Corrections to Linear Systems – January 2002

p. xvi: line 2-3

should read: "...should also prove valuable to researchers and practitioners for self-study. Many simple examples..."

p. 15: Figure 1.3 eliminate line segment crossing capacitor C_1 .

p. 24: Figure 1.9(a) move (t_0, x_0) closer to the center point.

p. 39: line after monkowski's Inequality it should read p = q = 2.

p. 46: line 8 reduce space between $|x_i - x_{i0}| \le b_i$ and i = 1, ..., n.

eliminate paragraphs beginning with "We will view $y \in Y$ and $u \in U$ as system..." on p. 69, and ending with "...called the *unit pulse response* (or the *unit impulse response*) of a linear discrete-time system." Replace with:

We will view $y \in Y$ and $u \in U$ as system outputs and system inputs, respectively, and we let T: $U \to Y$ denote a linear transformation that relates u to y. We first consider the case when u(k) = 0for $k < k_0, k, k_0 \in Z$. Also, we assume that for $k > n \ge k_0$, the inputs u(k) do not contribute to the system output at time n (i.e., the system is *causal*). Under these assumptions, and in view of the linearity of T, and by invoking the representation of signals by (16.8), we obtain for $y = \{y(n)\}, n \in Z$, the expression $y(n) = T(\sum_{k=-\infty}^{\infty} u(k)\delta(n-k)) = T(\sum_{k=k_0}^{n} u(k)\delta(n-k)) = \sum_{k=k_0}^{n} u(k)T(\delta(n-k)) = \sum_{k=k_0}^{n} h(n,k)u(k), n \ge k_0$, and $y(n) = 0, n < k_0$, where $T(\delta(n-k)) \triangleq (T\delta)(n-k) \triangleq h(n,k)$ represents the response of T to a unit pulse (resp.,discrete-time impulse or unit sample) occurring at n = k.

When the assumptions in the preceding discussion are no longer valid, then a different argument than the one given above needs to be used to arrive at the system representation. Indeed, for *infinite sums*, the interchanging of the order of the summation operation Σ with the linear transformation T is no longer valid. We refer the reader to a paper by I. W. Sandberg ("A Representation Theorem for Linear Discrete-Space Systems", *IEEE Transactions on Circuits and Systems* - *I*, Vol. 46, No. 5, pp. 578-580, May 1998) for a derivation of the representation of general linear discrete-time systems. In that paper it is shown that an extra term needs to be added to the right-hand side of equation (16.9), even in the representation of *general*, linear, time-invariant, causal, discrete-time systems. (In the proof, the Hahn-Banach Theorem (which is concerned with the extension of bounded linear functionals) is employed and the extra required term is given by $\lim_{n\to\infty} T(\sum_{k=-\infty}^{-c_l-1} u(k)\delta(n-k) + \sum_{k=c_l+1}^{\infty} u(k)\delta(n-k))$ with $c_l \to \infty$ as $l \to \infty$. For a statement and

p. 69: line 21 - p. 70: line 4

proof of the Hahn-Banach theorem, refer, e.g., to reference [12, pp. 367-370] given at the end of this chapter.) In that paper it is also pointed out, however, that cases with such extra *non-zero* terms are not necessa rily of importance in applications. In particular, if inputs and outputs are defined (to be non-zero) on just the non-negative integers, then for causal systems no additional term is needed (or more specifically, the extra term is zero), as seen in our earlier argument. In any event, *throughout the present book we will concern ourselves with linear discrete -time systems which can be represented by equation (16.9)* for the single-input/single-output case (and appropriate generalizations for multi-input/multi-output cases).

p. 71: line 4 from bottom of pageshould read: "A discrete-time system described by (16.15) is said to be..."

p. 74: line 17-20 delete sentence beginning with "To put it another way..." and ending with "...sequence of functions is not even defined."

p. 112: table change j_i to j_1 .

p.125: line 7 from bottom of page should read "...we note that condition (2.102) written as $(f - g)^l (\lambda_i) = 0$ implies that..."

p. 129: line 3 from bottom of page change 1 in column 3, row 3 of \overline{A} matrix to 2.

p. 130: line 13 change Subsection G to Subsection O.

p. 134: line 14 should read: "...*primary decomposition theorem* presented in Subsection M..."

p. 139: line 6 from bottom of page change coefficient α to α_i (insert subscript *i*).

p. 140: line 2 change Subsection 3.1B to Subsection 2.2B.

p.146: line 6 should read: "Substituting $\phi(t_0) = \Phi(t_0, t_0)\alpha + \phi_p(t_0)$, we obtain $\alpha = \phi(t_0) - \phi_p(t_0) = x_0 - \phi_p(t_0)$."

p.155: Table 4.2 the fourth line of the second column should read f(t-a)p(t-a), a > 0. p. 168: line 9-10
should read: "...we take the Laplace transform of both sides of (6.12), we obtain..."
line 5 from bottom of page
should read: "...obtained (6.20) directly by taking the Laplace transform of *H*(*t*) given in (6.12)."

p. 172: line 2 transfer function equation numerator should be -5s - 1 instead of -3s - 1.

p. 179: Table 7.2 in column 2, table heading should be $\{f(k)\}, k \ge 0$.

p. 184: line 4 should read: " $x(t_{k+1}) = \Phi(t_{k+1}, t_k)x(t_k) + ...$ "

p. 194: line 9-10 should read: "...representations of a vector v^1 ..."

p. 198: line 20-22 (in Exercise 2.43) should read: Plot the components of the solution ϕ . For different initial conditions $x(0) = (a, b)^T$..."

p. 199 : line 17 = $v_i \tilde{v}$ should be $v_i \tilde{v_i}$.

p. 200: line 19 (in Exercise 2.53) replace parentheses with square brackets on column vectors in (a). It should read: "For $x(0) = [1,1,1,1]^T$ and for $u(t) = [1,1]^T t \ge 0,...$ "

p. 201: Exercise 2.58 replace in system 1 $\begin{bmatrix} 1, & 0 \end{bmatrix} u(k)$ by u(k). delete in system 2 $\begin{bmatrix} 0, & 1 \end{bmatrix} u(k)$.

p. 203: line 6 in part (b), (ii) should read: " $H(s) = \omega_n^2/(s^2 + 2\zeta\omega_n s + \omega_n^2)$,".

p. 205: line 22 (in Problem 2.66(b)) should read: "...where $X \in \mathbb{R}^{p \times n}$ and $Y \in \mathbb{R}^{n \times m}$..."

p. 208: line 1 should be x_2 instead of x_3 .

p. 208: Exercise 2.75 in entry (4,5) should be k_3 instead of k_2 . line 4 in column 1, row 4 of matrix, replace $\frac{k_1}{m_1}$ with $\frac{k_1}{m_2}$.

p. 209: line 4 (in (a))

last element of vector should be $x_5 - x_3$ instead of $x_5 - x_1$.

p. 214: line 6 should read: "...will now be studied at length."

p. 230: line 12-17 from bottom of page

delete sentences beginning with "This implies that the null space of ..." at line 17, ending with " \dots so $x_2^T x_1 \neq 0$ ", on line 12. Replace with:

This implies that the null space of $W_r(t_0,t_1)$ is nonempty. W_r is symmetric, and so the range of W_r is the orthogonal complement of its null space (prove this). Thus for any $u \in R(W_r)$ and $v \in N(W_r)$, $u^T v = 0$. Also, we may write $x_1 = x'_1 + x''_1$ with $x'_1 \in R(W_r)$ and $x''_1 \in N(W_r)$ ($x''_1 \neq 0$ since $x_1 \notin R(W_r)$). Then there exists $x_2 \in N(W_r)$ such that $x_2^T x''_1 \neq 0$, which implies $x_2^T x_1 \neq 0$.

p.236: line 13-18 from bottom of page

delete sentences beginning with "Indeed, this assumption implies that the null space of W_r is nonempty, ..." at line 18, ending with "Therefore $x_2^T x_1 \neq 0$ " on line 13. Replace with: This implies that the null space of W_r is nonempty. W_r is symmetric, and so the range of W_r is

This implies that the null space of W_r is nonempty. W_r is symmetric, and so the range of W_r is the orthogonal complement of its null space (prove this). Thus for any $u \in R$ (W_r) and $v \in N$ (W_r), $u^T v = 0$. Also, we may write $x_1 = x'_1 + x''_1$ with $x'_1 \in R$ (W_r) and $x''_1 \in N$ (W_r) ($x''_1 \neq 0$ since $x_1 \notin R$ (W_r)). Then there exists $x_2 \in N$ (W_r) such that $x_2^T x_1'' \neq 0$, which implies $x_2^T x_1 \neq 0$.

p. 241: line 5 from the bottom should be $s_i I - A$ instead of sI - A.

p. 253: line 10 from bottom

should read: "...for every finite t. Therefore, in view of (3.22)..."

p. 254: line 9 should read: "...(3.24) is satisfied. In view of Lemma 3.6, (3.25) follows..."

p. 259: line 4 replace R_m by R^{pn} .

p. 261: line 17 should read: "...implies that $R_{cn} = \{0\}$ or that the system is constructible."

p. 262: line 18 should read: "... $[\tilde{y}^T(-n), \dots, \tilde{y}^T(-1)]^T$. Equation (3.56) must be solved for..." p. 270: line 11-12 from bottom of page

should read: "*Proof.* For details of the proof, refer to [8] and to R.E. Kalman, "On the Computation of the Reachable/Observable Canonical Form,"

SIAM J. Control and Optimization, vol. 20, no. 2, pp. 258-260, 1982, where further clarifications to [8] and an updated method of selecting Q are given."

p. 280: line 6 from bottom of page insert space or comma between $qA^{i-1}B = 0$ and i = 1, ..., n-1.

p. 302: line 4 replace both occurrences of $\lambda(s)$ with $\Lambda(s)$.

p. 313: Figure 3.6 add distance *y* demarcation to right of figure, extending from top to bottom of drawing.

p. 335: line 7 add filled box at end of line after "...which is Ackermann's formula, (2.21)."

p. 336: line 14 change subscript of *A* from 12 to 22.

p. 338: line 20 should read: "with $\begin{bmatrix} M_j \\ -D_j \end{bmatrix}$ a...".

p. 376: line 26-28 (in Exercise 4.15) remove indentations before "Remark," as it pertains to all four parts of the Exercise.

p. 379: Exercise 4.26(b) should be C = [1, 0, 1] instead of C = [1, 1]

p. 396: line 3-4 column 3, row 3 of the first and second matrices should be modified to be $CA^{2n-2}B$ and $\overline{C}\overline{A}^{2n-2}\overline{B}$, respectively.

p.405: line 7 replace $+x_1^{(n)}$ by $-x_1^{(n)} + x_1^{(n)}$ p.406: line 3 should read: " $H(s) = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s + a_0}$ ".

p. 409: line 19

row 2, column 2 of the D(s) matrix should be "s" instead of 2.

p. 409: line 16 from bottom entry (2,2) in D(s) should be *s* instead of 2.

p. 419: last line on page in right hand side of equation (4.47), replace $\delta_{m_H(s)}$ with $m_H(s)$,

p. 430: line 8 from bottom of page (in Exercise 5.22) eliminate parentheses from denominator of equation for transfer function H(s). line 5 from bottom of page replace \dot{x} with \dot{x} .

p. 431: Figure 5.10 add *S* to upper right hand corner of block diagram.

line 7

part (b) should read: "Determine a state-space representation for the *entire* system *S*, using your answer in (a)."

p.478: line 22 equation (8.11) should read: " $||\phi(t)|| \le (\frac{c_2}{c_1})^{1/2} ||x_0|| e^{1/2(\gamma/c_2)(t-t_0)}, t \ge t_0 \ge 0,$ "

p. 507: line 5 from bottom of page should read: "If we now assume that (10.23) is controllable (from-the-origin) and observable..."

p.536: line 15 should read: "Alternatively, it can be shown that any crd $G^*_R(s)$ of $P_1(s)$ and $P_2(s)$ [or a cld $G^*_L(s)$..."

p. 547: line 8 from bottom of page should read: "The Eliminant Matrix..."

p. 554: line 7 should read: "at t = 0. (This is true if and only if $P^{-1}(q)$..."

p. 563: line 3 should read: "...the equilibrium x = 0 of the free system $\dot{x} = Ax$ is asymptotically stable."

p. 610: Figure 7.8 in caption, move r = 0 to end of previous line.

p. 613: line 12 from bottom of page remove minus sign so to read $(X'_1, Y'_1) = (X'_0, Y'_0)$. p. 621: line 5 from bottom should be $\tilde{D}_2^{\prime -1}$ instead of \tilde{D}_2^{-1} in H_2

p. 625: line 22 should be Theorem 4.21 instead of Theorem 4.20.

p. 625: line 5, equation (4.160) should be

$$C = (X'_1 - K'\tilde{N}')^{-1}[-(X'_2 + K'\tilde{D}'), X'],$$

p. 625: line 6 should be ... Also, $U'U'^{-1} =$

p. 633: line 9 from bottom of page should be Exercises 7.23, 7.26 instead of Exercises 7.23, 7.2b.

p. 637: line 9 should read: "...in the Fractional Approach to Design," *Int. J. Control...*"

p.639: line 11 (in Exercise 7.3(d))
should read: "(d) If U(s) and V(s) (in (c)) are unimodular..." line 29-30 (in Exercise 7.6)
indent second and third lines of part (a). line 34 (in Exercise 7.7)
indent second line of part (a).