully, draws the other Embolus upwards, and, at the fame time, hinders it from defcending with too great velocity; and, by this means, both fuckers, at one and the fame time, will affilt the pumper. And, as the Emboli make but a very fmall refiftance, the two pumps of this engine may be ply'd with greater eafe and expedition, than one pump in fingle engines; whence, this contrivance is of great ufe in thofe experiments, which cannot well be made flowly.

The whole gage ABCDE, confifts of three glafs-tubes, all well cemented together, fo, that a paflage remains open, from one to the other; the firt of thefe tubes A B, being open at the extremity A, is of lefs capacity, than the tube BCD , but of greater, than ED. The tube BCD,
is crooked in the middle, and the tube ED, ought to be hermetically feald, pmenarien at the extremity E ; but the part BCD , muft be fill'd with mercury.

If this inftrument, thus prepar'd, be put into a receiver, out of which, the air is to be exuraeted, the air remaining in the part ED, will, by its fpring, comprefs the mercury DCB, and force it to afcend into the part BA , and itfelf will be dilated in the cavity DC. If, then, the following proportions be duly obferv'd, between the magnitude and length of the tubes, when the air is extracted, the mercury will almoft reach to the top A, and the air in the other leg, being fo dilated, that it cannot fuftain 2 greater body of mercury, will remain included in that fpace.

But, that this inftrument may exactly fhew the quantity of the air produced in a receiver ; the tubes $A B, E D$, are to be diftinguifh'd by marks into feveral parts: and, when the Torricellian experiment is made, upon the plate LM, of the pneumatic engine, as Fig. 70. a receiver FGE, is to be taken, perforated, at the top F, and the tube HI, is to be tranfmitted thro' the hole, that fo the receiver may be apply'd to the plate: and, then the hole F , being ftop'd, and the gage ABCDE , put into the receiver, the air is to be exhaufted: the air, then, being dilated in the receiver, the mercury cannot be fuftain'd fo high in the tube HI, but muft defcend by degrees; and, at the fame time, the air of the tube ED, gradually drives the mercury into the tube AB. Now, when the mercury, in the tube HI, defcends to the height of twenty-nine inches, and remains at that height, if we mark how high the mercury hath afcended into the tube AB , we may know, that, as often as the mercury in the gage fhall reft at that height, the air, in the fame receiver, will be able to fuftain, only twenty-nine inches of mercury ; whence that place in the gage muft be marked with the figure dwenty-nine: and fo, every inch of the mercury's defcent in the tube HI, may be marked in our mercurial gage, when the part AB, will thew all the degrees of the rarifaction of the air.

But, now, if the air be.condens'd in the receiver, above its wonted preffure, and all ways of its efcape be ftop'd, it may immediately be known, by the tube ED; for the mercury will be impell'd into it, by the incumbent air, thro' the open hole fo much the higher, as the compreffure of the air in the receiver fhall be the greater; and how great that is, and what an altitude of the mercury it can fuftain, may eafily be found, by computation, thus.

It has been prov'd, that the fpace poffefs'd by air, is diminim'd in the fame proportion, as the comprefling force increafes, and vice verfa.

Let then, the fpace A, be poffefs'd by a certain quantity of air, whilf the compreffing force is F : if we increafe that force by the addition of G, which is equal to it, our felf-fame quantity of air will be reduc'd to half its fpace, to that B, the remaining fpace, will be half of the total fpace A, as the former preffure F, is half of the total preffure F and G. And, if we further increafe the preflure, by the addition of H , fo that, the firf preffure F, is only one fourth of the total preffure F and G and H, the air can poffefs only the fpace C, which is one fourth of the total fpace A. Thus, the remaining fpace will always be in the fame proportion to the tocalfpace, as the firft preflure is to the total preffure.

So that the remaining fpace, being to the total fpace, as the firf preffure is to the total preffure; three of thefe terms being known, it will be eafy to find a fourth, by the rule of proportion. For inftance, in our gage, let the tube ED, be the total fpace, into which the air is comprefs'd, by the ufual preffure of the air, which, in England, is equivalent to thirty inches of mercury ; the firf preffure, therefore, will be thirty inches of mercury. Now, if that preffure be increafed, and the air reduced into a lefs fpace, fuppofe into the fpace NE; to find the quantity of this preffure, I meafure the remaining face NE, and conftitute that, fuppofe fix inches, for the firft term of the proportion; then, the fecond term, will be the total fpace DE, fuppofe twelve inches; the third term, the height of thirty inches of the mercury, which was the firt preffure; and fo the fourth term, or total preflure, will be found to be fixty inches of mercury: whence I conclude, that the preffure of the air in the receiver can fuftain the mercury to the height of fixty inches; and fo of the reft.

From the fame principle, it will be cafy to find, what ought to be the proportion, between the fize of the tubes AB, and ED. For that depends on the length of the legs, which, the higher they are, fo much the better they reftrain, and keep in the air, but little dilated, in the feal'd part. For inftance, let the length $A B$, be ten inches, which height of the mercury is one third of the accuftom'd preffure, and it is fufficient, that the tube HB, be twice as big, as the tube ED; for, after the mercury hath afcended to the top of the tube AB, the air included in the other leg, expanding itfelf into the fpace forfaken by the mercury, will poffefs three times more than its former fpace; and to one half of the firft preflure, which is ten inches, will be fufficient to curb its fpring. But, if the legs were fhorter, the mercury would be expell'd, by the included air, at leaft in part. And, therefore, the magnitude of the tube AB, ought to have a greater proportion to the maguitude of the tube ED, that the afcending mercury may afford more fpace to the air, to be dilated ; fo that the fpring of the air being weaken'd, the weight of the:mercury cannot be overcome. And, thus it would happen, if the height of the gage were to the height of thirty inches, in the fame proportion with the firft - Space of the air, to the total pace it would poffers in vacuo.

The height of the tube, fhould rather be too long, than too thort; becaufe, if it be too fhort, the mercury will be expelid in part, and fo, not fhew all the degrees of rarifaction; but, if it be too long, the mercury will, only, not reach to the top, and fo the gage will, neverthelefs, fhew all the variations, tho they be lefs fenfible.

But the tube DC, ought to contain a fufficient quantity of mercury, at the leaft, to fill the tube $A B$, before any paffage be open'd for the air inclurded in the rube. ED.

1 cutionger:

 Fig 720In our engine to comprefs the air, $\mathbf{A A}$, is a glafs-veffel, whofe orifice is exquifitely firted to the flat plate B.B.

BB , is a flat plate of brafs, made to.clofe the veffel AA exactly.

Pbyfico-mechanical Experiments.

CC, 2 fmall tube of brafs, paffing thro' the middle of the plate, and Priomarrit faftened thereto.
\mathbf{E}, a little valve, opening inwardly, to fhut the fmall tube \mathbf{C}.
\mathbf{F}, the fpring depreffing the valve E .
GGG, the gnomon faftened to the plate BB, made for reftraining the fpring \mathbf{F}.
II, a fquare lath, fuftaining the plate BB, and bored thro' in the midde, to tranfmit the little tube C .
LLL, LLL, two iron-wires, which, paffing thro the holes in the lath II, and compaffing the upper part of the iron-plate KK, hinder the plate from being much moved from the lath.
KK, an iron-plate, with a hole in the middle, formed into a femalefcrew, to receive the male-fcrew MM.

MM, an iron-fcrew, ffraitly to conjoin the receiver AA, with the plate BB; and, left the brafs-veffel fhould be broken, it is proper to put fome wood and leather between the fcrew, and the upper part of the receiver: leather, alfo, is to be put upon the plate BB, both to prevent the breaking of the glafs, and the more exactly to fhut the receiver.
NN, a pump faftened to the tube C, below the plate BB.
OO, the fucker of the pump NN.
\mathbf{P}, a little hole in the lower part of the pump, by which the air enters into it, when the fucker is brought to the loweft part thereof.

To ccmprefs the air by means of this engine, we put the bodies, whereon the experiment is to be made, into the receiver AA; and laying it on the plate BB , firmly bind it thereto, by help of the ferew MM. This done, the fucker or plug $\mathbf{O O}$, is to be drawn, till the external air, by the hole P , can fill all the upper part of the pump; then, if the fucker be drawn upwards, the air finding no other paffage, will open the valve \mathbf{E}, and enter into the receiver AA; from whence there is no regrefs, becaufe the valve \mathbf{E}, is prefently depreffed by the fpring \mathbf{F}, and fhuts the hole \mathbf{C}. And fo we may repeat the compreffion of the air into the veffel AA, at pleafure ; whilf the quantity thereof is eafily known by the mercurial gages.

But I fo fafhion the pump, that it may be fitted, by a fcrew, to the tube C ; for, thus, when one receiver is full, we may take away the pump, and ufe ir to fill others.

Now, becaufe, in thefe engines, mercurial gages ferve to thew the degrees of compreffion ; there is no occafion for the gages before deferibed; for thofe are made with more difficulty, and, belides, afford but a fmall Space, wherein to note the degrees of comprefion. It is, therefore, better to bend the glafs-tube, feal'd at one end, in feveral places, as in the figure T, that a long tube may be contain'd in a fhort receiver; fo that the fig. 33. mercury, being put in thro the open end, as much as will fuffice to fill the length of one inch; all the reft of the fpace, fill'd with air, will ferve for marking the degrees of comprefion, much more fenfibly than can be done in a horter tube.

Here we muft note, that when the mercury tends downwards, in fuch an inflected gage, the weight thereof forwards the external preffure; but when it is impell'd upwards, the fame weight refifts it : a difference to be regarded in very accurate experiments.
To rix liqums - In order to make mixtures in compreffed air, let the receiver be AA, in powers in com-which we would mix either liquors, or powders.

Let $Q Q, R R$, be two tubes, each of them feal'd at one end, and open at the other.

Let RQS, be a veffel of brafs, to be laid upon the orifice of the tubes, as in the figure.

The liquors to be mixed, muft be poured into the tubes $Q Q, R R$, each liquor in its own tube; and let the veffel RQS, being inverted, be laid on the orifices of the tubes; and, in that pofture, let all be cover'd with the receiver AA; let the fcrew be driven, and the air intruded after the manner juft defcribed: and when the gage T'T, thews, that the compreffure is arrived at the degree intended, the engine is to be inverted, and fo the liquors will flow down from the tubes into the veffel RQS, and be mix'd there. If more liquors, or powders, are to be mix'd, the number of the tubes is to be increas'd accordingly.

To make and remove artificial air frome ane recciver into notber.

To tranfmit air out of one receiver into another, we ufe the following contrivance.

AA, is a flat plate of metal, with a hole in the middle.
BB , is the ftop-cock, faftened to the hole in the middle of the plate $A A$, one of whofe ends is form'd into a male-fcrew.

DC, is a copper-funnel, open below, with a broad orifice, (that it might be eafily fet upon the pneumatic engine, and there ftand firm;) and the upper part of the orifice D, is falhion'd into a female-fcrew, to receive the male-fcrew of the ftop-cock BB.

EE, is a fmall tube, open at both ends, which are cut into a femalofcrew, to receive the male-fcrew of the ftop-cock BB.

FF, is the receiver laid on the plate AA, and exquifitely fitted thereto.
Now, to make factitious air, we mult put the matter which is to produce the air, into the receiver FF ; and placing that on the plate $A A$, by means of the fcrew, we ftrongly faften it thereto, as in our engine for comprefling the air; the fop-cock BB, we infert into the femalofcrew D: then the orifice C, and with it the receiver, is to be placed upon the pneumatic-engine, and the ftop-cock B, being open'd, the air is to be extraded. When the receiver FF, is emptied of air, the ftop-cock B, is to be Shut, that all paffage to external air into the receiver may be denied; and the ftop-cock, being taken out from the female-fcrew D, the recoiver is prefently to be immers'd in water ; fo that, at leaft the plate AA, with the ftop-cock, may be cover'd therewith : thus no air from without can find entrance; and the air, produced out of the matter in the receiver, will be preferv'd unmix'd ; whilft the degrees of its rarifaction, or compreflion, are known as thofe of common air.

But if we would tranfmit that air into another receiver; another rePrzomatice. ceiver FF , with another plate AA , and a ftop-cock BB , is to be procured, and evacuated : then, by means of the fmall tube EE, we join the ftop-cocks BB of, both receivers, when all fufpected places are to be ftopp'd with cement, that no external air may find entrance. Then, the ftop-cocks being open'd, the air, produced in the former receiver, flows into the latter; and the fop-cocks being again thut, and pluck'd out from the tube EE, the receivers may be kept a-part: when if there be any matter included in the latter receiver, we may eafily view what influence the factitious air hath upon it.

But, becaufe the mercurial gages, lately defcrib'd, are fpoil'd, if they be inverted, and the crooked gages prefently expel their mercury, if the air be rarify'd in their receivers; and, fince the operation, here defcrib'd, cannot be perfected, but both receivers muft be inverted, and both, likewife, emptied of air ; gages of another fort are to be made, after the manner following.

AA, is a glafs vial, fill'd with mercury to the fuperficies DD.
BB , is a glafs tube, very well cemented, in the orifice of the vial.
CC, is another tube, tranfmitted thro' the tube BB, and reaching to the bottom of the glafs. This tube mult be feal'd above, and open below; neither muft it fo exactly fill the tube BB , but that paffage may be given to the external air, within the glafs AA.

If this inftrument be put into a receiver, from which, the air muft be, afterwards, extracted, both tubes will be exhaufted of air ; and, when you invert the receiver, to take in new air, as in Fig. 74. the mercury will flow down to the orifices of the vial, and be there kept, below the orifice of the tube BB ; when the new air entring, will eafily fill both tubes, and the vial : then, the receiver being erected, the mercury will again reft, in the bottom of the vial, and the orifice of the tube CC, will be plung' d in it. And, if any air be produc'd, out of the bodies included in the fame receiver, the mercury will afcend into the tube CC, and there, reducing the air into a narrower fpace, thew the degrees of compreffion.

The inftrument wherewith we filtred air thro' water, was thus con-To filter air trived.

AA , is a glafs receiver, whofe orifice, laid upon the plate BB , agrees Fig. 7^{7}. exquifitely therewith.

BB , is a plain plate with a hole in the middle, to tranfmit the tubes CC,DD.
$C C, D D$, are two tubes cementedto the plate $B B$; one of which is no higher thian the plate, but the other reacheth almoft to the top of the receiver.

EEEE, is ftop-cock, to whofe holes the extremities of the tubes CC, DD, are faftned.

FF, is the key of the ftop-cock unperforated, wherein is only one chink GG.

Pbyfico-mechanical Experiments.

Priomatics. HH , is the receiver, compaffing the end of the ftop-cock, and faltned to it, preventing the entrance of the outward air, and commuaicating with the pump II.

LL, is a glafs veffel.
M , is a hole in the top of the receiver, whofe ftopple is faftned with a fcrew.
Fig.78. The next figure exhibits a ftop-cock, cut tranfverlly, that the two tubes CC, DD, may be the better diftinguifhed, and their infertion into the ftop-cock be perceiv'd.

This inftrument is thus to be ufed: we put the thing about which the experiment is to be made, into the veffel; and the receiver AA, being laid on the plate BB , we pour water into the hole M , till the receiver be about half full, and the veffel LL, with the matter contain'd therein, fwims on the top thereof; then we ftop the hole exactly, and faften it with 2 fcrew. The key is afterwards to be fet fo, that the chink GG, may communicate with the tube CC ; then the plug being brought to the loweft part of the pump, the air of the receiver AA, entring through the upper orifice of the tube CC, will flow down thro' the chink GG, into the receiver HH , and into the pump. Then the key being inverted, fo that the chink GG, may anfwer to the infertion of the tube DD, the plug is to be impelled upward; when the air will be expelled from thence, and, finding no other paffage, be driven through the chink GG, into the tube DD; and from thence it will emerge to the upper part, through the water ftagnant in the receiver. And by repeating this procefs, we Atrain the air thro' the water, as often as we pleafe; and thence know whether it acquires any new qualities, in refpect of the body included with it.

Frow to comdenfe and rarify tbe Same parcel of air.
Fig. 7\%. to it.

CC, is the ftop-cock, faftned to the hole in the midft of the plate BB.
DD, is a pump joined to the ftop-cock C , with a fcrew.
E, is a veffel, fo large, that it may fluctuate in the receiver AA, without danger of being over-turn'd.

Let fome animal be put into the veffel E , and let the receiver AA, be put upon it, and fcrewed to it, as the figure thews. Then let the pump be fill'd with water, and, by a fcrew, be fitted to the ftop-cock; the ftopcock, being then open'd, let the plug C, be forced upwards, and the water afcending through the ftop-cock will, in part, fill the receiver AA, and reduce the air, contained therein, into a narrower fpace, without any addition of new air : if, then, you draw the plug downwards, the fame numerical air will be again rarified. Thus you may both condenfe and rarify the fame air as often as you pleafe ; and, by this means, you may find, whether the condenfation of the air contributes to prolong the life or health of animals.
4 wind-gno. In our wind-gun AA, is a hollow copper globe.
Fig. Ea BB , a tube, faftned to the globe.
F , a valve opening inwardly, and fhutting the tube BB.

Phy/fco-mechanical Experiments.

G, the fpring depreffing the valve.
H , a gnomon affixed to the globe AA, and making faft the fpring G.
CC, a tube of iron, faftned to the tube BB, and the globe AA.
DD, a plug exactly fitted to the tube.
EEE, another plug fitted alfo to the tube BB , with an iron wire, reaching almoft to the valve F.
\mathbf{R}, the protuberance of the tube $\mathbf{C C}$, fomewhat hollowed above, to receive the end of the iron LL.

LL, a crooked iron, moveable about the extremity in $\mathbf{R}_{\mathbf{2}}$ fo that it ferves as a lever to lift up the plug EEE.

OPO, a crooked iron, faftned in M, that the thumb refting in the angle \mathbf{P}, the reft of the fingers may attract the lever \mathbf{L}, and fo force the plug EEE, upwards. But the curvature is defign'd, that the one end O, might be applied to the fhoulder, in aiming at a mark.
'T' a rectangular piece of iron, compaffing the lever LL and the iron OPO, to keep the lever in its pofture ; for, otherwife, the plug EEE, would be thruft far out, whiltt the air is intruded into the globe AA.

II, an elliptic hole, in the upper part of the globe, very well thut with a valve, opening inwardly, to give liberty of infpection, and of amending what is amifs; for the valve may be drawn through the hole, by reafon of its elliptic figure.

SS, a metalline plate tranfvernly placed above the hole II, and perforated to tranfmit the fcrew V, by help whereof the valve, fhutting the hole II, is fuftained, and applied clofely to it.
Q. a hole in the lower part of the tube CC, by which the air enters into the tube, whilf the plug D, is brought to the loweft part thereof.

The air is forced into this engine, by fetting the foot upon the crooked end of the plug DD, that it may not be removed from the ground, and lifting the engine upward, till the upper part of the plug comes below the hole Q; and then the air entring through the hole, wholly fills the tube CC.

Then, by forcibly depreffing the engine, the air, contained in the tube CC, opens the valve F , and is thruft into the globe AA; whence it cannot return, becaufe the valve prefently ftops the paffage: and thus, by repeated ftrokes, we may condenfe the air in the globe, till the force of its fpring cannot be overcome by our ftrength.

If we would difcharge the air fo condenfed, the plug DD, is wholly to be drawn out, and a bullet to be put into the bottom of the tube CC : then, by means of the lever LLL, the plug EEE, is to be impell'd upward, as we faid before; when, the extremity of the iron-wire, opens the valve B, and the air breaking out therefrom, expels the bullet through the tube CC, with great violence.

But before the plug DD, is again put into the tube CC, for the compreffion of the air, about half an ounce of water is to be pourd into the tube. For, by this means, no air at all can efcape out by the plug; and, moreover, that water ezactly filling the upper part of the tube CC, the Cccc 2 whole

Puxvancree: whole compreffed air will be intruded within the cavity AA; and fo the condenfation be perfected much fooner, than if, at every turn, part of the comprefs'd air remain'd below the valve F .
This engine has feveral advantages above the common wind-guns. 1. Becaufe one valve ferves, both for the letting in, and difcharging the air; whence it is lefs fubject to be fpoiled, or impaired, than if two valves were ufed for that purpofe. 2. If any diforder happen in other guns, they remain ufelefs; but here, by the elliptic hole, we may take out the fpring and the valve, and fo mend whatever is amifs. 3. In other guns, the valves being cover'd with leather, are put in, before the engine is clofed on every fide; and therefore filver-folder could not be ufed in joining the parts, but only lead-folder, by which, the air, being much compreffed, could, by no means, be reftrained ; but here all things are well cemented with filver-folder, without danger of burning ; fince the valve, cover'd with leather, is put in afterwards thro' the elliptic hole II. 4 But this engine is chiefly to be preferred before others, becaufe, here we can put feveral bodies into the receiver, through the elliptic hole, and fo make many experiments in highly compreffed air.

An engine

 woberwitb to difili in vacuo. Fig. 81.We, alfo, contrived all engine, which thould diftil in vacuo, thus.
AA, is a brafs veffel, fhut below, and open above.
BB , a diaphragm of tin, whofe edges are fo polifh'd on both fides, that they exquifitely agree and fuit with the edges of the veffels AA, DD, which are alfo polifhed, and fo keep out the external air.

CC, a tube faften'd to a hole in the middle of the diaphragm BB.
DD, a brafs veffel, whofe aperture is applied to the diaphragm BB .
EE, a ftop-cock faftned to the hole of the diaphragm BB.
FF, a tube reaching from the ftop-cock EE, to the hole made for fut ction in the pneumatic engine.

GG, a metalline veffel, including the junctures of the veffels with the diaphragm, and alfo the ftop-cock, that being filled with water, it may keep all fafe from the external air. This is to be folder'd to the veffel AA.

To ufe this engine, we take away the diaphragm BB, and put the ingredients into the veffel AA, and fet it in a convenient place, till it is to be evacuated; then putting on the diaphragm BB , and the veffel DD , we apply all to the pneumatic engine, and by means of the tube FF, the air is pumped out of the veffels, the veffel GG being yet firft filled with water. Then the ftop-cock is fhut; and taking away the tube FF, we may place the evacuated engine on the fire, when the vapours, afcending through the tube CC, are condenfed in the upper veffel, and fo we have a liquor diftilled in vacuo. The quantity of the generated air, is known by the mercurial gage \mathbf{H}; but that muft be kept in the top of the receiver, left the mercury exhale, by reafon of the heat.

Round pieces of paper, perforated in the middle, are to be laid over the orifices of the veffels $A A, D D$, that they may be the better juined with the diaphragm ; the commiffures of the tube FF, with the ftop-cock, and preumatic engine, are to be fortified with cement; and the ftop-cock EE,

Pbyfico-mechanical Experiments.

is fo to be difpofed with the veffel GG, that part of the key may be promi-Pravastice. nent, without the veffel, thro' the hole, to be conveniently turned; neverthelefs, the ftop-cock, with the diaphragm, may be taken out of the veffel GG, whilf the veffiel AA, is to be filled with the defigned matter. And that is very eafily done, becaufe the key confifts of two parts, one of which M, is turned in the fop-cock itfelf, by means of a certain chink, which receives the fmall protuberance of the other part OO, that exactly fills the fmall pipe NN, faftned to the veffel GG; and being prominent outwardly, may eafily be turned in it, and communicate its motions to the other part M : but it is drawn outward, whilft the diaphragm $B B$, is to be taken out of the veffel GG.

Fig. 82. Thews another inftrument, differing from the former, in that it, almoft, wholly confifts of glafs, and affords a longer paffage for the vapours.

BB , is not a diaphragm, but a fmall tube, polifhed at both ends, that it may exquifitely fuit with the orifices of the veffels A , and D .
$A \mathrm{~A}, \mathrm{DD}$, are two glafs veffels, whofe orifices are applied to the tube BB ; whence the vapours are eafily tranfmitted from the one to the other.

EE,FF, GG, and I, have the fame ufe as in the former figure; and the whole inftrument is to be evacuated after the fame manner, and placed upon the fire; except that here the veffel AA, as being made of glafs, muft not be put on an open fire, but fet in balneo Maria, or on fand ; and the vapours will be condenfed in the veffel DD.
(1.) Fuly 11. 1676. I included a little piece of bread, very moift, and a little kneaded, with a mercurial gage, in vacuo.

Fuly 12. In fix hours time, no air was produced yefterday ; bur this and freft air night, a little broke into the receiver, and fuftain'd three inches of mercu-broded ry; for I had neglected to fortify the cover with turpentine.

Towards the evening, I found the mercury higher by about an inch; and am very certain, that nothing had entred from without.

July 13. This night, alfo, the mercury afcended higher; but my gage was not exact enough to difcover how many degrees.

July 26. The bread disjoined its receiver from the cover, by the force the air produced, and the fmell of it was acid.

Hence it follows, that water is a fit menftruum to draw air out of bread.
(2.) Fuly 1 I. I tried to extract air from bread, by the help of a burningglafs, wherewith I burnt bread in vacuo, and found it generate much air, which, ever and anon, broke out, as by fulmination; whence it feems probable, that air is contained in bread, but fo clofely compacted therein, that no eafy operation can give it vent; but that if any thing could diffolve and loofe that knot, it may then produce great effects.
(3.) Sept. 22. I took eight ounces of dry'd grapes, and, with feven oun- Froegres. ces of water, included them in a receiver, able to hold twenty- two ounces of water. The grapes were bruifed.

Sept. 23. The receiver lay buried under the water all this night, yet the mercury afcended two whole inches.

Pbyfico-mechanical Experiments.

Prevmaticgo

OEtob. 5. In five days more, the mercury afcended twelve inches, and was now twenty-five inches high.
OCtob. 18. The mercury continued not to afcend with the fame fwiftnefs, and the air began to pafs out of the receiver; but not before this day ; yet thefe grapes produced much more air, than thofe which I included without water.

Trow raifims.

(4) Fuly 12.1 included ten ounces of raifins of the fun, bruifedy in vacuo, with a fufficient quantity of water, to promote fermentation.
fuly 14. In two days they had produced ten inches of air.
About evening, the mercury was fifteen inches high : the fifteenth day the mercury had almoft reached to its accuftomed height.
Fuly 16. In the morning, I found the receiver fever'd from its cover; and the air breaking out thro' the water, in which it was plunged, I included the fame raifins again in vacuo.
Fuly 18. This day, in the morning, I found the air again breaking out.
Fuly 19. I fhut up the fame raifins in the fame empty receiver.
fuly 21. This day I found the receiver full, and the air breaking out of i.
I again thut up the fame raifins in the fame exhautted receiver.
Fuly 23. Yefterday, about noon, I found the whole receiver almoft full. of air; and this day, in the morning, perceiv'd it to pafs out very often.
It appears, then, that grapes without water, can generate but little air; whence it is manifeft, that water is a fit medium to draw air out of them : ${ }^{3}$ Tis alfo evident that the production of air is not begun prefently upon the affufion of water, but proceeds with greater fwiftnefs, after the parts of the water, in five or fix days time, have more deeply funk into, and pervaded the grapes.
Frum pumbl. (5.) Aug. 13. 1677. I included pears in two exhaufted receivers, and plumbs in another.

Aug. 16. In three days time, all my receivers were filled with air, newly generated; and one of them, which included the pears, becaufe I had left it expofed to the fun, was, in the fpace of 24 hours, feparated from its eover : whence we may conjecture, that the production of air is very much promoted by the heat of the fun.
Fromgrapes. (6.) OEtob. 16. 1677. I took two ounces of grapes bruifed, and fecured them from the air, in an exhaufted receiver, capable of containing twenty ounces of water.
OETob. 17. The mercury rofe higher about one half-inch.
octob. 18. Thefe laft twenty-four hours, the mercury ran up about another half-inch.
OEtob. 20. The height of the mercury was two inches.
On the twenty-fecond, it was almoft four. And, on the twenty-feventh it was almoft fix inches.

7an. 2. 1678. The mercury, yet, afcended not to the height of ten Pmunatic. inches.

OEZob. 16. 1677. I put three ounces of bruis'd grapes, with half an ounce of fpirit of wine, into a receiver, able to hold thirty ounces of water; and then I exhaufted the air.

OCTob. 17. The mercury afcended but a very little.
OEtob. 18. The mercury came not up to the height of one quarter of an inch.

OCZob. 20. The mercurial gage was out of order.
Fan. 2. 1678. I, this, day found my receiver fill'd with air; and, alfo, when part of the liquor was pour'd out, fome bubbles were form'd in the turpentine, about the orifice, and broke outwardly.

From this experiment, made in two receivers together, it feems to follow, that fpirit of wine much advances the production of air in vacuo; tho', in common air, it wholly hinders it.
(7.) Fuly 19. 1678. I put muft, expreffed from grapes bruis'd, and kept From minf. for ten months in a vefiel, fopp'd with a fcrew, into the fame receiver ${ }_{3}$. being alfo ftopp'd with a fcrew.

Fuly 21 . The mercury had not afcended at all.
23d. The height of it was three.
$24^{t h}$. The height was five.
25 th. In the morning it was an hundred and four.
Towards the evening, the height was an hundred and thirty-feven; and the muft got out.

26 th. The muft was almoft all got out of the receiver; and altho' the air now poffefs'd double the fpace it did yefterday, yet it kept up the mercury to the fame height.

27th. About half of the remaining muft broke out this night, becaufe I had omitted to fet the fcrew, left the receiver fhould be broken.

From this experiment it follows, that grapes, kept for fo long a time, rather acquire, than lofe a fermentative virtue.
(8.) Fan. 30. I put two quantities of apples, boil'd the day before, into. Trieanhe. two receivers, ftopp'd with fcrews; with one of them I mix'd a third part of fugar, the other had no fugar at all. Thefe receivers were quite full.

Fan. 3 I. I included raw apples, bruis'd, in three receivers; in one of themr I mix'd a third part of fugar; the fecond was without fugar, and fo was. the third; but it differ'd herein from the fecond, that it was fix times as. big: for, by this means, we may know, whether the capacity of the veffel, or the mixing of fugar, or the crudity of the fruit, can promote, or: retard the production of air.

Febr. 10. In that receiver, only, which contain'd the raw apples, with fuigar, fome air was produc'd.

Febr. if. The raw apples, with fugar, had impell'd the mercury up to thirty inches; thofe that were boiled with fugar, to two only $;$ in the other receivers no air was produced.

Fibr.

Febr. 18. In the receiver, containing the raw apples, with fugar, the mercury came to the height of fifty-fix inches ; in that containing the boild apples with fugar, the height was three: in the other receivers, there was, alfo, fome air produced, except in that wherein the boiled apples, without fugar, were put. I open'd that receiver, in which the apples had produced fo great a quantity of air ; yet the apples feem'd hardly to be fermented, but had a moft pleafant tafte.

Febr. 2 1. The boil'd apples, without fugar, had loft fome of their juice; and, opening the receiver, I found the cover broke, and yet the apples were not at all rotten.

March 1 . In the great receiver, containing the raw apples, the mercury was twenty-five inches high; in the little one, only feven: but in that where were the apples boil'd with fugar, the mercury had afcended to nine inches.

March 8. In the great receiver, the height of the mercury was twentynine; in the leffer, twenty-two and a half; and where the boil'd apples, with fugar, were, the altitude was nine inches.

March 17. The juice got out of the great receiver; in the little one, the height was fixty-feven; where were the apples boil'd with fugar, it was fifteen inches.

From this experiment it feems, that fugar, the crudity of the fruit, and the largenefs of the receiver, all contribute to the production of air.

Several ways to binder the prodaEtion of airs for inftance, in pafte.
(9.) December 21 . 1678. I made pafte of wheat-flower,without leaven, and put it into an exhaufted receiver; then I put the receiver in an apartment, writh a fire, which there kept a greater heat than is ufual in the middle of fummer; yet the pafte produced no air in ten hour's fpace: whence it feems to follow, that if dough hath once fuffer'd too much cold, it can fcarce recover its faculty of fermenting; for, fome years ago, when I made dough without leaven, in the fummer-time, it foon produced very much air in vacuo.
(10.) May 23. I included three ounces of dough, kneaded with leaven, in a receiver, capable of holding fifty ounces of water; I , alfo, pourd upon it fome quantity of fpirit of wine, to try whether fermentation would be hinder'd by that means.
May 24. The mercury was three inches high.
26. Little change.
27. No change.

May 29. No change.
Fune 2. It feem'd to have afcended a little higher.
14. No change.

December 14. No more air being produced from the dough, I took it out of the receiver, and found the fmell of it not grateful, but inclining to acid: I put it into an empty receiver, and there it fwell'd to double its ufual fpace, and made a little ebullition.

May 23. I included three ounces of dough, kneaded with leaven, in a receiver, able to hold fifty ounces of water; but here I mixed no fpirit of wine.

December 14. The mercury continued at the fame height; and, this day, opening the receiver, I found the dough had a very acid fmell.

From this experiment it feems to follow, that fpirit of wine, even in dough kneaded with leaven, hinders the production of air.
(11.) Auguft 29. I included pears, with a mercurial gage, in a receiver In pearso full of water, and then intruded air into it, till the mercury refted twentyfix inches higher than ufual; within a quarter of an hour, one of the pears was broken, and, afterwards, almoft all of it reduced to pulp.

Aug. 30. In twenty-four hours fpace, the pears feem'd to have afforded no air; but, on the contrary, the mercury in the gage was depreffed an inch and a half.

Aug. 3 1. I found no change in the height of the mercury.
Sept. I. The pears began to produce air, and the mercury was almott twenty-feven inches high.

Sept. 2. In twenty-four hours time, the mercury afcended more than eight inches; and now 'twas thirty-five inches high.

Sept. 3. The height of the mercury was increafed feventeen inches; fo that now it was about fifty-two inches high.

Sept.4. Within twenty-four hours, the mercury rofe feven inches higher, and then refted at fifty-nine.

Sept. 5. It was fixty-four inches high; and a pear, being broken, was become black.

Sept. 6. Three inches, and more, being added to the height of the mercury, it came now to fixty-feven inches, and one fourth, beyond what it was accuftom'd.

Sept. 7. It defcended three inches, and refted again at fixty-four.
Sept. 8. The mercury was depreffed to fifty-eight inches; and fome of the water having broke out, I fet the receiver with a fcrew.

Sept. 9. The mercury afcended full three inches, and was now fufpended above fixty-feven.

Sept. 10. In twenty-four hours it mounted one and a half, and ftopp'd almoft at fixty-nine.

Sept.11. Now it began to defcend again, and ftood no higher than fixty-feven inches; yet, I am certain, nothing had efcaped out of the receiver; but it was a fharp cold night.

Sept. 12. No change happen'd.
Sept. 13. The height of the mercury again decreafed, and it was not above fixty-four inches. The cold increafed.

Sept. I4. In twenty-four hours, it became higher by fix inches, reaciing to feventy.
 inches high.
19. It remained the fame.
23. The mercury was again depreffed to fixty-nine.
OEFob. I. It came to the height of feventy-five inches.
Vol. II.
Dddd
OEtub.

Pbyfico-mechanical Experiments.

Pxzumatsos. OEtob. 3. Yefterday I found no change at all in the mercury; but to-day it refted at feventy; and the cold was very fevere.

OEtob. 5. Yefterday the mercury remain'd in the fame place; but this day it reach'd to feventy-five. It was a rainy day.

OEZ06. 7. It continu'd rainy; and the mercury continu'd at the fame height.

OEDOb. 10. Hitherto the mercury was not changed; but this day I found it had defcended to fixty-nine inches; tho' the rain ceas'd not.

Octob. 12. Yefterday the mercury ftood ftill; but this day it was deprefs'd to fixty-five inches; and the cold weather return'd.
Ottob. 13. The height of the mercury $N_{0 v}$. 5. The height was eighty and
was fixty-four.
14. $\}$ The height \{fixty-nine. 15.\} was \{feventy-four.
24. The height was fixtyeight. It was a cold feafon.
Nov. 2. The height was fixty-fout. The cold increas'd.
a half. The cold abated. 22. The height was fixty-five. It was a hard froft.
27. The height was fixty-eight. It thaw'd.
Decemb. 6. The height was fixty-one. It was a very fevere froft.

From this experiment we may learn, that fruits, in a great compreffure of the air, cannot produce fo great a quantity of air ; for when I made an eftimate of the quantity of the fruits, and of the fmall fpace to be fill'd with air ; I found that quantity of air was not one eighth part of what had been produced in a large empty receiver: tho' the coldnels of the water might, alfo, hinder the generation thereof, as the following experiment will Thew.
'Tis farther manifeft, that the air is produced by ftarts, and, as it were; by reciprocations; as all bodies, in motion, by the force of their gravity, or of their fpring, are carried beyond their point of reft, and fo make many vibrations, or returnings. And tho cold and heat are not the fole caufes of fuch reciprocations, yet they feem to contribute much thereto.
In palbe againo
(12.) Feb. 22.1677. I included ten ounces of pafte in a receiver, that would hold twenty-two ounces of water; and, afterwards, I thruft as much air into it, as fufficed to fuftain feventy-three inches of mercury, befides the wonted preffure. In two hours fpace I perceived no fenfible change.

Febr. 23. In eighteen hours time, the mercury rofe feven inches only, its height being eighty.

In fix hours it alcended three; and its height was eighty-three.

Febr. 24.7	[90	And water feem'd to be expref
25.	97	out of the mals.
26.	¢ 2101	
27.	${ }_{1}^{105}$	3.\} Its height was $\left\{\begin{array}{l}121\end{array}\right.$
March I.	CII2	Ós. It remain'd at 121

March 8. During thefe two or three laft days, the froft breaking, the ${ }^{\text {Prxomatros. }}$ mercury ran up four inches; and, the height thereof was one hundred and twenty-five.

March io. Yefterday, the mercury remain'd at the fame height ; but, this day, mounting fix inches, it refted at one hundred and thirty-one.

March 21. The cold continuing long, no air was produc'd; but, in the three laft days the mercury afcended feven inches, and remain'd at one hundred and thirty-eight.

April 4. Yefterday, the mercury had afcended, but I deferr'd meafuring the quantity, till to-day; in the night, one of the iron wires, that ftraitned the receiver, was broken, and the receiver thrown to the diftance of four or five foot.

Hence we may conjecture, that the compreffion of the air, very much hinder'd the production thereof; for, that is ufually perform'd, in pafte, in two or three days time. Cold, alfo, much hinders its production.
(13.) March I. 1677. I included two ounces of bruifed raifins of the fun, In raifure emb with fix ounces of vinegar, in a receiver; upon which, numerous bubbles vingegr. broke out.

March 2. The mercury, in twenty-four hours fpace, afcended not to the height of half an inch; yet, fome bubbles fill appear'd.

March 25. The vinegar always appear'd interfpers'd amongt fome of the bubbles; yet, the mercury afcended not to the height of one inch.

Hence it appears, that vinegar hinders the production of air and fermentation; for, raifins, of themfelves, afford much air.
(14.) April 7 . I included ten ounces of pafte, in a receiver capable of In pafon holding twenty-two ounces of water; afterwards, I intruded as much air into it, as fufficed, to fuftain one hundred and twenty-eight inches of mercury, befides its accuftom'd height.

In fix hours time, the mercury rofe four inches, and refted at one hundred and thirty-two.

April 8. In fixteen hours the mercury ran up nine inches higher, and ftaid at one hundred and forty-one.

Nine hours after, the mercury manifefted no change.
April g. In the morning, I perceiv'd fome air had broke forth, and the mercury was deprefs'd to one hundred and thirty inches; therefore, I fcrew'd the receiver tighter, and thruft in eleven inches of new air: the height was one hundred and forty-one.

April 27. For eight whole days the mercury kept its ftation; but, on the two laft, it afcended feven inches, and continu u d at one hundred and ninety-eight, above its wonted height.
April 30. The mercury perififing at the fame height, I eafed the fcrew, fo that fome air might break out; and, when the mercury had fo Ddddz far

Pbyfico-mechanical Experiments.

$\underbrace{\sim x y m a r r o n}$ far defcended, as to exceed its accuftom'd height, only fifty inches, I prefently fet the fcrew ; to fee, whether, that remiffion of the fpring of the air, would afford any place for new air to be generated; and, in two or three minutestime, I found the mercury to have afcended, fenfibly higher.

Three hours afer, the mercury was found twelve inches higher; for it came to fixty-two.

In five hours, it afcended one inch and a half.
May I. In fifteen hours, the mercury rofe, only, one inch.
May 3. Yefterday, it appear'd at the fame height, but this day,' twas higher, by one and an half, and remain'd at fixty-fix.
May 4. The mercury was not chang'd, and, therefore, I fuffer'd all the air to efiape; but, I could not quickly fet the fcrew: whence it is probable, that very much air, which, at that time, was produc'd, got out of the receiver ; neverthelefs, after the receiver was again well ftopp'd, I perceiv'd, that two inches of air, and more, had been produc'd in five or fix minutes time.

May 7. The mercury, in three days, again amour ted two inches.
May 8. The mercury was higher by half an inch.
May ir. During thefe two laft days, the mercury, again, ran up half an inch. I fet this mafs, almoft unfit, as it feem'd, to produce air in vacue; when, in five minutes fpace, the mercury afcended to the height of one ch.
May 21. It afcended not quite three inches.
May 30. The mercury refted at the height of four inches and a half.
By this experiment, it appears, that all the air producible from pafte, may, after a fort, be generated in a great compreffion; yet, it is fomewhat reftrain'd thereby; for, in a lefs compreffion, it will foon break out.

Hence, alfo, we fee, that air is producible by ftarts; and, that it rifes more flowly in comprefs'd than in free air: for, fuch a production in the latter, is ufually over, in two or three days time.
Plumbs and a- (15.) Fuly 30.1677. I included plumbs and apricocks, many of them bepricecks in arti-ing firft cut afunder, in a receiver, and, afterwards, as much air, produ-
fict ced out of cherries, as was fufficient to fuftain fixty-four inches of mercury.

Auguft y. The fruits had produced no air, but grew yellower than thofe which were in common air.

Auguft 3. The mercury rofe a little higher, and the apricock, which remain'd whole, feem'd full of drops, like water.

Auguft 7. The whole apricock grew fofter; the mercury ftood, at fiftynine inches above its ufual ftation.
Aug. 8.
9.
10
11 of it, was $\left\{\begin{array}{l}61 \\ 65 \\ 71 \\ 74\end{array}\right.$
$\left.\begin{array}{c}\text { Aug. } 13 \\ 14 \\ 15\end{array}\right\} \begin{aligned} & \text { The height } \\ & \text { of it, was }\end{aligned}\left\{\begin{array}{l}78 \\ 80 \\ 80\end{array}\right.$ 16 and, the days following it remain'd at the fame height.
24. The height of it was feventy-feven; tho ${ }^{\circ}$, I certainly knew, that mothing had iflued out of the receiver.
29. Finding, neither the fruits, nor the height of the mercury, changed Puavantic: any more, I open'd the receiver, and perceiv'd, that the apricocks had kept their colour, very well; but the flefh of them was fpongy, and their tafte inclining to acid. Many bubbles had broke from them, at the time, they were freed from the furrounding preffure.

Fuly 30. 1677. I included the halves of the fruit, juft merition'd, in a pums.and an
 uncut.

July 31. The mercury had gain'd the height of eight inches.
Auguf 1 . At fix a-clock, in the evening, the mercury was twenty-one inches high; but, in the other receiver it remain'd unmov'd.

Auguft 3. They kept their firmnels much better than thofe included with artificial air. The height of the mercury was thirty-five inches.

Auguft 4. The height of the mercury was forty-two inches.
Auguft 6. The whole apricock, feem'd not at all alter'd. The height of the mercury was fifty-feven. Aug. 7 8$\} \begin{aligned} & \text { The height } \\ & \text { of it, was }\end{aligned}\left\{\begin{array}{c}8 \mathrm{I} \\ 95\end{array} \left\lvert\, \begin{array}{c}\text { Aug. } 9 \\ 10\end{array}\right.\right\} \begin{aligned} & \text { The height } \\ & \text { of it, was }\end{aligned}\left\{\begin{array}{l}113 \\ 124\end{array}\right.$
The colour of the whole apricock, yefterday, began, and now proceeded to grow yellow. No moifture appear'd.

Aug. 113 13 $\left.\begin{array}{l}14\end{array}\right\}$ The height $\begin{aligned} & \text { of it, was }\end{aligned}\left\{\left.\begin{array}{l}131 \\ 157 \\ 163\end{array} \right\rvert\,\right.$

| Aug. $\left.\begin{array}{l}15 \\ 16 \\ 17 \text { and, the days following, it }\end{array}\right\} \begin{array}{l}\text { The height } \\ \text { of it, wa } \\ 171\end{array}$ |
| :--- | remain'd at the fame height:

Auguft 27. The height was one hundred and eighty-two.
Auguft 29. When, neither the fruit, nor the height of the mercury changed any more; I open'd the receiver, and found the apricocks of a more acid, and lefs grateful tafte, than the others, in factitious air; tho' their pulp was of a very good colour, but fpungy : they alfo yielded many bubbles, as did the ochers.

Hence, 'tis probable, that the artificial air of the cherries, greatly hindred the apricocks from producing air; tho' it promotes the alteration of their colour and firmnefs; and, alfo, ferves to preferve their tafte.
(16.) OEtober so. 1677. I included an ounce and an half of bruifed, un- Gapes in comi ripe grapes, in a receiver, that would hold ten ounces of water; and ainc drew out no air.

OCZOb. 11 . The mercury afcended a little.
12. There was but a fmall change.
13. The height was half an inch.
17. The height was one inch.
18. The height was one and an half.
19. The height was, almoit, four.
20. The height the fame; but fome mouldinefs appear'd on their fuperficies.
21. The height was four and an half.
22) The height remain'd the

23 fame, but the mouldinefs
24 encreafed.

Grapes with Airit of wime.

Fan. 6, 1678. The height was 36. The air broke out.
OEtob. 10. 1677. I made the fame experiment in another receiver, obferving the fame circumftances; only here I mixed two drams of firit of wine with the grapes.
OCtob. 11. The mercury was not changed.
12. There was no change.
13. The mercury was not moved.

OEF. 17. It afcended a little.
18. The height of it was not yet a quarter of an inch.
19. It was moved but a very little.
Fan. 6. The grapes, during all this time, had produced no air.
Whence it appears, that fpirit of wine hinders fermentation.

Appash in an
 of wine.
(17.) OEF06. 17. 1677. I put a peach into an exhaufted receiver, with fome quantity of fpirit of wine, which could not touch the peach, unlefs in vapour.

March 27. 1678. I took out the peach, which had kept its colour, but loft its firmnefs. Though the receivar was fmall, yet it was not filled with air ; for when open'd, the air feemed to rufh into it : the peach being foftned, was fo deprefed, that the lower part of it touch'd the fpirit of wine ; the fuperior part, alfo, had contracted the tafte of the fpirit of wine, as well as that which was immerged in it.
Peaches in air witb Spirit of vima

3 Pubses in air without fivit of (18.) Octoo. 17. I included five peaches in an unexhaufted receiver; and with them, fome fpirit of wine, which could not touch the peaches, unlefs it were elevated in vapour.

OCtob. 18. The mercury afcended not at all.
20. The height of the mercury was $3 \frac{2}{2}$.

Nov. $\left.62 \begin{array}{c}\text { The height } \\ 12\end{array}\right\} \begin{aligned} & 14 \\ & \text { of it was } \\ & 16\end{aligned}$
142 It kept the fame $16\}$ height.
Dec. $\left.\begin{array}{l}8 \\ 16\end{array}\right\}$ The height $\begin{cases}18 & \\ 19 & \frac{z}{2} \\ 20 & 2\end{cases}$
Fan. 6. 1678. it was 23.
March 28. 1678. it was $31 \frac{2}{3}$ Odob. 17. I included five peaches in a receiver full of common air, without fpirit of wine.

OEtob. 11. The mercury afcended not at all.
OEto6. 20. The height of the mercury was five inches.

Fan. 6. 1678. The height was 32.
March 28. 1678. The height was $33 \frac{1}{2}$.
April 15. The liquor in the lower part of the receiver, had all broke out, and the air followed it; then I took out the peaches.

Hence we learn, that the very vapour of fpirit of wine, fomewhat hinders fermentation ; yet much left than the fpirit itself.
(19.) April 27.1678 . I included an ounce and a half of paste, mixed with Pali with bean leaven, in a receiver full of common air, able to hold twenty-three ounces air. and a half of water.

April 28. The height of the mercury in the gage was two and a half.
April 30. The height of it was three and a quarter.
May 4. The mercury was depreffed, tho' no air broke away, and the pate was mouldy. The height of it was two and a half.
May

June 2
6
14

$$
\begin{array}{r}
6 \\
14
\end{array}
$$

April 27. 1678. I included an ounce and a half of unleavened pate, with Pafaven, in in como common air, in a receiver, capable of holding twenty-three ounces and a won air. half of water.

April 29. Hitherto the mercury had not afcended; but this afternoon it rode a quarter of an inch.

April 30. There was no change.
May 4. The mercury afcended but very lowly, and the pate was mouldy.

May 6. The height of the mercury was four inches.

Hence it feems, that leaven rather hinders than forwards the production of air, if the pate be not made in a hot place.
(20.) May 23. I included an ounce and a half of unleavened pate, in a paste zit frit receiver capable of holding twenty-five ounces of water, and pour'd Spirit of mime. of wine upon it.

May 24. The mercury was one inch high.
$\left.\begin{array}{c|c}\text { May 26. It was almoft two inches } & \text { Fune } \\ \text { high. } \\ \text { 27. It was two and a half. } & 6 \\ \text { 2 } & 10\end{array}\right\}$ The height of it was $\left\{\begin{array}{l}3 \frac{7}{z} \\ 4 \\ 4 \frac{\pi}{z}\end{array}\right.$ 31. There was no change. f^{2} fy 19 No change.

Decemb. 14. When the height of the mercury alter'd no more, I open'd the receiver, and found that the pafte had an acid fmell.

Pafte withent Birit of winto

Pbyfico-mechanical Experiments.

May 23. I included an ounce and a half of unleavened pafte, in a receiver, capable of holding twenty-five ounces of water; but added no fpisit of wine.

May 24. The mercury afcended not.
May 26. It was three inches high. day the air broke out, and, therefore, I fet the fcrew.

Decemb. 14.The mercury return'd to the height of fifteen inches; when, I open'd the receiver, and found the pafte very acid.

Hence it feems to follow, that fpirit of wine greatly obftructs the production of air; and the more, if the pafte be fermented; and that unfermented pafte will, in tract of time, produce no lefs air than that which is fermented.

Now alc ienlm had in rumivors.
(21 .) OCtob. is. I exactly filld a receiver with new ale, fo that no air might be left; and included another quantity of the fame in another receiver, wherein fome fpace was allow'd for the air.

OCZob. 12. The cover of that receiver, which contain'd fome air, was broken; and, therefore, I pour'd the fame ale into another receiver, wherein there was room enough left for the air: in the receiver, exactly fill'd, the mercury afcended a little.

OCZob. 13. In the receiver, exactly fll'd, the hei कht of the mercury was twelve inches; in the other, thirteen inches; tho' it had been fhut up a fhorter time, and a much larger fpace was left, whereinto the air, newly produced, might have been dilated.

OEtob. 14. In the full receiver, the height was thirteen; in the other; eighteen. Towards evening, the full receiver work'd the fafteft; for the height of the mercury in it was twenty-two; and in the other but twenty.

OEEO6.15. In the full receiver, the beight of the mercury was forty-two; in the other, twenty-fix. And fome bubbles of air, which, in the full receiver, had poffeffed its upper part, wholly vanifid; and the ale poffeffed a long lpace, in the mercurial gage, wherein it was not found before.

Phyfrovenchaninal Exporimemst

Ohaber I6. In the full receiver, the height was 60 inches In the other 30.
.. 18. In the full receiver; thie height was 90.
In the other 40 .
22. In the full weceiver, the height was 90.
23. In the full receiver, the height was 108.

In the other 50.
26. In the full receiver, the height was 108.

In the other 60.
28. In the full receiver, the height was 133.

In the other 63.
The bubbles appear'd again, yet nothing flowed out.
Nov. 8. The full receiver loft much of its liquor; wherefore, I opened it.; when, all, the ale, feem'd as if it would have vanifh'd into froth, unlefs I had fuddenly ftopp'd the little hole that gave it vent. I many times tried, that, if the hole were opened in the gage, the mercury would prefently defcend; but, if the hole were again ftopp'd, it would fpeedily afcend. T The ale had , a mof pingent taite.

Nov.9. I opened the other receiver, and oblerved almoft the fame things.

Hence it foems to follow, that gle, if the air be wholly excluded from the containing veffel, will ferment mose nowly, than if lome air be left therein; and that, in time, it chakos a greater compreffion, if no room be left for its dilatation.
(22.) : Fune 27. I put green peafé into an exhaufted receiver, with fpirit paff, with fio of -wine. Iownds the erepiag, 中aroceiver feem'd to admit the external rit of rume, im air, and the mercury rofe to the height of eighteen inches, when I clofed aniono the cover with turpentine.

June 30 . I perceived no more change in the height of the mercury.
July 7. No air was produced, even in the moft vehement heat.
Fune 27. I put ocher peafe into an exhautted receiver, without fpirit of Pafe witbont wine. The meceiver, and the quantity of the peafe, were the fame as in fin in of axbainfed the laft experiment.

Fune 18:. The receiver wasffull of air ; tho', I think, it was not exactly Thut; and, therefore, I again mcluged the fame peafe. Towards evening, the height of the mercury was five inches. Fune 29 30$\}$ The height of it was $\left\{\begin{array}{l|l}10 & \text { Iuly } \\ 16 & 5 \\ 19\end{array}\right\}$ The height of it was $\left\{\begin{array}{l}26 \\ 30\end{array}\right.$

Fuly 8. The air got out of the receiver.
Hence it appears, that fivit of wine hinders the production of air in peafe.-
(23.) Fune 9. 1677. I put cherries into an exhaufted receiver, and in fix Tbat tbe effic! hours time the mercury came to the height of five inches and a half.

Vol. II.
Eeeè
fane 20. The mercury afcended three and a half. Towards the evening it wastwo.

The afcent is here always to be underftood, as added to the former. June 21 $\left.\begin{array}{l}21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 1 \\ 2 \\ 2 \\ 3\end{array}\right\}$ The ascent was ascent was $\left\{\begin{array}{l}1 \begin{array}{l}1 \\ 1\end{array} \frac{1}{2} \\ 2 \\ 2 \\ 1 \\ 1\end{array}\right.$ June 26) $\left.\begin{array}{l}26 \\ 28 \\ 28\end{array}\right\}$ The afcent was $\left\{\begin{array}{l}3 \\ 3 \\ 5 \\ 1 \\ 1\end{array}\right.$ July

The height was forty-eight. But, tranfmitting the air into another
The height was forty-eight. But, transmitting the air into another receiver, the mercury was depreffed to thirty-five inches.
July 6. The afcent of the mercury was four inches, in one night's time. 7. The afcent of it was five and a half in twenty-four hour's time.
9. 10. The afcent of it was $\left\{\begin{array}{l}5 . \\ 5 . \\ 6 .\end{array}\right.$
11. The accent of it was twelve, in the face of thirty-four hours.
12. The afcent of it was fever.
13. The afcent of the mercury was three; the height about ninety two inches: but the air being transferred into another receiver, the mercury reffed at fifty.
$\left.14 \begin{array}{l}14\end{array}\right\}$ The ascent was $\left\{\left.\begin{array}{l}14 \\ 14\end{array} \right\rvert\, \begin{array}{c}16 \\ 17\end{array}\right\}$ The ascent was $\left\{\begin{array}{c}13 \\ 5\end{array}\right.$
18. The ascent of the mercury was 9 ; the height of it 102.
19. The height of the mercury was 92 ; for I transmitted part of the air into another receiver.
20. The ascent of the mercury was 15.
22. Some air got out, and the height of the mercury was $63 \frac{2}{2}$.
23. The afcent of it was $12 \frac{1}{2}$.
24. The afcent of the mercury was 4 ; the height of it 79 inches; but the air, being tranfmitted into another receiver, the mexcary reffed at σ_{2}.
$\left.{ }_{26 .}^{25 .}\right\}_{\text {The ascent was }}\left\{\begin{array}{l|l}8 & 27 . \mathbf{2}^{2} \\ 9 & \text { 28. }\end{array}\right.$ The ascent was $\left\{\begin{array}{l}4 \\ 5\end{array}\right.$
30. The ascent of it was ten, the height ninety-eight. Part of the air being tranfmitted into another receiver, it reffed at sixtyfour.
Aug. 1. 2 2. $\}$ The accent of the mercury was $\left\{\begin{array}{l}6 . \\ 9 . \\ 4 .\end{array}\right.$
3. I tranfmitted the air into another receiver, and the mercury remain'd at fixty-eight.
4. I transmitted the air again into another receiver, and the mexcory retted at fifty-four.
6. The

6.3 The afcent of the mercury was $\{$

8. There was no afcent
9. The afcent was three inches.

The receiver being opened, I found the cherries of a whitilh colour, and of very little tafte, tho not ungrateful; their flefh was fpongy.

Hence it feems to follow, that cherries contain much air, and that they produce it very irregularly.
(24.) Fuly 13.1677. I put cherries into an exhaufted receiver; and then tranfmitted into the fame, as much air, produced from other cherries, as fufficed to fuftain fifty inches of mercury.

Fuly 15. Yefterday, the mercury had not afcended at all; but this day it was two inches higher; that is, twenty-two, above its wonted ftation.

July 16. The height of the mercury was twenty-three and a half. Fuly 17. The height of it was twen- was forty-five. More air ty-five.
26. The height of it was for-ty-three. Some air got ous.
27. The height of the mercury
30. The height of it was fiftytwo.
3 1. The height of it was fixtyone inches.
Auguft 1. The height of the mercury continued nearly the fame, tho the air broke out.

Auguft 27. The air, having been all broke away for fome time, I took out the cherries, and found them not to have loft their colour, as in the former experiment : they had contracted no putrefaction, nor mouldinefs, but tafted a little more acid than ufual ; and being open'd, there were many cavities in their flefh, as in fermented pafte, or dough, but not quite fo thick.

From this experiment, compared with the former, it may, probably, be inferred, that in artificial air, fruits produce leis air, and fo the better preferve their colour and tafte; for the cherries, in the former experiment, remained in the receiver, not much longer than in this-
(25.) Septemb. 10. 1677 . I put fix ounces of unripe grapes into a recei-Grapes com ver, with common air, capable of contiining twenty-five ounces of water; wow air. and fop'd it firmly biy means of a fcrew.

September 11. The mercury afcended not at all.
Sept. 12. The mercury ftop'd a little below one inch.

September 23. The beight of it was 27. The grapes were not alter'd.
September 24 The height was 30.
25. The height was 31. The grapes began to grow yellow. Eeee ${ }^{2}$

Septemb. $\left.\begin{array}{l}26 \\ 27\end{array}\right\}$ The height $\left\{\begin{array}{l}32 \\ \text { of it was } \\ 34^{\frac{1}{2}}\end{array}\right.$

Sept. $\left.\begin{array}{l}i 9 \\ 30\end{array}\right\} \begin{gathered}\text { The height } \\ \text { was }\end{gathered}\{$ 35 OEtober 1. The height renained at 35.
 The air got not out, but the cold began, and increafed.
Novemb. 9. The height remained the fame.
Deceml. 19. Almoft all the air efcaped.
Decemb. 20. I took out the grapes, and found by their fmell and their tafte, that they had contracted fome mouldinefs, tho not difcernable by the eye. They were more firm than before.
srapes infafti- (26.) Septemb. 10. 1677. I included two ounces of crude grapes in a tions air. receiver, capable of holding eight ounces of water; and to the common air added air produced out of pears, till the mercury refted ten inches above its ordinary ftation.

Sept. II. The mercury defcended, and its height was eight inches.
Sept. 12. The height of it was II. the afcent 3.
Sept. $\left.13 \begin{array}{l}14\end{array}\right\}$ The height $\left\{\begin{array}{l|r}16 & \text { Sept. } 15 \\ 20 & \text { of it was }\end{array}\right\} \begin{gathered}\text { The height }\end{gathered}\left\{\begin{array}{c}23 \\ 24\end{array}\right.$
Sept. 17. The height was 28. The grapes turned yellow.
Sept

26 The beight almoft the fame.
$\left.\begin{array}{l}27 \\ 29 \\ 30\end{array}\right\}$ The beight of it was $\left\{\begin{array}{l}22 \\ 27 \\ 28 .\end{array}\right.$
QCtob. 1. and 2. The height 28.

Novemb. 9. The height was 13. Some air had goe out.
December 19. The height of the mercury was 20 inches.
Decemb. 20. I took out the grapes, and their-fmell and tafte were more grateful than of others; their firmnefs sather increafed, than diminifhed.

Hence, factitious ait feems fit to alter colour, and to preferve tafte; but the firmnefs might be increafed bere, as in turpentine; the fpirits, in time, being exhaled.
Oranges in ane- (27.) Fuly 18. I took two pieces of orange, and, by the help of a farew, nimend fatti- ftopped them clofe up in a receiver, with common air; when, into the fame receiver, I put air, produced oat of cherries, as much as fufficed to fuftain
is inches of mercury. At the fame time I put a piece of the fame orange Przmatics. into another receiver, with common air alone, and uncomprefs'd.
fuly 20. The orange in the common air began to contract a mouldinefs; but the other feemed not at all alter'd.

Fuly 23. The mouldinefs of the orange, in the common air, increafed; the other piece remained found

Fuly 16. The orange, in the common air, did not increafe its mouldinefs, but feemed wholly rotten : the other alfo began to putrefy, but remained free from mouldinefs.

Aug. I. Perceiving that the oranges were no longer fenfibly changed, I open'd the receivers; and tho' the air, wherewith I had mix'd the artificial aif, was fo compreffed in its receiver, that it could not now fuftain twentyfix inches of mercury above its wonted preffure, yet the fruits were far better preferved in it, than in the other; only the fuperficies feemed to have loft its juice; but all the inner parts, with the rind, were very wellcolour'd, well-tafted, and firm : in the other receiver, the whole orange feemed almoft rotten, as well as the rind. The orange was more corrupted in the comprefled air, becaufe, as it feems, no factitious air had been mixed with it.

It feems worth obferving, that the fame air, generated from cherries, is apt to produce different effects, upon fruits of a different kind; for here it retarded the alteration of colour and firmnefs, which, when I included air with apricocks, it accelerated.
(28.) Fully 20.1676. I included 2 fmall piece of beef in an exhaufted Buefi finatio receiver, and put as much air, produced from cherries, into it, as fuftain'd 27 inches of mercury.

Fuly 21

${ }_{23}^{22}$ The mercury remained almoft at the fame height. 25

Fuly 26. The beef had removed the receiver from its cover; and becaufe it was very fetid, we threw it away.

Fuly 20. 1676. I put a piece of beef into a receiver full of common air, biof in onmwo and carefully ftopp'd it in, by means of the fcrew,

Fuly 21 . The mercury had not at all afcended in the gage.
Fuly :22. The height of the mercury was one inch.

Hence it appears, that air produced from cherries, is a great hindrance to the production of air from flefh.
> (29.) March 14. 1676. I put two onions into3 receiver, full of common onimininow air, with a mercurial gage; and fafted the ftopple with a fcrew, to fee won airc whether vegetation would increafe, or diminifh the quantity of the air.

March

Pbyfico-mechanical Experiments.

Prevanzien. March 28. The mercury feemed depreffed one quarter of an inch; but it afterwards recover'd its former height, and two inches more ; and now the air broke out, and the roots grew longer.
April 28. About ton or twelve days fince, I perceived the roots to be corrupted; and now they were wholly putrefied.
May 9 . The mercury continued at the fame height; for the air had broke away : and, therefore, I took out the onions, and found their roots putrefied, but they were not at all mouldy.
Onians in fatii- (30.) March 17. 1676. I included two onions in an exhaufted receiver, tions air. and afterwards put air, produced from pafte, into it.
March 28. The onions took root, at leaft, as well as thofe which I kept in the common air.
April 28. The ends of the roots began to putrefy, yet they were in far better cafe, than thofe furrounded with common air. Perhaps, the caufe of this difference is, that a greater quantity of water was included with the artificial air. The mercury mounted higher by nine or ten inches.
May 18. Hitherto the onions feemed not at all corrupted; but this day I found one of them to be a little fo; tho' different from a mouldinefs.

Hence we may gather, that artificial air doth not at all hinder vegetation; and that not only the fenfible magnitude of the body, but alfo the quantity of the air, is increafed by vegetation.

Unrife grapes
 3w con uiro

(31.) Auguft 25. I included fix ounces of unripe grapes in a receiver, capable of holding twenty-five ounces of water; but did not exhauft the air.

Auguft 26. The meroury afcended a little.
27. The height of the mercury was I inch.
28. The height of it was $1 \frac{1}{4}$.
29. The height was $1 \frac{1}{4}$.

Auguft 30. The mercury feemed to have defcended, rather than afcended. The colour of the grapes was lefs alter'd here, than in the receiver, containing air produced from pears.

Aug. 3 r. The receiver broke, and I left the grapes expofed to the free air.
Sept. 7. The grapes being left in the free air, ftill kept their green 00 lour, and were of a grateful tafte, tho' lefs pungent than before.
Uniregrapes in Auguft 25. I included two ounces of unripe grapes in a receiver, caifarititions air. pable of holding eight ounces and a half of water; and having ftopp'd it clofe with a fcrew, I filled it further with air, produced from peas, till it fuftained 15 inches of mercury.

Auguft 26. Some air efcaped, and therefore I crowded in new, produced out of the fame pears, till the mercury refted 17 iriches above its wonted height.

Auguft 27. The mercury was depreffed below the 16th inch; yet 10 airs had broke out. Towards evening, the mercury again afcended to 17. Aug. 28)
$\left.\begin{array}{l}28 \\ 29 \\ 30\end{array}\right\}$ The height of it was $\left\{\begin{array}{l|ll}19 & \text { Aug. } 31 \\ 21 & \text { Sept. } \\ 22 & 1\end{array}\right\}$ The height of it was $\left\{\begin{array}{l}23 \frac{1}{2} \\ 24 \\ 34 \\ \text { Spys. }\end{array}\right.$

Pbyfico-mechanical Experiments.

Sept.4. The laft height continued, and the grapes had all contracted a yellow colour.

Sept. 5. The air broke out.
Sept. 7. The air continuing to get away, by degrees; I took out the grapes, and found them very infipid, and of an ungrateful tafte.

This experiment confirms the efficacy of artificial air, to alter the colour of fruits. 'Tis, alfo, very obfervable, that here it damaged the tafte, and promoted the production of the air, contrary to what had happened in the former experiments. It might be worth while to try, whether the fame would happen in all unripe fruits.
 duced from pafte, made with meal, and not mixed.
Auguft 4. The flower began to change its colour, and to grow moift.
Auguft 9 . The July-flower was a little alter'd.
Auguft 12. The moifture gradually increafed, but no mouldinefs appear'd.
Auguft 31. The July-flower feem'd little alter'd, tho' it was le's frefh than thofe which were kept in vacuo.

Auguft 2 . I thut up a July-flower in a receiver, with common air, not I_{n} owmen om mixed.

Augu/t 4. The flower was not changed.
Auguff 9. It grew moift, and had almoft loft all its colour.
Auguft 12. A great mouldinefs cover'd all the flower.
Aug. 2. I included two July-flowers in vacuo, and took fpecial care, Yubffoumers io that no humidity fhould be included with them.

Aug. 4 1676. One of them began to appear moith.
Aug. 3 1. 1677. During the whole year, the July-flowers had faffered no change.
Hence it feems probable, that factitious air haftens the change of colour, yet it prevents mouldinefs as a Vacuum.
(33.). July 24. I put apricocks and fome plumbs, feveral of which were 4 4rtacki end cut in pieces, in a receiver full of common air, and fopped it firmly with finmbin in 2 fcrew.
Fuly 25. The mercurial gage was fpoiled; fo that I could not, by any means, perceive the quantity of the air generated.
July 30. The fruit feemed not at all alter'd, except that one of the eut plumbs had contracted fomething of mouldinefs.

Aug. 2. I opened the receiver, and found all the fruit firm, of a good colour, and a grateful tafte.
Fuly 24. I made the fame experiment in another receiver, with the Trafate fame circumftances; only into this laft receiver, I intruded air, produced widaial ifio from cherries, till it fuftain'd twenty-two inches of mercury.
Fuly 25 . The mercury defcended three inches, and refted at nineteen: Toward the evening, it recover'd its former height, and refted at twentytwo.
$\left.\begin{array}{l}\text { Huly } 26 \\ 27\end{array}\right\}$ The height of it was $\left\{\begin{array}{c|c}28 & { }^{7} \text { uly } \\ 34 & 28 \\ 29\end{array}\right\}$. The height of it was $\left\{\begin{array}{l}36 \\ 40\end{array}\right.$

Aug. 1$\}$ The height was $\left\{\begin{array}{l}51 \\ 60\end{array}\right.$
Aug. 2. The height was fixty-five. Towards evening, when forme liner had elcaped out of the receiver, I crewed it tighter; but one of the ironwires being broken, all the air got away. Wherefore, I took out the fruits, and found them very fort; especially thole, whole lower parts were immers'd in the water: the reft were a little more firm, but all of then retain'd a grateful tate.

Hence it feems, that air produced from cherries, promotes the akernton both of colour, and firmness in apricocks.

It appears, alfo, that fome part of fuch air is deftroyed at the faff.

Plumbs in commen air, in ar o tificial air, amd in vacuo.
(34) July 30.1676 . I put plumbs, cut afunder, into three receivers; one of which was full of artificial air, produced from goosberries ; the fecong, full of common air ; and the third exhausted.

Aug. 2. In the artificial air, the plumbs were not changed; in the come. mon air, they began to be mouldy; but in the evacuated receiver, they retain'd their colour, and were fofl.

Aug. 5. In the artificial air, the plumbs had contracted a red colour, humidity, and foftnefs; in the common air, they feemed black and mouldy, yet retain'd their firmness; in the evacuated receiver, they were almost diffolved.

Aug. 7. The plumbs, in the common air, began to often.
Avg. 8. The plumbs, in the common air, feemed to have loft their black colour, and to have contracted a red one; as it happen'd three days bo fore, to the plumbs in the artificial air.

In this experiment, artificial air feems to have promoted an alteration,

Teaches in cane amp and antifa.
(35.) Sept. 24 I put five peaches into a receiver, with common ar, mixed with forme produced from grapes; and included the grapes themfelves in the fame receiver, that the common air might be the better fitio rated with the artificial.

Septemb. 25. The height of the mercury was twenty-one inches.
$\left.\begin{array}{r}\text { Sept. } 26 \\ 27 \\ 18\end{array}\right\}$ The height of it was $\left\{\begin{array}{c|c}23 \\ 31 & \text { Sept. } 29 \\ 39 & 30 \\ \text { Otzob. } 1\end{array}\right\}$ The height of it was $\left\{\begin{array}{l}41 \\ 48 \\ 48\end{array}\right.$
$0: 706$. 2. The fame height continued.
3. The height of it. was 52 and a half.
5. The height the fame; but the peaches feem'd moift.
6. The height of it was 58 .
7. The height of it was the fame.
8. The height of it was 61 .
11. The mercury afcended a little.
19. The height of it was $6 y$.
25. The height 0 f it was 61 . The cold was hasp.
27. The cold abated, and the mercury afcended.
30. The height was 61 , and a little more.

Nov. 2. The height of the mercury was 59 . 'Twas fevere cold wea-Pmozantic. ther.
6. The height was 61. The froft broke, and it thaw'd.
7. The mercury feemed fomewhat higher.
9. The mercury , perfitted at the fame height.

Dec. 9. In one month's fpace, the mercury afcended, by degrees, to the height of eighty inches,

April r . 1678 . The mercury came to ninety-fix inches above its wonted height. I now opened the receiver, and whilft the air was breaking out, the peaches emitted many bubbles thro' their skins, not without a violent noife; and the skin, in fome of them, was broken: they had preferved their tafte, and the colour of their pulp; but loft their firmnefs, as if they had been boil'd: being left in the air for three hours, they were all rotten.

This experiment proves, that common air corrupts bodies, tho much the lefs for being mixed with factitious air.
(36.) Auguft 4. The firft receiver. I cut five pears, each of them into Paurs in somfour parts; and put one part of each into a receiver full of common air, and ftopp'd it clofe with a fcrew.

Aug. 6. The colour of them was little alter'd, and the mercury afcended not at all.

Aug. 7. The pears were little alter'd; and the mercury was a little higher.
Aug. 8. The pears underwent no great change; the height of the mercury was four inches.

Aug. 9. The height of it was four and a half.
Aug. 10 11$\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{r|r}6 & \text { Aug. } 13 \\ 10 & 14\end{array}\right\}$ The height $\begin{aligned} & \text { of it was }\end{aligned}\left\{\begin{array}{l}16 \\ 20\end{array}\right.$
The pears began to be foft.
Aug. 15. The height of it was 21.
16. The height of it was 19. I believe the air had got out.
17. Now I found the air had efcaped.
18. The air being almoft all got out, fince yefterday in the evening, and the fruit looking worfe, I took the pieces out, and found them putrefied.
Aus. 4. The fecond receiver. I took one quarter of each of the afore-Pears in artign. faid pears, and included them, after the fame manner ; and, afterwards, , iall air. added air, produced out of cherries, till the mercury poffefs'd twenty-three inches extraordinary.

Aug. 6. The fruit was not alter'd, except a little in their colour.
Aug. 7. Almof all the pieces feem'd rotten; the mercury remaining at the fame height.

Aug. 8. The pears were not alter'd much; but I could not fee the mercury.

Aug. 10. They, gradually, grew fofter; and the mercury was forty inches above its wonted height.

Aug. II $\}$ The height $\{51 \mid A u g .14\}$ The height
13\}. of it was $\left\{61 \quad 15\right.$ 15\} of it was $\begin{cases}67 \\ 73\end{cases}$
Vol. II.

Pbyfico-mechanical Experiments.

Aug. 16. The mercury defcended; yet nothing had got out.
Aug. 17. The mercury exceeded not fixty-feven inches in height; yet the air could by no means efcape.

Aug. 18. The mercury remain'd at the fame height ; but, fuffering the air to break out, it had a fharp odour; and the tafte of the fruit feem'd very acid, and the pulp exceeding foft.
 aforefaid pears into a receiver, not exactly flut.

Aug. 6. The pears feem'd to change their colour.
Aug. 7. One of the pieces began to lofe its firmnefs; but, in the artificial air, another piece yefterday feem'd wholly rotten.

Aug. 8. One piece was mouldy; the reft were foft.
Aug. 9. The pears gradually grew more rotten.
Aug. 1 I. They were wholly mucid, and rotten.
This receiver, compared with the firft, thews, that corruption begins not in the free air fooner than in included air; but, when begun, that it is much more violent and fudden; becaufe the included air may be fatiated.
Soars in vacea Auguft 4 1677. The fourth receiver. I included one quarter of each of the faid pears in vacuo.

Aug. 6. The height of the mercury was 5 .
\(\left.\begin{array}{c}Aug.

8

9

10

11\end{array}\right\}\)| The height |
| :---: |
| of it was |\(\left\{\begin{array}{l}8

10

12

14

16\end{array}\right.\)
20. Hitherto the pears had undergone no alteration; but this day they began to be foft. The mercury afcended not.

Aug. 26. Neither the pears, nor the height of the mercury, were at all alter'd.

This production of the air feems very regular.
Hence we find the aptnefs of artificial air to foften fruits.
And that the production of air was here promoted by artificial air, is very probable; tho it had fucceeded otherwife with apricocks.
4 Priecths in ciems air.
(37.) Auguft 21 . 1677. The firft receiver. I divided fix apricocks, each into four parts; and put one piece of each into a receiver full of common air, and ftopp'd it firmly with a fcrew.

Aug. 22. The apricocks feemed riper than yefterday; but no air was produced by them.

Aug. 23. One piece, contiguous to the water, began to be mouldy, and the reft inclined to putrefaction. The mercury feemed to have afcended 2 little.

Aug. 24. A piece next the water, was cover'd with much moaldinefs; another piece, more remote from the water, was fomewhat mouldy alfo; but all were rotten.

Aug. 25. The fruit contracted no more mouldinefs; but the putrefa- Pruzantros Etion increafed. The height of the mercury was feven inches.
Aug. 26. The height of the mercury was 15.
28. The height of it was 30 .
29. The fame height continued.
30. The height of it was 33 .The fruits were almoft all diffolved.
31. The height of the mercury was 38.

Septemb. 1. The height of it the fame.
2. The fame height ftill.
3. The mercury afcended a little.

Septemb.9. The fame height continued.
Sept. 22. Little or no change appear'd in the height of the mercury; but the fruit was almoft diffolved into water.

OZtob. 1. When the mercury continued at the fame height, and the fruit feem'dalmoft vanifh'd, I open'd the receiver, and found the apricocks very much impaired and foft; yet they retained a tafte not unpleafant, but tending to acid.

Aug. 21. 1677. The fecond receiver. I cover'd one quarter of each of the 4rimek in as aforefaid apricocks, with a receiver, not defended againft the external air.
Aug. 22. They were flaccid, as if they had been dry, or wither'd.
Aug. 23. Many of them appear'd rotten and mouldy.
Aug. 24. The apricocks were wholly putrefied, and mouldy.
Aug. 21. The third receiver. I included firmly, by the help of a fcrew, Thafane in me one quarter of each of the aforefaid apricocks, in an unexhaufted recei- nuithenesedi: ver; to which 1, afterwards, added air produced from pears, till it fuf-tioit. tain'd 20 inches of mercury.

Aug. 22. The mercury afcended not at all; but the fruit feemed to have acquired a greater degree of maturity, than that included in common air.

Aug. 23. Thefe feemed lefs alter'd, than thofe which were in common air.
Aus. 24 They remain'd unalter'd.
Aug. 25 . The fruits began to produce air, but I could not difcern the quantity.

Aug. 26. Little alteration in the fruit.
Aug. 28. It began to moiften, yet was far lefs alter'd than that which remain'd in common air.

Ang. 30. The mercury emerg'd above the bodies, by which it was hid. Its height above the wonted ftation, was thirty inches.
Aug. 31. The height of the mercury was forty inches.
Sept. 1. The height of it was the fame.
2. The fame height continues.
3. The height 45 .
8. The height was little changed.
9. The height 40 ; yet no air got out.
11. The height was 38.

Pbyjfico-mechanical Experiments.

12. The mercury continued to defcend.

13. The height of it was 33.

Sept. 14. The mercury was fo depreffed, as to appear no more.
Sept. 22. The mercury emerged again; its height was 33. The fruit was cover'd with a kind of mucor.

OEFO6. 1. When neither the apricocks, nor the height of the mercury, were any more alter'd, and the mucor vanihed, I open'd the receiver, and found the apricocks not impaired, but of a good colour, their pulp fpongy and foft, and of a tafte inclining to acid.

Apricock in an Mnexbanked
ceiver, wbof eair ceivor, whofe air
was afterwards counderjed.

Aug. 21. The fourth receiver. I took a quarter of each of the faid apricccks, and fhut them up firmly, with a fcrew, in an unexhaufted receiver ; into which, afterwards, I intruded air, till the mercury rofe 90 inches above its ftandard height.

Aug. 22. Our receiver broke into an hundred pieces, by the force of the air compreffed within it ; whereupon, I put the fruit into another, and added only fuch a quantity of air as was able to fuftain fixty inches of mercury.

Aug. 25. The apricocks had contracted much mouldinefs; and I added new air.

Aug. 26. They were wholly infected with mouldinefs and rottennefs.
This receiver, if compared with the former, thews, that the quantity of corruption depends on the quantity of the air.

Hence we have it confirm'd, that alterations are made more fuddenly in factitious air ; and that, in time, the corruption is far greater in common air.
That the effets (38.) March 21. 1677. I put two onions into a receiver, which was of comprefed aip to be ftopp'd clofe with a fcrew; and intruded fo much common air thereof the common, Sherw, by onions.
in condenfed sir. into, as raifed the mercury fixty inches above its ufual ftation. cluded in common air at the fame time.

April 28. The onions included in common air, eight days ago, were cover'd with mouldinefs, though, in the beginning, they had fhot numerrous roots: the onions in the other receiver began to corrupt at the ends of their roots; but the compreffed air, ten days before, had found a gradual paffage out, and now was almoft wholly efcaped. I, therefore, put in new air, till the mercury had attain'd to the height of fixty inches above its ufual ftandard.

April 29. The ouions in the compreffed air, were cover'd all over with mouldinefs.

Hence it feems to follow, that a little compreffure doth not prejudice bodies to be expanded by vegetation.

And the new air, which was intruded, feems to have promoted the mouldinefs, though, probably, in the beginning, the compreffure of the air retarded both the mouldinefs, and the corruption.
Tulips and lark-
fpurs in comannon
(39.) May 9. I put two equal quantities of tudips and lark-fpurs, into and compreffed air.

Pbyyfuadmechanical Expervisients.

Iloft one of them with common air only, but compereffed the other by the intrufion of new air, till the mercury exceeded its wonted height by feventy inches.

May 11. Two tulips, in the common air, contracted mouldinefs; but all things remained unalter'd in the comprefled air.

May 12. A third tulip, in common air, began to be finewed; but nothing like it happen'd in the comprefs'd air.

May 14. One tulip, in the comprefs'd air, was finew'd ; but thofe in the common air, were all very mucid; and one of the lark-fpurs, in the common air, had alfo contracted a mucor.
May 17. Three of the tulips in comprefs'd air, had contracted a finew; but not half fo much as thole in the common air. Two of the lark-fpurs, in the common air, appear'd finewed alfo; but thofe flut up in compref'd air, were preferved frefh, and wholly free from mouldinefs, or finew.

May 21. The flowers in the common air, were all rotten and putrefied; but thofe in the compreffed air, received no further alteration : and the tulips, which had contracted fome finew, feemed rather to lofe it, than to acquire new.

May 30. When the flowers, in the common air, being wholly purrefied, were diffolved into water, I took them out, and kept the liquor in the veffel, to try whether any infects would breed therein. In the compreffed air, the flowers fuffer'd no more fenfible alteration ; I, therefore, took them out, and found them moift, and of an acid odour.

Hence, it feems that compreffed air hinders putrefaction and mouldinefs, in fome plants.
(39.) May 21. 1677.I cut an orange into two equal parts, and inclofed orage in mone: one of the halves in a receiver, with air fo compreffed, that it would fuftain refefaciend coman hundred inches of mercury above its wonted height : I left the other half in another clofe receiver, only with common air.

May 25. Each half of the orange had contracted mouldinefs; but that in the common air was much more mucid than the other.

May 26. The compreffed air had entirely got out, and therefore I put in new.

May 30. I every day perceiv'd fome air had efcaped, and, therefore, daily fupplied frefh, And the orange, by receiving new air fo often, contracted a mucor, notwithfanding the compreffare, much more than the other piece that was left in the fame air without preffure.

Gune I. I took out the two half oranges; and that which lay in the comprefled air, feemed to have contracted a corruption, at leaft, three times greater than that which had continued in the common air.

Hereby the difpofition of compreffed air, to retard cortuption, is confirmed; yet, in time, 'tis very probable, that the quantity of corruption may depend upon the quantity of the air.
(40.) May 31. 1677. Iincluded two equal quantities of rofes, in two Refasin comeme teceivers, topp'd by the help of focews's into one of which I intruded as aide,
 teguoff

Pbyfico-mpechanical Experiments.

Psoxequer much air as would fuftain ninety inches of mercary, befides its accuftomed preffiure; but I left the other with common air only.

Fune 11. The rofes in the common air were free from mouldinefs, only they feemed to have loft fomething of their colour: but thofe thut up in the compreffed air, had almoft all contracted a yellow colour, as if they had wither'd in the open air; yet they were not mucid, or finewred.

Fune 18. This laft week, the flowers, in the common air, fuffer'd not the leaft change; but thofe in the compreffed air, grew yellower. I open'd both receivers, and found the rofes to have retain'd their fcent, yet it was fomewhat alter'd; neither were they dry, or wither'd. I kept them apart in the open air, and found that thofe taken from the compreffed air, were not fo foon alter'd by the contact of new air, as thofe which had remained in uncompreffed air.

Hence it feems to follow, that compreffed air is fometimes fitter to alter colour than common air. And, perhaps, it may be worth our notice, that rofes fo included, contract not a mouldinefs, but only a yellow colour; tho' in tulips and lark-fpurs, 'tis otherwife.
(41.) June 1. 1677. I put the two halves of the fame orange into two Orangein come prefj2 air, and receivers; in the one I increafed the quantity of air till it fuftained the
commenn. mercury an hundred inches above its wonted height; but left the other mercury an hundred inches above its wonted height ; but left the other uncompreffed, only exactly thut.

Fune 6. Each half of the orange grew mouldy ; efpecially that, whofe ambient air was compreffed. But new air was every day fupplied; for the compreffed air, in 24 hours time, had almoft all got out. But in the former, it had remain'd very well thut in, for fix whole days.

Fune 11. The orange, in the common air, contraCted no more mouldinef's; but, in the compreffed air, the mouldinefs gradually increafed.

Fune 18. Finding the mouldinefs of the orange, in the common air, to diminifh, rather than increafe, I took it out; and perceiving further, that, in compreffed air, the orange was not more mucid, after I had ceafed to intrude new air, I was willing to try, whether the new air fupplied new ftrength to the orange, to exert and thruft out its mouldinefs; and therefore, made the mercury in the gage, by means of the air intruded, to exceed its wonted height 80 inches.

June 20. Two days after I had intruded new air into the receiver, the mouldinefs of the orange appeared to be manifeftly greater.

Hence we may gather, that the quantity of the mouldinefs depends on the quantity of the air.

Sbreworice im

 - 6 now and - omprefod air.(42.) June 17. 1677. I put two Threw-mice into two receivers, of equal bignefs, and ftopped them up carefully ; in one of them I left only common air; into the other, I intruded air, till the mercury was higher, by 30 inches, than ufual: the moufe, in the common air, was included about 52 minutes paft 5 of the clock; and 6 minutes after the other.

The moufe, in the compreffed air, feemed to lofe his ftrength much fooner than the other, the motion of his brealt being lefs frequent: yet, about 18 minutes after 6 o'clock, the moufe in the commonair, which feemed the ftrongers
ftronger, fell into convulfive fits, and died ;but that in the compreffed air, Provosarice. feemed then, and fome time after, to be as well, as he was an hour and half before.

About eleven of the clock, the moufe in the compreffed air, fill breathed; but, about four in the morning, he was found dead, in the fame pofture wherein he was feven hours before : whence we may conjecture, that he was free from convulfive fits.
I muft not omit, that the moufe, in the common air, had confumed fomething of that air; fo that the mercury food at 29 inches, and, when the receiver was opened, prefently afcended to 30 .
Hence we learn, that compreffed air feems fitter than the common, to prolong life ; fince the one moufe lived fo much longer, tho' only a double quantity of air was included in the receiver.
(43.) Fune 13. 1677. I put four flies into a receiver, and aftewards in- Tius in cemen truded air, till the mercury rofe fixty inches above its wonted height ; and and wimerfed at the fame time, included three other flies, in another receiver, with common air not compreffed.

Fune 14. In the morning, all the fies were well. In the afternoon, I found two of them dead in the compreffed air ; but in the common, they were all alive. About five a-clock, one of the flies, in the compreffed air, was alive, and three in the common air.

Fune 15 . This morning I found all the flies in the common air dead; but that fingle one which remain'd alive in the compreffed air, feem'd ftill to be very well; and, being taken out of the receiver, flew briskly 2way.

Hence it feems, that flies are not very fenfible of the air's compreffure; and that they die more for hunger, than want of air: for the fly which remaind fo long well, fed upon the carcaffes of thofe which were dead; fo that fhe feem'd not to be diftemper'd.
(44.) Fune 15. I repeated the preceding experiment, only including four fies in each receiver, and compreffing the air fomewhat more.

Fune 16. This morning I found two of the flies, in the common air, dead ; and but one in the compreffed air.

About two in the afternoon, the four flies, in the common air, feemed to be dead; but, in the compreffed air, the three were alive.

Hence, the compreffure of the air feems of fmall confequence to fies ; and, indeed, they are not prejudiced by the rarifaction of it, without great difficulty, and unlefs there be almoft a compleat vacuum.
(45.) Tune 18. I included two frogs in two receivers, and ftopped them Frus sinammon by the help of fcrews; the one only contain'd common air, the other, air aid ad compreffed, till it fuftain'd feventy inches of mercary.
Fune 19. Both the frogs were alive; and the height of the mercury, in both receivers, remained the fame.
Jure 20 . Neither of the frogs were dead; and they feemed rather to

Pxzusatiqediminith, than increafe the air: but the difference was fofmall, that I dare not be poitive therein.

Fune 2 I. In the morning, both the frogs were alive; but, towards evening, that in the common air was found dead.

June 22. At evening the frog, in the comprefled air was alive.
Fune 23. In the morning I found it dead.

Orangesin com.
mong and come mon and com

Rofes in cano noun and cone prefed air.
two receivers, and fopped them by the help of forews; the one with common air, the other, with air compreffed to fuftain ninety inches of mercury.

Fune 22. This morning I found the orange, in the common air, mouldy; but the other was found.

At three in the afternoon, the orange, in the compreffed air, feemed, alfo, to have contracted fome mucor.

June 23. The orange, in the common air, was far more mucid than the other.

Fune 24. The orange, in the common air, did not increafe its mouldinefls; but the other was cover'd all over with it.

Fune 28. The mouldinefs, produced in the common air, was now wholly vanifhed: in the other receiver, I perceiv'd no further alteration in the fruit.

Fune 30. Both remaining in the fame ftate, I took them out. The part which was kept in common air, feemed half rotten; but the other, befides its finew, appear'd wholly putrefied.

Hence 'tis confirm'd, that the quantity of the mouldinefs depends on the quantity of the air.

It feems alfo worth obferving, that the mouldinefs appear'd a little later in the compreffed air, than in the common, tho', afterwards, it increafed much more.
(47.) Fune 29. 1677. I included rofes in two receivers, ftoppd by the help of icrews; I left one with common air only, but filled the other with fo much, that the mercury afcended ninety inches above its ufual height,

Fuly 14, Four or five days ago, I found the rofes, in the comprefs'd air, wither'd, and degenerated to a yellow colour. There was not the leaft altreration in the other receiver.

Fuly 17. When I perceived, that this experiment proceeded after the fame manner as that above-mention'd, I took out the rofes. Thofe kept in the compreffed air, were very much corrupted, and of a very ungrateful fmell; but the others wero little alter'd, and their fcent not unpleafant.

Hence we have a further confirmation, that the quantity of corruption depends on the quantity of the air.
(48.) July 4 . I cut a lemmon afunder, and put the halves into two receivers, to be ftopp'd by fcrews; the one I left with common air only, but the other was fill'd with fo much compreffed air, that it fuftain'd ninety inches of matcury above its ufual ftandard,

Iemsons in command comprefon air.

Fuly 7. This day, both parts of the lemmon feem'd to grow mouldy at $\underbrace{\text { Przosanict }}$ the fame time.
Fuly 17. That in the compreffed air had contracted much more hoar than the other; and, perceiving no farther alteration, I took them out, and found the lemmon, in the comprefed air, far more putrid than the other.
Hereby it is confirm'd, that the quantity of corruption depends on the quantity of the air.

It feems alfo, that a triple compreffion of the air, in refpect of a lemmon, is too weak, fenfibly to retard the production of finew.
(49.) July 18. 1677. I included two parcels of July-flowers, equal in fuysfoners in number, in two equal receivers, and ftopp'd them clofe with fcrews; I Iomempand and fill'd the one with compreffed air, till it fuftain'd an hundred inches of mercury, extraordinary; but the other was left with common air alone.

Fuly 23. In the compreffed air, the July-flowers thew'd fome hoarinefs; the others appear'd only moint; but the mercury exceeded its wonted height only feventy inches; for fome of the air had got out.

Fuly 25. In the compreffed air, the July-flowers proceeded to corrupt much fafter than the others. They had wholly loft their colour.

Fuly 26. In the compreffed air, the July-flowers were wholly putrefied, and cover'd with a hoary finew ; the others were moift only in fome places.

Auguft 1. Perceiving no farther alteration, I took the flowers out of their receivers; thofe which were kept in compreffed air, were rotten, and fetid; the other kept their colour, and their fmell was not offenfive; but they were moift.

And this is a farther confirmation, that the quantity of the air increafes corruption.

We may, alfo, obferve, that the mouldinefs is not produced, but in comprefied air ; nor is it probable, that this happen'd by chance ; fince, in each receiver, there were three or four July-flowers included.
(50.) Fuly 2 I. 1677. I included a Inrew-moufe in a receiver, with 1 Amonemso common air, and thut him in firmly with a fcrew, to try whether he would anmadin produce, or confume air.

After two hours, the moufe died, and fome air was confumed; but a lefs quantity than in the former experiment of this kind.

Fuly 24. Hitherto I found no change in the height of the mercury.
Towards evening, it feem'd a little higher.
Fuly 25. This morning much air was produced de novo.
Fuly 26. The quantity of the produced air increafed.
Hence we have a confirmation, that living animals confume air ; but dead ones produce new.
(5 I.) Auguft 3 I. I put pears into a receiver; whereto, after it was well pams in ane ftopped I added as much air, as fufficed to fuftain thirty inches of mer- prefad ato. cury, extraordinary.

September 1. The mercury was depreffed.
Vol. II. Gggg Sept.

Sept. 2. The height of the mercury decreafed; it exceeded not twmyfive inches.
Sept. 3. The mercury rofe one inch higher; and faid at 26.
Sept. 4 The height thereof was 28.
Sept. 8. The receiver leaking, I put in new air; and, this day, opening the receiver, to compare the tafte of this fruit with that of the other; I found, that five of the pears had loft their firmnefs, but two retaindit.
Pears in cumson Auguft 3 . I included pears, of the fame kind, in another receiver, with air. common air only, not comprefs'd.

September 1. The mercury was 2 little deprefs'd, as if it had been in comprefs'd air ; the caufe whereof might be only the cold.
$S_{\text {ept. 2. The mercury varied not. }}$
Sept 3. The height of the mercury was one inch, above the ufual flandard.

Sept. 4$\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{c|c}4 & \text { Sept. } 6\} \\ 6+ & 7\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was. }\end{gathered}\left\{\begin{array}{l}\left\{\frac{1}{4}\right. \\ 122\end{array}\right.$
Sept. 8. The height of the mercury, was twenty. The pears, being tsken out of the receiver, had preferv'd their tafte much better than thofe included in vacuo. They, alfo, retain'd their firmnefs.
Rars in vaso.. Auguft 31. I included pears of the fame fort in vacuo ; but fome externah air brake in, and the height of the mercury was one inch.
$\left.\begin{array}{c}\text { Sept. } 1 \\ 2 \\ 3 \\ 4 .\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{c|c}4 & \begin{array}{c}\text { Sept. } 5 \\ 8 \\ 12 \\ 16\end{array} \\ 6 & 7 \\ 16\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was. }\end{gathered}\left\{\begin{array}{l}19 \\ 23 \\ 27 \\ 30\end{array}\right.$
The pears, being taken out, had kept their firmnefs, but loft much of their tafte.
Hence it feems to follow, that, in a greater compreflure, a lefs quantity of air is produced.
 the fcrew; but, after I had intruded fo much air, as to fuftain thirty inches of mercury, above its wonted height, fhe feem'd to recover; but foon after, began again to be fick: and, therefore, I intruded air the focond time, till the mercury refted forty-five inches above its ufual height; whereby the bird was.again reftored: but, in a little time, fhe began to. gafp again; then, opening the receiver, afier fhe had.ttaid in it twenty-eight minutes, the flew out, and was very well.

[^8]I put another moufe into the fame receiver; and the air, being reduced Pxzomaries. to 2 third or fourth part of its natural fpace, I open'd the receiver, but not fo carefully as in the former experiment; yet the moufe, taken out therefrom, was found to be very well.

1, afterwards, repeated the experiment ; the air being about feven or reight times condens'd; and the moufe feen'd to fufter no inconvenience thereby.

I made the fame experiment again, in air compreffed feven times, and left the moufe included for twenty-four minutes; which time being elapfed, I difcharged the air, and, opening the hole, perceiv'd the moute to feteh many deep groans, as it were : I took him out, but he could not recover.

Hence it is manifeft, that a great compreffion of air is pernicious and deftructive to animals.
(s4) Fanuary 28. 1678. I put a hrew-moufe into a glafs, to whofe 1 frrewnows neck we tied a bladder, that ftopp'd the orifice. Thefe were put into a re-is conderfas air. ceiver for comprefling of the air. Soon after, when the moufe began to be fick, I compreffed the air, and the bladder was ftraitned; fo that the moufe was in condenfed air, whilt no new air could pafs to him: then he feem'd to be much better, and his heart beat lefs frequent; when, opening the receiver, he was, in a fhort time, as well as ever.

I repeated the experiment, and left the moufe fo long, that he could hardly breathe, whilft I began to comprefs the air; and the compreffure feem'd again to abate his refpiration : the receiver being open'd, and the moufe expofed to the air, he could not breathe much more freely; but, if I blew the air on him with bellows, he feem'd to be fomething reliev'd. Being, again, committed to the comprefs'd air, he breathed lefs frequently, and, at laft, died.
March 25 . Becaufe, in the preceding experiment, it was not clear, whether the air enterd thro the ligature of the bladder, I ufed the inftrument defcribed, Fig. 79. And when I perceiv'd the moufe was fick, and breathed feldom, I intruded water into the receiver, fo that the air was reduced to half of its fpace; and, then, the moufe breath'd more rarelyBut if, extracting the water, I left the whole fpace entire for the air, his refiriation feem ${ }^{\text {d }}$ more vivid; and the air being thus, many times, contracted and dilated, the fick moure feem'd to refpire more freely in the common air than in the compreffed. Whence, I conjectur'd, that air is to animals, like food; the quantity whereof ought to bear fome proportion to their ftrength. And, that I might more certainly know this, I put the fame moufe into my pneumatic engine, and rarify'd the air, fo that it pofferf'd more than double the ufual faace. Whilt the air was rarifying, the moufe prefently began to be better; yet, a bittle while after, he feem'd fick: and. when the air was reftord, it in no wife affected Itwoffefo of ari
 ceefs ; but, at laft, the moufe died.

Pby/fco-mechanical Experiments.

Prevantics.matter fo, that the coral fell into the glafs of vinegar: but the air, priduced from thence, did not reftore any power of motion to the bee; be, when the was expofed to the open air, the foon began to move herfelf.

Hence a fufpicion arifes, that artificial air is unfit to preferve the of animals.
(56.) Auguft 12. 1676. I put two flies into a receiver, and, exhaufting

Thies in artif. sial air of goofberries.

Tlies included with fire in the ertificial air of pafte. the common air, fubftituted, in its ftead, air produced from goosberrie, till it fuftain'd twenty-fix inches of mercury.

Afterwards, I put two other flies, alfo, in vacuo; but with this diffrence, that I let fo much common air into them, as could fuftain twentrthree inches of mercury.

Within a quarter of an hour, the latter flies, upon the reftitution of the air, recover'd that power of motion, which they had loft in vaczo, and flew about in the rarified air; but the former lay without any motion, tho' they had receiv'd a greater quantity of air.

Aug. 13. The flies, in the artificial air, feem'd ftill dead; but the others were lufty.

The flies, taken out of the artificial air, and expofed to the common air, remain'd fo, all this whole day, without recovering life.

Aug. 18. I repeated the experiment, with the fame fuccefs; tho' I had reftored a greater quantity of artificial air.

Hence we have an high confirmation, that artificial air is noxious to animals.
(57.) June 22. 1677. I put pafte into three receivers, out of which, h afterwards, exhaufted the air.

Fune 23. When the three receivers did, this day, regurgitate with sir produced from the pafte, I kindled a perfumed cone, and put it intoone of the receivers; which, being prefently ftopp'd, the fire, within one minute, went out: then, by blowint, I expell'd the artificial air from the receiver, and put fire into it, as before, and it burn'd bright for a confiderable time; tho ${ }^{\text {P }}$ I had thut the receiver as fpeedily, and as accurately, as before.

I made another experiment, after the fame manner, with a fly; and, in the artificial air, fhe prefently feem'd to be dead; but, afterwards, being expofed to the fun, fhe, in a fhort time, grew well again. Then, I blow'd common air into the receiver; but the lly, included as before, fuffer'd no inconvenience thereby.

I repeated the fame experiment, with the fame $f y$, in the third receiver, fill'd with artificial air, with the fame fuccefs; only this fy, when taken from the artificial air, could not be reftored, without longer time, becaufe the was left longer therein.

Hence it appears, that factitious air is prejudicial to fire, as well as to the life of animals.
(58.) June 25. 1677. I put pafte into four receivers; and totally ex. Frise sud frogs , haufting the air from two of them, I pump'd out only half the air from the other 5 wo.

Pby/fco-mechanical Experiments.

Fune 26. I found the two receivers, which I had left half full of common air, to be quite fill'd with air newly produced; but know not, whether they had, for fome time, regurgitated or no, fo that the quantity of common air was much diminifh'd. However, I put two flies, at once, into one of the receivers, after the manner before defcribed; and, foon after they touch'd the bottom of the receiver, they remain'd without motion. I put a third fly into the receiver, after the fame manner, and found the liv'd a little longer there, than the former. A fourth fly, being put in, maintain'd her life longeft of all; yet, at laft, fuffering fome convulfion, the lay movelefs on her back. All the flies, after fome ftay in the artificial air, being taken ous, and expos'd to the common air, grew well in a fhort time.

I made the fame experiments in another receiver, half full of artificial air, and, in a manner, with the fame fuccefs; but the flies in that receiver, into which only common air was admitted, foon recover'd their ftrength and motion.

Fume 27. I found one of the receivers, which was wholly evacuated of common air, to be full of artificial air; but, it being cafually thrown down upon the ground, entrance was, thereby, given to the external air; yet I put a frog into it, which feem'd not to be very fick therein.

Fune 30. The fourth receiver, by the power of the produced air, feem'd, at length, forc'd away from its cover. I put a frog into it, and fhe fell into high convulfions, for five minutes fpace; and then lay without motion. In four minutes after, I open'd the receiver, and, taking out the frog, the remain'd, for forty-fix minutes, without motion; bur, afterwards, in four or five minutes more, the grew very well.

Hence it is evident, that artificial air is very hurtful to the life of animals; but that, if mixed with common air, it doth not fo readily produce its effects.
(59.) June 28. 1677.1 put pafte into four receivers, three of which I caus'd to be whiolly exhaufted of common air ; but the fourth was left half full of air.

June 29. One of the receivers, that were wholly exhaufted, was found full of air, newly produced; and a frog, being put into it for four or five minutes, had ftrong convulfions : then, for one minute, ' he lay without motion; whereupon, I took her out, and, in five minutes, the began to move, and, a while after, became well again.
I took another receiver, fill'd with artificial air, and, putting a frog into it, in feven minutes the ceas'd to be convulfive. And, afterward, when the had lain one minute there, without motion, I open'd the receiver, and, taking her out, found that the began to ftruggle, and move; tho I fudgrd thofe motions to be the remains of her convulfions: for, after that, the continu'd movelefs for half an hour, and more; yet, at laft, the grew well again.
The receiver, from which I exhaufted only half its air, had fo long regurgitated wioh produced air, that, very probably, much common air

Pbyjfco-mechanical Experiments.

Promatrah had got out together with it. A frog, being put into it, feem ${ }^{2}$ d to be vehemently mov'd, and convulfed, for ten minutes, as the reft did, and, then, the feem'd quite dead; but, after a full minute, 1 open'd the receiver, when, the frog, being expos'd to the open air, within a quarter of an hour, began to move.

I put 2 frog into a receiver, full of common air, to try whether, the pafte being now taken out, fhe would live any longer there.

Fuly 1 . In the afternoon, I found her dead, tho the breath'd in the morning; fo that fhe liv'd about forty-eight hours.

June 30. I put a frog into the fourth receiver, which was wholly filld with artificial air; for feven minutes and an half, fhe was vehemently convulfive, and, at laft, died; then, after two minutes, the was taken out, but recover'd no motion at all.

Fuly I. Perceiving the frog to remain in the fame pofture, I threw her away.

Hence we have a confirmation, that artificial air is the more hurturto animals, the freer it is from common air.
(60.) June 30.1 included pafte in two receivers, and then exhaufted the
A. farex-manfe, Sneil, amd filiss? $i=1$ artifciom air of gatic.

Fuly 4. I put a fhrew-moufe into one of the receivers, filled with artifcial air, where he fuffered vehement convulfions, and in one minute, died. I prefently took him out, and expofed him to the common air; but no power of motion could be thereby recoverd.

Then I took the other receiver, and, putting a frail into it, with fome wonder obferved, that he continued to move very ftrongly, for a whole quarter of an hour; but, afterwards, his motion was nlower, till in about another quarter of an hour, he lay ftill, as if he were dead; but then, being taken out of the receiver, and expofed to the air, he foon grew well.

I put flies into the fame receiver; but now it had admitted too great a quantity of external air, for the flies received no hurt.

Hence we gather, that artificial air kills animals by fome venomous quality, and not only by the defect of common air; for the fasils livid longer in vacuo.

4turies.

(61) fuly 5.1677 .1 took a receiver filled with air produced from cherries; and tranfmitted it out of that, into another receiver, full of common air, in which a frog was kept : matters were fo order'd, that the water gave place only to the artificial air entring in ; and the water itfelf flowed out, And thus the frog, being included in pure artificial air, for a quarter of an hour, and more, fuffer'd convulfions, and, at laft, lay ftill without motion; yet, being afterwards taken out, and expofed to the open air, the -grew quickly well.

Hence it feems probable, that air produced from cherries, is lefs hurt ful to frogs, than that produced from pafte.

[^9]
Pby/fco-mechanical Experiments.

fuly 20. I found one of them fever'd from its cover, by the force of provancres. the produced air: I caft a fly into it, which died inftantly; a fecond fly being, likewife, caft into the receiver, prefently died ; a third put into the fa me, feemed, for a little while, to be convulive; but lefs than a fourth fly, that I included therein; which yet, in one quarter of a minute, lay movelefs. Afterwards, I difpelled the artificial air out of the receiver, by blowing, and, in a little time, the flies grew well.

Fuly 24 I took another receiver, filled with air produced from goofberries; and putting a fhrew-moufe into it, found that he died there in half a minute.

Probably, therefore, the air produced from fruit, is lefs hurtful to animals, than that produced from minerals : for, on the 20th day of Fuly, I found that a moufe liv'd not above a quarter of a minute in air produced from gun-powder.
(63.) Fuly 5. 1677. I included pafte in four exhaufted receivers.
fuly 6. One of them, being filled with factitious air, was forced from its Fuly 6. One of them, being filled with factitious air, was forced from its didd, and ent cover, which I again fopped; yet not fo foon, but fome common air might ial airiv fedelt. mix with the artificial: 1 put a fhrew-moufe into it, which was prefently highly convulfed, and, after one minute and an half, remained movelefs; and, being prefently taken out, he feemed to have fome convulfive motions, and died.

Fuly 7. I took a fecond receiver, filled with artificial air; and having included a little bird therein, fuddenly fopped it: fhe prefently fell into convulfions, and, within about a quarter of a minute, died: I took her out, but 'twas too late, for fhe never flirred after.
I blew out the artificial air from the receiver, and then, another bird of the fame kind, being put in, was very well, though the ftaid there four minutes.
Fuly 9. I took a third receiver full of artificial air, and put that bird into it, which, in the laft experiment, had continued well, and yet feemed to be lively and found; before the had been there a full quarter of a minute, fhe lay without motion, and being prefently taken out, there appeared no fign of life in her.
In the afternoon I put an adder into my fourth receiver, and, within two minutes, he began to be fick, to gape and pant ; yet he was not wholly deprived of motion, till after twenty-four minutes. Then, in fix minutes more, I took him out of the receiver, motionlefs as he was, and expofed him to the free air, but he did not recover.
Fuly 10 . The adder remained in the fame ftate, and gave no figns of secovery.
(64) Fuly 12. 1678. I put a bird into a receiver full of air produ-f birizeme of eed from raifins of the fun; the died in a quarter of a minute; and tho I took her out prefently, yet fhe never ftirred more.
Guly 18. L, likewife, put a fhrew-moufe into a receiver full of air, prodiced from raifins. of the fun ; but a thread, left on the edge of the reseiver, hinder'd me from flopping it clofe; yet the moufe prefently be-

Pbyysico-mechanical Experiment.

enzuanaresi gan to be very ill, and, after civo minutes, he lay, as it we:e, without any motion; yet, being taken out; he was well again in two or three minutes time.
browies ins claded in comb -
sinats in factio tioms aip of \ddagger afis. 2
(65.) OEtober 1. 1678. About ten in the morning, I included a fhrewmoufe with common air, in a receiver, fortified againft the external air; about eleven, the moufe could hardly breathe: I threw another ftrong lufty moufe into the fame receiver, and prefently put on the cover; but the firft moufe, having confumed fome of the air, the external air was forcibly impelled into the receiver, and fo difpelled a great part of the air ftagnant there : upon which, the firft moufe feemed to be much better; neither did he die much fooner than the other, but both of them died about noon. About four in the afternoon, I put another ftrong moufe into the fame receiver; and, left the external air might again expel the included air, I put him in very leifurely: this third moufe lived not three minutes entire.

Whence we may conjecture, that the portion of air which hath once ferved for the refpiration of animals, as much as it could, is no longer ufeful for the refpiration of another animal, at leaft, of the fame kind.
(66.) April 28. In the morning, I put fo great a quantity of pafte into an exhaufted receiver, that, in the afternoon, I found the receiver full of factitious air; whereupon I put a fnail into it, which prefently frothed very much, and often expanded and contracted itfelf; but, in four minutes, he ceas'd to move : yet I took him not out, till he had ftaid in the receiver for a quarter of an hour; and then, being releas'd, he feem'd as if quite dead: for, tho' he were prick'd with a pin, yet he difcover'd no fign of life; tho', after another quarter of an hour, being prick'd, in the fame manner, he mov'd a little.

I blew out the factitious air, and put in another fnail : he remain'd very well in the receiver, and did not froth at all.

Hence we have a confirmation, that factitious air is a greater enemy to animals, than a Vacuum.

Suatls in the fazitioms air of penfo

(67.) June 22. 1678. In the morning, I put green peafe into an exhaufted receiver; and, towards evening, the mercury had almof attain'd the height of ten inches.

Fune 23. The height of the mercury was almoft thirty inches.
Fune 24. The mercury did not yet exceed thirty inches in height. The cover no longer ftuck to the receiver; yet nothing, hitherto, had efcaped.

June 26. I included the fame peafe in the fame evacuated receiver.
Fuly 29. When I now found that the receiver was fill'd with factitious air, I thruft a fnail into it, which froth'd much, and very often fhot out and contracted his horns; but, in fix minutes time, he lay ftill, as if he had been dead, and continued thus for two or three minutes; then the receiver being open'd, and the fnail taken out, mov'd himfelf a little, if he were pricked. Whence it feems to follow, that air produced from peafe is lefs prejudicial to fnails, than air from pafte. I blew new air into the receiver, and a fnail then put into it, did very well.

In this experiment it feems obfervable, that peafe quickly produce air Prevonation in vacuo ; but, that in the ufual comprefiure of air, they generate little.
(68.) June 22. 1676. I put a butter-fly into an exhauited receiver, and Animals in on. it was almoft three hours before he was wholly deprived of motion ; fio, and frof a at length, perceiving him to lie unmoved, I let the air into the receiver, and, prefently, the butter-fy moved. Then I bound him, by one of his horns, with a thread, and fufpended him in the receiver; when, he was carried very freely from one part of it to the other, by the motion of his wings ; but, after the air was extracted, the clapping of his wings was in vain, for he could not, in the leaft, move the thread from its perpendicular pofture.
(69.) Fuly 12. 1676. Yefterday I put two flies into a receiver, in which Filis inf incti. I left $\frac{1}{4}$ of air, (i.e.) as much as would futtain ten inches of mercury; ;ivaceatatiald the biggeft of the flies feemed to die prefently; but the other, which was a fmall-bodied one, lived almoft twenty-four hours.

When both the fies lay, as if they were dead, I fuffer'd fome air to enter in ; the mercury was fifteen inches high, when the leffer fly began to move her feet, but the other continued fill without motion.

Hence it appears, that air, highly rarified, may ferve for infects to breathe in ; and that it doth not kill them fo foon as artificial air.
(70.) May I. I. put two fnails into an exhautted receiver, and, for a Snesis in vacoes. whole hour, they feemed to be well enough, and crept up to the top of the veffiel; but, in two hours time, they fell down from thence, and lay without motion.
After they had remained in vacue for fix hours, I took them out, and, within half an hour, they began to move a little. During the time they were included, they produced near as much air as fuftain'd the mercury $2 t$ the height of a quarter of an inch.
Thefe fnails liv'd longer in vacuo, than did others included in artificial air.
(71.) Auguft 12. 1676. I put the eggs of flies into an exhaufted re- Finis egges ceiver, to try if they would there produce worms.

Aug. I4. Worms were formed, but the air had crept into the receiver, fo as to fuftain fifteen inches of mercury.
Hence it appears, that infects may be produced, and live, if not in vacut, yet, at leaft, in air very highly rarified.

Awguft 16. 1677. I put fies eggs into an exhaufted receiver.
No worms being produced, 1 admitted the air into the receiver, and left all things in the fame pofture, to try whether the eggs had loft their faculty of producing worms.
Sept. 9. The eggs produced nothing.
This experiment feems to fhew, that infects may be generated, and live in air highly rarified; but not at all in vacuo.
(72.) March 17. 1677. I put two equal quantities of frog-fpawn, into, rogejpen inv, 2wo glafs veffets of equal bignefs; I left the one in an exhaufted receiver, cundid in in vimus expoted to the fon; but the other, being in a recciver full of common air, air.

Pbyfco-mechanical Experiments.

$\underbrace{\text { Preveraticei I fortified againft the accefs of the external air. The frog-fpaws }}$ in vacuo, all fwell'd into bubbles.
May 2. No frogs were produced in either receiver ; and the Spawa, kept in vacue, remain'd ftill full of bubbles: but, about three days agc, all the bubbles vanifh'd, and the fpawn was changed to a green liquor.
Fuly 2. The receivers remained in a window, expofed to the noon-da: fun; fo that fome water, mix'd with the frog-fpawn in vacus, and the very fpawn itfelf was elevated into vapours; and afterwards, fticking to the fides of the receiver, out of its own veffel, was there condenfed : but the veffel, kept in the common air, ftill contained all its water, together with the fpawn.
4forg in nato. (73.) Yune 15. I fhut a frog in an exhaufted receiver, at aboat feven of the clock in the evening, and about nine the frog died.
Fune. 16. I repeated the experiment, and again perceived, that the dead frog, in two hours fpace ${ }_{2}$ had produced fome air, rather than confumed it.

Fune 18. The frog, hitherto left in vacuo, was fwollen very much; but the air, now entring, made her far more flaccid and lank than before.
Hence it appears, that a receiver, void of artificial air, is lefs hurtful to fuch kind of animals.
(74.) Auguft 3. 1678. I put fly-blowings, upon fefh, into an exhaufted
arly-blowings in vacue. receiver.
Aug. 12. No worms were generated.
Aug. is. Perceiving no change in the eggs, I open'd the receiver, to try whether they would generate in the free air.
Sept. 15. Nothing was produced from them.
Hence we fee, that animals, which may be generated, and live in highly rarified air, are killed in vacuo.
$\gamma_{i m g e r e s h i n}$ in (75.) Aug. 22. 1678 . I included vinegar full of fmall eels, or vineTasure. gar worms, in an exhautted receiver.

Aug. 29. The worms ftill moved, but were fewer than at firf.
September 6: Yefterday fome of the worms ftill moved, but now I could not fee one; and ufing a microfcope, I found them all dead : but, in the vinegar, which I had left in the open air, the eels had as brisk a motion, as at the beginning.
Hence it appears, that very minute animals are alfo affected by the prefence and abfence of the air.
Five le compref.
(76.) May 14 I took a perfumed cone, which being once kindled in the

I included another cone of the fame fort in a much greater receiver, but did not coniplefs the air therein : the cone, fired by the fame burning-glafs, was not taken out, till all the fumes abated and fell down; yet, much lefs of this cone was burnt, than of the former.
(77.) May 19. I weigh'd a perfumed cone exactly, and then firmly included it in a receiver with common air, and kindled it by means of a burn-ing-glafs; when the fumes were condenfed, I took the cone out of the receiver, and found, it had loft of its weight, almoft one grain.

Afterwards, the fame cone, obferving the fame circumftances, was again included and kindled; but firft I had intruded as much air into its receiver as fuftain'd ninety inches of mercury; and, by means of a pair of fcales, found the lofs of weight, now, to be four times more than before.

Hence it feems to follow, that the confumption of matter by fire is greater in proportion to the quantity of air contain'd in the receiver.
(78.) May. 17. 1677. I included a perfumed cone in a receiver firmly ftopp'd by the help of a fcrew; and the air compreffed to fuftain fixty inches of mercury above its ufual height, I fir'd it with a burning-glafs; the cone being afterwards taken out, had loft three grains and an half in weight.

I repeated the fame experiment in air, fo compreffed, that the mercury reached one hundred and twenty inches higher than ufual; then the cone was feven grains and three quarters lighter; and fo, tho' the quantity of the air was not double, yet the confumption of the matter by fire, was more than twice as much as in the former experiment.

May 17. I made the fame experiment in air, comprefled to fuftain ninety-feven inches of mercury; and, then, the lofs of weight feem'd to be fix grains.

Hereby we are taught, that the matter is the more confumed by fire, as the compreffure of the air in the receiver is the greater ; or rather, that the confumption is made in a proportion greater than that of the compreffure.

May 18. 1677. I intruded a perfumed cone, as before, in a receiver feven times larger than that ufed in the former experiments; and crowded no air at all into it. The cone, kindled there, loft three grains and a quarter of its weight; whereas, in the fame quantity of air, if reduced to a fifth part of its fpace, it would have loft ten grains.

Hence it feems to follow, that the fame quantity of air; reduced to lef's than its accuftom'd fpace, caufeth a greater confumption, than in its natural ftate.
(79.) May 19.1677. I repeated the laft experiment, in the fame receiver, clofely ftopp'd with a fcrew, that nothing might get out or in. The cone loft but one grain and a quarter of its weight ; whence I fufpect, that it was not well kindled.

May 2 I. I made the fame experiment, in the fame manner; and this day the cone was lighter by four grains ; whence I more certainly collected; that it was not well. fet on fire in the preceding experiment.

Pbyfrommamical Exporiments.

Pxemaxice. May 23. I repeated the fame experiment twice, but fufpect, the the cone was not well kindled ; fince, at one time, it loft, only three quarun, and at another, one grain of its weight.

May 24. I made the fame experiment again; and this day alfo the lofsi weight was found only one grain and a quarter. Then 1 open'd the receiver, and having wiped and cleans'd away the foot, repeated the expenment; when the cone took fire very well; for the lol's of its weight 4 . mounted to fix grains and an half.

I tried the fame experiment again, in an uncleans'd receiver, and the cone loft only three grains.

May 25. I made the fame experiment in a receiver well wath'd, and te cone was lighter by fix grains and an half.

I made the fame experiment, in the like manner, in a well cleans'd receiver, and the cone loft feven grains and an half.

I made the fame experiment again, in an unwafh'd receiver, and then I could not fufficiently kindle the cone.

May 26. I made the fame experiment in an unwah'd receiver, about the middle of the day; the fun being clear, and bright; and remov'd not the burning-glafs for a long time, fo that it took fire very well, and became eight grains lighter.

Hence it is manifeft, that the quantity of a cone to be confumed in the fame quantity of air is not fix'd and certain, but fometimes greater, fometimes lefs, as the cone thall be more or lefs kindled. Befides, the imperfect mixture of the matter may caufe fome difference; yet it feems certian, that fire is more eafily kindled in compreffed air, than in common; and the confumption will be the greater in a certain quantity of air, if that air be reduc'd into a narrower fpace, than if it poffefs'd no more than ufual.
(80.) May 22. I put a perfumed cone into a receiver made for compreffing the air; and intruding the air till the mercury refted thirty inches above its ufual height, I kindled the cone, and found its weight to be abated one grain and three quaters.

May 23. I made the fame experiment again, after the fame manner, and with the fame fuccefs.

I repeated the fame experiment, but the cone did not kindle well. Whence we have a confirmation, that fire is more eafily kindled in air much comprefled, than in common air, or that which is but a-little condenfed.

I repeated the fame experiment, and after I had remov'd the burningglafs, whilft I was intent to fee, whether the cone would proceed to be confumed, the receiver brake into an hundred pieces, fome of which, fruck my head and wounded it: which I mention, that no man may be confident his glafs will not break, whilt he is about fuch experiments, becaufe he has found, that at other times it refifted a greater preffure. Forthis very glafs, had contain'd air four times more comprefs'd. It hadalio refifted air, tuftaining one hundred and ninety-eight inches of mercury m^{-} bove its wonted height; yet, now it was broken by a preflure, mose than
fix times tefs; and, therefore, while a man looks into fuch receivers, his Premarici head fhould be guarded.
(81.) Jwe 4.1676. I burnt paper, befmeaned with fulphur in vacuo, Fire made ne and found, that it prodced fome air; which was not at all diminißh'd for and fopdedwa pater, two days.

This air muft be afcribed to the paper, for none is produc'd out of ful- fullobruo burut in phur alone.
(82.) June 15 . I burnt harts-hom in vacuo, and fand, that the fumes, Hartshorm iffuing therefrom, contain'd fome air.
burat ip pacpo.
Tume iz. On thefe two laft days, I ropeated the fame experiment, and. always oldorvid, thet air produced from herts-horn, was foon, in part, deftroy'd; but that, which preferved its elafticity for an hour after the burning-glafs was remov'd, feem'd, afterwards, not to lofe it at all.

Fue s 9 . I took the harts-horn ourt of the receiver, and found no volatile falt, but mly a fetid oil to be produc'd therefram.
(83:) June 2 I. I burnt amber in vactu, and, at firft, could not find that the Amber burut is fumes afcended above the height of one inch; yet, in a receiver full of air, they vacyo. would be carried up to the top, and from thence return downwards; yet, afterwards, even in the vacuum itfelf, the fumes reached almoft to the top of the receiver, but the mercury varied not at all in its gage.

Fune 22. This night, a great deal of that water, in which I had immerfed the receiver, found a paffage into it, tho' the cover was fo well fitted to the aperture, that I never perceiv'd any water to get in betwixt them, before. Hence a fufpicion arofe, that fome volatile falt had, probably attracted the aqueous parts, by reafon of the congruity betwixt them.

Fuly 8. I ftill kept the receiver immerged in water, but no more water entered in; as if, the falts being wafhed away, the external water, deftitute : of affiftance, could no longer infinuate.
(84.) Fan. 18. 1677. I put two drams of camphire into an exhaufted re- Cambire fubliceiver; and the juncture of the cover, with the receiver, being fortified a-med in vacuo. gainft external air, I put the camphire on a digefting furnace.

Fan. 19. The camphire fublimed into flowers, but no air was produoed.
(85.) May 24. 1676 . I included Sulphur vivum in an exhaufted receiver, Sulphur vivum . and melted it by the help of a burning-glafs; but found, that the fumes, faffed in vacuo., produced therefrom, contain'd no air, becaufe the mercury afcended to the aperture of its gage, as is ufual, while the receiver is evacuating; yet, when that was cool'd, the mercury return'd to its former height: and, therefore, that change was, probably, owing to the air included in the feal'd leg of the gage, being rarified, and driving the mercury into the other part.
(86.) Fuly 19. Having included pafte, nine days ago, in vacuo, and per.- pafie expos'd to ceiving that it now contain'd no more air, I endeavour'd to fire it with burningsghe of in a burning-ghafs. The fubfiding fumes had tinged the fuperficios of the varnuo paite, of a curious yellow; and, I conjectur'd, that fome air was produced, becaufe the receiver, which, before, whasufely ioin'd to its comver, might now, with eafe, be pluck'd therefrom.

Phyfico-mechanical Experiments.

Pravintics. Ite produEtion of eir jrom frabes in vacuo.
(87.) September 9. 1676. I exhaufted the air out of a receiver, half full of dried grapes, and fortified it againft the external air.

Sept. 10. In twenty-four hours time, the height of the mercury was $\frac{1}{2}$.
Sept. 12. In two days time, the afcent of it was $\frac{\pi}{2}$.
$\left.\begin{array}{l}14 .\} \\ 17 . \\ 22 .\end{array}\right\}$ The afcent of the mercury was $\left\{\begin{array}{l}\frac{3}{7} \\ \frac{3}{\frac{3}{8}} \\ \frac{5}{8}\end{array}\right.$
27. The afcent was $\frac{\Gamma}{t}$. The height three inches.

Frow figs. OEZOber II. The heighe of the mercury was now about fix inches.
September 9. 1676. I put dried figs into a receiver, and fill'd about half of it with them; then I extracted the air, till the mercury refted at the height of three inches.

Sept. 10. No air was produced.
Sept. 17. Perceiving no air to iffue out of the figs, I open'd the receiver.
Hence we learn, that dried fruits, put into an exhaufted receiver, produce very little air with regularity.
From pears and agricosks.
(88.) Auguft 5. 1676. I included pears and apricocks in vacuo.

Aug. 6. In eighteen hours time, the mercury rofe two inches; in ten hours more, it reach'd to three.

Aug. 7.\} The height of it was $\left\{\begin{array}{l}5 \\ 6 \frac{1}{2}\end{array}\right.$
9. In fourteen hours fpace, the mercury mounted three quarters. Its height was feven and a quarter.

Aug. 107	8 ${ }^{\frac{1}{6}}$	Aug. 187	[25
11	$10^{3}+$	19	29
12	${ }^{124}$	20	$31 \frac{1}{2}$
13	The height of it was< $144^{\frac{1}{4}}$	21	The height of it was< $32 \frac{1}{2}$
14	16	22	34
15	18	23	35
16	20	26	38 ${ }^{\frac{1}{2}}$

'Aug. 29. The height of the mercury was forty-one.
Sept. I. The height of it was forty-two and a half.
4. The height of it was forty-four.
7. The three laft days, being hotter than the foregoing, the afcent -of the mercury was two and a quarter; its height, forty-fix and a quarter.

Sept. 10. The height of the mercury was forty-feven and a half.
13. The mercury was depreffed; its height only forty-four inches.
23. The mercury, by degrees, mounted again to forty-eight inches.
27. The height of the mercury was fifty and a half.

Nov. 5. The mercury afcended, gradually, to fifty-two and a half.
Nov. 28. The apricocks were reduced to water; the skin being fever'd from the pulp, yet no more air produced.

Fan. 10. 1677. Whilft it froze very hard, the mercury rofe to fiftyfeven inches; but, when it thaw'd, it funk to twenty-three. Whether the ftrength of the froft open'd fome way for the air to get out, I know not.

March 3. The mercury could afcend no higher, becaufe the air was got pmomarice. out. This day I found the receiver tumbled on the ground; and the apricocks, when the froft broke, were putrefied, and had loft their colour.

Hence it feems to follow, that apricocks produce air almoft as eafily in their wonted preflure, as in vacuo.
(89.) Fune 22. 1676. I put four cherries into two exhaufted receivers, Frow cherries. and, proceeded with both alike, except that in the one, the cherries were whole, in the other, cut afunder; in two hotirs, the whole cherries had impell'd the mercury into the gage, to the height of ten lines, and the cut ones to about twenty.

Fune 21 . In twenty-four hours, the mercury, in the receiver containing the whole cherries, rofe to the height of three inches; but, in the other, the gage was fpoil'd.

Fune 26. The whole cherries had not yet produced fo much air, as to fuftain fifteen inches of mercury; but the cut cherries had wholly fill'd their receiver with air.

Fuly 9. The receiver of the whole cherries was removed from its cover; I eat one of them, which tafted pleafant enough. I included the reft again in vacuo; many of them were broke, and, in one hour's time, they impell'd the mercury to the height of about two inches.
Fuly Io. During thefe laft twenty-four hours, the mercury afcended not: whether the gage was damaged, I am not certain.

Fuly 15. I found the cover fever'd from the receiver; whence it was clear, that the gage was hurt.

Hence it appears, that fome cut fruit, fooner produce their air, than what is whole.
(90.) June 9. 1676. I put fome cherries, that were not acid, into an exhaufted receiver; and, within an hour, found as much air produced from them, as fuftain'd a quarter of an inch of mercury.

June 10. In eighteen hours, the mercury rofe to eleven inches.
Fune II. The fruits produced lefs air, gradually; fo that, this day, towards the evening, the mercury came not up to fifteen inches.

June 12. The mercury was a little higher than fifteen inches.
13. The height of the mercury was twenty-two inches.
16. The mercury, yet, came not up to thirty.
18. Perceiving no more air to be produced, I open'd the receiver.

Such a fmall production of air feems very remarkable, becaufe I had found fruit, of the fame kind, in France, to fill their receivers in two days time. Probably, fruits of the fame kind, in feveral countries, differ much amongtt themfelves.
(91.) June 12. 1676. I put cabbages, cut in pieces, into an exhaufted Froum cimages receiver, with a mercurial gage; and, in an hour's time, the mercury afcended one line.

June 13. The mercury was now come almoft to the height of ten inches.
17. It was come almoft to the top of its gage $;$ and, the receiver being open'd, I found the cabbages little alter'd.
June putrefaction begun, would promote, or retard the production of air. June 19. The mercury, in half an hour, ran up half an inch.
22. For three whole days, the mercury got higher, only by ten lines. Its height was one, and a third of an inch.

Fune 23. Finding the cabbages produce no more air, I took them owt of the receiver; their fmell was very bad.

Hence a fufpicion arofe, that bodies, when they putrefy, have produced almoft all their air.
Trom orauges. (92.) May 29. 1676. I took pieces of orange, weighing four ounces, and put them into a receiver, capable of holding ten ounces of water; and exhaufted the air.

Jume 10. 'The receiver was remov'd from its cover, by the force of the air produced; fo that I took out the oranges, and prefently put them into another exhaufted receiver, capable of containing eight ounces of water; when, the mercury, within half an hour, was elevated to the heigh of half an inch.

Thene 13. This fudden afcent of the merenry was not durable; for it, yet came not to the height of two inches.

Fuwe 16. The mercury, during the laft twenty-fonr hoars, afeended about three lines.

June 2 I. The mercury, the laft twenty-four hours, did not afoend the space of one line.

July 18. I perceiv'd no more alteration in the height of the mercury, but fome mouldinefs appear'd; tho', I am certain, that no air, from without, had enter'd the receiver.
Frow atmip. (93.) April 27. 1676. I put a tulip into an exhaufted receiver, with a mercurial gage ; but, before it was fortified againft the external air, enough got in to fuftain two inches of mercury.

May 2. The tulip which, at firft, appear'd Atriped with various colours, was now wholly changed into a dark red, become moift, and produced very little air.
Hatalomwon. (94.) April 22. 1676. I put half of a lemmon into an exhaufted receiver, with a mercurial gage, fo fhort, that the mercury could not afcend three inches.

April 34 . In two days fpace, the mercury came to the height of 20 isch and a half.

April 29. The mercury was now two inches high.
April 27 . Yefterday the mercury afcended four lines; but, this day, only one.

April 29. During the two laft days, the mercury mounted higher by one line.

May 3. In four days fpace, the mercury afoended one line, and a little more.

May 3. 1677. The mercary came to the top of the gage, yet no air got out ; but the lemmon was a little alter ${ }^{3} \mathrm{~d}$.

7an.

Pbyfico-mechanical Experiments.

Fan. 1.1678. Hitherto no air efcaped out of the receiver; but the Pazomariec. iemmon had contracted a yellow colour, and a moifture.
(95.) March 16. 1677. I put two apples, of the fame fort, into two ex-4phs. haufted receivers; one of the apples having begun to putrefy, but the other was only bruis'd by a few blows.

May 15. 1677. Hitherto they feem'd in very good cafe; but now the apple, which was bruis'd, appear'd wholly rotten, and the receiver was forc'd from its cover : the other apple remain'd without change.

Auguft 20. 1677. The apple, which before began to be rotten, fuffer'd no farther alteration; but, finding that the receiver was now parted from its cover, and fearing left the apple would be fpeedily putrefied, I took it out: its tafte was grateful, inclining to acid, as if it had been fermented; but the pulp fomewhat refembled meal in confiftence.

Hereby it feems confirm'd, that fruits have produced the greateft part of their air, when putrefaction begins in them; fince the putrid apple did not fill its receiver, but in a much longertime than the other.
(96.) May 17. 1676. I pour'd swo equal quantities of milk into two ${ }^{\text {ioim }}$ glafs-receivers, of equal bignefs; the one I left in the free air, and the other I included in an exhaufted veffel, with a mercurial gage.

May 18. The cream floated on the top of the milk, left in the free air; but that in vacuo was only cover'd with bubbles, and the gage not alter'd at all.

May 19. The bubbles gradually fwell'd; and the mercury, in the gage; was a little higher.

May 20. The bubbles, in vacuo, fwell'd yet more, and that milk feem'd curdled; but the other, in the free air, was, manifefly, curdled. The mercury, in vacuo, came almoft to the top of its gage.

May 22. The milk, in vacuo, proceeded to generate more air; and now it evidently appear'd to be curdled. Whence, it is manifeft, that the coagulation of milk, when the air is taken away, is retarded. Almoft all the bubbles were now broke.

June 20. The milk, in vacuo, was no longer cover'd with bubbles, and remain'd ftill coagulated in the fame fate. But the milk, in the free air, became very fetid, and was full of worms. When it was put on the engine, and the air extracted, it emitted many very large babbles, for a long time ; and the worms mov'd very vehemently, but not one of them died in four hours time.

May 19. 1677. Three or four months ago, fome whey, in vacuo, waswhy. pour'd out of a veffel into a receiver, and it feem'd clear and limpid, like water; yet there was whey enough left in the veffel, to feparate the butyrous from the cafeous part, at a fufficient diftance.
This day the milk, ftagnant in the receiver, feem'd to have got out of it; fo that it is clear, the air, in the receiver, had a greater force than the external air; for the cover, alfo, was feparated from the receiver. Towards night, I took that milk out of the receiver, and found it to be acid, both in fmell and tafte, yet it was not ungrateful to the palate; but, after

Vol. II.

Pbyfico-mechanical Experiments.

Previatiep;

 a hort time, the whey, which hitherto had remained limpid between the cafeous and butyrous part, began to difappear, and to be blended with the reft.May 24 The butyrous part wholly vanifh'd; tho', as yet, it had fuffer'd no fenfible mutation : but the milk began to fmell ill.

June 1. Our milk had not, yet, contracted the worft of fcents; neither had it produced any worms : but it grew dry by degrees, and, this night, the mice eat it up, as, perhaps, they had the butyrous part before.

Here we fee, that the coagulation of milk, when air is extracted therefrom, is fomewhat retarded; that the weight of the butter, of whey, and of cheefe, is not the fame in the air, as in vacuo; for, in the air, they are confufedly mixed; but, in vacuo, one fwims on the top of the other; that the putrefaction of milk, when air is extracted, is hinder'd, or very much retarded; and, laftly, that milk, by continuing long in vacuo, is made unfit to generate worms, even in common air.
Urim. (97.) September 5.1677. I took the fame receiver, and the fame veffel, ufed before to preferve milk in vacuo, and included urine therein, as I had done milk before. The quantity of urine was about three ounces, and three drams, and the receiver capable of holding ten ounces of water.

Sept. 7. The mercury reach'd to the height of almoft two inches.
Sept.8. The mercury was fomewhat higher than yefterday.
December 5. The mercury afcended not above three inches; and, for the whole month paft, was not changed. The urine feem'd not to beat all alter'd.

Decemb.6. I fet other urine under a receiver, not defended againft the external air.

Desemb. 16. The urine, in vacuo, ftill kept unalter'd ; but the other, in ten days time, feem'd turbid, and to have contracted fome mouldinefs on its fuperficies.

This experiment, compar'd with the former, makes it probable, that urine contains lefs air than milk.

But the power of the air to corrupt urine, feems very obfervable.
(98.) May 19. I took pafte, very much diluted, and without leaven, and putting it into a glafs-veffel, included it in an exhaufted receiver: and tho' the veffel which contain'd it, were not half full, before all the air was exhaufted; yet the pafte had fwollen above the brim of the veffel.

May 20. The pafte continued to fwell, and was interfpers'd with many cavities.

May 22. The pafte was much more tumid than before, and much air was generated therefrom

May 23. In the morning I found the cover fever'd from the receiver, by the force of the produced air, and fome of the pafte fpread above the edges of the receiver; yet its fwelling was fomewhat abated. In the afternoon, its fwelling was much more abated, yet it took up twice more fpace than before it was put into the receiver. The tafte of it was not acid; and, therefore, I think, that bread, thus made, is very light.
(99.) Fuly 20. 1676. I put a quantity of beef into an exhautted receiver, Praviarice: defended againft the external air ; and another equal quantity into a re-bees. ceiver, neither exhaufted, nor clofely fopp'd.
Fuly 21. In thirty hours time, the exhaufted receiver was filld with air, fo that I fufpected fome air had got in : and, therefore, included the fame beef again, and fo clofed it ; there was no fear any external air thould enter.

Fuly 22. In fourteen hours time, the mercury rofe to the height of fifteen inches.

Fuly 25. For three whole days and more, the beef did not produce air enough to fill one half of the receiver.
Fuly 26. The receiver was fever'd from the cover; and in one hour's time, I perceiv'd the beef, being again included in vacuo, had produced air enough to fuftain ten inches of mercury.
Fuly 28. I found the receiver again fill'd with air, and re-exhaufting it, much air was in a fhort time again produc'd from the beef.
Fuly 30. The receiver being again fill'd, I again included the beef in vam co 0 , and found, that the air produced from it in one hour, fuftain'd ten inches of mercury.

Auguft I. The receiver being this day filld again, the beef funk abominably, and we threw it away.
Hence it appears, that fleh, whilf it putrefies, produces much more air, than before it purrefies; but 'tis otherwife in fruit.
(100.) Fuly 18. 1676. I put fome goosberries, which I had long kept in Gowerris. receivers, to produce air, into one that was exhaufted.
Within half an hour the mercury afcended to the height of one inch.
In an hour and a half, the mercury mounted another inch.
Fuly 19. In twenty-four hours time, the receiver was almoft all filled with air.
Fuly 20. The cover was forced from the receiver, and much juice run out.

Fuly 29. I left the fame goosberries in a receiver, not defended againft the external air; but this day I included them again in vacuo, to try, whether they could produce any more air.
Fuly 30. In fixteen hours time, the goosberries drove up the mercury an inch and a half into the gage.
Fuly 30.1677. The goosberries could not wholly fill the receiver; and they always remain'd in the fame ftate; but a while fince they had almoft loft their red colour, and inclined to white.
From hence it feems to follow, that this fruit, after it has produced all its air, fuffers very little alteration; as if that air itfelf were the caufe of corruption.
(IOI.) Auguft 23. I put pears into an exhaufted receiver with a mercurial Pear. gage ; and before the receiver could be well defended againft the external air, the mercury was rifen one inch and a half.
In two hours time it afcended four inches; its height being almof fix.

$$
\mathrm{Iiji}_{2}
$$

Auguft 24. The height of the mercury was twelve inches.
Auguft 25. The height thereof was fixteen.

Sept. 7. The height of it was the fame, becaufe fome air had efcaped; but I prevented that for the future.

Sept. 12. Yefterday the mercury remain'd at the fame height; but noin it feem'd to be depreffed : whence I conjecture, that fome air had gotout The height of it was fifty-three and a half.

Sept. 13. I tranfmitted the air into another receiver: the height of itwas thirty-two and a half.

Sept. 16. I perceiv'd that the air had got out ; and opening the receiver, found the pears very rotten.

Thefe pears produced their air irregularly, fometimes quicker, fometimes nower.
Dried plumbs.
102.) Sept . 17. I put dried plumbs into an evacuated receiver.

Sept. 19. The mercury feem'd to have afcended a little.
Sept. 22. I perceiv'd not, that the height of the mercury was alter'd
Novemb.9. When the plumbs produc'd no more air, I open'd the receiver.

By this experiment, 'tis confirm'd, that dried fruit is very unfit toproduce air.
And matkernels. (103.) Sept. 28. I put frefh nut-kernels, cut to pieces, into an evacuated receiver, with a mercurial gage.

Sept. 29. The mercury afcended a little.
Sept. 30. The height of it was two inches.
OEFob. 5. The mercury continu'd to afcend by degrees: the height of it exceeded fix inches.

DEtob. 15. The height thereof was ten inches.
OETOb. 22. The height of it was fifteen.
Nov. 28. The mercury was come to twenty inches, or more; but now the receiver was thrown down and broken, and the nut-kernels fcatterd: they were preferv'd very well, both as to colour and tafte.-

Hence we may conjecture, that air, without fenfible purrefaction, is producible from fruits, even of a hard confiftence.
The frodnetion (104.) June 22. I included new peafe in a receiver, with a glafs full of air above its
w/ual prefore, in asual prefowre, in 0 peafe, raifins,
and water, in
ionsmon air. of raifins of the fun bruifed, and mixed with water; and did not exhourt the air.

Towards evening, the mercury had mounted to twelve inches; buta great part of that air was produced from the raifins, not from the peafe.

June 23. The height of the mercury was forty-nine,

Pbyfcomsechanical Experiments.

The peafe fweat, as it were, and grew yellow.
Fune 30. The height of the mercury was one hundred and ter.
Fuly I. The mercury afcended not, yet no air efcaped.
Ffuly 4 . The height of the mercury was one hundred and twenty-four.
Fuly 7. The height of it was one hundred and forty.
Fuly yo. The height remain'd the fame, but the liquor, which diftilid from the peafe, got out.

Fuly 12. New liquor was produc'd from the peafe; but the meroury continu'd at the fame height.
Guly 13. The liquor got out of the receiver, and fome air befides; whereupon Ifet the fcrew, and new liquor, being in a fhort time collected, fortify'd the cover within.

July 15. The receiver was broken in pieces; but the peafe, being fofter than ordinary, were eafily ftript of their husks, as if they had been parboil'd ; but they kept their ordinary tafte.
(105.) Sept. 15. 1676. I put unripe plumbs into an exhaufted receiver ; in phembs in and before the receiver could be guarded againft the external air, the mercury afcended an inch.

Sept. 16. In twenty-four hours time, the mercury ran up five inches, and its height was fix.

Sept. 17. The height of the mercury was eight.
$\left.\begin{array}{r}\text { Sept. } 18 \\ 19 \\ 20 \\ 22\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{r|r}10 & \begin{array}{r}12 \\ 14 \\ 18\end{array} \\ 18 & \text { Sept. } 23 \\ 24 \\ 26 \\ 28\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered} \begin{aligned} & 18 \\ & 19 \\ & 23 \\ & 26\end{aligned}$
Octob. 1. The height of the mercury was thirty.
OEFOb. 4. The height of it was thirty-one, the weather fomewhat cold. octob. 5$\}$ The height $\left\{\begin{array}{r|r}32 & \text { OCtob. } 9 \\ 7\end{array}\right\}$ The height was $33^{\frac{1}{2}}$
OEtob.15. For thefe two laft days, the cold being abated, the mercury: afcended fwifter; its height was thirty-feven.
$\left.\begin{array}{r}\text { OZTO6. 17 } \\ 19 \\ 22 \\ 26\end{array}\right\}$ The height $\left.\begin{array}{c|cc}38 & \text { Oftob. } 29 \\ 39^{\frac{1}{2}} & \text { Nov. } & 2 \\ 41 & 5 \\ 43 & 20\end{array}\right\}$ The height $\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 53\end{aligned}$
' In this experiment, the air feems to be produc'd fometimes regularly, and at others irregularly.
(106.) Fuly 6. 1676. I put goosberries into an exhaufted receiver; but In Goombric before we could prevent the entrance of the external air, it had impell'd the is vocnes mercury half an inch ; and, afterwards, in half an hour, the air, produced from the goosberries, impell'd it another half inch.

In feven hours time, the mercury afcended four inches higher; and refted at five.

Fuly 7. In fourteen hours, the afcent of the mercury was two inches and a half.

Pbyfico-mechanical. Experiments.

In 10 hours, the afcent of it was $2 \frac{1}{2}$.
July 8. In 14 hours, the afcent of the mercury was $1 \frac{1}{3}$. In 10 hours, the afcent was 2.
July 9 . In 14 hours the afcent of the mercury was $2 \frac{1}{2}$.
In 10 hours its afcent was $1 \frac{3}{4}$.
Fuly 10. In 14 hours the afcent of it was $1 \frac{1}{4}$.
In 10 hours the afcent of it was 3.
Fuly 11. In 24 hours, the afcent of the mercury was 4
Fuly 12. In 24 hours, the afcent was 4
Now the mercury was brought to its wonted preffure.
Fuly 13. In the morning, I found the cover broken; and becaufe it was faftned by a fcrew, to prevent its being fever'd from the receiver, I fufpected this happen'd from the internal air. I fubftituted another cover in its ftead.

Fuly 14, 15, 16, 17, 18. I perceived no change in the height of the mercury, becaufe the cover was not exactly clofed; and therefore I took out the fruit, and put part into another evacuated receiver, and the reft I ftop ${ }^{\circ} \mathrm{d}$ up clofely with common air, that nothing might get out.

In 4 hours, the mercury afcended 4 inches.
Fuly 19. In 14 hours, the afcent of the mercury was $1 \frac{1}{2}$; but, fufpecting the air to have efcaped, I fet the fcrew.

In 9 hours, the afcent of the mercury was 11 inches.
The cover broke, and the air efcaped.
This experiment feems to prove, that goosberries contain much air, which, as foon as it is freed from the wonted preflure of the air, more readily breaks out, than when reftrained by fome ambient air, till the goosberries begin to ferment ; for then air is produced in a far larger quantity, tho the compreffure be greater.
In paftin in (117.) Fuly 8. 1676. I included pafte in an exhaufted receiver; and, cmo. before it was guarded againft the external air, the mercury was come to the height of three inches; the air making an irruption from without : whence the pafte, which was much fwollen, loft about the third part of its tumidity.

A little while after, it fwell'd again; and, within half an hour, the mercury mounted higher by two inches.

In one hour's time, the afcent of the mercury was two and a half; and the pafte continued to fwell.

In another hour, the afcent of the mercury was three inches and a half.

In an hour more, the afcent of it was four inches and a half; and it refted at fixteen.

Fuly 9. In fourteen hours fpace, the afcent of it was twenty-one inches, and the height of the mercury thirty-feven. I fufpected that fome air had got out. When I fet the fcrew, the cover broke; and, upon admiffion of the external air, the pafte, which always rofe, now abated about two inches of its tumidity; though it was lef's compreffed than before.

Pbyfico-mechanical Experiments.

In five hours, the afcent of the mercury was fifteen inches.
But, when I again endeavour'd to fet the fcrew, the cover broke, fo that the air efcaped ; and the pafte was prefently fomewhat depreffed.
In four hours, the afcent of the mercury was ten inches: the pafte again fwell'd, as before; but, being willing to fubflitute a better fcrew, 1 permitted the air to enter; yet the pafte did not now fubfide, as before.
Fuly. 10. This night the pafte rofe again; yet it feemed to have produced no air.
In four hours there was no afcent of the mercury.
In feven hours, the afcent of it was four inches.
Fuly 12 . I perceived no afcent of the mercury.
13. It feemed to have afcended a little.
17. Seeing no more air produced, I took out the pafte, and found it to have a fourifh fmell.
This experiment feems to prove, that air may be produced out of pafte, in compreffed air, as well as in vacuo.
But the pafte was twice depreffed; becaufe the compreffed air, fudden: ly finding a way to efcape, was dilated; as happens in fprings, when carried beyond their point of reft : but, when that air was immediately repell'd by the external air, the parte pitch'd, and was deprefs'd.
(108.) July 13.1677 I included fome horfe-beans in vacuo, with water ; In beans in vio whon, thofe which were bruifed, feemed to fwell much ; but thofe which ${ }^{\text {cou. }}$ were left whole, fuffer'd no fenfible alteration.
In two hours fpace, I faw no air produced, tho' the beans continued to fwell.

Fuly 14. In twenty-four hours, the afcent of the mercury was feven inches.

Fuly 15. In fixteen hours, the afcent of the mercury was three inches and a half.
In eight hours, the afcent of it was one and a half; the height of it twelve. Fuly 16. In fourteen hours, the afcent of it was three.
17. In twenty-fix hours, the afcent of it was fix.
18. In twenty-four hours, the afcent of the mercury was almoft nine.
19. I fopp'd the receiver firmly with a fcrew, becaufe the air had got out. In nine hours the afcent was one inch.
20. In twenty-four hours, the afcent was three and a half.
21. In twenty-four hours, the afcent was five and a half.
22. In fourteen hours, the afcent of the mercury was two.
23. In twenty-four hours the afcent of the mercury was eighteen.
24. In fourteen hours, the afcent of the mercury was almoft five. The height of it thirty-five above the wonted preffure.
25. The receiver could not fuftain a greater preffure. I found the beans of a fetid fmell, not much unlike that of putrefied feelh.
Henceit feems to follow, that beans contain much air, and that it is produc'd in a moderate preffure, as well as in vacuo; fometimes more fudden-

Purumaries.ly, fometimes more flowly. But, efpecially, that great inequality, which happen'd July 23 , is obfervable.

In gensberries ir vacuo.
(I09.) Fuly 23. I included goosberries in an exhaufted receiver, and guarded them very well againft the external air.:

In two hours, the mercury afcended one inch.
Fuly 24. The height of the mercury was feven inches and a half.
Fuly $\left.\left.25 \begin{array}{c}26\end{array}\right\} \begin{array}{c}\text { The height } \\ \text { of it was }\end{array}\left\{\begin{array}{l}12 \\ 17\end{array} \left\lvert\, \begin{array}{cc}\text { July } 27 \\ 28\end{array}\right.\right\} \begin{array}{l}\text { The height } \\ \text { of it was }\end{array}\right\} 20$
July 29. The height of it was almoft 30.
30. The height of it was almoft 3 I. I tranfmitted fome air out of this receiver, into another evacuated receiver; and the height of the mercury was 26.
31. The height of the mercury was 35.

Auguft 1. The height of the mercury was 39. But fome air had efcaped; and going to ftop the receiver clofe, I fuffer'd more air to get out.

The height of the mercury was 30.
Aug. 2. The height of the mercury was 39. I tranfmitted fome air into another receiver.

The height of the mercury was 31 .
Aug. 3. The height of the mercury was 39.
4. The height of the mercury was 41.
5. The height of the mercury was 43. I tranfmitted the air in: to another receiver.
The height of the mercury was thirty inches.
6. The height of the mercury was 43 .
7. The height thereof was 47.
8. The height thereof was 48. But the air being tranfmitted into another receiver, the height of it was 36.
9. The height of the mercury was 41 , in fourteen hours.

Aug. 10. The height of the mercury was 47 ; the air being tranfmitted into another receiver, the height of it was 35 , in twentyfour hours.
11. The height of the mercury was 38 and a half, in fourteen hours.
12. The height of the mercury was 42 , in twenty-four hours. I extracted the air, and the height of the mercury was 26.
13. The height of the mercury was 33, in twenty-four hours. $\left.\begin{array}{l}14 \\ 15\end{array}\right\}$ The height of it was $\left\{\begin{array}{l}36 \\ 39 \\ 41\end{array}\right\}$

I tranfmitted the air into another receiver; and the mercurial gage was fpoiled. I took out the goosberries, and found they had loft their colour, and almoft all their acidity.

From hence we may infer, that goosberries produce their air regularly; unlefs fomething be extracted out of the receiver; for then they acquire a power to produce new air more fpeedily.
(1 10.) Sept. 12. I put crude grapes into an exhaufted receiver; but be-Puroxatics. fore they could be fenced from the external air, as much had got in as in grapes in Cuftain'd three inches of mercury.

Sept.
$\left.\begin{array}{l}13 \\ 14 \\ 16\end{array}\right\}$ The height of it was $\left\{\begin{array}{r|r}5 & \text { Sept. } 17 \\ 10 & 19 \\ 17 & 20\end{array}\right\}$ The height was $\left\{\begin{array}{l}19 \\ 23 \\ 25\end{array}\right.$

Sept. 22. The height of the mercury was 30 . I ftopped the receiver with a fcrew.
23. The height of the mercury was about 30 and a half.
24. The height thereof was 32 .

Sept. 267

OEZob. 2

$\begin{cases}39 & \frac{1}{2} \\ 39 & \frac{3}{2} \\ 40 \\ 41 & \frac{3}{2} \\ 41 & \frac{1}{2} \\ 4 & \frac{1}{2}\end{cases}$
Octot. 15. The height of the mercury was 46. It afcended chiefly on thefe two laft days, when the froft was diffolved.

Nov. 2. The height of the mercury was 54.

$$
\text { 5. The height was } 58 \text {. }
$$

Jan. 10. 1677. The mercury was came to the height of 70 inches; yet I perceived no fenfible change in the mercurial gage, even when the cold was tharpeft ; tho' the grapes and their juice were turn'd to ice.

September 21. Hitherto the grapes feemed not alter'd ; but the mercury had afcended a little, becaufe the air found a palliage out. I open'd the receiver, and when the air broke forth, many of the grapes feemed to be wrinkled. The grapes had kept their tafte, but it was much more pungent: the juice continued tinged of a curious red colour.

This experiment feems to inform us, that grapes produce not all their air, but in a long tract of time.
(III.) Auguft 10. 1677. I put pears, cut afunder into an exhaufted re-In pears in me ceiver. Towards evening the mercury was rifen ten inches.

Aug. $\left.11 \begin{array}{l}13 \\ 14\end{array}\right\}$ The height of it was $\left\{\begin{array}{l|l}20 \\ 38 & \text { Aug. } 15 \\ 48\end{array}\right\}$
The air baing tranfmitted into another receiver, the height of the mercury remained at 53 and a half.

Aug. 18 $\left.\begin{array}{rl}19\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l}61 \\ 64\end{array} \left\lvert\, \begin{array}{c}\text { Aug. 20 } \\ 21\end{array}\right.\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l}70 \\ 72\end{array}\right.$
The air being tranfmitted into another receiver, the mercury remainedat 6 I.
$\left.\begin{array}{c}\text { Aug. 22 } \\ 23\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{c|c}68 \\ 74 & \text { Aug. 24 } \\ 25\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{c}79 \\ 81\end{array}\right.$
The air being tranfmitted into another receiver, the height of the mercury was 61.

> Voi. II.

Kkkk out, I tranfmitted the reft into another receiver, and the mercury remain'd at 52 .

Aug; $\left.\begin{array}{l}27 \\ 28 \\ 29\end{array}\right\}$ The height of it was $\left\{\begin{array}{l|cc}60 \\ 68 & \text { Aug. } & 30 \\ 75 & \text { Sept. } & 31\end{array}\right\}$ The height was $\left\{\begin{array}{l}83 \\ 88 \\ 93\end{array}\right.$
Septemb. 2. The height of it was 100.
Sept. 3. The height of it was 89 ; fome air having efcaped, which made me cautious to prevent the like for the future.

Sep:. 4. The height of the mercury was 100.
5. The fame height continued.
7. The fame height ftill continued, tho' no air efcaped.
9. The height of the mercury was 107.
10. The height of the mercury was the fame.
'The air being tranfmitted into another receiver, the mercury refted $2 t$
99.

Sept. 1 I. The mercury moved not.
13. The height of the mercury was 105.

OZfober 8. I found that the air had got out.
This experiment feems to inform us, that pears produce their air by fits.

Mifeellamows exporiments, and firft, melted lead in vacmo.
(112.) March 16. I melted down lead, with a fire, in a brafs veffel, whofe diameter was an inch and half; but before the lead was concreted by cold, I put it into a receiver, out of which I fuddenly exhaufted the air; whence the figure of the lead was concave, and the parts of it the more depreffed, nearer the center : but lead, congealed in common air, exhibits a convex figure, except in the middle, where there is a little cavity.

I made the fame experiment on tin, with the fame fuccefs; and tho both metals being fuud, and very hot, had remained long in vacuo, yet no bubbles feemed to rife from either; but all other hot liquors feem to yield numerous bubbles in vacuo.
(113.) Sept.2. I put water, faturated with falt, in vacuo; to try whether

Sult amd water in vacwo. it would be there converted into cryftals, and the falt be carried above the fuperficies of the water, as happens in the free air.

Sept. 15. The water, with the diffolved falt, abiding in the fame ftate, I open'd the receiver; and, as no vapours could efcape, 'tis reafonable to judge, that the falt could not there be converted into cryitals.
The air ofgos. (114.) Auguft 8. 1676. I put air produced from goosberries, into an berries in vaccoo evacuated receiver, furnifhed with a mercurial gage.

March 1. $167 \frac{6}{7}$. I perceived no change in the height of the mercury, and therefore, open'd the receiver.
The weigbt of (115.) Auguft 8. I took a vial, able to hold feven ounces, five drams, air to tbist of - meter. and three grains of water, and exhaufted the air out of it; and, when, in a balance, it was fufpended in equilibrium, with another weight, I
pierced the bladder which cover'd the orifice, with a needie; and then, the Pwixar.c. vial being fill'd with air, appear'd heavier by four grains and a half; which latter weight to the former, is as I to 814: whence it follows, that water is about, at leaft, 800 times more ponderous than air of an equal bulk. This day was hot and clear; and fome air is always left in the receivers after exhaution.
(116) Fan. 16. 1677. I put Aqua fortis, with fixed nitre, into a re- Aqua fortis, ceiver; and, having exhaufted the air as much as I could, poured one of and fixed nitre them on the other, and found much air produced. I marked the height of the mercury in the gage.

March 5. Finding the produced air was not deftroy'd, and that the mercury perfifted at the fame height, I open'd the receiver, and found nitre produced in vacuo from the mixture.
(117.) May 12. 1677. I fill'd a long and very narrow-neck'd vial, oil, water, and with oil, up to the middle of the neck, and put it into a receiver, firmly finite ef mine, in ftopp'd by the help of a fcrew ; into which, I afterwards intruded air, comprefs'dair. till it fultain'd 120 inches of mercury above its wonted height. The oil, in the neck of the vial, appear'd depreffed about a quarter of an inch; the caufe whereof I judg'd to be the compreffure of the air: but, having eafed the fcrew, and thereby fuffer'd the air to break in, and be dilated, the oil did not afcend at all; fo that, I fuppofe, it was condenfed only by cold.

Auguft 5. I made the fame experiment, after the fame manner, ufing water inftead of oil; yet could perceive no change of the height of the water in the neck of the glafs; tho the heat, being moderate, might have produced a fenfible effect.

Fan. 14. 1678. Finding, by fome experiments, that compreffed air entersinto the pores of the water, and pierces even to the bottom, a fufpicion might arife, that the water was not condenfed by the compreffed air, becaufe the air entring into the pores, made the preffure within equal to that from without ; I, therefore, filled the abovefaid glafs with fpirit of wine; leaving only the length of three inches in the top of the neck thereof, which was filled with air only. Then applying my hands to the glafs, the fpirit of wine, being heated, foon filled the whole neck to the top. The glafs being now inverted into a veffel of mercury, I removed my hands, when the fpirit of wine being foon cooled, fuffer'd the mercury to poffefs three inches in height. I put the veffel, and the glafs, in that pofture into a receiver, and afterwards comprefled the air therein, till the mercury exceeded its wonted height 90 inches; yet there was no fenfible condenfation of the fpirit of wine, nor any afcent of the mercury: however, it is certain, that no air had crept in, becaufe the mercury hinder'd it; and the receiver being open'd, when the air, that compreffed from without, was dilated, no bubbles appear'd in the fpirit of wine.

Here it feems worth enquiring, how the fpirit of wine was fo fenfibly condenfed by a moderate cold, and not at all by a great compreffure of the air.

Puxvesris. (118.) May 12. 1676. I poured fpirit of wine into a glafs vertes, and Spirit of cim, added fome drops of oil of turpentine thereto, which fwimming upon the

Sparit of wine, fenting in vacuo. fpirit of wine, began to be there whirl'd about. I put the glafs veffel on the pneumatic engine, and cover'd it with a receiver ; yet the bubbles did not at all ceafe to move up and down. Then I pump'd out fome of the air; when, the bubbles, emerging from the firit of wine, adhered to the drops of oil, and carried them to the fides of the veffel, and there detained them; yet two drops, free from fuch bubbles, proceeded to have a further motion. Afterwards, I wholly exhaufted the receiver, and fome drops rofe to the top thereof, by the force of the bubbling fpirit of wine ; but the remaining drops continued to be moved a little, and foon after refted. The air being admitted, the drops began again to renew their motion, but it was flow, and quickly ceafed.

I repeated the experiment with firit of wine, and oil of turpentine, purged from air ; and no ebullition was then made, nor did any bubble appear : but the drops of the oil of turpentine were moved in vacus, as in the open air.

Hence, it feems to follow, that the caufe of the motion of the drops, is not owing to the diffolution; for all diffolutions in vacuo, have, hitherto, feemed to me, to produce bubbles.
Reailifes and (119.) May 19.1676. Yefterday I left two radifhes in vacue, one of them hangalare in inaso. ing with the roor downwards, the other in a contrary pofture ; and both cut tranfverlly, refted over a veffel, which contain'd red wine. Thefe remaining for a whole night in vacuo, feem'd well purged of their air. Opening the receiver, I added two other radifhes to the former, cut after the fame manner, having firft taken off their thick skin. Then exhaufting the receiver, I immerg'd the cut part of all the radifhes, at once, into the fabjacent wine; upon which, many bubbles feem'd to arife from them : and more babbles proceeded from thofe radifhes which were purged of air, for a whole night, than from thofe which had not remained above half an hour in vacuo, with their skins off.

Hence bubbles feem to be formed of particles of air, fwimming in water; and becaufe, in the skin there are fome canals, fit to retain parts of air, the peeled radifhes afforded no opportunity for the formation of fo many bubbles.

The liquor afcended no lefs into thofe radifhes which hung with their roots upwards, than into the others.
1 A fall liflifin. (120.). May 4. 1676 . I immerged one end of a fmall open glafs tube,
 fine of celtritic it, as ufual in common air, and to the fame height ; but, foon after, many bubwod wish fint
 bles being formed there, raifed the water higher, and kept it fufpended in three different places, intercepted' by many bubbles; and feveral other bubbles feemed to pafs out from the end immerfed in water:

Then fealing the other end of the tube hermetically, and making the experiment in common air, the water afcended not up into the tube at the open end. But, in vacuo, it afcended therein, as if it had been open at
both ends; and many bubbles fuddenly formed, feparated the water, contained in the tube, to a great diftance, as before : in the mean time, many other bubbles feemed inceffantly to pafs out from the end of the tube immerfed, tho' they afterwards appear'd lefs frequent.

But the water being fufpended higher in the tube, feemed to contain no bubbles, whilf the end only emitted fo many.
Then I took out that end from the water, and no more bubbles appear'd, tho' it was wholly fill'd with a cylinder of water.
May 5 . I repeated the experiment ; but before I had immers'd the end of the tube in water, a drop, which ran over from the upper aperture of the receiver, flowed down to the open end of the tube, and penetrated into it to the height of two lines; and no bubble was formed there in a full half hour. I, afterwards, plunged the end of the tube into the water of the veffel, and bubbles foon began to be formed as before; fome of which fucceeded others within half a minute : but, afterwards, they were lefs frequent. Repeating this experiment, many times, I perceived, that when the water was extracted from the tube, no bubbles appear'd ; bit if it were immerged in water, fome would adhere to the end of it, either fooner or later.
Mdy 6. I made the fame experiment, with the infufion of nephritic wrood, with a like fuccefs; excepting that the bubbles emerged, and penetrated the liquor, before they had acquir'd any confiderable bignefs: whence we may conjecture, that this liquor is very thin, and hath no vifcofity to refift a pervading body.
May 10. I repeated the fame experiment with firit of wine, mixed with a certain oil, made per deliquium, but found nothing new; only the liquor afcended not fo high into the tube.

Hence the bubbles feem to be formed, at the extremity of the tube, of aerial particles, fwimming in the water; which finding fome impediment at that end, cannot pafs by, and fo, new ones coming upon them, they fwell into bubbles.
(121.) Fuly 18. 1676. Two days ago, I took fome horfe-beans, and in- Hafforans mexzcluded them in an iron tube, clofely ftopped; firt pouring water on the ${ }_{i n}$ in aten in imet thed compreffed beans, till the tube feemed wholly full; to try whether the expanfive force of the beans would break the tube. This day the tube feem'd not to be alter'd, but, the ftopple being loofen'd, fome air broke out, and much water, which was not imbibed by the beans, fell upon the ground: then we heard a noife, as it were, of bubbling water, for above an hour.

Fuly 25 . The tube remain'd in the fame pofture; but now one of the ends of it being unftopp'd, and fome beans taken out, the murmur of the bubbling water was heard as before.

From hence it feems to follow, that beans contain air, which, in a great compreflire, cannot efcape; but breaks out, if freed from the comprefing force.
pheumatics.
 moniac, and copper filings in vacuo.

A certain oil, .nod Spirit of wine in vacuo.
(122.) March 4. 1677. I pur a glafs, half full of firit of fal armoniac, and copper filings, into a well exhaufted receiver, and ftopp'd it up: in is minutes, the liquor had contracted a blue colour, very much diluted; but, the air being admitted, in three minutes the blue colour appeared wivid and thick. I put the liquor, fo tinged, again in vacuo, to try whether that colour would, in time, vanifh.
April 4. The blue colour almoft quite difappear'd, but quickly return'd, upon admiffion of the air.
(123.) May 8. I put a certain oil, made per deliquium, and firit of wine, into an exhaufted receiver: the fpirit always fwam on the top; and, left the fipirit fhould bubble over the edges of the veffel, I extracted the air, by degrees; when, at firf, great bubbles arofe from the firit, and but very fmall ones from the oil ; after one hour, the oil afforded large bubbles, which, from being fmall at the bottom, filld, in their afcent, the whole breadth of their veffel: and, after another hour, fome bubbles broke out with fo great force, that they hit againft the top of the receiver.

May 9. I repeated the experiment in a glafs fomewhat long and narrow, that I night the better perceive the motion of the bubbles; and I faw the bubbles paffing out of the oil into the fpirit of wine, without any great increafe of their quantity : but being diftant only one quarter of an inch from the fuperficies, they were fuddenly expanded.
(124.) May 3.1676. I mixed a quantity of Aqua fortis, with a larger of

Aqua fortis, Jpirit of wine, and irom in vacuo, and come

 fpirit of wine ; then diftributed the mixture equally into three glafs veffels, and put three equal pieces of iron into them, to each veffel one. This done, 1 included one of the three veffels in vacuo; and there many great ebullitions were made. In a quarter of an hour I took out the veffel, and found the liquor black and turbid; whilft the other two veffels had their liquor not alter'd in colour; only fome black powder appear'd at the bottom.One of thefe two veffels I put in vacuo, and there arofe ebullitions, great indeed, but much lefs than the former: in one quarter of an hour, I took out the veffel, and found the liquor black, yet lefs fo than the former ; but that which was left always in the air, remain'd, in a manner, unchanged.

May 4. In the morning, the liquors in the two veflels, put in vacuo, appear'd clear and green.

But that in the open air bubbled more ftrongly, than it did yefterday, and was of a red colour. I put the three veffels together in vacuo, and perceiv'd no remarkable ebullition; only fome bubbles appear'd larger in the red liquor, than in the other two.

From hence it feems to follow, that firit of wine accelerates ebullition in vacuo.
syirit of faharmonies and copper filings in
artificiel eir of artint
infto
(125.) 7an. 21. 1678. I had a glars half full of fpirit of fal armoniac, and filings of copper, the mouth whereof was fo exactly ftopp'd, that the blue colour, induced by the external air, now wholly difappear'd. The ftopple was made of leather, prepar'd after a particular manner.
This glafs I fet in vacuo, with unfermened pafte, that the receiver being full of air, from the pafte, I might perforate the leather that ftopp d the glafs;

Pbyfico-mechanical Experiments:

glafs; and try, whether the contact of the air, generated from the pafte, would alfo communicate a colour to the liquor.

Fan. 22. There was no need to perforate the leather ; for I found the liquor already tinged : whence it is probable, that air produc'd from pafte, is endu'd with fuch minute particles, as to penetrate leather, which is impervious to common air.

Fan. 2 5 . The liquor became almoft colourlefs; whence it appears, that common air is too thick to penetrate all pafiages, which are pervious to air, produc'd from pafte.

Feb.2. I put the fame vial in vaccuo, but did not cement the receiver to the cover ; fo that the air, gradually entring, in twenty-four hours, fill'd the receiver, as it was leifurely fill'd with the air produc'd from pafte ; yet the liquor ftill remain'd colourlefs.

Feb. 15. I put the fame glafs again in vacuo, with fome quantity of pafte; but, this time, the air produc'd from thence, did not pervade the leather, as it had done before, and the liquor was not at all tinged.
(126.) April 2. 1678. I put a lhrew-moufe into the filtrating engine; and, when I perceiv'd him reduc'd to extremity, I began to ftir the pump, that the air, might be, as it were, filtred thro' the water. The moufe, a while thoro watter. after, feem'd to be better, yet not wholly reftor'd; and having been long kept fafting, I am uncertain, whether he died for want of aliment, or of new air.
April 12. I repeated the experiment with a fmall weakly moufe, that had been kept a long time without food. And finding the lame fuccefs as before, I took out the moufe before he was dead, but he recover'd not: fo that more experiments are requir'd, to thew the effect of this filtration.
(127.) May 2. 1678. Six weeks ago, I included frog-fpawn in three receivers, the firt of which was exhaufted; the fecond contain'd common air; air, and amwon and into the third, I intruded fo much air, that the mercury refted fixty inches above its ufual height.
In fifteen days, the mercury in the evacuated receiver rofe an inch. The fpawn in the common air feem'd corrupted, and of a blackifh colour; but that in the compreffed air, remain'd unalter'd in colour ; tho' no frogs were generated.
In a month's time, the fiperm in vacuo had not changed its colour, excepting the black round fyots; but feem'd reduc'd into water: the colour of that in the common air was very black, but in the comprefs'd air the fpawn began to be reddifh.
As yet, no change was perceiv'd, either in the fpawn in vacuo, or that in the common air; but in the comprefs'd air it appear'd redder.

May 22. The feerm in vacuo was not chang'd; in the comprefs'd air it remaind red ; but in the common air it again became colourlefs.
Gune 23. The frerm in vacuo, and in common air was not tinged, but in the comprefs'd air it inclin'd to green.
Oitob. 15. I took the fpawn from all the veffels; that kept in vacuo was almoft exhaled out of its veffel, and appear'd ftagnant in the recesver, like clear water: that in the common air remain'd coloutcis's but that in the comprefs'd air ftill kept its red colour.

624

- Pueviatics. Oranges in re Oranges in cribs s, with and witkcnt waster.
(128.) May 9. 1678. Six days ago, I included two pieces of the fame orange in two receivers, not quite of equal bigness; in the greater, there was left lome quantity of water, fo that the fame face remain'd for the air in that, as in the lefs. The orange included with water, tho' it were not touch'd by it, was four times more mouldy, than that kept without water.
And, therefore, in repeating this experiment, I put two pieces of the fame orange into two receivers; but fills the third part of one of them with water, yet fo, that it did not reach the orange.
June 15. Neither of the pieces had contracted any mouldinefs.
May 16. I repeated the experiment with the fame fuccefs; only, neither orange had acquired any mouldinefs in the face of more than a month; tho', in former experiments, all fuch oranges. grew mouldy.

The cause of the difference, feems to be lome particular difpofition of the air.

Turpentine in-

 clued in as wind gmo(129.) June 1. 1678. I put a fall glass tube, half full of Venice tarpentine, into our wind-gun; and had farce reduc'd the air to the tenth part of its wonted face, but the leather, fpread over the elliptic valve, was driven out ; fo that, the air having efcap'd, I drew. the glafs-tube out of the engine, and found many bubbles formed in the fuperficies of the turpentine. I, therefore, fufpected, that the air had pervaded the turpentine; and that it would have penetrated deeper into it, if they had remain'd longer thus inclos'd together. I placed the fame tube in the fame gun, and there left it in air reduced to about the fifteenth part of its natural face.

June 3. I open'd the engine, and, taking out the tube, found the urpentine almoft free from bubbles; yet, by degrees, many were formed therein, in the parts remote from the fuperficies.

Tune 4. I put new turpentine into the fame tube, and included it in vacuo, that it might be the better purged of air; then I pour'd the water upon it, and tout up all in the wind-gun.

June 8. I open'd the engine, and, at firft fight, both the water and the turpentine in the tube, feem'd to be very free from bubbles; but fool after I perceiv'd, that bubbles were form'd in the turpentine, and that they afcended by degrees: forme of them feem'd to be made, almoft at the very bottom, about half an inch below the fuperficies of the turpentine. Whence we may conjecture, that all the water, and fo great an height of the turpentine, were pervaded by the air, which formed thole bubbles.

Spirit of Galere

 maine, and copperjalings in , sicko.(130.) Auguft 11.1678. I included fpirit of fal-armoniac, with a metcurial gage, in vacuo; and after the fpirit ceas'd to emit any bubbles, I mix'd copper-filings therewith, which caus'd many bubbles to rife again; but they were fo far from producing any air, that they confum'd what was there before. But the liquor became greenish and turbid.

Decemb. 5. The fpirit was almoft all exhaled out of the containing veffel, and, being condens'd in the receiver, remain'd fill turbid, by reafon of much filth, which was included there : but that which was not exhaled out of the veffel, appear'd clear like water. The mercury, aldo, was wholly expelled

Pbyfico-mechanical Experiments.

expell'd out of the gage. Whence I conjecture, that the air in the receiver, Puxpantics. was gradually more confumed.
(131.) Sept. 2. 1678. I put two cylinders, one of tin, the other of lead, cylindere of tim in vacue ; their loweft parts wereimmerfed in mercury; and, ar the fame fend had inmor time, I immerfed two other cylinders, like the former, after the fame in vanue, manner in mercury: but thefe latter were left in the free air.

Sept. 6. I open'd the exhaufted receiver, and the mercury in the tin cylinder was rifen four inches and a half, above the fuperficies of the ftagnant mercury; and cutting the cylinder tranfverly, in the middle of that height, the amalgam feem'd to have penerrated into the cylinder, about half a line. And cutting the cylinder tranfverfly again, in that part, which was diftant only one inch, from the fupericies of the ftagnant mercury, I found the thicknefs of the amalgam equal to one line.

In the lead-cylinder, the mercury rofe two inches and a half; but, only as far as the fuperficies; and the very part, immerfed in the mercury, was not penerrated by it, to any fenfible shicknefs.

Sept.7. I took the tin-cylinder left in the air, out of the mercury, in which it was immerfed, and found the mercury to have afcended to the height of five inches.
Sept. 10. The fame cylinder being left in the mercury, feem'd to be befmeared therewith to the very top, fix inches, and more, above the fuperficies of the ftaguant mercury. When the cylinder was tranfverly cut in feveral places, the mercury appear'd to have pierc'd the deeper into the tih, the nearer it came to the flagnant mercury; fo that in the part adjacent to the mercury, almoft the whole diameter of the cylinder, three lines broad, was penetrated thereby.
In the lead-cylinder, the mercury exceeded not the height of three inches and a half; neither bad it penetrated to any fenfible thicknefs. Whence it appears, that the weight of the air, contributes little or nothing to the afcent of mercury into metals.
(132.) Decemb. 12.1678. I took a frall whiting, and having cut off his 1 wbitivg iecms head, divided him tranfrerly into five pieces; the firft whereof, I included in in in in in in vacuo. The fecond in common air. The third in air fo comprefs' d, as in fitivom air, to fuftain mercury fifty inches above its wonted height. Thefe three re- trifis in ent ent ceivers were clofed with fcrews. The fourth piece was put into a receiver, beft in tho arw full of air, produc'd from pafte, which was prefently topp'd. The fifth ${ }^{\text {air }}$ was left in the free air.
Decemb.15. In the morning, that part of the whiting, which was left in the free air, began to fhine; and, towards evening, it gave a more vivid light
Decemb.16. In the morning, the whiting left in the free air, ceas'd to thine; but towards evening thone again.

Decemb. 17. This morning, the fame part of the whiting flone a little, yet lefs than yefterday in the evening.

Vol. II.
LIIl
Decmb.

Decemb. 18. In the morning, there appear'd no light, tho' I long fix'd my eyes upon the receiver in a dark place; but the night coming on, the light appear'd again.

Decemb.20. Hitherto the fame part of the whiting left in the air, continued to fline; but all the other parts did not yet begin to do fo.

Decemb.22. Yefterday, the light of the.whiting, left in the air, had not quite ceas'd, but this day it appear'd no more.

Decemb. 24. The part of the whiting in the free air, entirely gave over thining; that included in common air, did, yefterday, yield a faint light ; but this day it fhone no more.

Decemb.26. No more light appear'd in that in the common air: but the three other pieces did not begin to thine.

Fan. 26. 1679. I perceiv'd no more fhining in any one of the receivers.
(133.) Aug.3. i677. I tranfmitted air, produc'd from cherries, into a

Arifcial air difno d, and fife that of aberries tranfo wecierer sull of cemmair. receiver full of common air, but fo ftopp'd with a fcrew, that the mercury afcended to twenty-five inches above its ufual height.
Aug. 4. The mercury was deprefs'd about two inches. The height of it, this day, was only twenty-three.

Aug. 6. The height thereof was reduced to twenty.
Aug. 7. The height thereof the fame.
Aug. 8. The mercury was fomewhat deprefs ${ }^{\circ} \mathrm{d}$.
Aug. 10. The height of it was nineteen and a half, above its ufual ftandard : and perceiving little or no alteration, I open'd the receiver.

Hence we have a confirmation, that air, produc'd from fruits, at the beginning, is in part deftroy'd ; but, that the reft can very long retain the form of air.
(134) May 26. 1676. I put fix grains of fal-armoniac into a receiver, That of fal-ar of viatrion, in val suo.

And nf oil of vitriol with as fiftb part of
little into the gage; tho', afterwards, for twenty-four hours no change Pxxomaric $^{\text {P }}$. happen'd.

This experiment fhews, that fome artificial air may be deftroy'd; but why this deftruction happens, fometimes fooner, fometimes later, deferves a further enquiry.
(135.) Fuly 10. 1676. I put pafte, made two days before, and now the diffrwe to grown fourib, into a receiver, and ftopp'd it firmly with a fcrew.

In one hour, the height of the mercury was one ineh.
In feven hours, the height of it was fix.
Fuly II. The height of it was eleven.
Fuly 12. The height of the mercury wastwenty-four.
levity wberewith sir is produc'd in vacuo, and

Fuly 13. The height thereof was thisty.
Fualy 14. The height of the mercury was fenfibly greater.
Fuly 15. The mercury afcended a little. Meafuring its height exactly, I found it thirty-eight inches.

Fuly 19. No more air was produc'd from the pafte.
Fuly 10.1676. I put another quantity of the fame pafte, much lefs than paffor the former, into an exhaufted receiver.
Tho' the quantity of the pafte was lefs, yet, in one hour's time, the height of the mercury wastwo inches.
In feven hours, the mercury came almoft to the top of the gage; but it was a fhort one.
Fuly 19. The pafte was not able to move the receiver from its cover ; tho', at the beoinning, it had produc'd a greater quantity of air, than the pafte in common air. I endeavour'd to fire it with a burning-glafs, and the fumes, elevated therefrom, afterwards falling upon the pafte, tinged the fuperficies thereof, with a pleafant yellow colour: and that air was thus produced, I conjectur'd, becaufe the cover was afterwards eafily fever'd fromits receiver.
Hence we learn, that air is fometimes generated much more eafily in vacae, than in common air.
(136.) Augu/f 20.1676 . I put pafte, kept for 24 hours, int a receiver full of common air ; to which I added new air, fo that the mercury exceeded its wonted height, four inches, and a half.
In fix hours, the mercury gained almoft 4 inches; and its height was 8. Aug. 21. The afcent of the mercury was 4 and $\frac{2}{7}$.
Aug. 22. The aficent of it was about 5 .
23. The afcent of it was half an inch.
26. For three whole days, the afcent of the mercury was only half an inch.
27. There was no afcent of it at all.
29. The patte, taken out of the receiver, fmelt acid.

Auguf 20 . I put another quantity of the fame pafte into an exhaufted receiver, and obferv'd the fame proportion between the quantity of the palte, and the capacity of the veffel, as in the former experiment.
The mercury prefently feemed to have afcended. Its height was two inches

Llll 2

Pbyfico-mechanical Experiments.

22. The afcent of it was 3.
23. The afcent of the mercury was \mathbf{r}.
24. For three whole days, the afcent of it was 2.
25. There was no afcent of the mercury.
26. I took out the pafte, exhaufted of its air, from the receiver.

This experiment farther confirms, that air is, fometimes, more eafily produced in vacuo, than in common air.
(137.) Sept. 4. 1677. I put the kernels of filberds into an exhaufted receiver.

Sept 5. The height of the mercury was 5 inches.
Sept. 6
7
8
9 The height $\begin{gathered}\text { of it was }\end{gathered}\left\{\begin{array}{l}10 \\ 10 \\ 12 \\ 15\end{array}\right)$
Sept. 15. The height of it was almoft the fame.
17. The height of it was 30 .
18. This day the air began to get out of the receiver ; for fome bubbles appear'd in the turpentine, which clofed the juncture of the receiver, and cover.

Ad filberderer (138.) September 4. I put kernels of filberds into a receiver with common airs in air.

In the afternoon, the quantity of air feemed to be leffen'd.
$S_{\text {ept. 5. The height of the mercury was lefs than half an inch }}$
9. The height of it was the fame.
7. The height of it was I inch.
8. The fane height continued.
18. The fame height continued.

This experiment confirms, that fometimes air is produced much more eafily in vacuo, than in common air.
Raifus mitb (139.) September 15. 1677. I included 8 ounces of raifins of the fun, vater in vacoo. bruifed and diluted with a little water, in an exhaufted receiver, able to hold 22 ounces of that fluid.

Sept. 16. The height of the mercury was fix inches.
$\left.\begin{array}{rl}. \text { Sept. } 17 \\ 18\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{c|c}10 & \text { Sept. } 29 \\ 15 & 20\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l}29 \\ 29\end{array}\right.$
Sept. 21 . This day I found the receiver forced from its cover.
Sept. 24. I took out fome of the raifins; but thofe that remain'd, I enclofed in the fame evacuated receiver.

Sept. 25. The raifins forced the receiver, now full of air, from its cover.
And rajinus with
September 15. 1677. I put 8 ounces of raifins of the fun, bruifed and dimanty ig. luted with a little water, into a receiver, able to hold 22 ounces of water; but did not exhauft the air at all.

Sept. 16. The mercury was three quarters of an inch aboveitsufual height.

Sept. 17. The height of the mercury was I and a half. 18. The height of it was.3.

Pbyjcco-mechanical Experiments.

Sipt. $\left.\begin{array}{l}20 \\ 21\end{array}\right\}$ The height of it was $\left\{\begin{array}{c|c}5 & \text { Sept. } 22 \\ 7 & 23 \\ 9 & 24\end{array}\right\}$ The height was $\left\{\begin{array}{l}11 \text { Puroxaties: } \\ 12 \\ 15\end{array}\right.$
Permitting the air to break out, many bubbles emerged from the raifins.
This experiment further teaches, that air is fometimes much more eafily produced in vacuo, than in common air.
(140.) February 17. 1677. I put three onions into an exhaufted receiver. Onimus in race

Feb. 19. The height of the mercury was one inch.
21. The afcent thereof was again I. The onions were not alter'd.

25 . The whole afcent of the mercury was 9 . The onions not alter'd.
May 4. The onions had yet fuffer'd no alteration.
18. Neither were they yet alter'd.

Fune 19. I found the receiver forced from its cover, and the onions rotten.

Feb. 17. I inclofed 3 onions in air, fo rarified, that it could fuftain only ${ }_{\text {fuidase }}^{\text {air. }}$ rariten inches of mercury.

Fel. 19. There was no afcent of the mercury.
21. There was yet no afcent thereof. The onions did not fprout, but contracted a mouldinefs.
25. The afcent of the mercury was about 7 inches. The onions received no further alteration.
May 4. The onions were not alter'd.
18. The onions were not yet alter'd ; but the receiver, by the force of the produced air, was removed from its cover.
February 17. I put 3 onions in a receiver not exactly fhut.

And onions is comisem air:

21 . They contracted no mouldinefs, but fprouted.
25. They gradually took root.

May 4. The onions began to be mouldy.
This experiment makes it probable, that fome bodies produce their air not much more eafily in vacuo, than in rarified air.

It hence allo appears, that vegetation is hinder'd, not only by the evacuation, but alfo by the rarifaction of the air.

It likewife deferves our obfervation, that the onions, as long as their roots fprouted, contracted no mouldinefs.
(141.) Auguft 23. 1677. I put bruifed pears into an exhaufted recei-The diffrense, ver, with a mercurial gage.

Auguft 25. The height of the mercury was five inches.
Aug. 26 \} $\{10 \mid$ Aug.

Sept. 1. The height of it was 30.
2. The receiver was forced from the cover.

Auguft 23. I put whole pears into an exhaufted receiver; the quantity Amd ubsh pears of the pears, and the capacity of the receiver, being the fame with thofein vase juft mention'd.

Aug. 25. The height of the mercury was 15:

Pbysco-mechanical Experiments.

Aug. $\left.{ }_{27}^{26}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l|l}17 \\ 25\end{array} \left\lvert\, \begin{array}{c}\text { Aug. } 28 \\ 29\end{array}\right.\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l}28 \\ 30\end{array}\right.$ Aug. 30. The mercury afcended no higher; the receiver being forced from the cover.
This experiment feems to prove, that bruifed fruits do not produee air fo foon as entire ones.
In obleaghs ($\mathbf{1 4 2}$.) Auguff 24 . I enclofed whole apples in vacuo, with 2 mercurial in recue. gage.
Auguff 25. The height of the mercury was 5 inches.
Aug.
$\left.\begin{array}{l}26 \\ 28\end{array}\right\}$ The height of it was $\left\{\begin{array}{l|r}9 \\ 12 \\ 15\end{array} \left\lvert\, \begin{array}{l}\text { Aug. } 29 \\ 30 \\ 31\end{array}\right.\right\}$ The height was $\left\{\begin{array}{l}19 \\ 25 \\ 28\end{array}\right.$
September 1 . The height of it was 29.
2. The height of it was 30 .
3. The receiver was forced from the cover.

And bmideast. Auguft 24. I put an equal quantity of bruifed apples into an evacuated p^{2} is in vesoo. receiver, of the fame capacity with the former.

Aug. 25. The height of the mercury was I inch.
26. The height of it was 3 .
27. The height of it was 4.

Sept. 3. The mercury continued at the fame height.
25. The mercury afcended not.

This experiment feems to inform us, that bruifed fruits produce air, flower than whole ones.
In brijed graps (I43.) Augut 29. 1677. I put unripe grapes, bruifed, into an evacuated is racto. receiver.

Aug. 26. The height of the mercury was one inch.
27. The height of it was two inches.
28. The height of it was 2 and a half.
29. The height of the mercury was the fame.

Sept. 15. The mercury did not afcend, but its height remained at $2 \frac{1}{2}$.
And whol Auguft 25. 1677. I put whole unripe grapes into an evacuated re-

Aug. 26. The height of the mercury was three inches.
27. The height of the mercury was five.

Aug. 28$\left.\left.\} \begin{array}{c}\text { The height } \\ 29\end{array}\right\} \begin{array}{c|c}7 & \text { Aug. 30 } \\ \text { of was } \\ 10\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{l}12 \\ 13\end{array}\right.$
Sept. 1. The height of the mercury was 15.
2. The height of it was 16 .
3. The height of it was 18.
4. The height of it was the fame.

Sept. 5. The height of the mercury continued the fame; but almoft all :the grapes had contracted a yellow colour.

Sept. 7. The mercury refted at the fame height; and all the grapes were yellow.

Sept. 35. The height of the mercury was twenty.
This

This exprriment fhews, that whole fruits produce air more readily than Pusoxanite. bruis'd.
(144) Sept. 10. 1677. I put two ounces of grapes, not bruis'd, into a re- In whig gakes. ceiver able to hold ten ounces of water.
Sept. ir. The height of the mercury was fix inches.
Sept.
$\left.\begin{array}{l}12 \\ 13 \\ 14\end{array}\right\} \begin{gathered}\text { The height } \\ \text { of it was }\end{gathered}\left\{\begin{array}{r|r}9 & \text { Sept. 15 } \\ 12 \\ 1 ; & 16\end{array}\right\}$
The height
of it was $\left\{\begin{array}{l}20 \\ 25 \\ 28\end{array}\right.$

Sept. 18. The height of the mercury was thirty. The grapes were not at all alter'd,
Sept:19. The height of the mercury was the fame.
Sept. 20. The receiver was not yet forced from the cover. The grapes were not alter'd, but appear'd only a little riper.
Sept. 21. The receiver was forc'd from the cover, tho' nothing had efcap'd.

Sept. 22. In the morning, the grapes began to rot ; I, therefore, included them again in vacuo.
Sept. 23. The height of the mercury was five inches.

OClob. 10. The receiver was not forcd from the cover, till to-day: the grapes, by their colour, feem'd rotten, yet kept their firmnefs.

Sept. 10. 1677. I included two ounces of ripe, bruis'd grapes in a re- And burd'd ceiver capable of holding ten ounces of water.

Sept. 11)
11
12
13
14 The height of the $\left\{\begin{array}{r|r}4 \\ 7 & \text { mercury was }\end{array}\left\{\begin{array}{r}\text { Sept. } 15 \\ 16 \\ 10 \\ 12\end{array}\right\} \begin{array}{l}178 \\ 18\end{array}\right\} \begin{aligned} & \text { The height } \\ & \text { of it was }\end{aligned}\left\{\begin{array}{l}18 \\ 20 \\ 25\end{array}\right.$
Sept. 19. The grapes had fever'd the receiver from the cover, and much juice was fpilt.

Sept. 20 . I again put the fame grapes into the fame receiver; but, becaufe they had fpilt their juice by ebullition, I did not exhauft all the air: the mercury refted at the height of five inches.

Sept. 21 . In the morning, the receiver, being now full of air, no longer adher'd to the cover; fo that I took out the grapes, and tranfmitted them into another receiver, which I ftopp'd clofe with a fcrew, but extracted no air from it.

Sept. 22. The height of the mercury was eleven inches; tho' the receiver was able to hold twenty-fix ounces of water.

Sept.23. The height of the mercary was nineteen.
Sept. 24. The height of it was the fame.
Sept. 30. The height of it was twenty.
OEZob. 3. When the grapes produc'd no more air, I took them out, and found them of a bitter tafte ; being not yet perfectly ripc.

Pbyjcc-mechanical Experiments.

Provantici. This experiment, compar'd with that before related, of unripe grapes, feems to intimate, that unripe grapes produce lefs air when they are bruis'd, than when whole ; but that ripe grapes do the contrary.

And in found and bruis'd ap
 (145.) Nov. 19. 1678. I put apples into three evacuated receivers. in

 ples, in vacuo. the firlt was a found apple; in the fecond an apple bruis'd, and lad loofe in the open veffel ; in the third, was alfo a bruis'd apple: and the corer of this fo fitted the including veffel, that it ftraitly comprefs'd the parts of the apple; but in exhaufting the receiver, the air, formed between the parts of the apple, expell'd all the juice.Nov. 21 . In the firtt receiver, the height of the mercury was five inches; in the fecond, three ; in the third, none.

Noy.23. In the firft receiver, the height of the mercury was feven; is the two others there was no change.

Decemb.7. In the firt receiver, the height of the mercury was eleren. There was no alteration in the other two.

Faus. 23. The firft receiver was now fever'd from its cover, by the force of the air produc'd a-new. In the two others there was no air generated.

May 20. 1679. The third receiver was forc'd from its cover; but the recond had produc'd noair.

This experiment informs us, that bruis'd fruits produce lefs air in vacem, than found ones; contrary to what happens in common air. The reafon whereof, may, perhaps, be this, that fruits bruis'd are very much rarify'd is vacuo; whence the feveral principles, of which they confift, cannot att upon one another: but unbruis'd fruits, by reafon of the entirenefs of their ambient skin, fuffer lefs rarifaction.

That air is fomentious nume
 dieffy fown ty $\underset{\sim}{2}=6$ air.
(146.) July 12. 1678. I put rofes into two receivers, to be ftopt with fcrews. One of them contain'd common air uncomprefs'd; but Intruded fo much air nto the other, as fuftain'd the mercury fixty inches above its wonted height. Aug. 2. The rofes in the common air, were, four days ago, turn'd yellow, as if they had been wither'd; but thofe in the comprefs'd air, kept their colour very well.

Feb. 10. 1679. Thofe in the comprefs'd air, retain'd their frefh colour.
This experiment, compar'd with that made, laft year, with rofes, informs us, that the air; at different times, is differently affected; fo that fometimes it hath a power to hinder corruption, and fometimes to promote it.
And but inlips
(147.) May 22. Fifteen days ago, I included two equal quantities of flowers, in two receivers : into one of them, I thruft fo much air as fufeain'd the mercury fixty inches above its wonted height; but in the other, I left common air uncomprefs'd. The flowers were tulips and lark-\{purs.
Since that time no mouldinefs appear'd, except, only, that ten days ago, one half of the tulip, in the commonair, being cut afunder, feem'd fomewhat mouldy; and now the other half of the fame tulip in comprefs'd air, feem'dalfo a little moutdy.

Some of the flowers feem'd as frefh, as when firt put in ; efpecially thofe in the common air; but in the comprefs'd air, they feem'd moifter.

Phyfico-mechanical Experiments.

Fune 22. No more mouldinefs appear'd : whence we have it confirm'd, Pxzuantice. that the air is, fometimes, unfit to produce mouldinefs; fince, laft jear, all Theconge of this kind of flowers, contracted a great mouldinefs.
(148.) Sept. 4. 1678. I expofed one dram of minium, in an open glafs, by the fefen's sayys. to the fun-beams, concentrated by a burning-glafs; and found that it loft ticelly sealed, $\frac{3}{4}$ grain of its weight, though much of the minium had not been touch'd by fing red beed the rays.
(149.) Sept. 6. I took calcined coral, and endeavour'd to calcine it further, by the rays of the fun, in a fealed glafs; and the whitenefs of the in cakin'd corald ome. calx was fomewhat increafed hereby.

Sept. 10. I expofed the fame coral again to the fun-beams, in the fame glafs hermetically fealed, for two whole hours; and, then weighing the glafs, found it had loft about $\mathrm{T}^{\frac{1}{6}}$ part of a grain, fince it was firft fealed.
(150 .) May 23 . I put calx of tin in a light glais vial, hermetically fealed, and weigh'd it exactly : afterwards I expofed it to the beams of the fun, for a long time, by the help of a large lens; then the glafs, being again weigh'd, foemed to have loft $\frac{1}{4}$ part of a grain of its weight.

May 29. I repeated the experiment with minium, inftead of calx of tin, and the lofs of weight came to $\frac{z}{3}_{\frac{1}{2}}$ part of a grain.

May 30. I endeavour'd to calcine the fame minium again, but fuch plenty of air was produced, that the glafs broke, with a great noife, into an hundred pieces.

June 6 . I made the fame experiment again with minium ; and then $\delta^{\frac{2}{4}}$ part of a grain was wanting of the weight.

Attempting again to burn minium, the glafs alfo broke.
Fuly 15. I ufed wood-coals for the fame experiment, but the fun did not at all affect them.

Fuly 20. I expofed Sulphur vivum, to the beams of the fun, in the fame manner ; and tho' it was eafily melted, and emitted many fumes, yet I found no change at all in the weight.

Aug. 1. I kept the fame vial fill, with the flower of fulphur ; and often expofed it to the fire of the burning-glafs, without danger of being broken; becaufe fulphur produces no air: the fumes rofe, and, at firft, the fulphur bubbled; but the weight remain'd the fame.
(151.) Nov. 6 . A piece of roafted rabbet, being exactly clofed up, in an Bodies prefroved exhaufted receiver, was two months, and fome few days after, taken out, and fint fome without appearing to be corrupted, or fenfibly alter'd, in colour, tafte, or rosfad rabbet. fmell.
(152.) March Ir. A fmall glafs receiver, being half filld with pieces Brod. of white bread, was exhaufted, and fecured.
April 1. The receiver being open'd, part of the bread was taken out, and appear'd not to have been impair'd in that time; only the outfide, of fome pieces of crumb, feem'd to be a very little leis foft and white, than before. There appear'd no drops, or the lealt dew, on the infide of the glafs. The remaining bread was, again, fecured foon after.

Pbysfco-mechanical Experiments.

Prevancrice. April 18. The bread was taken aut again, and tafted much as $\sim_{\text {it did the laft time ; the crult being, alfo, foft, and no drops of water }}$ appearing on the infide of the glafs.
(153.) March a. I open'd a fmall exhaufted, and fecured receiver, wherein, about three montbs ago, we had included fome milk, which was well-colour'd, and turn'd, partly, into a kind of whey, and, partly, into a kind of foft curd. The tafte was not offenfive, only a little fourif, bike whey; nor the feent fetid, but fomewhat like that of fourion milk
(I54), March 5 . Violet-leaves, put up, freed and fecured from air, being open'd, April 7 . appear'd not to have chang'd their fhepe, colowr, on confiftence; but their odour could not be well judg'd of ; becaufe he who included them, had cruhn'd many of them together, in thrufting them down; fince, by fuch a violation of their textyure,'tis natural for violets to lofe their fragrancy, and acquire an earthy fmell.
(155.) Having carefully placed fome violets in an exhaufted receiver, of a convenient fize, and bignels, and fecur'd it from immediate commerce with the external air; after feven months, we look'd upon them again; and found they were not putrefied, or refolved into any mucilaginots. fubftance, but kept their fhape entire; fome of them retaining their colour, but more of them having fo loft it, as to look like white violets.
(5 ,6.) Nov. 5 . We convey'd into a conveniently fhaped receiver, fome ounces of fheep's blood, taken from the animal, kill'd that afternoon. After the exhauftion of the air, during which, numerous bubbles. were generated, that made the liquor fwell confiderably; the included blood was kept in a warm place for twenty days; and, during one or two of the firt, the blood feemed to continue fluid, and of a florid colour ; but afterwards, degenerated into one, that tended more to blacknefs.
Nov. 25 . We let in the externel air $;$ and the glaffs, contrining the blood, being held in a light place, the greateft part of the bottom of it feem'd to be thinly overlaid with a coagulated fubttance, of a higher colour chan what fwam above it; which, though it appear'd dark, and almoft blackifh in the glafs, whild view'd in the bulk, yet, if it was flook, thofo parts of ity that fell down along the: infide of the glafs, appear'd of a deep fair colour. But, whilf the blood continn'd in the glafs, it was fuppos'd not to ftink; fince, even when it was pour'd out, tho' its fcent frem'd, to me, fomewhat offenfive, yet, to others, it feem'd to fmell like the blood of a dog, newly kill'd.
(157.) March 17. Some cream being put up, and fecur'd in an exhaufted receiver, appear'd, a year after, to be more thick; and almof like butter, at the top, than in other parts; and afterwards, by being well fhaken together, in the glafs, it was eafily enough reduced to butter, whofe butter-milk, by the judgment of thofe who were more ufed hereco than I, appear'd not different from ordinary butter-milk ; and, I found it bad, like that, a grateful fournefs. The butter was judg'd to be a little fourer than ordigary, but was not, as they fpeak m made. $^{\text {. }}$
(158.) Feb. 18.We look'd upon three vials, that had been exhaufted, and fe-irizemancici: cured Sept. 15 lat; the one of thefe had in it fome nices of roafted beef, Buftec. the other fome fhivers of white bread, and the laft fome thin pieces of cheefe; all which, feem'd to be free from putrefaction, and look'd, much, as when they were firft put in ; we, therefore, let not the air into the receiver, but left them, as they were, to prolong the experiment.
(159.) Feb. 18. There was a fourth vial, wherein, about fix months be- Fivers: fore, had been inclos'd, and fecured fome july-flowers, and a rofe; yet, thefe being kept in the fame place with the reft, tho' they feem'd a little moift, retain'd their fhape and colour, efpecially the rofe, which look'd, as if it had been lately gather'd. We obferv'd, in none of thefe four receivers any great drops, or fo much as dew in the parts fituated above the included matter.
(160.) Fune. 4. We left fome ftrawberries in an exhaufted receiver, and steraberriss. coming to look upon them after the beginning of November, we found them to be difcolour'd, but not alter'd in fhape, nor mouldy'; we, therefore, left them ftill in the receiver for further trial.
(161.) May 2. 1669. A piece of roaft-beef, fecur'd Septermber 15. laft, ap-Cbefe, act. pear'd to be not at all alter'd, no more did a piece of cheefe, fecured in another receiver, and fome pieces of a French roll, fecured, on the fame day, in a third.

Flowers, feal'd up Augu/t 12.1668, being this day look'd upon, appear'd frefh.
(162.) Fune 17. A pint of fmall beer, being put into a conveniently meallber. thaped glafs, afterwards exhaufted, and fecured from the air ; the moft part of Auguft proving extraordinarily hot; towards the latter end, there was, at feveral times, great thunder, which turn'd the beer in our cellar, and in moft of thofe of the neighbourhood, four. Sept. 1. The beer was open'd, but did not feem to be four.
(163.) Totry, whether the thunder would have fuch an effect apon ale, Als. exactly ftopt in glafs veffels, as it often has on it in ordinary casks; I caus'd fome ale, moderately ftrong, to be put into a conveniently, haped receiver, and having exhaufted the air, and fecur'd the glafs veffel, 'twas put into a quiet, but not a cool place. About fix weeks after the liquor had been inclos'd $^{\prime} d$, there happen'd fome very loud thunder; and our beer, upon this, tho ${ }^{\circ}$ the cask was kept in a good cellar, being generally noted to have been turn'd four ; I ftay'd yet a day or two longer, that the operation upon our included liquor might be the more certain and manifeft ; and then taking out the ale, found it good, and not at at all four'd.
(164.) Some black-berries, included in an exhaufted receiver, Sept 2 r. Black-b:rion 1670. were open'd June 20. 1673. and found free from all mouldinefs, and ill fcent; only there was fome four liquor, which being taken out, the berries were fecur'd again. At the fame time, another parcel of the fame berries was exactly clos'd up in a receiver, whence the air was not pump'd; but coming, OEtob II; 1673. to look upon the glafs, we found it crack'd, and the fruit all cover'd with a thick mould. Nor was this the Mmmm^{2} only

Pbyfico-mechanical Experiments.

${ }^{\text {Paxomaras }}$.only veffel, wherein, trials made to preferve fruits without any exhauftion of the air, mifcarried.

OCZob. 11. 1674. The former berries in vacuo, being look'd upon, appear'd much lefs black than before ; but did not feem putrefy'd, either by lofs of fhape, or by any ftinking fmell; nor was the leaft mouldinefs obferv'd upon them, tho' they had been kept in the fame receiver for above four years.

Ale.
 (165.) June 14. We put a convenient quantity of ale into a bolt-head,

 and feal'd it up hermetically; the next year, 7 7uly 5 . we broke off the feal, and found the liquor very good, and without any fenfible fournefs. The next day, it was feal'd up again, and fet by for thirteen months; when, the neck of the glafs being broken, the ale was found four. We fee, however, that a fmall quantity of ale was preferv'd good, at leaft, above a year; which is much longer, than that liquor ufually keeps.(166.) June 14.1670. In a large bolt-head, we hermetically feald up above a pint of French claret, which, when we came to look upon Fuly 5.1671. appear'd very clear and high colour'd, and had depofited a large fediment at the bottom of the glafs, but faften'd no tartar, that we could perceive, to the fides. Upon breaking the feal'd end of the glafs, we thought there was an eruption of included air, or fteams; and, high above the furface of the wine, there appear'd a certain white fmoke, almoft like a mift, and then gradually vanim'd: the wine continu'd well tafted, and was a little rough upon the tongue, but not at all four.

The bolt-head was feald up again Fuly 6.1671. and fet by, till Auguft 5.1672. at which time it was open'd again, and the wine ftill tafted very well.

Fune 26.1673. The bolt-head, with the fame claret, being open'd, was found very good, and feal'dup again. OET06. II. 1674. the fame wine was open'd again, and appear'd of a good colour ; it was not four, but feem'd fomewhat lefs fpirituous, than other good claret; perhaps, becaufe of the cold weather.
Bodies preferod (167.) Aug.3.1678. I included two apricocks in two receivers, one of in compurs'd
guors, and firf
lin guors, and firft but in the other, there were only lodg'd a few raifins, fo that the apricock raifims and vea: ter. was not touch'd, by them, or their moifture.

Sept. 10. I took cut the apricock, inclos'd with the water; and, whilit the air broke out, the fruit bubbled very much : the raifins had loft, almoft all their tafte, but the apricock preferv'd a pleafant relifh; and feem'd more pleafant than fuch fruit ufually is at that feafon of the year.

Feb.10.1678. The apricock, inclos'd without water, kept its colour and figure, only feem'd to have loft its firmnefs.

This experiment informs us, that the tafte of fome fruits may be prefesv'd in an infufion of raifins of the fun; at leaft in veffels able to refift a great compreffure of the air.
(168.) Sept. 17.1678. I included peaches, with an infufion of raifins, Peaches in
infufuen of
ari. in two receivers, fhut with a fcrew. fins

Sppt. 21. Too great a quantity of air preduced in one or vne recervas, 627 expell'd fome part of the liquor. The other receiver retain'd its liquor.

Sept. 25. The receiver, out of which the liquor was expell'd, loft fome more of it ; fo that a fifth, or fixth part, now feem'd empty : but, fetting the fcrew, the liquor was then preferv'd. The other receiver remain'd unalter'd.

Sept. 26. The fame receiver began, again, to leak, and run over : I fet the fcrew again.

Nov. 27. Our receiver, hitherto, feem'd to be exactly thut; but now I. open'd it; and, whillt the air was getting out, the peaches bubbled very much: one of them, which was of that fort whereto the ftone ufually adheres, preferv'd its firmnefs, and a pleafant tafte ; but the other, being of the yellow-colour'd kind, was very foft ; yet the tafte thereof feem'd to be more pleafant than of the other. The liguor was very grateful.

Decemb. 28. The other receiver feem'd unalter'd; but, when I open'd it, innumerable bubbles immerg'd from the liquor, and from the peach. The peach, on one fide, had preferv'd its firmnels; on the other, it had loft it: but the whole was grateful to the palate, tho' fomewhat fharp;

This experiment feems to teach, that liquors may grow four, tho nofpirits have evaporated from them.
(169.) September 20. I included peaches, with unripe grapes, in two re-Peaches mitb ceivers, and filled them exactly ; the one with apples bruifed to the con- grafeas, apples, fiftence of a pultice; and the other, with an infufion of raifins of the fun. ofraifnos.

Sept. 25. The receiver, filld with pulp of apples, hitherto feem'd unalter'd; but, in the other, the air, which was generated, had thruft out half of the contain'd liquor, and impel'd the mercury into the gage, to the height of 100 inches; wherefore, I open'd the receiver, and the peach, whilt the air got out, was almoft reduced to the confiftence of a pultice : the tafte of it was pleafant.

I put another peach into the fame receiver, and fubftituted a new infufion of raifins of the fun, inftead of that which was loft.

Sept. 26. The mercury rofe to 30 inches above its ufual height.
Sept. 27. The height of the mercury was 72.
28. The height of it was 90 . The liquor work'd out.
30. The fame height remain'd ; but the liquor was all efcaped.

OEtober 1. All the air had, alfo, efcaped; wherefore, opening the receiver, I found the peaches very foft, but of a pleafant tafte.

OEZob. 3. The receivers, filled with the pulp of apples, had loft nothing; but now I perceiv'd, that almoft all the juice of the apples had: runolt: I open'd the receiver, and found its contents very much fermented. The peach was very foft, but not unpleafant in tafte.

This experiment informs us, that fruits cannot be long kept in pulp of apples, becaufe of the great production of air; tho' that happens a little later in the infufion of raifins.
(170.) Sept. 23. 1678. I included peaches, with crude grapes, in twa Peaches witb receivers; one of which was exactly fill'd with pulp of apples, the other prapes, of and the with unripe grapes, pruifed.

 open'd, and found one of the peaches to have retain'd its firmmefs and tafte; but the other had loft its firmnefs, yet retained a grateful tefte

Feb.5. 1679. The receiver, containing the pulp of apples, feem'd unatter'd : 1 open'd it, and the great ebullition which arofe thereupon, manifefted, that a great compreffion of the air was made. The pulp of apples, and the peach, retain'd a grateful tafte, but fomewhat more pungent than ordinary.

This experiment thews, that juice of crude grapes cannot, conveniently, be ufed for the prefervation of fruits, by reafon of the $t 00$ great production of air.
(171.) Sept. 25. 1678. I included two pears, called buttter-pears, in 2

Pears included rears inciuded apples. eceiver, exactly fill'd with pulp of apples.
Sept. 28. I perceiv'd no alteration in the height of the mercury.
OAtob. 5. The mercury was now rifen 15 inches.
Octob. 6. The height of the mercury was above 16.
OEZ0b. 12. The mercury was not changed.
OEtob. 20. Three days ago, the mercury was depreffed, though nothing had efcaped.

OEtob. 26. This day the receiver was crack'd; though I did not find that the air was compreffed within it; but, perkaps, the ferew was fet too high. The pulp of the apples was of a very grateful tafte ; fo were the pears, tho foft, and one of them inclined to rottennefs.

Perhaps, the crack in the receiver, was the caufe of fo little air being produced in this experiment.
Paeches inclofad (172.) OEZ0b. I. 1678. I inclofed peaches in two receivers ; one of which withthese pund mm of was filled with pulp of apples, and the other with unripe grapes, braifed. appese samd mis. OEtob. 5. Much air was produced in the fecond receiver, and fome of the juice ran out. The height of the mercury was 64 inches.

OCtob. 6. The juice continu'd to run out : the height of the mercury was 70.

OCtob. 8. Now the juice feem'd to be all run out of the receiver; and the height of the mercury was 86.

OCtob. 12. The mercury remain'd at 86.
OCIob. 18. The receiver, emptied of its juice, held the air very well; and the mercury in it refted at 86. The other receiver, filled with pulp of apples, had ${ }_{2}$ for thefe five laft days, fuffer'd fome jnice to flow out.

Decemb. 4. I open'd the receiver, fill'd with pulp of apples; and tho' all the juice was gone, yet it ftill retain'd the air, very mach compreffed ; and many bubbles broke out, not without noife, after the receiver was quite open'd. The peach was very foft, and of a pungent tafte, hike to that of ftrong wine.

Fan. 22. 1679. After the effufion of the juice in the other receiver, the mercury refted at the fame height. I open'd the receiver; the peaches emitted many bubbles, and were wrinkled, but their colour was little changed : their tafte was maft pungent, and inclining to acid.

This experiment confirms the conclufiens drawn from the former.
(173.) 087ob. 4. 1678. I put peachesinto three receivers; the fift of packesimetu. Which was filled wita ale; the fecond, with hopp'd beer; the third, hatabithath, and wim. with wime.

OEtob. 5 . The height of the mercury, in the firft receiver, was 15 ; in the fecond, 10 ; in the third, 9 .
octob. 6. The height of it, in the firft receiver, was 25 ; in the fecond, 15 .; in the third, 20.

ÖFtob. 8. The height of the mercury, in the firt receiver, was 35 ; in the fecond, $15 ;$ in the third, 20 .

Octob. 12. The heightit in the firft receiver, was 63 ; in the fecond, 15 ; in the third, 28.
15. The height of the mercury, in the firft receiver, was 8 I ; in in the fecond, 15 ; in the third, 30.
16. There was no more change perceived in any of the three receivers.
18. The mercury rather defcended, than afcended in all the three.
22. In the wine, only, the mercury afcended, or defcended, according to the degrees of heat and cold.
24. The height of the mercury, in the firft receiver, was 96 ; in the fecond, 15 ; in the.third, 30.
30. The height, in the firft receiver, was 115; in the fecond, 20 ; in the third, 30 .
Nov. 3. The height, in the firft receiver, was ri7 ; in the fecond, 20; in the third, 30:
6. The height, in the firft receiver, was 120 ; in the fecond, 31 ; in the ethird, 3 1.
11. The height of the mercury, in the firft receiver, was 105 ; in the fecond, 31 ; in the third, 28. The weather was cold.
Nov. 16. The height of the mercury twas the fame. The peach, which hitherto lay at the bottom, now mounted to the upper part of the liquor, in the ferond receiver; the reft flaid at the bottom.
Not. 25 . The height, in the fint receiver, was 140 inches; in the fecond, 47 ; in the third, 3.2 .
Nov. 28. The height, in the firf receiver, was 96 ; in the fecond, 36 ; in the third, 28. It was very cold weather.
Decemb. 13. The height, in, the firt receiver, was $96 ;$ in the fecond, 47 ; in the third, 33. I open'd the third receiver, and found the peach firm; and of a laudable colour; but it had contracted much of its tafte from the wine, and might get be improved by fugar. . The wine, alfo, was grateful to the palate.
Decemb. 30. The height of the mercury, in the firft receiver, was 96 inches; in the fecond, 47. I open'd the firt reeeiver; when, the peaches, which had lain, till then, at the bottom of the liquor, prefently emerg'd to the upper part, and ennirted many bubbles: the tafte of the ale, of which they had greatly partook, became pleafant, wich fugar.

Phyfica-mechanical Experiments:

Hence fermented liquors may be ufeful for the prefervation of fruits, as being unfit to produce air.
(174.) Sept. 5. 1678. I included one whale peach, with another cut to pieces, in a receiver; into which, 1 afterwards poured old wine, till it was exactly fill'd, and then fhut it with a fcrew.
Nov. 20. Nothing, hitherto, feem'd to be alter'd ; but, this day, I perceiv'd fome of the wine run out.

Nov. 30. A third part of the wine was lof.
Decemb. 8. The wine beginning again to run out, and there being but little of it left, I open'd the receiver, and found the peaches very much fermented, yet of a grateful, but moft pungent tafte. The wine, alfo, was pleafant.

From this experiment, compared with the third receiver, in the former, we may conjecture, that wine hinders the fermentation of peaches, if ufed in a fufficient quantity; but here the quantity was not fufficient, becaufe the pieces of the cut peach fill'd the whole receiver, fo that no room was left for the wine, but in the interfices.
(175.) Octob. 11. 1678. I put two unripe peaches, one whole, the other cut to pieces, into a receiver fill'd with hopp'd and fermented beer.

OEtob. 12. In one night's time, the mercury afcended three inches.
OEtob. 15. The height of the mercury was 15 .
16. The height of it was 15 .
18. The height of it 12. It was very cold.
20. The height of it remained at 12 .
22. The mercury afcended again. The cold abated.

Nov. 2. The height of the mercury was 20.
3. The mercury defcended a little. It was cold weather.
6. The height of the mercury was 28. The weather grew hotter.
8. The height of it was 33 .
11. The height of the mercury was 40 .
12. The height remained at 40. Some of the beer work'd out.
16. The height of it was 46.
39. The height of it was 43. But much of the beer was lof.'
21. The mercury afcended not, but the beer continued to work out.
23. When the beer was almoft all work'd out, I open'd the receiver, and found the peaches very foft, yet of a grateful tafte; tho' they were kept for 9 hours in the free air, after the receiver was open'd.
From this experiment, compared with the fecond receiver, we may infer, that beer hinders the fermentation of peaches, and the production of air, if ufed in a fufficient quantity: but here there was only a little beer, contain'd in the interftices, which was unable to hinder the fermentation of the peaches.

Raes beef ino cluded winth flate beor, and *mmen air.
(176.) 0770 b. 19. 1678. I included raw beef in three receivers; the firt of which was exactly filld with ftale beer, forcibly intruded ; fo that the mer-

Pbyfico-mechanical Experiments.

mercury exceeded its wonted height by fixty inches. The fecond was, alfo, exactly filld with ftale beer, but here there was no compreffure made. The third was fill'd, partly with the beef, and partly with common air.

OCZob.20. In the firft receiver, the mercury was deprefs'd to twenty inches below its ufual height ; tho' nothing at all had efcaped out. In the fecond, alfo, it defcended; but in the third, it afcended a little.

OCtob. 26. In the firft receiver, the mercury fometimes afcended, and then defcended, very irregularly; in the fecond, it began to afcend flowly, two days ago ; in the third, it was not mov'd at all.

OCZO6. 27. A piece of the fame beef, which was left in the air, began to fmell ill; and the mercury in the third receiver, began to afcend; in the fecond, it continu'd to afcend gradually; but in the firit, it feem'd rather to defcend.

Nov. 3. The-mercury in the firft receiver afcended not ; in the fecond, the height of it was twenty inches; in the third, ten.

Nov. 5. I open'd all the receivers, and the two firft had no offenfive fmell, only contracted a fcent from the beer. The flefh boild in the fame beer was very tender, but its tafte was bitter; perhaps, by reafon of the too great quantity of beer. The beef included with common air, prefently fmelt fetid, upon being open'd; yet, when taken out, and applied to the nofe, it fcarce feem'd to ftink. I included the fame flefh in the fame receiver, to try whether new air being admitted, would promote corruption.

Nov. 6. The height of the mercury was three inches.
Nov.II. The height of it was nine:
Nov.25. The height of it was twenty.
I open'd the receiver, and found the fefh fo fetid, that I was forc'd to throwit away.

From hence it feems to follow, that beer may heip to preferve flefh, efpecially if it be forcibly intruded into the receiver; but this compreffure is foon abated, becaute the air, comprefs'd in the fame receiver, is apt to enter into, and gradually pervade the pores of the beer.
(177.) Nov. 12. I included beef, prefs'd together as clofe as I was able, in Bef incheded three receivers: into the firft of them I pour'd water, mix'd with one fortieth with sall-wateip part of falt, which fill'd up all the interftices, left bet wixt the parts of the flefh; the fecond, in like manner, contain'd fome falt water; but it was fo forcibly intruded, that the mercury in the gage afcended fifteen inches, above its wonted height : into the third receiver, I pour'd no water, and therefore thofe few interfices, which could not be poffefs'd by the flefh, were left for the air.

Nov. 13. The mercury defcended in all the receivers, efpecially in the fecond, wherein was the comprefs'd liquor.

Nov. 18. The two receivers, which were uncomprefs'd, did not drive the deprefs'd mercury upward : but that, whofe mercury had been impell'd to fifteen inches, and afterwards had defcended moft, now return'd almoft to its former height. A piece of the fame beef, being left in the air; began to fmell ill.

Vol. II.
Nnnn
Nov.

Pbyfico-mechanical Experiments.

Nov. 23. In all three receivers, air was produced a-new; but to-day the mercury, in the fecond, defcended three inches, and the height of it was twenty; in the other two 'twas about fixteen. I open'd the firft receiver, and the flefh was not at all corrupted.

Nov. 30. I took that flefh out of the receiver, which was put in without falt, and it did not fink at all ; but, being boil'd, was very tender, and of a pleafant tafte.

Decemb. 6. I open'd the receiver, into which I had forcibly introduced falt water. The mercury exceeded its wonted height by twenty-five inches. The flefh fmelt ftrong, yet did not ftink: that in vacuo yielded many bubbles, which ceas'd not, till a pretty while after the receiver, in which it was included, was taken from the pneumatic engine ; then mercury, in one hour's time, came to the height of three or four inches. I, afterwards, immers'd the fame receiver fo exhaufted, in hot water ; and the liquor, contain'd therein, bubbled very much, tho' the water, from which it borrow'd all its heat, did not boil ; but fogreat a quantity of air was produc'd, or had enter'd from without, that the receiver was quickly full. The liquor, contain'd therein, did not, afterwards, bubble, or boil, tho' it were immerg'd in boiling water. I took out the flefh, and found it pleafant and tender, yet lefs fo, than I expected; perhaps, becaufe it was not boil'd enough.

Hence, water, as well as beer, may conduce to the prefervation of flefh.

Oifters with tbeir follls, and
witbont, included im Sals-reater, camomair, ned im vacio.
(178.) Nov.29. 1678. I inclos'd oifters in four receivers: in the firtt, the oifters were without their fhells, and exactly fill'd the whole fpace; in the fecond, the oifters, with their fhells, were included with common air; in the third, the oifters alfo were included in their fhells; the remaining fpace of the receiver, being exactly filld with falt-water. Thefe three veffels were firmly clos'd with fcrews. The fourth receiver was exhaufted of air, and contain'd three oifters in their fhells, and eight taken out of their Thells. When the air was pump'd out of this receiver, the oifters freed from their fhells, emitted many large bubbles; but the three others fuffer'd no fenfible change, only one of them gaped.

Nov. 30. In the three receivers, ftopp'd with fcrews, air feem'd to be confumed, rather than produced; but the mercury in vacuo afcended a little.

Decemb.4. Whilft the weather was cold, the mercury afcended not; but now, when the cold began to abate, the height of it in the firft receiver was feven inches; in the fecond, none; in the third, three; and in the fourth, three.

Decemb. 5. The height of the mercury in the firt receiver was twenty inches; in the fecond, one; in the third, three; in the fourth, five.

Decemb.7. The height of the mercury in the firt receiver was thirty inches; in the fecond, one ; in the third, three; in the fourth, eight. 0 ther oifters, left, at the fame time, in the air, fmelt ill.

Decemb.9. In the firft receiver, the height was thirty $;$ in the fourth, eleven. The reft were not chang'd.

Decemb.13. There was no change in the three firft receivers; but in the ${ }^{\text {Puzumatic s: }}$ fourth, the height was fourteen inches.

Decemb. 20. In the firft receiver, the height was forty-fix; in the fourth, twenty-four ; the reft were not chang'd.

Decemb.21. In the firf receiver, the height was fify-two; in the fourth, twenty-five; in the reft, no change.

Decemb. 22. The height of the mercury in the firft receiver was fixty; in the fourth, twenty-feven; no change in the reft.

Decemb.27. In the fourth receiver, the height was twenty-nine; the relt were not chang'd.

Fan. 1.1679. The oifters in the third receiver, had ting'd the water black.

Jan.2.5. The mercury in vacuo feem'd ftill to remain, almoft, at the fame height. But this day, fome bubbles were form'd in the turpentine, by the internal air, about the juncture of the cover with the receiver. I, therefore, open'd the receiver, and found the oifters very fetid. I, likewife, open'd the other receivers, and found the oifters of an ill fcent, and turn'd to a kind of vifcid gelly.

This experiment feems to inform us, that fifh produce lefs air than flefh; yet will be corrupted, tho' defended againft the air.
(179.) Nov.29. 1678. I exactly fill'd a glafs veffel, with frefh and unfal-Butter includet ted butter; then ftopt it with a fcrew. A mercurial gage was included in ${ }^{\text {i }}$ the fame veffel.

Nov. 30. In the night, the cold being very fharp, the butter was condens'd ; for the mercury approach'd nearer to the aperture of its gage.

Decemb.2. The mercury came ftill nearer to the aperture of its gage; perhaps, becaufe the cold daily increas'd.

Decemb.5. The cold being abated, the mercury return'd almoft to its former height.

Part of the fame butter, being left in the air, began to have a very bad fmell.
Decemb. 7. The cold returning, the mercury, again, came to the top of its gage. The butter left in the air, fmelt worfe than before, tho it was ftill edible.

Decemb.24 The butter had produced no air; being taken out of the receiver, it was of a grateful tafte, except, only, a little of the fuperficies, which lay contiguous to the leather fpread over the cover.

It follows, that butter may be kept a great while, if it be defended from the external air.
(181.) Nov.30.1678. I fill'd two receivers with whitings; and that no whitings, and air might be left in the vacant fpaces, into the one I pour'd wine ; and into the wine and and other, oitters, with their juice ; fo that both receivers were esactly fill'd. inetsand in in rers, When I had afterwards clos'd their covers with fcrews, the air in the mer-ceivers. curial gages was comprefs'd; but in three hours fpace the mercury again return'd to its former mark.

Decemb. 2. The cold increafing, the mercury came nearer to the aperture of its gage in both receiversa** Nnna 2 Decemb.

Decemb. 4. The cold ceafing, the mercury afcended very much in that receiver wherein the oifters were; but, in the other, it moved not.

Decemb. 5. In the receiver, containing the oifters, the height of the mercury was 20 inches; but, in the other, it was not yet return'd to its ufuat height.

Decemb. 7. In the receiver with oifters, the height of the mercury was 40 ; in the other, it continued fill below its fandard.

Decemb. 9. The mercury, in both receivers, was changed little or nothing.

Decemb. 20. When the mercury alter'd no more, I open'd the receivers, and both of them were very fetid. It here feemed new to me, that the receiver, in which the wine was, had admitted of corruption, without producing air ; for, hitherto, all bodies, whilf they were corrupting, had produced fome.
Beef witb fpice, included in reсегіш. pepper and cloves; and that no air might be left in the interftices, I pour'd beer upon them; and, in no long time after, found the preflure of the air, in the receivers, to be abated; the mercury, in the gages, coming to the open ends.

Decemb. 8. The mercury afcended not in either of the receivers. I open'd the one, that I might boil the flefh; which had contracted a fureet fcent from the cloves; and the liquor, contain'd in the fame receiver, be-fore it was boil'd, fmell'd like hippocras.

Fan. 2. 1679. I open'd the other receiver, and found no air produced therein: the flefh was not at all corrupted; and, when I boil'd it in vacw, I obferv'd, that if a more intenfe fire were made, the air, or fome fpirits, broke thro the ftop-cock, which was faften'd to the top of the receiver. The receiver, being cooled, all the night, was, the day after, found, almoft, quite empty of air. The flelh was very tender, and well tafted, only it was a little over-boil'd; for it had been kept on the fire full fix hours.

Hence we have a confirmation, that beer may be ufeful to preferve Hefh, efpecially if the bitter tafte thereof be corrected by aromatics.

Tushs, with beof and alo in. cluded in at receiver.
(182.) Decemb. 4. 1678. I included two larks, with fome beef, in a receiver, and fill'd all the fpaces, unpoflefs'd by the flefh, with ale; at the fame time, I fill'd another receiver, with the fame fort of beef, adding beer, alfo, but no larks.

Decemb. 9. Some pieces, cut off from the larks, and expofed to the air, began to fmell ill; but thofe included in the receiver, had produced little air ; for the mercury was not yet come five inches above its wonted height. In the other receiver it was not moved.

Decemb. 19. In the receiver, which contained the larks, the mercury afcended no higher; for the cover being broken, fuffer'd the liquor to run out. Wherefore, I open'd the receiver, and boil'd both the beef and the larks, which were not at all corrupted, but very grateful to the palate. The beef had contracted a pleafant tafte; partly from the larks, and partly from the beer.

Pbyfico-mechanical Experiments.

Decemb. 23. I open'd the other receiver, and the flefh being boiled, Privasatics. feem'd pleafant ; yet not fo pleafant as that which received a venifon-like tafte from the larks.

Hence birds may be long preferv'd by the help of beer, or ale.
(183.) December 14. I included apples in four receivers: in the firft was ${ }_{\text {inp }}^{\text {Aplesecivers. }}$ inded a whole apple, and all the interftices were fill'd with powder'd fugar: in the fecond, was an apple cut in pieces, and the fpaces fill'd with fugar, as before : in the third, was, alfo, an apple, cut; but the reft of the receiver was fill'd with water, wherewith a tenth part of fugar had been mixed: in the fourth, the apple was alfo cut, and the fpaces fill'd with a folution of one part fugar, and five of water.

Decemb. 21. In the firft receiver, the mercury began to afcend a little, yet the fugar did not difiolve; in the fecond receiver, all the fugar was melted, and the pieces of apple were fhrivel'd : they produced much air, when firft put into the receiver. In the two other receivers, the mercury began, alfo, to afcend; but, in the third, the pieces of apple were very much corrupted, their skin being taken off.

Decemb. 22. Air was produced in all the receivers; but the quantities did not bear the fame proportion amongft themfelves, as the quantities of the fugar: for, in the fecond receiver, much air was produced; but, in the fourth, the mercury afcended lefs than in the third. Some air was, alfo, generated in the firft.

Decemb. 27. In the three firf receivers, the height of the mercury was ten inches; but in the fourth, only fix.

Decemb. 3 r . In the firft and fecond receiver, the height of the mercury was 13 ; in the third, 15 ; in the fourth, only. 9.

Fan. 2. 1679. In the firft and fecond receiver, the height of the mercury was almoft 14 ; in the third, 17 ; in the fourth, 11 .

Fan. 7. In the fecond, the height of the mercury was 16 ; in the third, 36.; in the fourth, 15 ; but, in the firft, the mercury had not afcended, and fomething had efcaped out of the receiver: I, therefore, eafed the fcrew, that I might difpofe it the better, and then the air made an efcape.

Fan. 9. In the firft receiver, the height was fix inches; in the fecond 16 ; in the third, 39 ; in the fourth, 15.

Fan. 17. In the firft receiver, the height was 13; in the fecond, 19; in the third, 56 ; in the fourth, 17 .
Fan. 30. In the third receiver, the height of the mercury was 76 inches, and the liquor got out ; I, therefore, open'd it, and found the fruit to have loft much of its tafte; but the waterhad contracted it, and was pleafant to the palate. In the fecond receiver, the mercury afcended no more. I open'd this, alfo, and found the fruit much more pleafant than the other; yet much of its tafte was imparted to the fugar, which was turn'd into a very good fyrup.
Feb. 16. The height of the mercury, in the firft receiver, was 22 inches; but, in the fourth, 33. This I open'd, and found the fruit to have

Pbyfico-mechanical Experiments.

Pnzumatics have loft much of its tafte; and that the ambient water had got it, and was -thereby turn'd into a pleafant drink.

Feb. 27. In the firft receiver, the height of the mercury was thirty nches.

March 15. In the firf receiver, the height of the mercury was not changed ; but, now, fomething efcaped out of the receiver: Iopen'd it, and found the apple of a laudable colour; but the pulp was fpongy, and had loft much of its talte.

This experiment feems to teach, that fugar is not fo fit to preferve fruits; as fermented liquors.
tlark included (184.) December 23. I filld a glafs veffel with milk, then ftopp'd it
zuith milk. with a fcrew ; and, into another receiver, I put a lark with milk, and ftopp'd it clofe.

Decemb. 24. This evening I perceiv'd, that the cafeous part was feparated from the butyrous, in the clofed receivers; as well as in the milk, which, at the fame time, I left expofed to the air.

Decemb.27. I found no air produced in the receiver which held the lark; but, in the other, the mercurial gage was fpoiled.

Decemb. 3 I. The mercury afcended in that receiver which contain'd the lark ; but the milk left in the air, at the fame time that I ftopp'd the receivers, ftunk three days ago.

Fan. I. In the receiver which held the lark, the height of the mercury was ten inches.

Fan. 2. The height of the mercury was $14 \frac{1}{2}$. The milk ftagnant below the butyrous part, appear'd of a red colour.

Fan. 4. The height of the mercury was 19. Some white fediment was concreted at the bottom of the milk.

Jan. 9. The height of the mercury was 29 inches.
Fan. 25. I open'd both receivers: the lark fmelt only ftrong, tho' it had been kept 32 days; when boil'd, it was of a pleafant tafte. In the other receiver, the cafeous part of the milk was fub-acid, and grateful; but the butyrous part was not four at all.

This experiment informs us, that, fometimes, milk may be fuccefsfully used to preferve flefh.
Alerk ineluded (185.) Decemb. 24. 1678. I put a lark into a fmall receiver, and pour'd initb racciver butter upon it, melted over a Now fire, till all the interftices were exactly fill'd ; then I clofed the cover with a fcrew.

Decemb. 27. The mercury approached nearer to the aperture of its gage. The butter feem'd to be alter'd; for the loweft part of it was yellower, and the middle whiter than before. The upper-part was fluid.

Fan. 5. 1679. The mercury return'd, by degrees, to its wonted height.
Fan. 9. The mercury was fomewhat higher.
Fan. 28. The mercury was little changed. I open'd the receiver, and found that part of the butter, contiguous to the leather, fpread over the cover, to be white, and of a very unpleafant tafte. The butter, more re-mote-from the leather, was yellow, and fomething fetid, tho' edible. But the

Pbyfico-mechanical Experiments.

the lark being roafted, was grateful to the palate, tho' it had been kept Purvonaries. 34 days. This experiment feems to thew, that hot melted butter is not very fuccefsfully uled to preferve fleth.
(186.) Fan. 4. ${ }^{1679 .}$. included boild fleth in an exhaufted receiver, Railed fifh is ftopp'd with a icrew ; and fill'd the interftices, exactly, with broth of the fame flefh, which feem'd a little too falt. Whilt I fer the fcrew, all things in the receiver were comprefs'd; and the mercury afcended to the height of fix inches into the sage; but it foon return'd to its wonted height.
Fan. 28. The air was, gradually, more confumed, fo that the mercury now defcended eight inches below its ufual ftandard. I open'd the receiver, and found the felh very fweet and tender. The broth, alfo, had an acidif, but a very grateful tafte.

This experiment fhews, that boild feef may be long preferv'd good; which is a great convenience at fea, where, perhaps, there might be no occafion for falt meat. For, after raw felh hath been included in fcrew'd veffels, as long as experience fhews there is no danger of its corrupting, it may be taken out, and, being perfectly boil'd, be again included in the fame receivers ; and fo, doubtlefs, it may be kept for a great while without falt.
(187.) Fan. 30. 1679. I put raw fefh into two receivers; to the firft, Repand inf in I added pepper and cloves; in the fecond, I mixed nothing.
Feb. 11. The height of the mercury, in the firft receiver, was three inches; feite in the fecond below $1 \frac{1}{2}$.

Feb. 12. The height of the mercury, in the firf receiver, was $4 \frac{1}{2}$; in the fecond, not above $1 \frac{1}{2}$.

Feb. 13. In he firf receiver, the height of the mercury was above fix inches; in the fecond, three. I boil'd the fefh of the firft receiver, and it was very pleafant, and tender.

Feb. 14. The height of the mercury, in the fecond receiver, was five.
Feb. 19. The height of the mercury, in the fecond receiver, was eight.
Feb. 20. The height of the mercury, in the fecond receiver, was 11 . I boil'd the flef, and found it very tender, tho' it remain'd over the fire in Bulneo Maria, only for three quarters of an hour. I put fome part of this flefh, before it was boil'd, into a receiver, and filled all the vacuities, as exactly as I could, with the fame flefh, to try how long the fefh might be preferv'd, when the air was thus excluded.

Feb. 28. The mercury afcended very little.
March 20. The height of the mercury was about 16 inches. I open'd the receiver, and the flefh feem'd of a pleafant tafte, yet inclining to corruption.
(188.) February 10. I put raw beef into three receivers: in the firft, Redw beef inclim, the beef was feafon'd with pepper and cloves; in the fecond, it was en-with javit-witer, compafs'd with falt -water ; in the third, I put neither falt nor fpice.

Feb. 19. Four days ago, the mercury afcended in the third receiver; n the firft, alfo, it began to afcend; but, in the fecond, not at all.

Pbyfico-mechanical' Expariments.

Feb. 21. In the firft receiver, the height of the mercury was four inches and a half; in the third, ten; but in the fecond, there was no afcent at all.

Fel. 25. The height of the mercury in the firft receiver was fix; in the third, nineteen ; in the fecond half an inch.

Fel. 26. This night, there was no afcent of the mercury in any of the receivers. I open'd the third, and the feeh, after boiling, was very good.

By the former experiment, fpices feem to hinder the production of air; but the prefent experiment proves the contrary. Whence this contrariety fhould proceed, I know not; unlefs, perhaps, becaufe, I had left a fpace large enough for the air in thefe receivers; but in the former experiment, fill'd all as exactly as I could with flefh.

March 9. The height of the mercury, in the firft receiver, was eight inches; in the fecond, none.

March 12. The height of the mercury in the firft receiver was twelve ; in the fecond, one.

April 3. The height of the mercury in the firft receiver was eleven; but in the fecond it exceeded not, one. I open'd the receiver, and boiling the flefh, found it very tender, and of an excellent tafte.

Hence the faltnefs of water, included with flefh, feems to hinder the production of air ; but there being fo fmall a quantity of water, compar'd with the quantity of flefh, I rather incline to think, that lefs air was produced in the fecond receiver, becaufe it was more exactly fill'd. And, indeed, frelh water being ufed inftead of falt, has the fame effect ; but the chief art to preferve flefh without falt, confifts in excluding all air from it, and making a great compreflure in the receiver.

Thefe experiments, about the prefervation of aliment, may be very ufeful in tranfporting fruits, venifon, $\mathbb{E}_{6} c$. from remote places, and towards affording better nourifhment to mariners.
Boiling and di- (189.) Decemb. 12.1678. I put two ounces, and fix drams of beef into Atildtion prattiJed in vacuosand fiffl, beef boiled
in an
exbbentod
 an exhaufted receiver, able to hold twenty-two ounces of water; then I left it in boiling water for three hours; which done, 1 expos'd it to the air, to cool for a whole night : afterwards, ufing my pneumatic engine, I perceiv'd, that the air, formed in the receiver, could fcarce fuftain three inches of mercury: whence flefh in boiling, cannot form air enough to make an entire preffure in a receiver, capable of holding a double weight of water: that is, if you include one pound of flefh in an exhaufted receiver, able to hald two pounds of water, it will not generate air enough to remove the cover from the receiver, unlefs heat greatly contribute to produce the effect: but, our feif, I confefs, was not boil'd enough.
(190.) Decemb.23. I inclos'd three ounces of raw beef in a receiver able to hold thirty-two ounces of water; and in boiling, after it had been long on the fire, the cover was forc'd from the receiver, and fo fuffer'd the vapours to pafs out: but being prefently fhut again, and the fire remov'd, the receiver foon loft its internal preffure; fo that being re-plac'd on the fire, it was a long time before it could force away the cover a fecond time. I tried
his again, and again; and unlefs the receiver had been expo s'd to a rery frong fire, the cover would never have been remov'd; but if the fire burns well, fweet exhalations continually pafs out.

Decemb. 24. The receiver having been cool'd, during the whole night, was, this day, by the ufe of the pneumatic engine, almoft wholly evacuated. Whence we feem to have a confirmation, that the divulfion of the cover is not made by that air, which can keep the form of air, but from the Reams exhaling from the flefh, and fubfiding again therein; provided they be kept in, as they eafily may, if we ufe not too fierce a fire to the evacuaced receiver, whereby the lofs of thofe fweet vapours may be prevented.
(191.) Fan.21. 679 . I'put pafte, without leaven, into an exhaufted re-paffo boild in ceiver; and included another part of the fame pafte in a fecond receiver, vacuo, and full of common air. I inclos'd thefe two receivers in Balneo Maria, fopp'd with a fcrew; and when they had remain'd there, for three hours, expos'd to a moderate fire, I open'd the receivers: the pafte in vacuo I found reddifh on the fuperficies; but the other had admitted water; and the pafte was not boild enough : and, therefore, I put both receivers again in Balneo Maria, where they ftaid a whole night.

Jan. 22. This morning, I found the Balneum Maria quite cold; and the pafte, when taken out, was boil'd enough, but cover'd with no cruft. Ihat which I included in vacto, was interfpers'd with many cavities, but it feem'd too infipid; the other had no cavities, but a more pleafant tafte. Both the receivers were found almoft wholly empty'd of air.
(192.) Feb.3.1679. I inclos'd leaven'd pafte in vecuo, and, as foon as it Learon'd pefie had fill'd its receiver with factitious air, tranfmitted it into the receiver; I Marim affer it ufed to boil flefh in Balneo Maria; but, when the pafte was thus remov'd, it bad yielded its pirch'd much; yet, when it had remain'd for three hours in a hot Balneum Maria, the bread made of it was interfpers'd with many cavities, but cover'd with no cruft.

Feb. 5. I repeated the experiment, but now the pafte wasincluded in vacuo, in the fame receiver, which was afterwards put in Balneo Maria; and therefore, there was no need to remove the pafte, and expofe it to the air. Hence, the bread made thereof, was much lighter than the former.
(193.) Feb. 12. I included rofemary, with water, in the diftilling veffel ; Rofuary and and, when the air was pump'd out, I put the veffel in Balneo Arena, and in vacioo. there came over a water of a very fiweet fmell, and fome drops of effential oil of a very fweet fcent, and not empyreumatical. But when I open'd the ftop-cock, to let in the air, the noife fo foon ceas'd, that I judg'd much air was produced from the rofemary.

Feb.13. I put the fame rofemary into the fame evacuated veffel, and adminiftred a more intenfe fire, yet could extract no oil, fweet, or fetid; and the water was lefs fragrant than the former.
(194.) Feb. 10. 1679. Iboil'd one pound of fleh in vacuo, in a veffel Flabboild in defcrib'd, which would contain almoft four pounds of water: its upper ${ }^{\text {Tacuo. }}$ part, which was made of glafs, held the mercurial gage; by the help, whereof, I perceiv'd, that the mercury afcended not three inches, tho'

Vol. II.
O.00
the
${ }^{\text {Pryyurareb.the fieh had boild for three hours, and more., It was not boild emand }}$ and its tafte was ungrateful : the liquor, form'd of the condens'd vapory, had, alfo, an unpleafant taite.

Feb. II. I repeated the experiment, but now Pprinkled the gefh mhe pepper and cloves : the mercury afcended to the height of fix inches, 由1 the flefh boil'd no longer than the other: it feem'd very grateful to the per late; and the liquor, form'd from the vapours, had a moft pungent cufte i pepper; but contracted nothing ungrateful from the felh, as in the for mer experiment.

From thefe experiments, made in vacuo, it feems, that fuch veffeds my be very ufeful for diftilling, and boiling of fuch bodies, as contain thin, ax very volatile fpirits : for every thing will here be preferv'd, and nothing te fufter'd to fly away.

Boiling in

ferew'd refels or digeflors, and frote bof and waster boild in Balneo Marim.
(195.) Fan. 29. Eight days agos I filld a fcrew-veffel, with beaf and wr ter together ; and when it had continu'd over a moderate fire for cight nine hours in Balneo Marie, ftopp'd alfo with a ferew, I took the fleh ori: but it was boil'd a great deal too much, and the tafte of it was very mpleafant. I boil'd other beef in the fame veffel, after the fame mamnt: orily this was feafon'd with pepper and cloves, and remain'd eapos'd to th fire but for three hours. This flefh preferv'd a moft pleafant tafte I boil'd other flefh, without fices, for three hours, in the fame veffel, and afue the fame manner: when the flefh was taken out, it tafted well; whenel conjectur'd, that what fpoil'd the fint flefh, was over-boiling: yet the fpit ces may be convenient to correet fome part of the ungrateful tafte; forl left a place to condenfe the vapours, in the top of the veffel, and found, hat the liquor, there formed, had an unpleafant tuite; but not fo when the fleth was feafon'd with pepper and cloves.
Apples boird in (196.) Fan. 29. I boil'd apples, after the fame manner as I did the fren a jorrwowelel. before mention'd; but mix'd no water with them. They were fet apon moderate fire, for almoft two hours. They were very foft, and of a very good tafte; but fome pieces, which liny in the upper part of the reeciver, where the vapours afcending from the lower part condens'd, were of 0 unpleafant tafte; and the drops, form'd from the fame vapours, had an ur grateful fcent.
Tinh facan's, (197.) Felrukry 4. I inclofed feeth, with pepper and cloves, in a recriintityce forewild ver ftopped with a fcrew, but ufed no water to fill up the insertiner; only compreffed the flefh as much as I could, and then put the receiver in Balneo Maria, already hot, and ftopp'd it with a fcrew: when it had remained there, over a moderate fire, for an hour, the flefh was rathers over-boil'd than under; but, when I open'd the Balmeum Maria, all be water burf out of it, with a great force; the liquor being hot, and noll finding vent.

Feb. y. I inclofed fome part of this flefh in a receiver, ftopp'd with a ferew.

March 12. The flefh included five weeks ago, was, this day, found rey good. I do not doubt, but that penfect boiling contributed fometbing to

Pbyfico-mechanical Experiments.

its prefervation: for I find, by experiments made upon other bodies, that ${ }^{\text {Pasomarice }}$. boiling, the more perfeet it is, hinders fermentation the more.
(198.) February 10. I boild a cow-heel, after the fame manner as I had Acombuel boild done the flefh above-mention'd; but left it, for four hours, or more, upon til the bomes a moderate fire: then, the veffels being unftopp'd, we found the flefh excellently well boiled, and the bones fo foft, that they might be eafily cut with a knife, and eaten.

Feb. 12. I repeated the experiment, and let the veffels remain expofed to the fire for twelve hours; and tho' the water of the Balmeum Maria every where fecured the veffel immerfed in it, yet the flefh had contracted a very empyreumatical tafte and fmell; but the juice, which; in the former experiment, concreted into of yery firm gelly, did not here congeal at all.

Hence it appears, that many bones, and hard tendons, which we daily throw away as unprofitable, may, by the help of a Balnewm Maria, ftopp'd with a fcrew, be converted into good nourifhment.
(199.) Fednuary 10. I boild a filh, after the pome mapner, in a fcrew'd Afs boird io Balneum Maria, but mix'd no water therewith. The fifh remain'd upon amedisa the fire for two hours only ; when, the veffel being coold and open'd, it was found of a very good tafte; and its bones werce fo foft, that they yielded to the preffure of the finger; and the head of it might be eaten like its flefh. The juice of it, in a thort time, concreted into a gelly of a hard confiftence.

This method is ufeful for boiling fuch fith as are very bony.
(200.) February 15. I put hart's-hom into a receiver', to be ftopp'd with rentshern a fcrew, and fill'd the interftices with water; I included the receiver, thus bild foth ftopp'd, in a fcrew'd Balneum Maria, and fo expofed it, for four hours, to a moderate fire: the veffels being open'd, the hart's-horn was found foft, and the juice foon concreted into a very firm gelly.

Feb.17. I repeated the experiment, but no water was included with the hart's-horn, and the fire lafted fix bours under the Balneum Marifs; after this, the hart's-horn was found very foft; but a little juice had fweat out of it, and adhered to the external parts of the hart's-horn, like drops of gelly.

The excellency of fuch a Balneum Maria appears from this experiment; for fince even hart's-horn can be boil'd by means thereof, without water, all the frefh water, ufually confumed in boiling flefh at fea, may be preferved for other ufes.

A
 D E F E N C E OFTHE
 Phyfico-Mechanical Experiments,

AGAINST

The Objections of Franc. Linus; his Hypothefis examined, and his Anfwers to particular Experiments confider'd.

The objections a-
gainft. the air's Pring examin'd.

OUR author confeffes, that the air hath both a fpring and weight ; but denies that fpring to be great enough to perform what I afcribe thereto; and, particularly, labours to prove it unable, in a clofe place, to fuftain the mercury in the Torricellian experiment. For, fays he, "if a tube, only twenty inches long, be not entirely filld with quick"filver, but a fmall face be left betwixt it, and the finger that clofes the " upper end, with nothing but air there; and the tube be open'd at the " bottom, the finger will not only be drawn downwards; but the quick-fil"" ver will defcend, confiderably; that is, as far as fo fmall a parcel of air "can be ftretch'd by the defcending weight; and, therefore, if, inftead of "air, any other liquor, not fo eafily extended, be here ufed, the quick-filver " will not fall: but, if the external air cannot fuftain twenty inches of mer"cury, how fhould it fupport twenty-nine and a half? " But to this arguneent, he has himfelf furnifh'd us with an anfwer in thefe words. "But, "y you'll fay that the mercury defcends, becaufe 'tis impell'd downwards, by "the air dilating itfelf by its own fpring." Which I think fufficient for " the objection, notwithftanding the two exceptions he makes to it.

For, firft, when he fays, that then "the finger ought rather to be repell'd from, than fix'd to the tube, fince the expanfion is made every way;" he confiders not, that tho the included air extends itfelf at firft, every way, yet the expanfion, in our cafe, muft neceffarily be made downward ; becaufe, the finger that ftops the tube, being exposd on the upper parts, and the fides, to the external air r_{2} has the whole weight and preffure of the atmo-

The Pneumatical Experiments defended.

fphere upon it ; and, confequently, cannot be thruft away, but by a force, a-
ble to furmount that preflure; whilf, on the lower fide of the included air, there is the weight of the whole mercurial cylinder to affift the fpring of the air to furmount the weight of the atmofphere, that gravitates upon the ftagnant mercury. So that the air included, endeavouring to expand itfelf, finding no refiftance upwards, and a confiderable one downward, it is very natural, that it hould expand itfelf that way, where it finds the leaft refiftance: as will happen, till the fpring of the air be fo far weaken'd by expanfion, that its preffure, together with the weight of the mercury, that remains fufpended, will but balance the preffure of the outward air upon the ftagnant mercury. And, if, inftead of quick-filver, you employ water, and leave, as before, in the tube an inch of air, and then inverting it, open it under water, the included inch of air will not dilate itfelf near half fo far, as it did when the tube was almoft fill'd with mercury; becaufe, the weight of fo fhort a cylinder of water does but equal that of between an inch and an inch and half of quick-filver ; and, confequently the internal air is far lefs affifted to dilate itfelf, and furmount the preffure of the outward, by the cylinder of water, than by that of mercury.

As for what our author fays, that, " if, inftead of air, or water, fome " other liquor be left at the top of the tube, the quick-filver will not de" fcend;" we can readily folve that phenomenon, fince water has either no fpring at all, or but an exceeding weak one ; and fo fcarce preffes, but by its weight, which, in fo thort a cylinder, is inconfiderable.

Hence we fee, why the finger is fo ftrongly faften'd to the upper orifice of the tube it ftops : for the included air, being fo far dilated, that an inch, for example, left, at firft, in the upper part, reaches twice or thrice as far, as before the defcent of the quick-filver, its fpring muft be proportionably weaken'd; and, confequently, that part of the finger within the tube will futtain much lefs preffure it, from the dilated internal air, than the upper part of the fame finger, from the unrarify'd air without. By which means, the pulp of the finger will be thruft in.

Our author's fecond objection runs thus. "If you take a tube, open at "both ends, of a confiderable length, fuppofe forty inches, fill it with " mercury, place your finger on the top, and cpen the lower end; the mer"cury will defcend to its wonted ftation, and your finger, on the top, be "ftrongly drawn within the tube, and ftick clofe to ir. Whence, again, " it is evident, that the mercury at its own ftation, is not there fuftain'd " by the external air, but by a certain internal cord, whofe upper end, "being faften'd to the finger, draws, and fixes it, after this manner, in "the tube. "

But this argument, being much of the fame nature with the former, the anfwer made to that, may ferve here, alfo; efpecially, becaufe, in the prefent cafe, the pulp of the finger fuftains lef's preflure on the infide of the tube, than in the other; the preffure of the atmofphere being here kept of from it, by the fubjacent mercury; whereas there is nothing of that preflure abated againgt the other part of the finger, that kept it off from from the deferted cavity of the tube; only from the pulp, contiguous to the tube, there may be fome taken off, by the weight of the giafs itfelf. But as for that part of the finger, which immediately covers the orifice, whether there be any fpring in its own fibres, or other conftituent fubftance, which finding no refiftance in the place deferted by the quickfilver, may contribute to its fwelling; he, who duly confiders the accounf already given of this intrufion, will tind no need of our author's internal Funiculus, which feems more difficult to conceive, than to folve the phenomena, in controverfy, without it.

Our author propofes this as a clear demonftration; and it is, indeed, the principal thing in his book. "Take a tube of about 20 inches long "c with both ends open, let its orifice be immers'd in ftagnant mercury, and, " one finger being plac'd underneath, that the mercury to be pour'din, may " not run thro', let it be fill'd with quick-filver, and then another finger ap" ply'd to clofe its orifice. This done, if you take away the lower finger, the " upper will be ftrongly drawn, and fuck'd into the tube, and adhere to it "fo firmly, that it will elevate the tube itfelf, with all the quick-filver, "c and make it hang pendulous in the veffel. Since, then, the quick-fitper " in fuch a tube muft be thruft upwards by the preponderating air; it can "never be hence explain'd, how the finger is fo drawn downwards, and "c made fo ftrongly to adhere to the tube. For it cannot, by the air for"cing upwards, be drawn downwards." In anfwer hereto, I alledge, that a good account may be given of this experiment, upon our hypothefis, which is fufficient to fhew the argument not to be unanfwerable.

I deny then, that the finger is drawn downward or made, by fuction, to adhere to the tube, otherwife than we have already explain'd.

He fays indeed, that the air, which thruft up the quick-filver, cannot fo ftrongly draw down the finger : as if the air were not a fluid body, bur a fingle and entire pillar of fome folid matter.

However, when the tube is fill'd with quick-filver, the finger that §ops the upper orifice is almoft equally prefs'd above, and at the fides, by the contiguous air; and when the lower finger is remov'd, the cylinder of mercury, which before gravitated upon the finger, comes to gravitate upon the ftagnant mercury, and, by its intervention, preffes againft the outward air; fo that, againft thofe parts of the finger, that are contiguous to the air, there is all the woated preffure of the external air ; but againft that pralp contiguous to the mercury, not fo mach preffire, as againo the other parts of the finger, by, abour two thirds; becaufe the mercurial cylinder, in this oxperiment, is fuppos'd to be twenty inches high ; and if it were but a little more than thirty inches high, the weight of the quick-filwer would take off not two thirds only, but the whole preffure of the outward air from the pulp of the finger. For, in that cafe, the quick-filver would-quite defert it, and fettle below it. Wherefore, fince I have before Shewn, that the preffure of the outward air is taken off from the body that remains in the upper part of the tube, according to the meight of the liquor fufpended in it ; and fince: on our hypothefis, the preffuse of

The Pnewenatical Experiments defended.

the outward air is able to keep thirty inches of quick-filver, or thirty- Provesaries. two, or thirty-three feet of water fufpended; 'tis no wonder, if a preffure of the ambient air, equal to the weight of a cylinder of water, of mear twenty-two foet long, thould be able to thruft in the pulp of the finger, at the upper orifice of the tube, and make it ftick clofely to the sop of it.

I know our author affirms, that no prefure from without, can ever effect fuch an adbefion of the finger to the tube: but this thould be proved. Nor could I, upon trial, find the adhefion of the finger to the cube, to be near fo frong as our author relates: but, if you endeavour to thruft the putp of your finger into the orifice of the tube, you may, through the glals, perceive it to be manifeftly tumid, in the cavity of the pipe. And if, by prefling your finger againt the orifice, you thould not make the pulp adhere quite fo frongly to the tube, nor fwell quite fo much within it, as may happen in fome mercurial experiments; it is to be confider'd, that the air being alluid, as well as a heavy body, does not prefs only againat the upper part of the finger, but, upon as much of it as is expofed thereto, almoft every way uniformly and ftrongly; and fo, by its lateral preffure, thrufts the pulp of the finger into the orifice, where there is lealt refiftance.

Hence, we need not borrow the objection, our author offers to lend, that, in the experiment under confideration, the quick-filver is prefs'd downward by the fpring of fome air lurking betwixt it and the finger; (tho' fuch a ching might eafily happen) Cince we lately proved the contrary. And as for what he adds to confirm his argument, that "if the preponderating air "fucceed in the place of the lower finger, which was withdrawn; that "s is, !if it fuftain the quick-filver after the fame manner, as by the " lower finger apply'd under it; it is manifett, that the finger, on the "top, ought to be no more drawn downwards, afier the lower finger " is removed, than before : but, experience teacheth the contrary, *" we muft confider, that the tube being fuppofed perfectly full of mercury, the finger, which fops the lower orifice, is ufually kept Atrongly prefs'd againft it, reft any of that ponderous fluid fhould get out : fo that tho 'the lower finger keeps up the mercury in the tube, and the preflure of the outward an would do fo too; yet there is this difference, that thepreffire of the atmofphere, depending upon its weight, camot be increaFed, and weaken'd as we pleale, lize the undermoft finger. And, therefore, whereas the atmofpherical cylinder will not futtain one of quickTilver, above 30 inches high, thofe who make the Torricellian experiment, often seep up, with the finger, a mercurial cylinder of, perhaps, so inches : fo that, in our cafe, before the removal of the ander finger, the pulp of the uppermoft muft fuftain about the fame preffure, where it is contiguous to the mercury, as the other part of the fame finger; after the removal of the under finger, there is as much preffure of the atmoTphere taken off from the puip, as batanes a cylinder of quick-Giver 20 inctres high

The Pneumatical Experiments defended.

Pazomarice. Our author's laft experiment is thus propofed: "This opinion is falfe,

 " becaufe thence it would follow, that quick-filver, thro' a like tube, might "be fuck'd with the fame eafe out of a veffel, as water; which is contrary "to experience: for, according to this opinion, that the fluid underneath, "s whether water, or mercury, may fo afcend, no more is required, than "t that the air, in the cube, be drawn upwards by fuction; when, the " liquor below, will immediately afcend, being impell'd by the external air, " which now preponderates." But we formerly thew'd, that when the mercurial cylinder, which refts upon the ftagnant mercury, has, at the other end of it, air kept from any communication with the atmofphere, that included air has fo much of the preffure of the external air taken off from it; as balances the mercurial cylinder. And the finger expo fed to the whole preffure of the ambient air, in fome of its parts, and in others but to the much fainter preffure of the included air, fuftains an unufual preflure from the preponderating power of the atmofphere. Thus, the thorax, and the mufcies of the abdomen, which ferve for refpiration, fuftain the preffure of the whole ambient air; tho' thefe mufcles are able, without any confiderable refiftance, to dilate the thorax; becaufe, as faft as they open the chelt, and, by dilating it, weaken the fpring of the included air, the external air rufhing in, for want of the ufual refiftance there, keeps that within the thorax, in an equilibrium to that without. We fay, then, that if a cylinder of mercury be, by fuction, rais'd in the tube to any confiderable height, the preffure of the air in the thorax, is leflen'd by the whole weight of that mercurial cylinder ; and, confequently, the refpiratory mufcles are thereby difabled from dilating the cheft, as freely as ufual. But, if inftead of mercury, you fubftitute water, fo Short a cylinder of that takes off fo little of the preffure of the included air, that it comes into the lungs with almoft its ufual ftrength; and, confequently, with almoft the fame force wherewith the external air preffes againft the thorax.And there is an experiment of M. Pafchal's, which thews clearly, that if we could free the upper part of a tube, from the preffure of all internal air, the quick-filver (as our author fays, it fhould)would, by the preffure of the .outward air, be impell'd up into the tube, as well as water, till it had attain'd a height fufficient to make its weight equal to that of the atmofphere. The experiment itfelf is this: "If a glafs fyringe be made of a fufficient length; "and after the fucker is thruft into the utmoft orifice, it be plung'd in the " mercury, as foon as the fucker is drawn out, the mercury follows, and af${ }^{\text {si }}$ cends to the height of two feet, three inches, and a half. And when, af"s terwards, tho' no greater force be added, the fucker is drawn higher; "s the mercury ftands, and follows no farther ; whence that fpace remains "empty, which lies between the mercury, and the fucker." So that we may well explain our author's experiment, by faying, that in a more forcible refpiration, the mercurial cylinder is rais'd higher than in a more languid one ; becaufe, in the former, the cheft being more dilated, the included air is alfo more expanded, whereby its weakned fpring cannot, as before,

The Pusumatical Experiments defonded.

before, enable the mercurial cylinder to balance the preffure of the ambient air. And the reafon why the quick-filver is not, by refpiration, rais'd as high as 'tis kept fufpended in the Torricellian experiment, is not the preffure of the outward air being unable to raife it fo high ; but becaufe the free dilatation of the thorax, is oppofed by the preffure of the ambient air; which preflure being againft fo great a fuperficies, and but imperfectly refifted by the weakned fpring of the air in the thorax, will be very confiderable ; fince, in our engine, the preffure of the external air againft the fucker of lefs than three inches diameter, was able to raife an hundred weight. And, by the way, when we ftrongly fuck up quick-filver in a glafs tube, tho' the elevation thereof proceeded from our author's Funiculus, contracting itfelf every way; and tho' there be a communication betwixt the internal furface of the lungs, and the cavity of the tube ; yet we feel not, in our lungs, any endeavour of the fhrinking cord to tear off that membrane they are lined with.

Our author further fays, that "the fpring of the air can perform nei"ther more nor lqfs, in a clofe place, than its equilibrium in an open one." But I allow of this opinion, only in fome cafes; for, in others, we have performed much more by the fring of the air, which we can, within certain limits, increafe at pleafure, than can be perform'd by the bare weight, which, for ought we know, remains always nearly the fame. And of this difference, we formerly gave an inftance; when, by compreffing the air, in the receiver, we impell'd the mercurial cylinder higher than the ftation at which the balance of the aif fuftains it.

Qur author adds, that "fince the experiments of the adhefion of the "finger, ${ }^{*} c$. fucceed alike in a clofe and open place, the arguments pro"duced againft the equilibrium, make alfo againft the fpring of the air." This has, already, been anfwer'd ; but fince he fays, that the experiments, concerning the adhefion of the finger, © cr. fucceed equally in a clofe and open place, I wifh he had told us what way he took to make them; for, in ordinary rooms, there fcarce ever wants a communication betwixt the internal and external air, by means whereof, the weight of the atmofphere has its effect within the room.

Qur author fuppofes, that what we afcribe to the fpring, and weight the fumienleat of the air, is performed by a fort of Funiculus, confifting of a thin fub-bythofis oxac Atance, greatly expanded; which, lying between two bodies, endeavours to contract itfelf, and to bring thele bodies together, to avoid a vacuum ; by nature's abhorrence whereof, he, at length, folves all phenomena.

Hisfinft argument for this is, that the finger would not be drawn down, by the defcent of the mercury in the Torricellian tube, were there pot ρ Fumiculus; and that, were pothin fupptance there extended, a vacuum muft enfue.

But this argument being deduced from the fuction of the pulp of the finger, upon the defcent of the mercury, has been anfwer'd already. Another argument, which he alledges againft a vacuum, is, the tranfparency of that part of the tube, where 'tis faid to be : for, were there 2 vacuum, Voi. II.

Pppp

The Pneumatical Experiments defended.

$\underbrace{\text { Prumarrer }}$ he fays, it would be like a black pillar, neither able to afford any thing vifible,

 nor to permit objects to appear thro it.But the invalidity of this affertion appears from the doctrine of the atomifts, who teach, that light is made up of fuch fubtile effluvia, as are 2ble to penetrate glafs, and, therefore, may leave many vacuities, tho' the cavity of the cylinder feems full of it; and nodoubt, were the parts of the lucid matter contracted, they would not fill one tenth of that fpace; fince the fmoke, which fill'd our receiver, fo as to make it appear opake, poffefs'd, when condens'd, only a fmall part thereof.

Thus a room may appear full of the fmoke of a perfume, tho', if all the corpufcles that compofe the fmoke were re-united, they would make up but a fmall paltil. A little camphire, alfo, will fill a room with its odour; but having, in well clos'd glafles, caught the fumes of it driven over by heat, and again reduced them into true camphire, I found its bulk very inconfiderable, in comparifon of the fpace it poffeffes, when its fcented corcorpufcles are fcatter'd thro' the air.

I might add, that if the Torricellian experiment fucceed in the dark, it may well be doubted, whether our author's argument will hold. For if he endeavours to prove, that the place in queftion was full in the dark, becaufe, upon letting in the light, a light appears within it; we may reply, that this light is a new one, flowing from the lucid body, that darts its corporeal rays thro' the glafs and fpace in difpute, which, for want of fuch corpufcles, were not, juft before, vifible.

And, fuppofing light to be made by a propagation of the impulfe of lucid bodies thro' tranfparent ones, yet it will not thence follow, that the deferted part of the tube muft be full : in one of our experiments, tho ${ }^{\circ}$ many of thofe grofs aerial particles, that appear neceflary to convey a languid found, were foon drawn out of the receiver, yet there remain'd fo many, that the others were not mifs'd, till a far greater number was extracted; and thus there may remain matter enough to tranfmit the impulfe of light, tho' betwixt the particles of that matter there fhould be numberlefs vacuities : yet our author pretends to prove abfolutely, that there is no vacuity in the difputed fpace. And Ihould a Cartefian fay, the deferted part of the tube is filled with Materia fubtilis, he muft allow the preffure of the outward air to be the caufe of the fufpenfion of the quick-filver; for tho ${ }^{2}$ the Materia fubtilis may readily fill the fpaces deferted by the mercury; yet that within the tube cannot hinder fo ponderous a liquor from fubfiding as low as the ftagnant mercury: fince the whole tube, being pervious to that fubtile matter, it may, with like facility, fucceed ${ }_{2}$ in whatever part of it thall be forfaken by the quick-filver.

Our author's next argument is, that the mercurial cylinder, refting at its wonted ftation, does not gravitate; as appears by applying the finger to the immerfed, or lower orifice of the tube: whence he infers, that it muft, of neceflity, be fufpended from within the tube. And, indeed, if the finger be applied to the open end of the tube, before 'tis quite lifted out of the ftagnant mercury, the experiment will fucceed;

The Preumatical Experiments defended.

the finger, however, will feel a gravitation, or preffure, of the glafs-tube, and the contained mercury, as of one body; but no fenfible preffure of the mercury a-part, as if it endeavoured to thrutt away the finger from the tube. Now, according to our hypothefis, the mercurial cylinder, and the air, balancing one another, the finger fuftains not any preffure, fenfibly differing from the ambient air, that preffes againft the nail, and fides of it, and from the included quick-filver that prefles againft the pulp. But if the mercurial cylinder fhould exceed the ufual length, then the finger would feel fome prefliure from that additional quick-filver, which the air does not affift the finger to fuftain: fo that this phenomenon may as well be folved on our hypothefis, as on our author's. But how comes the mercury in the tube, when of a due altitude, to run out, upon removal of the finger beneath, if it be fuftained only by an internal cord; and, when that fuftains it, to refemble a folid body, if the preffure of the external air has no fhare in it?

If it be here faid, that the finger muft feel great pain, by being fqueezed betwixt a pillar of thirty inches of quick-filver, and an equivalent preflure from the atmofphere ; we muft obferve, that, in fluids, a folid has not that fenfe of preffure from furrounding bodies, which men are apt to imagine; as appears from divers : and I am informed, that the learned Maignan, tho ${ }^{\circ}$ he purpofely thruft his hands, three or four palms deep, into quick-fitiver, his fingers were not fenfible of any weight, or preffure.
Laftly, our author tells us, that ${ }^{2}$ thofe remarkable vibrations the "quick-filver makes, in its defcent, favours his hypothefis." But this phenomenon, alfo, is eafily folved on our hypothefis: for when the experiment is made in a clofe place, as our receiver is, mercury, by its fudden defcent, acquires an impetus, befides the preflure it has upon account of its gravity : whence it, for a while, falls below its ftation, and thereby compreffes the air that refts upon the ftagnant mercury; which air, by its own foring, again forcibly dilating itfelf, to recover its former extenfron, expands beyond it, and thereby impels up the quick-filver fomewhat above its wonted ftation; in its fall from whence, it again acquires a power to comprefs the air : and this reciprocation of preflure, betwixt the quickfilver, and the external air, decreafing by degrees, at length wholly ceafes, as the mercury lofes that additional preflure it acquired by falling from parts of the tube, higher than its due ftation. But this way of explicating thefe vibrations, is not neceffary in the free air ; for if we confider the atmofphere only as a weight, and allow an impetus acquired by defcent, the phenomenon will be eafily explained by a balance, wherein one of the fcales chancing to be deprefled, they do not, till after many vibrations, re, gain their equilibrium.
I took a glafs-fiphon, whofe two legs, unequal in length, were parallel, and both perpendicular to that part of the pipe which joined them ; and poured quick-filver into it, till 'twas fome inches high, and equal in both legs; then the fiphon, being inclined, 'till moft part of the quick-filver was fallen into one of the legs, I ftopped the orifice of the other with my

The Preimatical Experiments utefonded.

paronatics. finger: and, erecting the fiphon again, tho the quick-filver were forced to afcend a little in that ftopped leg; yet, becaufe my finger prevented the air from getting away, the quick-filver was kept much lower in the ftopped leg than in the other: but if, by fuddenly removing my finger, I gave vent to the included compreffed air, the preponderant quick-filver, in the other leg, would, with the mercury in the open one, make feveral undulations before, in both legs, it refted in an equilibrium. Now, in this cafe, there is no pretence for a Funiculus of violently diftended air, to caufe the vibrations of the mercury.

But there are many particulars which render the funicular hypothefis improbable.

And, firf, our anthor acknowledges, that quick-filver, water, wine, tcrc. as well one as another, will defcend in tubes, exactly feaid at the rop, in cafe the cylinder of liquor exceed the weight of a mercturial cylinder of twenty-nine inches and a half, but fubfide no longer than till it is a balance to a cylinder of quick-filver of that height. Now it's very ftrange, that, whatever the liquor be, there thould be juft the fame weight, or Itrength, to extend them into a Fumiculus. And this is the more furprizing, becaufe our author makes fo great a difference betwixt the difpofstion of bodies of various confiftences to be extenuated into a Fruniculus, that he will not allow any human force able to produce one by the divulion of two flat marbles, in cafe the contact of their furfaces were fo exquifite, as quite to exclude all air; tho his reafoning plainly agrees with experience, that adhering marbles may be forcibly fever'd; and, therefore, according to him, the fuperficial parts may be diftended into a Fusiculus, that prevents a Vacuum. But our hypothefis labours not under this difficulty; for the weight of the external air, being that, which keeps liquors fufpended in feald tubes, it matters not of what nature or texture the fufpended liquor is, provided its weight be the fame with that of a mercurial cylinder equiponderant to the aerial one.

In the next place, I obferve, that the account our author gives of his Funiculus, is much more ftrange than fatisfactory, and not made out by any unqueftionable parallel operations of nature: whereas, the weight and fpring of the air may be inferr'd from fuch certain experiments, as are not concern'd in the prefent controverfy. For the gravity of the air maybe manifefted by a pair of fcales; and its fpring is difclos'd fo clearly in windguns, and other inftruments, that our author does not deny it. But in the explanation of his Funiculus, he would have us remark two things; firtt, "that the quick-filver which fills the whole tube, doth not only touch the "s top of it, but firmly ftick to it; and that the finger adheres to the mercury; "f fince tho' the orifice of the tube be oil'd, that will not hinder it from ftick. ing, as firmly as before.* But two bodies, by trufion, may eafily be made to ftick together, as much as the tube and finger do, tho' one of them be oil'd; befides, this adhefion of the finger to the tube will happen, not only when the furface of the included-quick-filver is contiguous to the finger, but many inches below it. Water and quick-gilver, he fays, afcend

The Preumatical Experiments defended.

by fuction," becaufe the parts of the air included in the tube, are now fo Prexsearices. firmly glued to one another, that they make a ftrong chain, whereby the *e water and quick- filver are drawn up." Which way of wreathing a little rarified air into fo ftrong a rope, is highly improbable.

Secondly, he fays, that "the rarifaction, or extenfion of a body, fo es as to make it take up more fpace, is not only caufed by heat, but by «E diftenfion, or, a certain disjoining power, as condenfation is not only "c made by cold, but, alfo, by comprefion." And, 'tis true, and obvious, that the condenfation of bodies, (taking that word in a large fenfe) may be made as well by compreffion, as cold. But, I wifh he had more clearly exprefs'd, what he means, in this place, by that rarifaction, which, he fays, is to be made by a disjoining power ; whereof, he tells us, there are innumerable inftances. For, as far as may be gather'd, from the three examples he fubjoins, 'tis only the air that is capable of being fo extended, as his hypothefis requires quick-filver, and, even ftones, to be. And, how will he prove, that even air may be thius extended, to fill two thoufand times the fpace it poffefs'd before? For, that the fame air, adequately fills more fpace at one time, than another, he proves but by the ruffing of water into the evacuated glafs, and almoft filling it ; which, he fays, is done by the diftended air, that contracting itfelf, draws up the water with ir. The explanation he gives of his Funiculus, is this: "Since'tis manifeft, "that the quick-filver fticks to the top of the tube; and that rarifaction ${ }^{"}$ "is made by the mere diftenfion of a body, it happens, that the defcend"ing quick-filver leaves its upper fuperficies fix"d to the top of the tube; or and, by its weight, To fretches, and extenuates it, till it becomes ea"fier to leave another fuperficies, in like manner, than to extend that any "further. It leaves, therefore, a fecond; and, by its defcent, extends "that a little further, till it becomes eafier to feparate a third, than to "extend that any more; and fo on, till, at length, it hath no power to ${ }^{*}$ "feparate, or extend any more furfaces, when it comes to the height of " $29 \frac{1}{\frac{1}{2}}$ inches, where it refts." Hence 'tis eafy, to difeem, that he is oblig'd to aflign his Funiculus a ftrange and unparallel'd way of production. Now, I munt demand, by what force, upon the bare feparation of the quickGilver, and the top of the tube, the new body, he mentions, comes to be produced; or, how it appears, that the mercury leaves any fuch thing, as he fpeaks of, behind it? For, the fenfe perceives nothing of it at the top of the tube; nor, is it neceflary to explain the phenomena; as we have formerly feen. And how thould the bare weight of the defcending mercury, be able to extend a furface into a body? Befides, the fucceffion of furfaces is a chimera : or, fuppofing fome of the quick-filver were turn'd into a thin, fubtile fubftance, yet, how comes that futbftance to be contriv'd into a Funiculus of fo ftrange a nature, that fcarce any weight can break it; and that, contrary to all other ftrings, it may be ftretch'd, without becoming more flender, and obtains other very odd properties?
Our author fays, indeed, that "thefe furfaces feem to be feparated "from the quick-filver, and to be extended into a moft nender ftring, by

The Pneumatical Experiments defended.

Promatic. 68 the falling weight, after the fame manner, that, in a lighted candle, fur" faces, of like fort, are feparated from the wax, or tallow, underneath, by " the heat above, and extenuated into a mof fubtile flame; which, doubt"lefs, takes up above a thoufand times more fpace, than the part of the " wax, of which the flame confifted, poffefs'd: fo our Funiculus takes up a "thoufand times more fpace, than the fmall particle of mercury from "whence it arofe." And this is the only example whereby our author endeavours to illuftrate the generation of his Funiculus. But here intervenes a confpicuous, and powerful agent, actual fire, to fever and agitate the parts of the candle; and befides, there is a manifett wafting of the wax, or tallow, turn'd into flame : and we muit not admit that the fewel, when turn'd to a flame, really fills fo much as twice the genuine fpace, as the wax 'twas made of. For, the flame is little lefs than an aggregate of thofe corpufcles, which, before, lay upon the upper luperficies of a candle, and were, by the violent heat, divided into minuter particles, vehemently agitated, and brought from lying flat, to beat off one another, and make up, about the wieck, fuch a figure as is ufual in the flame of candles, burning in the free air. Nor will it necelfarily follow, that the fpace, which the flame feems to take up, fhould contain neither air, nor ather, or any thing befides the parts of that flame, becaufe the eye can difcern no other body there; for, even the fmoke, afcending, from the fnuff of a candle, newly extinguifh'd, appears a dark pillar, tho' there -are many aerial, and other invifible corpufcles mix'd with it : fo that if all thofe parts of finoke, which thew large in the air, were collected, and contiguous, they would not, perhaps, amount to the bignefs of a pin's head; as may appear from the great quantity of fteams, that, in chymical veffels, go to make up one drop of fpirit. And, therefore, as our author, to inforce his former example, alledges, the turning of a particle of quick-filver into vapour, by fire ; if fuch be the rarifaction of mercury, 'tis not at all likely to make fuch a Funiculus as he talks of; fince thofe mercurial fumes appear, by various experiments, to be mercury divided, and thrown out into minute parts; whereby, tho the body obtain more of furface, than it had before, yet, it really fills no more of true and genuine fpace; fince, if all the particular little parts, fill'd by thefe fcatter'd corpufcles, were reduced into one, as the corpufcles themfelves often are, in chymical operations, they wou'd amount but to one whole equal to that of the mercury before rarifaction.

I farther demand, how the Funiculus comes by hooks, or parts proper so take faft hold of all contiguous bodies; and even the fmootheft, fuch as glafs, the calm furface of quick-filver, water, oil, \mathcal{O}. and how thefe flender, and invifible hooks, find innumerable loops, in fmooth bodies, to take hold on to ftrongly, as to lift up a tall cylinder of quick-filver ; and draw inwards the fides of ftrong glaffes, fo forcibly, as to break them to pieces ? 'Tis, alfo, fomewhat ftrange, that water, and other fluid bodies, thould, when the Funiculus once lays hold on their fuperficial corpufcles, prefently, like confiftent bodies, be drawn up, in one entire continued piece; though,

The Pneumatical Experiments defended.

even in the exhaunted receiver, they appear, by many figns, to continue fluid.

I know, that by calling this extenuated fubftance, a Funiculus, he inrimates, that it has its fpring inwards, like lute-ftrings, and ropes forcibly ftretch'd ; but there is no fmall difparity betwixt them : for, in ftrings, there is requir'd either wreathing, or fome peculiar, and artificial texture of the component parts; but, a rarifaction of air, does not infer any fuch contrivance of parts, as is requifite to make bodies elaftic. And, fince lute-ftrings, © c. muft, when they fhrink inwards, either fill up, or leffen their pores, and increafe in thicknefs, as they diminifh in length; our author's Funiculus differs widely from them; fince it has no pores to receive the fhrinking parts; and contracts its length, without increafing its thicknefs. Nor does it, to me, feem very probable, that when, for inftance, part of a polifh'd marble is extended into a Funiculus, that Funiculus ftrongly afpires to turn into marble again. And 'tis very unlikely, that the fpace, our author would have replenifh'd with his funicular fubftance, fhould be full of little, highly-ftretch'd ftrings, that lay faft hold on the furfaces of all contiguous bodies, and always violently endeavour to pull them inwards. For, a pendulum being fet a moving, in our exhaufted receiver, vibrated as freely, and with the ftring as much ftretch'd, as in the common air. Nay, the balance of a watch did there move freely; which is hard to conceive, if the moving bodies were to break thro ${ }^{2}$ a medium confifting of innumerable ftrings, exceedingly ftretch'd. And 'tis ftrange, if thefe ftrings, thus cut, or broken, by the paffage of thefe bodies thro' them, could fo readily have their parts re-united, and immediately be made entire again. And, in this cafe, the two divided parts of each Imall ftring, do not, like thofe of other broken ftrings, fy back from one another, but meet, and unite again ; yet, when in the Torricellian experiment, the tube, with the containd mercury, is fuddenly lifted out of the ftagnant quick-filver into the air, the Funiculus fo ftrangely contracts itfelf, that it quite vanifhes; fo that the afcending mercury may rife to the very top of the tube.

But this is not all that renders our author's hypothefis improbable; for it neceffarily fuppofes fuch a rarifaction, and condenfations as is unintelligible.

We muft here premife, that a body is commonly faid to be rarified, or The nature of: dilated, when it acquires greater dimenfions than it had before; and to rerifag be condenfed, when it is reduced to lefs dimenfions, that is, into a lefs fpace; and that there are three ways of cxplaining rarifaction: for, either we muft fay, that the corpufcles whereof the rarified body confifts, depart from each other, fo that no other fubftance comes in between them; to fill up the deferted fpaces; or, that thefe new interftices, are but dilated pores, replenilh'd, as thofe of a tumid fpunge by water, with fome fubtile ethereal fubftance; or, laftly, that the fame body does not only obtain a greater fpace in rarifaction, and a leffer in condenfation; but, adequately, and exactly fills it: and fO_{2} when rarified acquires larger dimenfions.

The Pneumatical Experiments defended.

Premeationmenfions, without leaving any vacuities betwixt its component corpufcles, or admitting any new, and extraneous fubftance between them.
'Tis to this laft way of rarifaction, that our author has recourfe, in this hypothefis ; tho', I confefs, it appears to me fo difficult to be confoctelian rarifaction. For the eafier confideration of this matter, let ug ceiv'd, that I doubt whether any phenomenon can be explain'd by it. Let us fiuppofe, that in the Magdeburg experiment, he fo often urges to prove his hypothefis, that the undilated air, which, as he tells us, poffefs'd about half an inch of fpace, confifted of 100 parts, 'twill not be deny'd, that as the aggregate is adequate to the whole fpace it fills, fo each of the 100 parts is, likewife, adequately commenfurate to its refpective fpace, which is 100 th part of the whole. Now, our author fays, that "if a body poffeffes twice as much fpace, "each part of that body muft do the fame." Whence the whole capacity of the fphere, which, according to him, was 2000 times bigger than the fpace poffefs'd by the unexpanded air, there muft, likewife, be 2000 parts of fpace, commenfurate, each of them, to one of the aforefaid rooth parts of air ; and, confequently, when he affirms, that half an inch of air poffefs'd the whole cavity of the globe, if we will not admit, as he does not, either vacuities, or fome fubtile fubftance in the interftices of the aerial particles, each part of air muft, adequately, fill 2000 parts of fpace. Nowis thrat this chould be refolutely taught, to be really, and regularly done, in the Magdeburg experiment, will, queftionlefs, appear very abfurd to the Cartefians, and thofe other philofophers, who take extenfion to be but notionally different from body; and, confequently, impoffible to be acquir'd' or loft, without the addition, or detraction of matter : and will, I doube not, appear ftrange to every one who confiders how generally extenfion is allow'd infeparable, and immediately to fow from matter; and bodies to have a neceffary relation to a commenfurate fpace. Nor do I fee, if one portion of air may fo eafily be brought, exactly to fill a fpace 2000 times as great as that it did but fill before, without the addition of any new fubftance, why the matter contain'd in each of thefe 2000 parts of fpace, may not be farther brought to fill 2000 more, and fo on; fince each of thefe newly replenith'd fpaces, is prefum'd to be exaCtly fill'd with body; and no fpace, and, confequently, that which the un-rarified air replenifh'd. can be more than adequately full. And fince, according to our author, not only fluids, but even folids, as marble, are capable of fuch a diftenfion; why may not the world be made many thoufand times bigger than it is, without either admitting 2 vacuity betwist its parts, or being increas' ϕ with the addition of one atom of new matter?

He further alledges, that the phenomena of rarifaction cannot be enplain'd, either by vacuities, or the fub-ingreffion of an ethereal fubitanoes; and that there are two ways of explaining that kind of it, which he cons tends for.

After our author's objections againft the two ways of ravifaction propofed; the one by the vacuifts, and the other by the Cartefiams, who admit the mof folid bodies, and, even glafs itfeff, to be pervious to an ethereal,
or fubtile matter, he attempts to explain the manner by which his own Prevmatice: rarifaction is perform'd; and having premis'd, that the explanation of the way how each part of the rarified body becomes extended, depends upon the quality of the parts into which the body is ultimately refolv'd; and, having truly obferv'd, that they muft, neceffarily, be either really indivirible, or endlenly divifible, he endeavours to explain the Arifotelian rarifaction, according to thefe two hypothefes. But tho' he thus propofes । two ways of making out his rarifaction, yet they are irreconcilable; and he fpeaks of them very doubtfully, and obfcurely.

And, firft, having told us how rarifaction may be explain'd, if we admit bodies to be divilible in infinitum, he makes an objection againft the infinity of parts in a continuum, whereto he gives fo dark an anfwer, that, I confefs, I do not underftand it.

And 'tis not clear to me, that even fuch a divifibility of a continuum, as is here fuppofed, would make out the rarifaction he contends for: fince, let the integrant parts of a continuum be more or lefs finite, or infinite in number, ftill each part, being a corporeal fubftance, muft have fome particle of fpace commenfurate to it; and if the whole body be rarified, for inftance, to twice its former magnitude, then will each part be, likewife, extended to double its former dimenfions; and fill both the place it took up before, and another equal to it ; and, confequently, two places. I will not, however, pretend to affirm which of the two ways, by atoms, or by parts infinitely divifible, our author declares himfelf for: but, whichfoever of them it be, I think he has not intelligibly made it out; as himfelf feems willing to confefs. So that, in his difcourfe of rarifaction, to which our author frequently refers, as that which thould make good what feems the moft improbable, he has, inftead of a probable hypothefis, fubftituted a doctrine which himfelf dares not pretend capable of being well freed from the difficulties with which it may be charged.

As for the other way of explaining rarifaction, by fuppofing that a body is made up of parts indivifible, he is, upon this hypothefis, reduced to allow, that "one and the fame part muft be in two places adequately; "for fince it is indivifible, and takes up a greater fpace than before, it "muit, of neceflity, be alfo in every point of that fpace; or be virtualls "extended thro' all that fpace." When, therefore, he, prefently after, affirms, that by this virtual extenfion of the parts, the difficulties which have, for to many ages, perplex'd philofophers, may be eafily folved, he muft give me leave to defire he would explain what this extenfo virtualis is; and how it will remove the difficulties charged upon the Ariftotelian rarifaction. For the eafier confideration of this matter, let us refume what we lately fuppos'd, that, in the Magdeburgic experiment, the halfinch of andilated air, confifted of a hundred corpufcles; I demand, how the indivifibility of thefe corpufcles will qualify them to make out fuch a rap rifaction, as our author imagines? For, what does their being indivifble, in this cafe, but make it the lefs intelligible, how they can fill above

Vol. II.
$\mathrm{Qqq9}$

The Pneumatical Experiments dèfended.

Pazonatics: 100 parts of fpace? He will anfwer, they are virtually Extended B:

 not here to queftion, how this indivifibility makes them capable of bing fo ; I demand, whether by an atom's being virtually extended, its corp. real fubitance does really fill more fpace than it did before, or not 3 ? it do, then 'tis a true, and real, and not barely a virtual extenfion: br fuch an extenfion, we have fhewn, will not ferve the turn; and oura thor feems to confefs as much, by devifing this virtual extenfion, to and the inconveniencies to which he faw his doctrine of rarifaction wod otherwife be expofed. But if it be faid, that when an atom is virtud extended, its corporeal fubftance fills no more face than before; Id mand, how that which is not a fubitance, can fill a fpacer; and howd improper, and only metaphorical extenfion, will folve the phenomens rarifaction ? Ashow the half-inch of air, at the top of the fore-mention fphere, fhall, without a corporeal extenfon, fill the whole cavity of 2000 tim its bignefs, when the water is fuck'd out of it, and act at the lower-pul of the fphere? For, our author teaches, that the whole globe wasfill with a certain thin fubftance, which, by its contraction violently fatath up the water wherein the neck of the glafs was immers ${ }^{2} \mathrm{~d}$. And, in api rallel cafe, he makes it his grand argument, to prove, there is no vacull in the deferted part of the tube, in the Torricellian experiment, that th attraction of the finger cannot be but from fome realbody.Our author's. Funiculus, alfo, fuppofes a condenfation, that, to II appears incumber ${ }^{2} d$ with no lefs difficulties. For, fince he teaches, the a body may be condens'd, without either having any vacuities for th comprefs'd parts to retire into ; or, having its pores fill'd with anyfib. tile, and yielding matter, that may be fqueezed out of them; it follows that the parts of a body to be condens'd, immediately touch each other: which fuppofed, I demand, how bodies, that are already contiguous, an 2 be brought ciofer, without penetrating each other?. So that Ifee not hor this condenfation can be perform'd, without penetration of dimenfions In the Magdeburgic experiment, he tells us, that the whole capacity of the globe is filld with an extremely rare body; which, according to himint tercepts neither pores, nor any heterogeneous fubfance. Now let usconff: der, that before the admifion of water into the exhaufted globe, there was, according to him; 2000 half-inches of a true and real body; and that, after the admiffion of the water, there remain'd, in the fame globe, no more than one half-inch of body befides. Since, then, our authordoes not pretend, that the 1999 half-inches of matter, thatnow appear to moth travers'd, the body of water; and fince he will not allow, that ie gersit way thro' the pores of the glafs; I demand, what becomes of fo greav2 quantity of matter ?. For that 'tis amihilated, I fuppofe, he is too st tional to pretend ; and to fay, that fo many parts of matter, flould for retir'd into that one part of fpace that contains the halfainch of airy is. little lefs incredible: for, that fpace was fuppos'd perfectly full of bodf before; and how a thing can be more than perfectly fult, who can connceive?. In fhort, according to our author's way of condenfation, wedotry

The Pneumatical Experiments defended.

perhaps, two thoufand bodies, may be crowded into a fpace that is ade- Pravarise. quately fill'd with one of them apart. And, if this be not penetration of dimenfions, I defire to be inform'd what is .

But as the hypothefis I am oppofing, is a kind of inverfion of ours; The treflime fuppofing the fpring, or motion of reftitution in the air, to tend inwards, and spring of as, according to us, it tends outwards, many of the phenomena would, if it firm:d. were true, be plaufibly explicable by it; the fame motions, in an inrermediate body, being, in many cafes, producible alike, whether we fuppofe it to be thruft, or drawn; provided, both the endeavours tend the fame way. But then we may be fatisfied, whether the effect be to be afcrib'd to pulfion, or to traction, if we can find out an experiment, wherein there is a reafon that fuch an effect fhould follow, in cale plilfion be the caufe inquir'd after; and not, in cafe it be traction. And fuch an experimentum crucis is afforded us by M. Pafibal, who obferv'd, that the Torricellian experiment, being made at the foot, and in different parts of a very high mountain, after he had afcended an hundred and fifty fathom, the quick-filver was fallen two inches and a quarter below its ftation at the foot of the mountain; and that at the very top of the hill, it had defcended above three inches below the fame ftation. Whence it appears, that the quick-filver being carried up towards the top of the atmolphere, falls down the lower, proportionably to the height of the place wherein the obfervation is made : the reafon of which, on our hypothefis, is, that the nearer we come to the top of the atmofphere, the forter, and lighter is the cylinder of air, incumbent upon the ftagnant mercury ; and, confequently, the lefs weight of mercury will that air be able to balance, and keep fufpended. And, fince this noble phenomenon, thus clearly follows upon ours, and not upon our author's hypothefis, it feems to determine the controverfy; becaufe, in this cafe, it cannot be pretended, that the defcent of the quick-filver, in the tube, is caus'd from the preternatural rarifaction, or diftenfion of the external air, when, by trying to reftore itfelf, it endeavours to draw up the ftagnant mercury: for, there appears no fuch forcible dilatation of that air, as in many of the phenomena of our engine, he is here pleafed to imagine.

To this experiment he replies but two things, which, neither fingly, nor together, will amount to a fatisfactory anfwer.

And firft, he queftions the truth of the obfervation itfelf, becaufe, having made trial on a low hill, the event did no ways anfwer his expectation. But Gafendus relates, that the obfervation was five times repeated, with circumftances, which fufficiently argue the diligence wherewith the experiment was made : and, I can confirm thefe obfervations, by two more made on hills in England. But, however the proportion of the defcent of the quick-filver may vary according to the different confiftence, and other accidents of the air, in the particutar places, and times of the experiments being made; yet all obfervations agree in this, that nearer the top of the atmofphere the quick-filver falls lower, than when further from it. And, in one of there experiments, a determinate quantity of air being left in the rube, 9992

Preosarica before the mouth of it was open'd, under the ftagnant mercury, and notice taken how low fuch a quantity of that air deprefs'd the mercurial cylinder, 'twas obferv'd, that at the mountain's foot, the included air was not able to deprefs the quick-filver fo much. Whence we infer, that the cylinder of air, at the top of the hill, being fhorter and lighter, did not fo ftrongly prefs againtt the included air, as did the ambient air at the bottom of the hill, where the aerial cylinder was longer, and heavier.

We, alfo, attempted a trial, wherein we hoped to find a fenfible difference in the weight of the atmofphere, in a far lefs height, than that of an ordinary hill. But inttead of a common tube, we made ufe of a weather-glafs, and inftead of quick-filver, employd common water in the pipe belonging to the glafs; that fmall changes in the weight or refiftance of the atmofphere, in oppofition to the included air, might be the more difcernible.

The inftrument, we made ufe of confifted only of a glafs $A B$; with a broad foot, a narrow neck, and a llender glafs pipe CD, open at both ends; the pipe fo plac'd, that the bottom of it, almoft reach'd to the botrom of the bigger glafs AB, within whofe neck A, it was faften'd with a clofe cement, that both kept the pipe in its place, and hinder'd all. communication betwixt the inward II, and the outward air KK, except by the cavity of the pipe CD. Now we chofe this glafs AB, more than ordinarily capacious, that the effect of the dilatation of the included air II, might be the more confpicuous. Then conveying a convenient quantity of water HD, into this glafs, we carry'd it to the leads of the abbey-church at Wefteinfter, and there blew in a little air, to raife the water to the upper part of the pipe, that, being above the veffel AB , we might the more precafely mark the feveral ftations of the water: Afterward, having fufter'd the glafs to reft a pretty while upon the leads, that the air II, within, might be reduced to the fame ftate with KK, that without; having mark'd the ftation of the water \mathbf{F}, we gently let down the veffel by a ftring to the foot of the wall, where one attended to receive it, who having fuffer'd it to reft upon the ground, told us, that it was fubfided about an inch below themark F; whereupon, having order'd him to put a mark at this fecond ftation of it E; we drew up the veffel again, and fuffering it to reft a while, obferv'd the water to be re-afcended to the firft mark F, which was, indeed, about an inch above E: and this we did a fecond time, with almoft a like fuccels; tho', two or three days after, the wind blowing ftrongly upon the leads, we found not the experiment to fucceed quite fo regularly; yet the water, always, manifefly, fell lower at the foot of the wall, than at the top. But, to avoid miftakes, and prevent objections, we made the experiment within the church, at the fame height with the leads; but tho upper part of the pipe being, accidentally, broken off, we order'd the matter fo, that the furface G, of the remaining water in the pipe, fhould boabout an inchisigher than the furface of that in the veffel. And then, letting down the glafs, I found that, almoft, as foon as it was fetted. upon the pavement, it was not only fallen as low as the other water, but the outward air deprefs'd it fo far, as, whillt I was looking on
to break in below the bottom of the pipe, and afcend thro the water in Pmovearice:: bubbles; after which, the glafs being drawn up again, the water was, very manifeftly, re-afcended. Hence 'tis evident, that the atmofphere gravitates more, cateris paribus, near the furface of the earth, than in the more elevated parts of the air : for the leads, on which we made our trials, were found, in perpendicular height, but 75 feet.

But, for an experiment of the fame kind, made at a greater height, take the following, communicated by Dr. Power.

On the isth of OEtober, 1661 , we took a weather-glafs AB, about Fig. 84. two feet in length, and carrying it to the bottom of Hallifax-bill, the water ftood in the fhank at 13 inches above that in the veffel : thence carrying it, thus fill'd, with the whole frame, immediately to the top of the faid hill, the water fell down to the point D; that is, an inch and a quarter lower than it wasat the bottom of the faid hill; which proves the elafticity of the air: for the internal air AC, which was of the fame power: and extenfion with the external, at the bottom of the hill, manifetted a greater elafticity, than the mountain-air there manifefted preffure ; and for extended itfelf further by CD.

The like experiment, I' hear, the fame ingenious perfon has lately repeated, and found the defcent of the water to be greater than before. And tho' fome have thought it ftrange, that, on a hill, far inferiour to the Alps, and Appennines, fo fhort a cylinder of water fhould fall fo much; yet I fee not any reafon to diftruft, upon this ground, either this experiment, or ours made at Wefminfter; but rather wonder the water fell no more, if the hill be confiderably high : for their fufpicion feems grounded on a miftake; as if becaufe the quick-filver, in the Torricellian experiment. made without, purpofely leaving any air in the tube, would not at the top of the mention'd hill, have fubfided above an inch, the water, that is near 14 times lighter, fhould not fall above a 14th part of that fpace; whereas, in the Torricellian experiment, the upper-part of the tube has little, or no air left in it, while the correfpondent part of the weather-glafs contain'd air, whofe preffure was little lefs than that of the atmofphere at the bottom of the hill; and, confequently, muft be much greater, than the preffure of the atmofphere at the top of the hill.

Another particular, which confirms our hypothefis, is that experiment made by the fame M. Pafchal, by carrying a flack-blown foot-ball, from the bottom to the top of an high mountain; for, the foot-ball gradually fwell'd, the higher it was carry'd : fo that at the top of the mountain it appear'd as if it were full-blown; and became gradually lank again, as it was carry'd downwards; fo that, at the foot of the hill, it was. faccid as before. We have here an experiment to prove our hypothefis, wherein recourfe cannot be had to any body, forcibly, and preternaturally diftended, fuch as is pretended to remain in the deferted fpace of. the rube, in the Torricellian experiment.

But, further, our author's hypothefis is needlefs; for, he denies notthat the air has fome weight and fpring. but affirms it very infufficient now endeavour to manifeft by experiments, purpofely made, that the fram of the air is capable of performing far more than is neceffary to fortet? phenomena of the Torricellian experiment. We took a long glafs tive To bent at the bottom, that the part turned up, was almoft paralled to tix reft of the tube; and the orifice. of this fhorter leg being hermetically fald, the Jength of it was divided into inches, each of which was fub-dividx into eighths, by a lift of paper carefully pafted along it : then purting in as much quick-filver as filld the bended part of the fiphon, that tif mercury ftanding in a level, might reach, in the one leg, to the botor of the divided paper, and juft to the fame height, in the other; we toak care, by frequently inclining the tube, that the air, at laft, included in the fhorter cylinder, fhould be of the fame laxity with the reft of the ait about it. This done, we began to pour quick-filver into the longer leg of the fiphon ; which, by its weight, preffing upon that in the yhorta, gradually ftraitned the included air ; and continuing to pour in quichfilver, till the air, in the fhorter leg, was, by condenfation, reduced to sake up but half the fpace it poffers'd before, we obferv'd, in the logegr leg of the glafs, on which was, likewife, pafted a lift of paper, dirided into inches, and parts, that the quick-filver was 29 inches higher thanin the other. Hence we fee, that as, according to our hypothelis, the aif, in that degree of denfity, and correfpondent meafure of refiftance, whereto the weight of the incumbent atmofphere reduces it, is able to balance, and refift the preffiure of a mercurial cylinder of about 29 inches; fo, hert, the fame air, brought to a degree of denfity, about twice as great as it had before, obtains a fpring twice as Atrong; being able to fuftain, or refift a cylinder of 29 inches, in the longer tube, together with the weight of the atmof pherical cylinder, that refted upon thofe 29 inches of mercury.

After fonse ather trials, one of which we made in a tuibe, wheif longer leg was perpendicular; and the other, that contain'd the air paralled to the horizon ; we, at laft, procured a tube, which, tho' large, was fo
(5. Ss: long, that the cylinder, whereof the fhorter leg of it confifted, admited s lift of paper divided into 12 inches, and their quarters; and the longer leg another, feveral feet in length, and divided after the fame manner: then quick-filver being poured in, to fill up the bended part of the galks, that the furface of it, in either leg, might reft in the fame horizontal line; more quick-filver was pour'd into the longer tube : and notice being taken, how far the mercury rofe therein, when it appear'd to have afcended to any of the divifions in the fhorter; the feveral obfervations that were thus fucceffively made, and fet down, afforded us the following table.

The Preumatical Experiments dofended.

Added to $29 \frac{1}{1}$ makes									
E®o 0 									

AA The number of equal fpaces in the thorter leg, containing the fame parcel of air, differently exparaded.
B. The height of the mercurial cylinder; in the: longer leg, that comprefs'd the air into thofe. dimenfions.

C The height. of mercurial cylinder, that balanced the preffure of the atmofpherc.

D The aggregate of the two laft columns B and C, exhititing the preffure fuftain'd by the included air.

E What that preffure fhould be, fuppofing it in reciprocal proportion to the expanfion.

For the better underftanding of this experiment, it is proper to obferve the following particulars. 1s: The tube being very tall, we were obliged to ufe it on a pair of ftairs, which were very well-illumined; and for prefervation, it was fufpended by ftrings. 2. The lower, and bent part of the pipe, was placed in a fquare wooden box, large and deep, to prevens the lofs of the quick-filver. 3. We were two, to make the obfervation together; the one to take notice at the bottom, how the quickefilver rofe in the fhorter cylinder; and the other, to pour it in at. the top of the longer. 4. 'The quick-filver was pour'd in but flowly, according to the direction of him who obferv'd below. 5: At the beginning of the operation, that we might the more truly difcern where the quick-filver refted, from time to time, we made ufe of a fmall looking-glafs, held in a convenient pofture, to reflect to the eye what we delired to fee. 6. When the air was crowded into lefs than a quarter of the fpace it poffeffed before, we try'd whether the cold of a linen-cloth, dipp'd in water, would condenfe it : and it, fometimes, feem'd a little to Thrink, but not fo manifefly, that we dare build upon it. We then try'd, likewife, whether heat would dilate it; and, approaching the flame of a candle to that part where the air was pent up, it had a more fenfible operation than the cold before; fo shat we ficarce doubted the expanfion of the air would, notwithftanding the weight that opprefs'd it, have been made confpicuous, if the fear of breaking the glafs had not kept us.from increafing, the heat. fince 'tis evident, that as common air', when reduced to half its natumb extent, obtain'd a fpring, about twice as forcible as it had before; fothe air, thus comprefs'd, being farther crowded into half this narrow room, thereby obtain'd a fpring as ftrong arain as that it laft had, and confequently, four times as frong as that of common air. And, there is 10 caufe to doubt, that if we had been farnifh'd with a greater quantity of quick-filver, and a very itrong tube, we might, by a further comprefion of the included ajr, have made it balance the preffure of a far taller, and heaviot cylinder of mercury. For no man, perhaps, yet knows, how near to an infinite compreffure the air may be reduced, by a force competently increas'd. So that, here our author may plainly fee, the fpring of the air can refift, not only the weight of twenty-nine inches, bat, in fome cifes, above bue handred inches of quick-filver; and this, withour the affitance of his Funiculus, which, in our prefent cafe, has no pretenoe to be employ'd. And, to thew, that the weight of the incumbent atmofphere, made a part of the weight religted by the imprifon'd air; when the mercurial cylinder, in the longer leg of the pipe, was about one hundred inches high, we caus'd a man to fuck at the open orifice, whereupon the mercury in the tube confiderably afcended : which phenomenon cannot be afcrib'd to our author's Funiculus; fince, by his own confeffion, that cannot pull up a mercurial cylinder of above twenty-nine or thirty inches. And, therefore, the preffure of the atmofphere, being in part taken off, by expanding itfelf into the man's dilated cheft, the imprifon'd air, was, thereby enabled, manifeftly, to dilate, and repel the mercury that comprefs'd its. till there was an equality of force betwixt the frong fpring of the comprefs'd air on the one part, and the tallomercurial cylinder, with the contiguous dilated air, on the other.

Now, if to what we have deliver'd concerning the compreffure of the air, we add fome obfervations of its fpontaneous expanfion, it will the better appear, how much the phenomena of thefe mercurial experiments depend upon the difierent meafures of frength to be met with in theair's Spring, according to its yarious degrees of compreffion and laxity. ..
A. The number of equal fpaces at the top of the robe, that gontritid the fimo parcel of air.
B. The height of the mercurial cylinder, that together with the fpring of the included air balanced the preffure of the atmofphere.
C. The preffure of the atmofphere.
D. The complement of B to C, exhirbiting the peefiare fuftain'd by the included air.
E. What the preflurefkould be,according to the hypothefiso

* To malloe the experiment of the debilitated force of expanded air, the plainer,' we muft mention fome particulars, efpecially with relation to the manner of performing it. 1 . We made it on a light pair of ftairs, anid with a box lin'd with paper to receive the mercury, that might be fpilt $;$. and in a glafs tube about fix feet long, hemetically feal'd at one end. 2. We alfo provided a flender glafs pipe about the bignefs of 2 fwan's quill, and open at both ends, all along which, was pafted a narrow lift of paper,-divided into inches and half quarters. 3. This flender pipe, being thruft into the greater rube, almoft filld with quick-filver, the glafs hetp'd to make fot fwell to the top of the tube; and the quick-filver getting in aet the lowert orifice - of the pipe, fill'd it up till the mercury, micladed in that, was near upon a level with the furface of the furrounding'mercury in the tube, 4. There being little more than an inch of the Ilender pipe left abore the furface of the ftagnant mescury; and, confequently, unfilld therewith, the prominent orifice was carefully clos'd with melted fealing-wax ; after which, the pipe was let alone for a while, that the air, dilated by the hear of the wax, might, upon refrigeration, be reduced to its wonted denfity. And then we obferv'd, by help of the lift of paper, whether we had included more or lefs than an inch of air, and in either cafe, we rectify'd the error, by a

[^10] " "four times rater than at the furffice of "s the earth ; and at the height of 14 " miles it is 16 times rarer thin at the " futface of the earth; and at the height " of 21,28 , or 35 miles it is refpenively ". 64, 256 , or 1024 times rarer, or there"abouts ; and at the height of 70 , (4 C ; and " 210 miles, it is about $1.000000,1.000000$. "000000, or 1.000000 .000000000000 ."\&e. Newston. Optic. p.341. 342.

The Pneumatical Experiments difended:

Pheqmatice fmall hole made with a heated pin in the wax, and afterwards clos'd it up again. 5. Having thus included a juft inch of air, we lifted up the flender pipe, by degrees, till the air was dilated to an inch, 2 n inch and a half, two inches \&c. and obferv'd, in inches and eighths, the length of the mercurial cylinder, which at each degree of the air's expanfion was impell'd above the furface of the ftagnant mercury. 6. The obfervations being ended, we prefently made the Torricelliam experiment with the above-mention'd large tube, fix feet long, that we might know the height of the mercurial cylinder for that particular day and hour; which we found to be twentynine inches and three quarters. 7. Our obfervations, made after this manner, furnifh'd us with the preceding table, in which here would not, probably, have been found the difference here fet down betwixt the force of the air, when expanded to double its former dimenfions, and what that force fhould have been, precifely, according to the theory, but that the included inch of air receiv'd fome little acceffion during the trial; which this difference caufing us to fufpect, we found, by plunging the pipe again into the quick-filver, that the included air had gain'd about half an eighth ; which we guefs'd to have come from fome little aerial bubbles in the quick-filver contain'd in the pipe.

Hare we find that the inch of air, when firft included, fuftain'd no other preffure than from the incumbent air, and was no more comprefs'd thanthe relt of the air we breath'd and mova'd in; that this inch of air, when expanded to twice its former dimenfions, was able, with the help of a mercurial cylinder, of about fifteen inches, to counterpoife the weight of the atmofphere; and that chis was impell ${ }^{3}$ d up into the pipe by the external air gravitating upon the ftagnant mercury, which, alfo, fuftain'd above 28 inches of mercury, when the internal air had its fpring, too far weakned, to make any confiderable refiftance : from whence 'tis plain, that the free air, here below, is, almoft, as ftrongly: comprefs'd by the weight of the incumbent atmofphere, as. it would be by the weight of a mercurial cylinder, 28, or ' 30 inches high; and, confequently, is not in fuch 2 ftate of laxity, as men ufually imagine; but acts like fome mechanical agent, with a force decreafing, in a ftricter proportion to its increafe of dimen-. fion, than has been, hitherto, taken notiee of.

And,hence, at length, we.fee; that our author's hypothefis is unneceffary to folve the phenomena in difpute: which is no fmall acquifition, fince the two principal things, that induced him to reject our hypothefis, are, nature's abhorrence of a vacuum; and that, tho' the air have fome weight. and fpring, yet thefe are infufficient to make out the known phenomena, for which, we muft, therefore, have recourfe to his Funiculus. But, he has not difprov'd a vacuum, yet we have manifefted, that the fpring of the air may perform greater things, than what our explanation of the Torricellian experiments, and thofe of our engine, require.

We come now to the laft part of our defence, wherein we are to confider. what our author objects to fome particular experiments.

Againft our firft experiment, he objects nothing, but that, by apply-Pmeoxarici; ing the finger to the orifice of the valve, when the pump is freed from air, Particular prenethe fucker will not appear to be thruft inward by the external air, but, matical experias the finger, to be drawn inwards, by the internal. But this phenomenon has been, formerly, accounted for, upon our hypothefis.

Of our third experiment, he fays; that "it very well agrees with his "s principles; for, fince by this depreffion of the fucker, the air, in the "cavity of the cylinder, is feparated from the cylinder, and defcends, ${ }^{6}$ together with the fucker, in that whole depreffion; new furfaces are "taken from that defcending air, and ftretch'd out, as in the cafe of de" fcending water. Since, therefore, fuch furfaces, are as eafily flipp'd "s off, and extended at the end of the depreffion, as at the beginning, it is " no wonder there fhould be the fame difficulty of depreffing, in both ca"fes." By which, he feems to intend an oppofition to a part of the third experiment, which I oppos'd not againft his opinion: yet he offers nothing at all to invalidate my inference; but, inftead of that, propofes a defence of his own opinion, which fuppofes the truth of his hypothefis; and is unfatisfactory, even according to that, or elfe, difagrees with what himfelf hath taught us, but a little before. For, 'tis evident, that the more the fucker is depref $s^{\prime} d$, the more the cylinder is exhaufted of air. And, fpeaking of the air, in the receiver, he affirms, that "'tis "the more extended and rarified, the more is drawn out ; and, there"fore, acquires the greater force to contract itfelf." Though here he would have us believe, that the little internal air, in the cavity of the Thank of the ftop-cock, as ftrongly attracts the fucker, or refifts its depreffure, when the fucker is near the top of the cylinder, as when, being forced down to the lower part thereof, the fame portion of remaining air muft be exceedingly more diftended.

To the fourth experiment, our author objects nothing, but endeavours explain it his own way, whereto he fays, this circumftance excellently agrees, that, upon the return of the external air, into the receiver, the tumid bladder immediately fhrinks; becaufe the air in the receiver, which drew the fides of the bladder outward, from the middle of it, is hereby relax'd: which explication, whether it be more natural than ours, let any one judge, who has confider'd what we have alledg'd againft the Funiculus.

To the breaking a glafs receiver, not of a globular figure, by exhaufting moft of the internal -air, whereby its diminifh'd preffure became unable to reffet that of the outward air; our author confidently fays, "it feems "incredible, that the moft foft air fhould fo vehemently comprefs fuch a "glafs, on all fides, as to break it." As if it were more credible, that the air within, fhould be able to act more powerfully upon the giafs, than that without, which himfelf confeffes to be a heavy body; and which, not only reaches from the furface of the earth, to the top of the higheft mountains, but may, for ought we know to the contrary, be heap'd upon the receiver, to the height of fome hundreds of miles. fince, in fuch cafes, the air is thut up, with the whole preffure of the atmofphere upon it, this may, almoft, as eafily, break the glafsy as if it were unftopp'd; and, accordingly, we mention the breaking of a thin ghafs hermetically feal'd, upon the extraction of the ambient air. But, as confidently as our author fpeaks, fuch thin vials are fubject, upon withdrawing the ambient air, to ftretch a little; whereby the fpring of the included air, may, in fome cafes; be fo far weakned, as not to be able to bireak them, unlefs affifted by the preffure of the atmofphere : and whenthe vial actuglly begins to break, the enfuing preffure of the outward air, upon that within the vial, may help to throw the parts of the glafs moreforcibly afunder.

The author, having recited our conjecture, as to the reafon why two flat fmooth marbles flick fo clofely together, approves my way of examining that conjecture. But, I Gay, tho' the marbles were kept tegether, by the preflure of the ambient air, yet they did not fall afunder, in our erhaufted receiver, bęcaufe of fome fmall leak in the receiver; yet he rells us, with his ufual confidence, that this.very experiment fufficiently fhems. that opinion falfe. But, poffibly, he would have fpoken lefs refohuredy, if he had made at the trials, about the dhefion of marbles, that I have. For he fpeaks, as if all that we afcribe to the air, in fuch experiments, were to fuftain the lower marble, with the weight, perhaps, of a few ounces; whereas, if the air be wholly kept from gerting between the ftones, it may fuftain a weight equal to that of a pillar of air, as broad as the bafis of the lower marble, and as high as the armof phere; or, to the weight of a.column of quick-filver, of the fame thicknefs, and about 30 inches long. And, therefore, fince when we bad exhaufted our receiver, as far as we could, there remain'd air enough to fuftain in the tube, a cylinder of opuick-filver an inch high; and fince the broader the contiguous marbles are, the greater weight, faften'd to the lowermoft, may be fuftam'd, by

The Paermatical Experiments defended.

the refinance of the air; it's no wonder, that the air, remaining in the receiver, fhould fupport the lower-moft marble, whofe diamerer was near two inches, and a weight of four ounces; thofe two weights being inferior to that of a mercurial cylinder, of the fame diameter, and an inch in Fength : and tho' they were not, yet, perhaps, the receiver was lefs empty' ${ }^{\prime}$ ' when we made the 3 If experiment, than when we made the 17th And 'twas with the fame pair of marbles, that, before an. illuftrious affembly, the upper-moft drew up the lower-molt, tho' clogg'd with a weight of above 430 ounces.

As for the account our author gives of this:phenomenon, few, I believe, will acquiefce in it : for, not to infift upon the objection, which himfelf takes notice of, that, according to him, the diftended air in the receiver, fhould draw the adhering marbles afunder, his explanation fuppofes, that thero cannot, naturally, be a vacuum ; whence he infers, that " the " ftone could not defcend, but by leaving fuch a thin fubitance behind " it, as happens in the defcent of quick-filver, or water." He adds, that the adhefion, in our cafe, proves obftinate, becaufe fuch a fubttance is far more difficult to be feparated from marble, than from quick-filver, or any other kind of body ; but this affertion is precarious. And though I have made numerous experiments, with ftones of feveral fizes, yet I could never find, that, by their cohefion, they would fuftain a weight greater than that of a pillar of the atmofphere, that prefs'd againft the loweft; which is a confiderable circumftance, that much better agrees with our explanation, than with his.

Of the fudden extinction of animals, incladed in our receiver, which I afcribe to the exceffive thinnefs of the air therein, he fays, "it feems "impoffitle they fhould die fo foon, merely thro" want of a thick air:" but gives no other reafon, than the fuddennefs of the effect; which, too, feems grounded upon a: miftake: for, the creatures, he mentions, were a bee, a fly, and a caterpillaf; and thofe included in a fmall receiver, which could be fuddenly exhautted; and thefe, indeed, became movelefs, within a mint te. And tho' thefe infects did, in fo fhort a time, grow moveleff, yet they were not fo foon kill'd, as appears by the narrative. The fanguineous animals, that did, indeed, die, were kill'd, more flowly. And havimg, purpofeiy, enquir'd of a diver, how long he could, before he was accuftom'd todive, remain without breathingeor the ufe of a fpunge; he told me, that at firt he could hold out about two or three minutes, at a time: which made me think, that divers become able to continue under water fo long, either by a peculiar conftitution of body, or, a gradual exercife. And, I am apt to think, that, as'ris ufiul, he hereby meant-a nuch fhorter time than, when exactly meafur'd, it amounts to. For, having made trial upon two live moles, one of them, included in a fmall receiver, was between two and. three minutes in killing; whereas, the other being detain'd under water, did not there continue full a minute and a quarter, before it finally ceas'd from giving any fign of life. Hence 'tis not impoffible, that the want of relpiration, Ihould difpatchan animal in as litcte time, as: is. mention'd in the

Provantegexperiment. And, indeed, our author fhould either have prov'd it impoffible, for the want of air to deftroy animals fo foon; or have given us Tome better account of the phenomenon.
'Twere a needlefs task, to examine any more of our author's objections - to particular experiments, fince they wholly proceed upon the fuppofition of his Funiculus; which has been fufficiently proved a chimera: whereas the fpring, as well as the weight of the air, is not only allow'd by himfelf. . but demonitrable by experiments uncontroverted betwixt us.
 \title{
Mr. HOBBS's
 \title{
Mr. HOBBS's
 Phyfical Dialogue, ABOUTTHE
 Nature of the $A \mathbf{I}$ R,
 EXAMIN'D,
}

With relation to the Phyfico-mechanical Experiments : of the Spring and Effects of the AIR.

MR. Hobbs, in difputing againft me, feems, generally to have mif- The wigh and : apprehended my notion of the air. For, when I fay the air tias fintag ifme gravity, and an elaftic power ; or, that the air is, in great pait, pump'd out of the receiver, 'tis plain, that I take the air, in the obvious fenfe, for part of the atmofphere, which we breathe, and wherein we.t move : nor do I find, that any other of my readers underttand me otherwife. But Mr. Hobbs thinks he has fufficiently confuted me, if, in fome cafes, he proves, that there is a fubtile fubftance, or ather, in fume places, which I take not to be filld with air ; and that the ather has, or wants fome properties, which I deny, or afcribe to the air : but I do not deny that the atmofphere, or fluid body, which furrounds the terraqueous. globe, may, befides the groffer, and more folid corpufites, wherewith if abounds, confift of a thinner matter, which, for diftinetion fake, \mathbf{I}, aifo, agree to call athereal.
But he does not, that I remember, deny the truth of any of the matters of fact, I have deliver'd; nor attempt to prove, that the explanations I have given of my experiments, are contradictory to the doctrine I ad vance: but rather rejects our two grand hypothefes, the weight and fpriag

The Pneumatidatkexperiments defended.

priumarices of the air. It will here, therefore, fuffice to prove, what he is unwiligro grant.

And firft, that the air, in my fenfe of the word, is not deftitute α weight, we have thewin by various experiments: one of them is, that 1 blown bladder, carefully weigh'd, in an exact pair of fcales, was foond manifeftly heavier when full of air, than when empty of air.

Secondly, it hasi alf , been obferv'd, that an xolipile, being well hered, and the little orifice, left at the top of the pipe, being ftop'd, whilt it wr thus hot; upon opening of this hole, when the zolipile was grown cak again, the external air ruming in at the foremention'd orifice, caus'd the xolipile to weigh fo much more than it did juft before the external air gox in, as amounted to near a thoufandth part of the weight of an equal bull of water.

Thirdly, in the Magdebrorgic experiment, the great receiver they were to exhauft, being weigh'd both before and after the extraction of the ait, they found the difference to be I ounce $-\frac{3}{\circ}$, "which," fays the leamed Schottus, " is a very clear demonitration of the gravity of the air."

Fourthly, we have weigh'd the air thut up in bodies, in our exhauttod receiver, wherein of two materials, different in nature, a blown bladder, and a glafs bubble, each equi-ponderaat to a more folid weight, before the air was pump'd out, we found that which included a large quantity mani. fefly to preponderate after the exhauftion. To thefe we might add other proofs to the fame purpole; but there afford fuch a variety of cafes, that it would be'fupetfuous

Let us now fee what Mr. Hobbs objects againft the experiment of the bladder, weigh'd in the exhaufted receiver; for he quarrels not with the reft. "That the fcale which contains the bladder, is more deprefs'd than "- the other, they may be certain by fight; but that this proceeds from the -i natural gravity of the air, they cannot be certain, efpecially if they know - not the efficient caufe of gravity." But can we not be fure, that lead is, in fpecie, heavier than cork, unlefs we know the efficient caufe of gryvity? The reafon, he gives, why the bladder outweighs, is this. "Thit "c the bladder, whether blown up with a pair of bellows, or with human is breath, is heavier than when flaccid, I will not deny, becaufe of the σ greater quantity of atoms, or of fuliginous corpufcles : but there's no\star thing certain in this experiment. They ought to have put into the fallo ${ }^{\text {ec }}$ two veffels of equal weight, whereof one hould be fhut, and the other open: es for thus air, not blown in, but barely inclos'd, had been weigh'd ; when, *s therefore, air fhall be to weigh'd, we will afterwards confider, what ". may be faid to the phenomenon." The firt part of this paflage dos not deny the gravity of that we call air, but only endeavours to fher, what partsthey are that make it heavy. And, as to the fecond, he feems to mintake the prefent cafe : for there is no need that the air in the bladdes before the exhaution of the receiver, Chou'd be heavier than the outward air. Wherefore, when be fubjoins, that from this experiment we caf deduce nothing certain, the affirmation is precarious. And Mr. migtt

The Pneumatical Experiments defended.

might eafily have perceiv'd, that we did make a trial much of the Provantic. fame nature with that he defires : for, we weigh'd the air in a glafs, hermetically feal'd, wherein it was not blown in, but barely included. And fince, in his elements of philofophy, he grants, and gives his reafon for it, that, "if air be blown into a hollow cylinder, or, into a bladder, it "' will increafe the weight of either of them a little ;" and, fince here he likewife confeffes, that there are mix'd with the xther, many aqueous and earthy particles : he confeffes, that the air is not deftitute of weight ; and it concerns us no more than himfelf, to .hew how the corpufcles, upon whofe account the air is heavy, make it fo.

This is all which Mr. Hobls, in feveral places, thinks fit to object a--gainft the gravity of the air; leaving the experiment of the zolipile, and lome others, unanfwer'd; which, alone, prove the air has a manifeft weight, even when uneomprefs'd, and in its laxity. Let us now examine whether the air has not, alfo, alpring. This, tho' he calls it (as he likewife does the weight -of the air) a dream, yet himfelf, in efiect, grants all that is requifite to prove the fpring of the air. For, delivering that known experiment, wherein the air is comprefs'd in a glafs bottle, by the forcible injection of wa- vig. © ter, which, when the glafs is unftopp'd, the air again throws out, in recovering its former dimenfions; he fays, that "the air, with which the "fpherical glafs was fill'd, being mov'd by earthy corpuccles, in a fim"" ple, circular motion ; and being comprefs'd by the force of the injection, " that of it, which is pure, gets out into the open air, and gives place to "the water. It follows, that thefe earthy corpufcles have lefs fpace left, "" wherein to exercife their natural motion; therefore, beating one upon "" another, they force the water to fly out, when the external air pene"s trates it, and fucceffively takes up the place of the evacuated air, till "t the corpufcles of the fame quantity of air being reftored, regain a li"berty natural to their motion" But, to pafs by feveral other of his conceffions, to this purpofe, we can prove the fpring of the air by many phenomena of our engine, of which he offers no other explanation.
If the Torricellian experiment be made in a tube, between two feet and a half, and three feet in.length; and if, when the mercury refts at its wonted ftation, you dextrounly fop the orifice of the tube, with your finger, that orifice being rais'd as near the furface of the ftagnant mercury, as poffible, without admitting the external air ; if, then, you quite lift up the tube, thus ftopp'd, into the free air, you fhall feel, upon your finger, little or no preffure from the weight of the mercurial cylinder, diftinct from the weight of the tube; becaufe the gravity of the quick--filver, is balanc'd by that of the outward air, which thrufts your.finger againft it: but, if you invert the tube, and having let in the air at the orifice, ftop it again with your finger ; and again let the mercurial cylinder reft upon that finger, you will find your finger ftrongly prefs'd, and ready to be thruft away; which new preflure, fince it cannot come from the mercury, nor from the weight of the admitted air, to what can we, rationally, afcribe it, but to the fpring of the included air? And the force hereof will be as well manifeft to the Vol. II.

The Pretmatical Experiments defended.

Promaries;eye, as the finger, if the tube be unftopp'd under the furface of the ftagnant mercury ; for then that in the glafs, will not reft, as before, at the ufual ftation, but be deprefs'd far beneath it. And, if you make the Torricelliun experiment, in a fhort, open tube, ftopp'd, above and below, with. your fingers, upon unftopping the upper orifice, a new, and forcible preffure will be felt upon the finger that ftops the lower orifice, made by the gravitation of the external. air, which was before kept from refting uponthe mercurial cylinder, by the upper finger, the pulp of which, by that gravitating air, was, before, thruft into the delerted cavity of the tube; which demonftrates both the fpring of the air, and. the gravity of the atmofiphere.

But to the experiment of the fwelling and Inrinking of a bladder, hung. in our receiver, as the ambient air is withdrawn, and fufier'd to return; Mr. Hobls replies, "that every skin is made up of fmall threads, or "filaments, which, by reafon of their figures, cannot exactly touch in "s all points. The bladder, therefore, being a skin, mult be pervious, not "only to air, but to water alfo; whence, there is the fame compreffure " within the bladder, as without. The endeavour of which (the way of ${ }^{6}$ its motions being every way crofs) tends to the concave fuperficies of "the bladder; wherefore it muft, of neceflity, fwell every way, and the "s vehemency of the endeavour increafing, be, at laft, torn.". But, if this be a fufficient anfwer to fuch an experiment, I fear, it will. be harder than we are yet aware of, to prove any thing by experiments. For, firf, how improbable is it, that fuch bladders, as we ufed, are readily pervious to the air; when eafy experience thews us, that, by leifurely comprefing. fuch blown bladders, betwixt our hands, we thall rather break them, than fiqueeze out the air at. their pores? So that the reft of his anfwer being built upon what is fo repugnant to common experienco, will not need a particular confutation : however, we fhew, that by: the exhauttion of theair, eten a glafs, hermetically feal’d, was broke : and.to fay, that glafs, alfo, is pervious to the air, were to affirm what the greateft part of his book. fuppofes to be falfe. Befides, there is not any fenfible, and unqueftionable: phenomencr; to prove that the receiver is full of any fuch air, as he fpeaks. of; for we fee, plainly, that when the air, manifefly, gets into the receiver, the bladder it not, thereby, made to fwell, but to fhrink. Moreover, according to Mr. Hobbs, the bladder is pervious to the air; and the air ${ }_{2}$. within the receiver, is univerfally comprefs ${ }^{\text {s }} \mathrm{d}$, as well that which is within the bladder, as that which is without it ; how then comes the air, that bears. gainft the convex furface of the bladder, not to refift that which is contiguous to the concave fuperficies of the fame; at leaft, how comes the bladder to be broken by the air, which, according to Mr. Hibbs, can get in and out at pleafure?. And, laftly, to thew, that to the fwelling of the blad-. der, there needs nothing but the fpring of the included air; and no fuch vehement agitation of the ambient air, as he fuppofes in our engine; it appears, by the experiment of M. Pafihal, that, in the free, and ordinary, air, a foot-ball, half.blown, will gradually. fwell, the nearer it is carri-
ed to the top of an high mountain; where the incumbent cylinder of the Przonaric : atmofphere is thorter, and its weight the lefs; and will, for the contrary reafon, grow more flaccid, the nearer it approaches to the foot of the mountain.

Mr. Hobbs attempts to explain the phenomena of our engine, by fuppofing, that " many earthy particles are interfpers'd with the air, which explanation of
 " is a greater quantity of thefe particles in the air, near the earth, than examined.
"remote from it." But this affumption to me_{2} feems very precarious; for, I know no unqueftionable example, or experiment, whereby it can be made out, that any fimall parcel of matter, has fuch a fimple, circular motion, as he afcribes to each of thefe innumerable earthy, and, as he adds, aqueous particles. The only argument he here brings to prove, "that each atom would have this motion, if all the reft of the earth were annihilated, does not feem clear to me. For, it is not always true, that each minute part of a homogeneous body, has, in every refpect, the fame qualities with the whole : as the roundnefs which a fmall drop of water, or quick-filver, is obferv'd to have upon a dry plain, is not to be met with in a large portion of either of thefe fluids, tho plac'd upon the fame plain. And Mr. Hobbs, as well as we, makes the terreftrial atoms in the air to have gravity ; a quality that does not properly belong to the whole globe of the earth: nor is it manifeft why, becaufe the terreftrial globe moves in a vaft circle about the fun, each particular atom of it muft defcribe a fmall circle in the air, about I know not what center. And, tho he afferts, that the air, near the earth, abounds with fuch terreftrial corpufcles, 'tis not likely they fhould have fuch a regular motion, as he attributes to them ; but, ftriking againft one another, they muft, in probability, be put into, almoft, as various, and confufed a motion, as Des Cartes afcribes to his tereftrial particles, fwimming in the atmofphere.

Mr. Hobbs farther endeavours to prove, that, by the exhauftion of our cylinder, no vacuum is produc'd; and gives a very different account of the experiment itfelf: he fays, that "while the fucker is drawn back, the more "fpace is left within, the lefs is left to the external air ; which being "thruft backwards, by the motion of the fucker, towards the outer" moft parts, moves, in like manner, the contiguous air; and that, the "next; and fo forwards: fo that, of neceffity, at laft, the air mult be "compeli'd into the fpace deferted by the fucker, and enter between the " convex furface of the fucker, and the concave of the cylinder. For, "the parts of the air being infinitely fubtile, muft infinuate themfelves "that way by which the fucker is drawn down; fince the contact of "thofe furfaces cannot be perfect in all points, becaufe the furfaces them"felves cannot be made infinitely fmooth: and then, that force, which is " applied to draw back the fucker, in fome meafure diftends the cavity of " the cylinder ; and if, betwist the two furfaces, one fingle hard atom "s Ihould enter, pure air will enter by the fame way, tho' with a frall " force. And thus air, for the fame reafon, infinuates itfelf through Sffl2

The Pneumatical Experiments defended．

Preveaticsoch ヘ」。
the valve of the cylinder ；and，therefore，the retraction of the fatr will not prove a vacuum．It follows，alfo，that the air，which is di－ ＂ven up into the fpace deferted by the fucker，becaufe it is forcibl in－ ＂pell＇d，has a very fwift，and circular motion，betwixt the top and th ＂bottom of the cylinder；becaufe there is nothing there to weaken is ＂motion；and nothing can give motion to itfelf，or diminifh it．＂Bu many exceptions may be made to this reafoning．And，firft，I know na why Mr．Hobbs thould，here，confine his difcourfe to the pump，withoe taking notice of the glafs it is defign＇d to evacuate．We will，therefore， confider how he can account for the exhauftion of the receiver，as well as of the cylinder，fince we ufially employ them both toget her．And he be－ ing obliged to explain the exhauftion of the one，as well as the other，it will be convenient to take into confideration the receiver，becaufe that be－ ing of glafs，and tranfparent，we can better fee what happens in it，then in the opake cylinder．This premis＇d，I do not clearly perceive，by this erph－ nation，how he avoids a vacuum；for，according to his firft words，the external air is difplac＇d by the motion of the fucker outward，and this difplac＇d air muft move that which is next to it；and that the net， and fo onward，till，at length，the air muft be compell＇d into the frae deferted by the fucker ：fo that till this returning air get in betwixt the fucker and the cylinder，how appears it，from this difcourfe，that the de－ ferted fpace was not empty for fome little time？Certainly all thefe mo－ tions of the air，forward and backward，could not be perform＇d in an inftant；as may appear by the motion of founds and echoes，whof evelo－ city is reducible to meafure．Secondly，tho＇he take his adverfaries to be vacuifts，yet he here fuppofes the plenitude of the world．I wifh，thirds）， that Mr．Hobbs had declar＇d，from whence the return of the air＇s impulie fhould begin ；for that may well be requir＇d from one，who，making the world full，and，for ought appears，fuid，allows us to believe it infinite，if the magiftrate fhall enjoin us that belief．Fourthly，I demand，what ne cefinty there is for fo forcible a return of the impulfe，as is requifite to thruft in the air at fo narrow a paffage as that between the fucker and $c-$ linder ？For，why may not that impulfe，when diffufed in the vaft ambient medium，be fo communicated，and blended among the different motions of the other parts of it，as not to return again from whence it begun？ As a voice，tho＇ftrong，will not move the air，beyond a certain diftance， fmartly enough to be reflected in an echo，to the fpeaker；and，as a fone caft into a lake，will have the waves，it makes，diverted from returring to the place they began at．Fifthly，I do not，likewife，fee，thas＇tis pro－ bable，what Mr：Hobbs：affirms of fo thick a cylinder as ours，that it hould be diftended by depreffing the fucker．But this I infift not on ；the pin： cipal thing，peculiar in Mr．Hobb＇s＇s explanation，is，that as much air as is driven away by the fucker，prefently gets in again，betwixt that and the cylinder．But，by the air thus fuppos＇d to get in，he either means in the ufual fenfe，and in ours，the common air，fuch as welive and breathe in； er，he does not．

The Pneumatical Experiments defernded.

If he fpeaks of fuch air, I can plainly prove, by feveral experiments, Pixzuxatiop that our engine is, in great part, deftitute of it. For, firf, if there be a contrivance made, whereby the whole pump may be cover'd with water, we may, as we have try'd, plainly fee the air that is drawn out of the receiver, at each reciprocation of the fucker, pafs, in great bubbles, out of the valve thro' the water.

Next, it appears, by the Magdeburgic experiment, that, by reafon of the recefs of the air, the globe of glafs, whence it went out, was diminioh'd in weight, above an ounce. Thirdly, the fame truth may be prov'd by the experiments formerly mention'd, of the fwelling of a bladder, and the breaking of an hermetically feal'd glafs, upon the recefs of the ambient air ; thefe experiments having been already vindicated from Mr. Hobbs's very improbable folutions. Fourthly, the fame may be prov'd, by thebreaking of weak, or ill-figur'd receivers, inwards; of which, on our hyporhefis, the reafon is clear; but not on his. And, fifthly, what I contend for, may be fufficiently prov'd from this one phenomenon; that tho', if the receiver being full of common air, the key be turn'd under water, the water will not at all afcend at the open orifice; yet the like being done, after the exhauftion of the receiver, we have had feveral gallons of water violently impell'd into the cavity of the glafs : which could not happen, if it were full of air, both in regard there can be no probable caufe affign'd why the water fhould be thus fpurted up; and becaufe the receiver being already full of air, either two bodies muft be contain'd in one place, and fo we muft allow penetration of dimenfions; or elfe commonair, to which glafs is impervious, muft pafs thro' the water; which, we conclude, it does not, becaufe no fuch bubbles are made in the external water, as would appear, if common air pafs'd thro' it. Nay, fo little of this common air was, fometimes, left in the globe ufed atMagdeburg, that when the water was fuffer'd to rufh in, it reduced the air into lefs than the thoufandth part of the capacity of the globe; and even if our receiver be unftopp'd, not under water, but in the open air, the ambient air will, violently, prefs in, with a great noife; durable enough to argue, that the glafs was far from being full of fuch air before.

And thus we may argue againt Mr. Hobbs, if he would have the engine, when we call it exhzufted, fill'd with common air; as his words feem to intimate. But becaufe, by fome other paffages of this dialogue, he may be favourably thought to mean, that the pure air is that which gets in by the fides of the fucker, into the pump, and fo into the receiver, let us confider his explanation in this fenfe alfo. I defire it may be obferv'd, that if Mr. Hobbs takes the air in this fecond fenfe, he does not oppofe what I have deliver'd; the air, I pretend to be pump ${ }^{2} d$ out of the receiver, being the common air, which confifts; in great part, of groffer corpufcles, than the xthereal fubftance. Yet, even this explanation will be liable to the two firft inconveniencies, lately objected againft the other, in favour of the vacuifts; and to feveral objections befides. : obferve, again, that tho the pump be kept all the while under waters.

The Preumatical Experiments defenita.

puzuarics.yet the exhauftion of the cylinder, and receiver, will proceed as ind as in the open air. I demand, then, how the pure air gets in by the fies of the fucker, immers'd in water? I prefume, for want of a more plarfible anfwer, Mr. Hobbs will here fay, that the air paffes thro' the boy of the water, to fill up the deferted fpace, that muft, otherwife, be raid But then I appeal to any rational man, whether I am obliged to belier fo unlikely a thing, upon a bare affirmation; for he does not fo much as pretend, by any phenomenon, to countenance this affertion : and the: are phenomena that make againft it. Many experiments fhew us, tha when air palles thro' water, it makes bubbles there, which, in cur cafe, do not appear. Befides, why fhould not the outward air, rather impel the water, as we fee it frequently does, than be fuppos'd io dive fo ftrangely and imperceptibly thro' it? When, alfo, the throughty exhaufted receiver is unftopp'd, under water, he, who obferves how the water rufhes in with a ftream, as big as the paffage admits, will hardiy imakine, that at the fame time, as much air as water can pafs thro' the fame orifice unperceiv'd. But, it may be faid, in Mr. Hobbs's behalif that either his explanation, or a vacuum, mult be admitted. To which I reply, firft, that he has not evinc'd there can be no vacuum. Nest, that we have made it probable, that, by his explanation, he does not avoid the neceffity of a vacuum. And, thirdly, that a plenift, having recourfe m Mr. Hobbs's precarious diving of the air, may, more probably, decline the neceflity of yielding a vacuum, by faying, that the xther is, by the impulfe of the deprefs'd fucker, and the refiftance of the ambient bodies, fqueez'd thro the pores of the glafs, or cylinder, into the cavity of the vefieh, as faft as room is there made for it. And, I confefs, I wonder that Mr. Hobbs fhould be fo averfe to this way of folving the objection, fince he fuppofes the parts of the air to be infinitely fubtile; which, if they are, no pores can be too narrow to admit them. But, to prefs this no farther, I mutt here take notice, that whether the cavity of the receiver, be refolrd to be empty, or full of Mr. Hobbs's xthereal body, or the Cartefian celeftial matter; the violent ruhing in of the water, when the veffel is unfoppd under that liquor; with feveral other phenomena, which cannot be afcrib'd to the fubtile matter within; fufficiently argue, that there is, in the exterual air, a far greater power of preffing inwards, than there is within of refifting; and, confequently, fuch a weight, or fpring in that air, as we plead for.

Mr. Hobbs, too, will have the air, impell'd by the fucker, to move very fwiftly betwixt the top and bottom of it ; as alfo, when it gets into the cavity of the receiver; yet, when a light bladder is fufpended in the cavity of the receiver, it betrays no fuch motion : nay, the flame of a taper was not blown out, nor ftirr'd by this fappofed wind; and froke, produced in the exhaufted receiver, was not, by this vehement motion of the air, blown about the receiver. But, if the common external air be admitted ft the ftop-cock, that, indeed, will ruth in with noife and violence, and whirl about the bladder, which hung guietly before.

The Pneumatical Experiments défended.

In explaining the Torricellian experiment, he fpends many words to Pxzuxarice. prove, that the place deferted by the fufpended mercury, is full of air. But this expofition fuppofes a plenum : and, if he takes the air in the common fenfe of the word, 'tis manifeftly-repugnant, to Several phenomena; as that, if the experiment be carefully made, we may, by inclining the tube, impel the mercury from its wonted fation to the top; which will not happen, in cafe the air were, before inclination, Jet into the deferted face; that if, when the mercury is fettled at its ufual Itation, the tube be lifted up out of the ftagnant quick-filver, the outward air will drive up the heavy mercurial cylinder, oftentimes, with force enough to beat out the feal'd end; and, laftly, the quick-filver refting at its ftandard height, if you carefully ftop the lower orifice, under the furface of the ftagnant quick-filver, and then lifting up the tube into the air, keep it well ftopp'd, and firft deprefs one end, and then the other; the quick-filver will fall againft the depref'd end of the tube, with a furprizing force and fwiftnefs: whereas, if unftopping the tube, whilft the fame quantity of mercury remains in it, you let the outward air into the cavity, unpoffefs'd by the meroury; and then, again, ftop the orifice with your finger, and proceed as before, you thall perceive the motion of the included fluid, to be much flower, and. lefs violent than. formerly, by reafon of the refiftance of the admitted air; which, alfo, manifeftly difclofes itfelf, by the conflict, and bubbles produced betwixt the air and quick-filver, in haftily paffing by one another, to the oppofite ends of the tube. But, Mr. Hobbs, not pretending that any attraction intervenes in the cafe; I fee not how he can poffbly make out, to omit other phenomena, the gradual defcent of the mercury, in the tube, beneath its wonted. ftation, upon the exhauftion of the receiver; and the re-afcent of the fame; in the fame tube, as.we let in more or lefs of the outward air, withoue admitting as much of fpring or preffure in the air, as I contend for. The weight of the terreftrial particles, by which he endeavours to account for the quick-filver's falling lower at the top, than at the bottom of a hill, will by no means ferve his turn ; it being utterly improbable that the air, contain'd in fo little a veffel as one of our receivers, can, by its weight, counter-balance fo ponderous a cylinder of quick-filver:: whence: we may be allow'd to argue; that the air fuftains it by fuch a preffure, or fpring, as we plead for, whether that proceed from the texture of the aerial particles, from their motion, or from both.

The laft of Mr. Hobbs's principal explanations, is of the experiment wherein above 1.00 pound weight, being hung at the deprefs'd fucker, the fucker was, notwithftanding, impell'd up again, by the air, to the top of the cylinder. This phenomenon Mr. Hobls accounts for thus. "The air being beaten back by the rerraction of thefucker, and finding no " void place, wherein to difpofe of itfelf, befides that which it may make, * by driving out other bodies, is, by perpetual trufion, at length, forc"d " into the cylinder, with fo great fiviftnels, between the concave furface ". of the cylinder, and the. convex furface of the fucker, as may anfwer

[^0]: - M. An mans thews, that the fame degree of heat, how fmall foever, may perpetually increafe the force of the air's Spring, provided that air be continually prefs d by a weighe fill greater and greater ; and that any parcel of air, how fmall

[^1]: zroukg ethat Liquor is capuble of, sho'eyerfo Foag dorsin'd, upon u vehement Gre, incrasTes stef foring of the air as much as about ${ }_{i}^{5}$ of the weight of the atmofphere, Shewn by the barometer, in fpring, or autumn:

[^2]: Vol. II.

[^3]: * M. Homberg is of opinion, that water enters fuch narrow pores of animal fubftances, as will not admit the air, only becaufe it moiftens and diffolves the glutinous matter of the fine fibres of the membranes, and alfo renders them more pliable and diftra民ile; which are things,

[^4]: * Something has, from this hint, been offer ${ }^{\circ} d$, with a very fpecious and plaufible thew of reafon, to account for mufcular motion; but when thoroughly confider'd, it fails in Colving the phenomenon. And the laf beat writer on this fubjed, the

[^5]: \dagger From a variox of experiments, relating to the attrition of bodies in vacuo, made by the late Mr. Hamkbere, is appears,

[^6]: Vol. II.
 Y y y
 feemed

[^7]: Vol. II.

[^8]: is amprofd ait. wind-gun, above-defcribed; and, immediately, fo far condens'd the airs, till it was reduced to about the twentieth part of its. fpace: then I prefently difcharged that air, and the elliptic hole being open'd, I fufected that the moufe had been only a little convulfed; but, when he was takens out, there were no figns of life in him. Whether the caufe of bis death were to be afcribed to the narrownefs. of the recciver, or to the comprefure of the air, is a quettion.

[^9]: Tlies, and (62.) July 9. 1677. I put goosberries into thsee exhaufted receiartifioial efr fors. toiburien

[^10]: * "The open air, in which we breathe," Cays Sir.lf. Newton, "is 8 or 900 times " lighter than water, and by confequence " 8 or 900 times rarer. And fince the air "is comprefs'd by the weight of the in"cumbent atmolphere, and the denfity "of the uir is proportionable to the "c compreffing force, it follows, by com"A putation, that at the height of about 7 "Engligh miles from the earth, the air is

