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Abstract— During the past several years, there have been
increasing research activities in the field of stability analysis
and switching stabilization for switched systems. This paper
aims to briefly survey recent results in this field. First, the
stability analysis for switched systems is reviewed. We focus on
the stability analysis for switched linear systems under arbitrary
switching, and we highlight necessary and sufficient conditions
for asymptotic stability. After a brief review of the stability
analysis under restricted switching and the multiple Lyapunov
function theory, the switching stabilization problem is studied,
and a variety of switching stabilization methods found in the
literature are outlined. Then the switching stabilizability problem
is investigated, that is under what condition it is possible to
stabilize a switched system by properly designing switching
control laws. Note that the switching stabilizability problem has
been one of the most elusive problems in the switched systems
literature. A necessary and sufficient condition for asymptotic
stabilizability of switched linear systems is described here.

Keywords: Switched systems, Stability, Stabilization, Lya-
punov function.

I. INTRODUCTION

ASwitched system is a dynamical system that consists of
a finite number of subsystems and a logical rule that

orchestrates switching between these subsystems. Mathemati-
cally, these subsystems are usually described by a collection
of indexed differential or difference equations. One convenient
way to classify switched systems is based on the dynamics
of their subsystems, for example continuous-time or discrete-
time, linear or nonlinear and so on.

A continuous-time switched nonlinear system can be mod-
eled as

ẋ(t) = fi(x(t), u(t)), t ∈ R+, i ∈ I = {1, · · · , N}
where the state x ∈ Rn, the control u ∈ Rm, R+ denotes
non-negative real numbers, the finite set I is an index set and
stands for the collection of discrete modes. Similarly, we can
represent a discrete-time switched system as a collection of
difference equations

x[k + 1] = fi(x[k], u[k]), k ∈ Z+, i ∈ I
where Z+ stands for non-negative integers.

The logical rule that orchestrates switching between these
subsystems generates switching signals, which are usually
described as classes of piecewise constant maps, σ : R+ → I
(or sequences σ : Z+ → I). The logical rules that generates
the switching signals constitute the switching logic, and the
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index i = σ(t) is called the active mode at the time instant t.
In general, the active mode at t may depend not only on the
time instant t, but also on the current state x(t) and/or previous
active mode σ(τ) for τ < t. Accordingly, the switching logic
is usually classified as time-controlled (depends on time t
only), state-dependent (depends on state x(t) as well), and
with memory (also depends on the history of active modes).

By requesting a switching signal be piecewise constant,
we mean that the switching signal σ(t) has finite number
of discontinuities on any finite interval of R+. This actually
corresponds to no-chattering requirement for the continuous-
time switched systems; note that this is not an issue in
the discrete-time case. This assumption makes sense when
we consider the stability analysis problem, for which the
sliding-like motion can be easily identified before hand (by
checking the direction of the vector fields along the switching
surfaces) and may be incorporated by defining its equivalent
dynamics [27] as an additional mode [20]. However, when
considering stabilization issues, one may need to deal with
sliding motions explicitly, which may arise either on purpose
or unintentionally. We will revisit this sliding motion issue
later in the discussion of switching stabilization problems.

Properties of this type of model have been studied for the
past fifty years when considering engineering systems that
contain relays and/or hysteresis. The primary motivation for
studying such switched systems comes partly from the fact
that switched systems and switched multi-controller systems
have numerous applications in the control of mechanical
systems, process control, automotive industry, power systems,
aircraft and traffic control, and many other fields. In addition,
there exists a large class of nonlinear systems which can
be stabilized by switching control schemes, but cannot be
stabilized by any continuous static state feedback control law
[11]. Switched systems with all subsystems described by linear
differential or difference equations are called switched linear
systems, and have attracted most of the attention [2], [4], [5],
[32], [41]. Recent efforts in switched linear system research
typically focus on the analysis of dynamic behaviors, such as
stability [20], [32], [41], [45], [47], controllability, reachability
[39], [40], [83], [84] and observability [4], [22], [34] etc.,
and aim to design controllers with guaranteed stability and
performance [5], [13], [41], [65], [82], [88].

In this paper, we will focus on stability issues for au-
tonomous switched linear systems, i.e., without continuous-
variable control input u. In particular, we are interested
in switched linear systems, the subsystems of which are
continuous-time linear time-invariant (LTI) systems

ẋ(t) = Aix(t), t ∈ R+, i ∈ I (1)
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or a collection of discrete-time LTI systems

x[k + 1] = Aix[k], k ∈ Z+, i ∈ I (2)

where the state x ∈ Rn and Ai ∈ Rn×n for all i ∈ I.
Note that the origin xe = 0 is an equilibrium (maybe

unstable) for the systems described in (1) and (2). Our main
concern here is to understand the conditions that can guarantee
the stability of the switched linear system.

The stability issues of such switched systems include sev-
eral interesting phenomena. For example, even when all the
subsystems are exponentially stable, the switched systems may
have divergent trajectories for certain switching signals [20],
[46]. Another remarkable fact is that one may carefully switch
between unstable subsystems to make the switched system
exponentially stable [20], [46]. As these examples suggest,
the stability of switched systems depends not only on the
dynamics of each subsystem but also on the properties of
switching signals. Therefore, the stability study of switched
systems can be roughly divided into two kinds of problems.
One is the stability analysis of switched systems under given
switching signals (maybe arbitrary, slow switching etc.); the
other is the synthesis of stabilizing switching signals for a
given collection of dynamical systems.

In the current paper, we will briefly overview some recent
results on the stability and stabilizability of switched systems
from these two aspects. First, stability analysis results for
switched systems are reviewed. In particular, we focus on the
stability analysis for switched linear systems under arbitrary
switching in Section II, and we highlight necessary and
sufficient conditions for asymptotic stability. Since there exist
excellent reviews on the stability under restricted switching
(like dwell time and average dwell time [32], [46]), multi-
ple Lyapunov functions [20], [59] and piecewise quadratic
Lyapunov functions [20], we will review these topics very
briefly in Section III. In Section IV, the switching stabilization
problem is studied, where a recent a necessary and sufficient
condition for the switching stabilizability of a switched linear
system is highlighted.

The stability issues of switched systems, especially switched
linear systems, have drawn a lot of attentions in the recent
decade. There have been several excellent survey papers on
the stability of switched systems; see for example the survey
papers [20], [32], [47], [59], the recent books [41], [45] and
the references cited therein. Since their publications, however,
this field has seen a large amount of activities and new results,
and this paper aims to briefly report and survey these recent
results and new discoveries in this field. The authors hope
that the current paper provides useful additional results and
represents a meaningful complementary resource to previous
survey papers [20], [32], [47], [59].

II. STABILITY ANALYSIS UNDER ARBITRARY SWITCHING

For the stability analysis problem, the first question is
whether the switched system is stable when there is no
restriction on the switching signals. This problem is usually
called stability analysis under arbitrary switching. For this
problem, it is necessary to require that all the subsystems are

asymptotically stable. However, even when all the subsystems
of a switched system are exponentially stable, it is still possible
to construct a divergent trajectory from any initial state for
such a switched system. Therefore, in general, the above
subsystems’ stability assumption is not sufficient to assure
stability for the switched systems under arbitrary switching,
except for some special cases, such as Ai being pairwise
commutative (AiAj = AjAi for all i, j ∈ I) [63], [94],
Ai symmetric (Ai = AT

i for all i) [95], or Ai normal
(AiA

T
i = AT

i Ai for all i) [97]. On the other hand, if there
exists a common Lyapunov function for all the subsystems,
then the stability of the switched system is guaranteed under
arbitrary switching. This provides us with a possible way to
solve this problem, and a lot of efforts have been focused on
the common quadratic Lyapunov functions.

A. Common Quadratic Lyapunov Functions

The existence of a common quadratic Lyapunov function
(CQLF) for all its subsystems assures the quadratic stability
of the switched system. Quadratic stability is a special class of
exponential stability, which implies asymptotic stability, and
has attracted a lot of research efforts due to its importance in
practice. It is known that the conditions for the existence of a
CQLF can be expressed as linear matrix inequalities (LMIs)
[9]. Namely, there exists a positive definite symmetric matrix
P , P ∈ Rn×n, such that

PAi + AT
i P < 0, ∀i ∈ I, (3)

for the continuous-time case, or

AT
i PAi − P < 0, ∀i ∈ I, (4)

for the discrete-time case, hold simultaneously. However, the
standard interior point methods for LMIs may become ineffec-
tive as the number of modes increases. In [48], an interactive
gradient decent algorithm was proposed, which could converge
to the CQLF in finite number of steps. In addition, the
authors showed that the convergence rate could be improved
by introducing some randomness; here the convergence is in
the sense of probability one.

While numerical methods to solve these LMIs for a finite
number of stable LTI systems have existed for some time,
determining algebraic conditions (on the subsystems’ state
matrices) for the existence of a CQLF remains a challenging
task. Since these kind of conditions should be easier to verify,
and, more importantly, may give us valuable insights in the
stability problem of an arbitrary switching system, there have
been various attempts to derive algebraic conditions for the
existence of a CQLF [45], [46](Chapter 2).

In [77], [79], Shorten and Narendra considered a second-
order switched LTI systems with two modes; they proposed
a necessary and sufficient condition for the existence of a
common quadratic Lyapunov function. The results in [77],
[79] were based on the stability of the matrix pencil formed by
the pair of subsystems’ state matrices. Given two matrices A1

and A2, the matrix pencil γα(A1, A2) is defined as the one-
parameter family of matrices γα(A1, A2) = αA1 +(1−α)A2,
α ∈ [0, 1]. The matrix pencil γα(A1, A2) is said to be Hurwitz
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if its eigenvalues are in the open left half plane for all
0 ≤ α ≤ 1. Formally, the results for the pair of second order
LTI systems in [77]–[79] can be summarized by the following
theorem.

Theorem 1: [77]–[79] Let A1, A2 be two Hurwitz matrices
in R2×2. The following conditions are equivalent

1) there exist a CQLF for (1) with A1, A2 as the two
subsystems;

2) the matrix pencils γα(A1, A2) and γα(A1, A
−1
2 ) are

Hurwitz;
3) the matrices A1A2 and A1A

−1
2 do not have any negative

real eigenvalues.
To generalize the above algebraic condition to higher di-

mensional systems turns out to be difficult. In [42], necessary
and sufficient algebraic conditions were derived for the non-
existence of a CQLF for an arbitrary switching systems
composed of a pair of third-order LTI systems. For a pair of
n-th order LTI systems, a necessary condition for the existence
of a CQLF was derived in [76], [79].

Theorem 2: [76], [79] Let A1, A2 be two Hurwitz matrices
in Rn×n. A necessary condition for the existence of a CQLF is
that the matrix products A1[αA1 +(1−α)A2] and A1[αA1 +
(1 − α)A2]−1 do not have any negative real eigenvalues for
all 0 ≤ α ≤ 1.

As a special case, consider a switched LTI system consisting
of two matrices differing by rank one, and the following
necessary and sufficient condition for the existence of a CQLF
was obtained in [76].

Theorem 3: [76] Let A1, A2 be two Hurwitz matrices in
Rn×n with rank(A2 − A1) = 1. A necessary and sufficient
condition for the existence of a CQLF for the switched system
(1) with A1, A2 as the two subsystems is that the matrix
product A1A2 does not have any negative real eigenvalues.
Equivalently, the matrix A1 + γA2 is non-singular for all
γ ∈ [0,+∞).

So far, our discussion on the existence of a CQLF has
been restricted to switched LTI systems consisting of only two
modes. However, in general, a switched system may contain
more than two subsystems. Obviously, a necessary condition
for the existence of a CQLF for a switched systems is that
every pair of its subsystems share a CQLF. Actually, the
existence of a CQLF for every pair of subsystems may also
imply the existence of a CQLF for the switched system in
certain special cases, e.g., second order positive systems [30].
Unfortunately, this does not hold in general. The existence
of a CQLF for a finite number of second order LTI systems
was investigated in [78], and it is interesting to observe that a
necessary and sufficient condition for the existence of a CQLF
is that a CQLF exists for every 3-tuple of systems. Formally,

Theorem 4: Let A1, A2, · · · , AN be a finite number of
Hurwitz matrices in R2×2 with a21i 6= 0 for all i. A necessary
and sufficient condition for the existence of a CQLF is that a
CQLF exists for every 3-tuple of systems {Ai, Aj , Ak}, i 6=
j 6= k, for all i, j, k ∈ {1, · · · , N}.

Recently, in [43], A tensor condition was introduced as
a necessary condition for the existence of a CQLF for the
general case, i.e., a switched system consisting of a finite
number of n-th order LTI systems. Interestingly, the tensor

condition was shown to be necessary and sufficient when the
switched system only contains a pair of subsystems. However,
for general cases of higher order and more than two modes,
necessary and sufficient conditions for the existence of a CQLF
for a switched LTI systems are still lacking and this remains
an open problem.

Alternatively, Liberzon, Hespanha and Morse proposed a
Lie algebraic condition in [46] for switched LTI systems,
which is based on the solvability of the Lie algebra generated
by the subsystems’ state matrices. It was shown that if the Lie
algebra generated by the set of state matrices Ai is solvable,
then there exists a CQLF, and the switched linear system is
stable under arbitrary switching. The Lie algebraic condition
was also extended to switched nonlinear systems [1], [46]
to obtain local stability results based on Lyapunov’s first
method. Most recently, global stability properties for switched
nonlinear systems were studied in [58], and a Lie algebraic
global stability criterion was derived based on Lie brackets of
the nonlinear vector fields. Interested readers may refer to [45],
[46], [56] for further details on the Lie algebraic conditions.

B. Switched Quadratic Lyapunov Functions

It is worth pointing out that the existence of a CQLF is only
sufficient for the stability of arbitrary switching systems. There
are examples [45] (Chapter 2) of systems that do not have a
CQLF, but are exponentially stable under arbitrary switching.
In general, the existence of a CQLF is only sufficient for the
asymptotic stability of switched linear systems under arbitrary
switching signals, and could be rather conservative.

Due to the conservatism of CQLFs, some attentions have
been paid to a less conservative class of Lyapunov func-
tions, called switched quadratic Lyapunov functions [17],
[23]. Basically, since every subsystem is stable, there exists a
positive definite symmetric matrix Pi that solves the Lyapunov
equation for each i-th subsystem (i ∈ I). Next, these matrices
Pi are patched together based on the switching signals σ(t)
to construct a global Lyapunov function as

V (t, x(t)) = xT (t)Pσ(t)x(t). (5)

Then, the stability checking for the arbitrary switched linear
systems can be performed by solving certain linear matrix
inequalities (LMIs) [9]. To illustrate the main idea, we outline
a result from [23] as follows.

Theorem 5: If there exist positive definite symmetric ma-
trices Pi ∈ Rn×n (Pi = PT

i ) and matrices Fi, Gi ∈ Rn×n

(i ∈ I), satisfying
[

AiF
T
i + FiA

T
i − Pi AiGi − Fi

GT
i AT

i − FT
i Pj −Gi −GT

i

]
< 0 (6)

for all i, j ∈ I, then the switched linear system (2) is
asymptotically stable. 2

With some pre-selections for the auxiliary matrices Fi and
Gi, the LMI (6) in Theorem 5 can be replaced either by

[
Pi AT

i Pj

PjAi Pj

]
> 0, (7)
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or [17] by
[ −Pi AiGi

GT
i AT

i Pj −Gi −GT
i

]
< 0. (8)

It is clear that when Pi = Pj for all i, j ∈ I, the switched
quadratic Lyapunov function becomes the CQLF. Therefore,
the stability criteria based on the switched quadratic Lyapunov
function generalizes the CQLF approach and usually gives us
less conservative results. However, it is worth pointing out
that the switched quadratic Lyapunov function method is still
a sufficient only condition.

C. Necessary and Sufficient Stability Conditions

In the sequel, we will provide some necessary and suf-
ficient conditions for the asymptotic stability of switched
linear systems under arbitrary switching signals [49]. This
is a relatively new result, which provides a solution for this
long standing problem. It shows that the asymptotic stability
problem for switched linear systems with arbitrary switching
is equivalent to the robust asymptotic stability problem for
polytopic uncertain linear time-variant systems, for which
several strong stability conditions exist.

Let us first recall a robust stability result for linear time-
variant systems with polytopic uncertainty

x[k + 1] = A(k)x[k] (9)

where A(k) ∈ A=̂Conv{ A1, A2, · · · , AN}. Here, Conv{·}
stands for convex combination. In other words, the state matrix
A(k) of the above linear time-variant system (9) is constructed
by a convex combinations (with time-variant coefficients) of
all the subsystems’ state matrices of the switched linear system
(2).

Lemma 1: [3] The linear time-variant system (9) is ro-
bustly1 asymptotically stable if and only if there exists a finite
integer n such that

‖Ai1Ai2 · · ·Ain‖ < 1,

for all n-tuple Aij ∈ {A1, A2, · · · , AN}, where j = 1, · · · ,n.
Here the norm ‖ · ‖ stands for the ∞ norm of a matrix [3].

Based on the above lemma, a necessary and sufficient condi-
tion for the asymptotic stability of switched linear systems (2)
can be expressed by the following theorem [50].

Theorem 6: A switched linear system x[k+1] = Aσ(k)x[k],
where Aσ(k) ∈ {A1, A2, · · · , AN}, is asymptotically stable
under arbitrary switching if and only if there exists a finite
integer n such that

‖Ai1Ai2 · · ·Ain‖ < 1,

for all n-tuple Aij
∈ {A1, A2, · · · , AN}, where j = 1, · · · ,n.

The sufficiency of the above condition is implied by
Lemma 1, and the necessity can be shown by contradiction
[50]. Notice that this condition coincides with the necessary
and sufficient condition for the robust asymptotic stability for
polytopic uncertain linear time-variant systems (9). Therefore,
we derive the following equivalence relationship between these
two problems.

1Here the robustness is with respect to the parametric uncertainties.

Proposition 1: The following statements are equivalent:

1) The switched linear system x[k +1] = Aσ(k)x[k] where
Aσ(k) ∈ {A1, A2, · · · , AN}, is asymptotically stable
under arbitrary switching;

2) the linear time-variant system x[k + 1] = A(k)x[k],
where A(k) ∈ A=̂Conv{ A1, A2, · · · , AN}, is robustly
asymptotically stable;

3) there exists a finite integer n such that

‖Ai1Ai2 · · ·Ain‖ < 1,

for all n-tuple Aij
∈ {A1, A2, · · · , AN}, where j =

1, · · · ,n. 2

It is quite interesting that the study of robust stability of
a polytopic uncertain linear time-variant system, which has
infinite number of possible dynamics (modes), is equivalent to
considering only a finite number of its vertex dynamics in an
arbitrary switching system. Note that this is not a surprising
result since this fact has already been implied by the finite
vertex stability criteria for robust stability in the literature, e.g.,
[6], [61]. By explicitly exploring this equivalence relationship,
we may obtain some “new” stability criteria for switched linear
systems using the existing robust stability results [6], [61]. For
example,

Theorem 7: The switched linear system x[k + 1] =
Aσ(k)x[k] where Aσ(t) ∈ {A1, A2, · · · , AN}, is asymptoti-
cally stable under arbitrary switching if and only if there exists
an integer m ≥ n and L ∈ Rn×m, rank(L) = n such that
for all Ai, i ∈ I, there exists Āi ∈ Rm×m with the following
properties:

1) AT
i L = LĀT

i ,
2) each column of Āi has no more than n nonzero elements

and

‖Āi‖∞ = max
1≤k≤m

m∑

l=1

|âkl| < 1.

2

Following similar arguments, the above equivalence also
holds for the continuous-time case. In particular, we may de-
rive a necessary and sufficient algebraic condition for arbitrary
switching linear system based on results from [61] for uniform
asymptotic stability of differential and difference inclusions,
namely,

Theorem 8: The following statements are equivalent:

1) The switched linear system

ẋ(t) = Aσ(t)x(t),

where Aσ(t) ∈ {A1, A2, · · · , AN}, is asymptotically
stable under arbitrary switching;

2) the linear time-variant system

ẋ(t) = A(t)x(t),

where A(t) ∈ A=̂Conv{ A1, A2, · · · , AN}, is robustly
asymptotically stable;

3) there exist a full column rank matrix L ∈ Rm×n, m ≥ n,
and a family of matrices {Āi ∈ Rm×n : i ∈ I} with
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strictly negative row dominating diagonal, i.e., for each
Āi, i ∈ I its elements satisfying

âkk +
∑

k 6=l

|âkl| < 0, k = 1, · · · ,m,

such that the matrix relations

LAi = ĀiL

are satisfied. 2

It is interesting to notice that the nice property of Āi

(i ∈ I) implies the existence of a common quadratic Lyapunov
function for the higher dimensional switched system. Unfortu-
nately, applying the above theorem is still difficult because, in
general, the numerical search for the matrix L is not simple.
However, this equivalence bridges together two research fields.
Therefore, existing results in the robust stability area, which
has been extensively studied for over two decades, can be
directly introduced to study the arbitrarily switching systems
and vice versa. For example, it is known in the robust stability
literature that the convergence, (global) asymptotic stability,
and (global) exponential stability are all equivalent for the
polytopic uncertain linear time-variant systems [6]. Hence,
these stability concepts are also equivalent for switched linear
systems under arbitrary switching. In the next subsection,
we will present a converse Lyapunov function for arbitrary
switching systems, which is known in the literature of robust
stability for linear time-variant systems.

D. Converse Lyapunov Theorem

In [19], a converse Lyapunov theorem was derived for the
globally uniformly asymptotically stable and locally uniformly
exponentially stable continuous-time switched systems with
arbitrary switching signals. It was shown that such arbitrary
switching system admits a common Lyapunov function.

Theorem 9: [19] If the switched system is globally uni-
formly asymptotically stable and in addition uniformly expo-
nentially stable, the family has a common Lyapunov function.
2

The converse Lyapunov theorem was extended in [55]
to switched nonlinear systems that are globally uniformly
asymptotically stable with respect to a compact forward in-
variant set. These converse Lyapunov theorems justify the
common Lyapunov function method being pursued. However,
they also suggest that the common Lyapunov function may
not necessarily be quadratic, although most of the available
results pertain to the existence of common quadratic Lyapunov
functions. Therefore, the study of non-quadratic Lyapunov
function, especially polyhedral Lyapunov function, has been
attracting more and more attentions.

Based on the equivalence between the asymptotic stability
of arbitrary switching linear systems and the robust stability
of polytopic uncertain linear time-variant systems, some well
established converse Lyapunov theorems can be introduced for
arbitrary switching linear systems. For example, the following
results were taken from [61].

Theorem 10: [61] If the switched linear system (2) is
exponentially stable under arbitrary switching, then it has

a strictly convex, homogenous (of second order) common
Lyapunov function of a quasi-quadratic form

V (x) = xT L(x)x,

where L(x) = LT (x) = L(τx) for all nonzero x ∈ Rn and
τ ∈ R. 2

Furthermore, we may restrict our search to include only
polyhedral Lyapunov functions (also known as piecewise
linear Lyapunov function) [8] as the following result pointed
out.

Theorem 11: [8], [61] If a switched linear system is asymp-
totically stable under arbitrary switching signals, then there
exists a polyhedral Lyapunov function, which is monotonically
decreasing along the switched system’s trajectories. 2

This converse Lyapunov theorem holds for both discrete-
time and continuous-time cases. Compared with previous con-
verse Lyapunov theorems, the above result has the following
advantages. First, it shows that one may focus on polyhedral
Lyapunov functions without loss of generality. Second, there
exist automated computational methods to calculate polyhedral
Lyapunov functions. In the sequel, we will briefly review some
results for calculating polyhedral Lyapunov functions.

Several methods for automated construction of a common
polyhedral Lyapunov function have been proposed in the
literature. Early results include [21], where the Lyapunov
function construction was reduced to the design of a balanced
polytope satisfying some invariance properties. An alternative
approach was given by Molchanov and Pyatnitskiy in [61],
where algebraic stability conditions based on weighted infinity
norms were proposed. A linear programming based method
for solving these conditions was given by Polański in [69].
Recently, in [92], Yfoulis and Shorten proposed a numerical
approach, called ray-griding, to calculate polyhedral Lyapunov
functions, which was based on uniform partitions of the state-
space in terms of ray directions.

Finding conditions to guarantee stability under all possi-
ble switching signals is also of practical importance. For
example, multiple-controller schemes are often employed to
satisfy different performance requirements. When one designs
multiple controllers for a plant, a desirable property is that
switching between these controllers does not cause instability.
The benefit of this property is that there is no need to worry
about stability when switching among controllers and one can
focus on gaining better performance. Hespanha and Morse [36]
showed that it is possible to guarantee such a nice property
for multiple controller design in certain cases. Actually, it was
shown that a CQLF exists for proper realizations for the plant
and the candidate controllers when these controllers are LTI
and asymptotically stabilize the LTI plant.

It is noticed that the results presented in this subsection
for arbitrary switching systems have been known in the
fields of absolute stability and robust stability of differential
or difference inclusions. These fields have been studied for
decades and contain many interesting results that can be
used to study arbitrary switching systems. An interesting line
of research in the absolute stability literature is based on
identifying the “most unstable” trajectory of a differential or
difference inclusion through variational principles [56]. The
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basic idea is simply: if the worst case trajectory is stable,
then the whole system should be stable as well. Interested
readers may refer to, e.g., [37], [56]–[58], [71], for details and
developments. Most recently, Teel and colleagues [12], [28]
developed theoretic results on the solutions, stability properties
and converse Lyapunov theorem for differential inclusions
with impulsive effects, called impulsive differential inclusions,
which can be seen as parallel extensions of classical results
of differential and difference inclusions, see [12], [28] and the
references therein.

III. STABILITY ANALYSIS UNDER RESTRICTED
SWITCHING

Switched systems, for example a closed-loop multiple con-
troller system, may fail to preserve stability under arbitrary
switching, but may be stable under restricted switching signals.
Restricted switching may arise naturally from the physical
constraints of the system, e.g., in the automobile gear switch-
ing, particular switching sequence/order (from first gear to
the second gear etc.) must be followed. Moreover, there are
cases when one may have some knowledge about possible
switching logic in a switched system, e.g., partitions of the
state space and their induced switching rules. This knowledge
may imply restrictions on the switching signals. For example,
there must exist certain bound on the time interval between
two successive switchings, which may be due to the fact that
the state trajectories have to spend some finite length of time in
traveling from the initial set to certain guard sets, if these two
sets are separated. With such kind of a priori knowledge about
the switching signals, we can derive stronger stability results
for a given hybrid system than in the arbitrary switching case
where we use, by necessity, worst case arguments.

This section will study the case when the switching signals
are restricted, and our problem is to study the stability of
the switched systems under these restricted switching signals.
With this problem solved, one could provide an answer to
the question regarding what restrictions should be put on the
switching signals in order to guarantee the stability of switched
systems. The restrictions on switching signals may be either
time domain restrictions (e.g., dwell-time, average dwell-time
switching signals that will be defined below) or state space
restrictions (e.g., abstractions from partitions of the state
space). Notice that the distinction between time-controlled
switching signals (trajectory independent) and trajectory de-
pendent switching signals is significant. In [33], Hespanha
showed that when the class of switching signals is time-
controlled, i.e., trajectory independent, uniform asymptotic
stability of switched linear systems is equivalent to exponential
stability. However, this equivalence does not hold for trajectory
dependent switching signals. A counter example is given in
[33].

A. Slow Switching

By studying the example in [20], [47] where divergent tra-
jectories are generated through switching between two stable
systems, one may notice that the unboundedness is caused
by the failure to absorb the energy increase caused by the

switching. In addition, when there is an unstable subsystem
(e.g., controller failure or sensor fault), if one either stays too
long at or switches too frequently to the unstable subsystem,
the stability may be lost. Therefore, a natural question is
what if we restrict the switching signal to some constrained
subclasses. Intuitively, if one stays at stable subsystems long
enough and switches less frequently, i.e., slow switching, one
may trade off the energy increase caused by switching or
unstable modes, and maintain stability. These ideas are proved
to be reasonable and are captured by concepts like dwell time
and average dwell time switching proposed by Morse and
Hespanha; see for example [33], [35], [93].

Definition 1: A positive constant τd ∈ R is called the dwell
time of a switching signal if the time interval between any two
consecutive switchings is no smaller than τd. 2

It can be shown that it is always possible to maintain
stability when all the subsystems are stable and switching is
slow enough, in the sense that τd is sufficiently large [62].
Actually, it really does not matter if one occasionally have a
smaller dwell time between switching, provided this does not
occur too frequently. This concept is captured by the concept
of “average dwell-time” in [35].

Definition 2: A positive constant τa is called the average
dwell time for a switching signal σ(t) if

Nσ(t, τ) ≤ N0 +
t− τ

τa

holds for all t ≥ τ ≥ 0 and some scalar N0 ≥ 0, where
Nσ(t, τ) denotes the number of mode switches of a given
switching signal σ over the interval (τ, t). 2

Here the constant τa is called the average dwell time and
N0 the chatter bound. The reason for a switching signal that
satisfies

Nσ(t, τ) ≤ N0 +
t− τ

τa

is considered having an average dwell time no less than τa is
because

Nσ(t, τ) ≤ N0 +
t− τ

τa
⇔ t− τ

Nσ(t, τ)−N0
≥ τa,

which means that on average the ‘dwell time’ between any two
consecutive switchings is no smaller than τa. It was shown in
[35] that if all the subsystems are exponentially stable then the
switched system remains exponentially stable provided that the
average dwell time is sufficiently large.

Theorem 12: [35] Assume that all subsystems in a
switched linear system are exponentially stable. There exists a
scalar τ∗a > 0 such that the switched system is exponentially
stable if the average dwell time is larger than τ∗a . 2

It is clear that switching signals with bounded (fixed) dwell
time also have bounded average dwell time by definition.
Therefore, the average dwell time scheme characterizes a
larger class of stable switching signals than (fixed) dwell time
scheme. Interested readers may refer to [32], [33] for further
details and a recent review on this topic.

The stability results for slow switching can be extended to
the discrete-time switched systems, where the dwell time τd

or average dwell time τa is counted as the number of sampling
periods [94], and similar results can be developed. In addition,



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. , NO. , 2008 7

it is possible to extend the discrete-time results to the case
where both stable and unstable subsystems coexist. When one
considers unstable dynamics, slow switching (i.e., long enough
dwell or average dwell time) is not sufficient for stability; it is
also required to make sure that the switched system does not
spend too much time in the unstable subsystems. The reason
to consider unstable subsystems in switched systems is be-
cause there are cases where switching to unstable subsystems
becomes unavoidable; such is the case, e.g., when a failure
occurs or there are packet dropouts in communication. It is
interesting to identify conditions under which the stability of
the switched systems is still preserved [53], [93], [94].

Although the dwell-time and average dwell time mainly
characterize the time-controlled switching signals, the slow
switching idea can be generalized to hybrid systems or state-
controlled switching signals. In [60], the authors studied the
stability analysis problem for a given hybrid automaton (called
structured hybrid automaton [60]) via abstracting it into a
‘similar’ switched system. The similarity is in the sense of
preserving the average dwell time property. Actually, the
authors developed abstraction schemes to guarantee that the
derived switched system has no greater average dwell time
than the original hybrid automaton. Under the assumption that
all the subsystems are stable, the stability of the abstracted
switched systems then implies the original hybrid automaton’s
stability. In the next subsection, we will explicitly characterize
the conditions on the state dependent switching signals and
give conditions for the global stability of the switched linear
systems.

B. Multiple Lyapunov Functions

The stability analysis with constrained switching has been
usually pursued in the framework of multiple Lyapunov func-
tions (MLF). The basic idea is that multiple Lyapunov or
Lyapunov-like functions, which may correspond to each single
subsystem or certain region in the state space, are concatenated
together to produce a non-traditional Lyapunov function. The
non-traditionality is in the sense that the MLF may not be
monotonically decreasing along the state trajectories, may
have discontinuities and be piecewise differentiable. The rea-
son for considering non-traditional Lyapunov functions is that
traditional Lyapunov functions may not exist for switched
systems with restricted switching signals. For such cases, one
may still construct a collection of Lyapunov-like functions,
which only require non-positive Lie-derivatives for certain
subsystems in certain regions of the state space, instead of
being negative globally. Since, the MLF theory is perhaps the
most well studied area in the switched system literature and
there already exist several excellent reviews, see e.g., [20],
[32], [47], [59], our discussion on this topic will be very brief.

There are several versions of MLF results in the literature.
A very intuitive MLF result [20] is illustrate in Figure 1,
for which the Lyapunov-like function is decreasing when the
corresponding mode is active and does not increase its value
at each switching instant.

Actually, one may obtain less conservative results. For
example, the switching signals may be restricted in such a
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Fig. 1. The switched system is asymptotically stable if the Lyapunov-like
functions’ values at the switching instants form a decreasing sequence.
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Fig. 2. For every subsystem, its Lyapunov-like function’s value Vi at the
start point of each interval exceeds the value at the start point of the next
interval on which the i-th subsystem is activated, then the switched system is
asymptotically stable.

way that, at every time when we exit (switch from) a certain
subsystem, its corresponding Lyapunov-like function value is
smaller than its value at the previous exiting time, then the
switched system is asymptotically stable [10]. In other words,
for each subsystem the corresponding Lyapunov-like function
values at every exiting instant form a monotonically decreasing
sequence. Alternatively, the decreasing tendency is captured
by the Lyapunov-like function’s value at the entering instant
instead. This case is illustrate in Figure 2.

Furthermore, the Lyapunov-like function may increase its
value during a time interval, only if the increment is bounded
by certain kind of continuous functions [91] as illustrated
in Figure 3. Interested readers may refer to the survey
papers [20], [47], [59] and their references. Note that all
the arguments for continuous-time hybrid/switched systems
can be extended to the discrete-time case without essential
differences.
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Fig. 3. The switched system can remain stable even when the Lyapunov-like
function increases its value during certain period.

C. Piecewise Quadratic Lyapunov Functions

The critical challenge of applying the MLF theorems in
practical switched/hybrid systems is how to construct a proper
family of Lyapunov-like functions. Usually this is a hard
problem. However, if one focuses on the linear case, piece-
wise quadratic Lyapunov-like function could be an attractive
candidate, since the stability conditions in the MLF theorems
can be formulated as LMIs [41], [68], [72], for which efficient
software solution packages exist.

Considering the switched LTI system (1), since we do not
assume that the subsystem ẋ(t) = Aix(t), is stable, there
may not exist a quadratic Lyapunov function in a classical
sense. However, it is still possible to restrict our search to
certain regions of the state space, say Ωi ⊂ Rn, and the
abstracted energy of the i-th subsystem could be decreasing
along the trajectories inside this region (there is no decreasing
requirements outside Ωi). Suppose that the union of all these
regions Ωi covers the whole state space; then we obtain
a cluster of Lyapunov-like functions. Broadly speaking, the
problem entails searching for Lyapunov-like functions whose
associated Ω-region cover the state space [18].

Assume that the state space Rn has a partition given by
{Ω1, · · · ,ΩN}, and these regions Ωi are defined a priori as a
restriction of the possible switching signals (state-dependent).
In this subsection, we present conditions on LMI for the
existence of quadratic Lyapunov-like functions of the form
of Vi(x) = xT Pix, assigned to each region Ωi.2 The results
in this subsection are mainly based on [67]. A Lyapunov-like
function Vi(x) = xT Pix needs to satisfy the following two
conditions [67]:
Condition 1: There exist constant scalars βi ≥ αi > 0 such
that

αi‖x‖2 ≤ Vi(x) ≤ βi‖x‖2

hold for all x ∈ Ωi.

2It is clear that the (common) quadratic Lyapunov function is a special case
for the piecewise quadratic Lyapunov function by setting Pi = Pj for all i,
j ∈ I.

Consider a quadratic Lyapunov-like function candidate,
Vi(x) = xT Pix, and require that

αix
T Ix ≤ xT Pix ≤ βix

T Ix,

holds for any x ∈ Ωi. That is
{

xT (αiI − Pi)x ≤ 0
xT (Pi − βiI)x ≤ 0

holds for all x ∈ Ωi.
Condition 2: For all x ∈ Ωi and x 6= 0, V̇i(x) < 0.

This negativeness of the Lyapunov-like function’s derivative
along the trajectories of a subsystem can be represented as:
∃Pi, (Pi = PT

i ) such that

xT [AT
i Pi + PiAi]x < 0 (10)

for x ∈ Ωi.
Switching Condition: In addition, based on the MLF theorem
of [20], it is also required that for stability, the Lyapunov-
like functions’ values at switching instant are non-increasing,
which can be expressed by

xT Pjx ≤ xT Pix

for x ∈ Ωi,j ⊆ Ωi

⋂
Ωj . The region Ωi,j stands for the states

where the trajectory passes from region Ωi to Ωj .
Note that all the above matrix inequalities are constrained

in a local region, such as x ∈ Ωi or Ωi,j . A technique called
S-procedure [9] can be applied to replace a constrained matrix
inequality condition by a condition without constraints. To
employ the S-procedure, the regions Ωi and Ωi,j need to be
expressed or be contained in regions characterized by quadratic
forms. This is always possible, and techniques to obtain less
conservative quadratic forms to express hyperplanes, poly-
hedra or more general sets can be found in [9], [73]. For
simplicity, we assume here that each region Ωi has a quadratic
representation or approximation, that is

Ωi = {x| xT Qix ≥ 0},
and regions Ωi,j can be expressed or approximated by

Ωi,j = {x| xT Qi,jx ≥ 0}.
Then the above matrix inequalities can be transformed into
unconstrained ones based also on the S-procedure, namely

Theorem 13: [68] The system (1) is (exponentially) stable
if there exist matrices Pi (Pi = PT

i ) and scalars α > 0, β > 0,
µi ≥ 0, νi ≥ 0, ϑi ≥ 0 and ηi,j ≥ 0, such that





αI + µiQi ≤ Pi ≤ βI − νiQi

AT
i Pi + PiAi + ϑiQi ≤ −I

Pj + ηi,jQi,j ≤ Pi

(11)

are satisfied. 2

If there is a solution to the above LMI problem, the
exponential stability is verified. In addition, a bound on the
convergence rate can be estimated:

‖x(t)‖ ≤
√

β

α
e−

1
2β t‖x0‖

where x(t) is the continuous trajectory with initial state x0,
and the constants α, β are solutions of the LMI (11). Based
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on similar arguments, LMI based sufficient conditions for the
discrete-time case can be derived, see e.g., [25].

Notice that the above conditions are all based on MLF theo-
rems, so the results developed in this subsection are sufficient
only. To reduce the possible conservativeness of piecewise
quadratic Lyapunov functions, a new kind of polynomial
Lyapunov functions was introduced and investigated for the
stability analysis of switched and hybrid systems [64], [70].
The computation of such polynomial Lyapunov functions can
be efficiently performed using convex optimization, based on
the sum of squares decomposition of multivariate polynomials.
To be more precise, a multivariate polynomial p(x) is a sum
of squares (SOS) if there exist polynomials p1(x), · · · , pm(x)
such that p(x) =

∑m
i=1 p2

i (x). This in turn is equivalent
to the existence of a positive semidefinite matrix Q, and a
properly chosen vector of monomials Z(x) such that p(x) =
ZT (x)QZ(x). For example, x ∈ R2 and Z(x) of order k = 2
implies Z(x) = [1, x1, x2, x1x2, x2

1, x2
2]

T . It is obvious
that the quadratic Lyapunov function xT Px is a special case
of SOS. Another advantage that makes the SOS technique
attractive is the fact that being a SOS automatically implies the
positiveness of the polynomial, which could be very difficult
to check otherwise (checking the positiveness of a polynomial
belongs to the class of NP-hard problems).

It is also possible to use SOS techniques together with
the S-procedure to construct piecewise polynomial Lyapunov
functions, with each polynomial as a SOS while incorporating
the state constraints, so to generalize piecewise quadratic
Lyapunov functions. Using the SOS approach, higher de-
gree Lyapunov functions can be constructed, thus reducing
the conservatism of searching for only quadratic candidates.
Actually, the degree of the polynomials is very crucial for
SOS approaches. On one hand, lower order means lower
computation complexity (refer to [7] for the discussions and
examples of the computational complexity issues), on the other
hand higher degree is desirable to reduce the conservativeness
of the method. While moving to higher order polynomials,
we get more degrees of freedom in choosing the Lyapunov
function and improve our chances to construct such Lyapunov
function if it exists. There must exist an interesting tradeoff to
optimally select the SOS degrees, and this problem needs to be
investigated. In addition, another open problem is whether one
can always find such a polynomial or piecewise polynomial
Lyapunov function provided that the Lyapunov function exists,
i.e., whether SOS is universal. If so, can an upper bound on
the degree of the polynomials be estimated?

In addition to MLF based arguments, there are alternative
methods for stability analysis of switched systems (under state-
dependent switching logic), using for example impact maps
and surface Lyapunov functions [29] associated with switching
surfaces. Interested readers may refer to [29] for details.

IV. SWITCHING STABILIZATION

In the previous two sections, we discussed stability proper-
ties of switched systems under given switching signals, which
may be restricted or arbitrary. The problem studied was under
what conditions (either on the subsystems’ dynamics and/or on

the switching signals) the switched system is stable. This is a
stability analysis problem. Another basic problem for switched
systems is the synthesis of stabilizing switching signals for a
given collection of dynamical systems, called the switching
stabilization problem.

A. Quadratic Switching Stabilization

In the switching stabilization literature, most of the work
has focused on quadratic stabilization for certain classes of
systems. A switched system is called quadratically stabilizable
when there exist switching signals which stabilize the switched
system along a quadratic Lyapunov function, V (x) = xT Px.

It is known that a necessary and sufficient condition for
a pair of LTI systems to be quadratically stabilizable is
the existence of a stable convex combination of the two
subsystems’ matrices. Specially,

Theorem 14: [26], [86] A switched system that contains
two LTI subsystems, ẋ(t) = Aix(t), i = 1, 2, is quadrati-
cally stabilizable if and only if the matrix pencil γα(A1, A2)
contains a stable matrix. 2

A generalization to more than two LTI subsystems was
suggested in [67] by using a “min-projection strategy”, i.e.,

σ(t) = arg min
i∈I

x(t)T PAix(t). (12)

Theorem 15: [67] If there exist constants αi ∈ [0, 1], and∑
i∈I αi = 1 such that

Aα =
∑

i∈I
αiAi,

is stable, then the min-projection strategy (12) quadratically
stabilizes the switched system.

However, the existence of a stable convex combination
matrix Aα is only sufficient for switched LTI systems with
more than two modes. There are example systems for which no
stable convex combination state matrix exists, yet the system
is quadratically stabilizable using certain switching signals
[46]. A necessary and sufficient condition for the quadratic
stabilizability of switched controller systems was derived in
[80].

Theorem 16: [80] The switched system is quadratically
stabilizable if and only if there exists a positive definite real
symmetric matrix P = PT > 0 such that the set of matrices
{AiP + PAT

i } is strictly complete, i.e., for any x ∈ Rn/{0},
there exists i ∈ I such that xT (AiP + PAT

i )x < 0. In
addition, a stabilizing switching signal can be selected as
σ(t) = mini{xT (t)(AiP + PAT

i )x(t)}. 2

Analogously, for the discrete-time case, it is necessary and
sufficient for quadratic stabilizability to check whether there
exists a positive symmetric matrix P such that the set of
matrices {AT

i PAi − P} is strictly complete [80]. Obviously,
the existence of a convex combination of state matrices Aα

automatically satisfies the above strict completeness conditions
due to convexity, while the inverse statement is not true in
general. Unfortunately, checking the strict completeness of a
set of matrices is NP hard [80].

Other approaches include [86] and extensions of [86] to
the output-dependent switching and discrete-time cases [47],
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[96]. For robust stabilization of polytopic uncertain switched
systems, a quadratic stabilizing switching law was designed
for polytopic uncertain switched linear systems based on LMI
techniques in [96].

Quadratic stability means that there exists a positive con-
stant ε such that V̇ (x) ≤ −εxT x. All of these methods
guarantee stability by using a common quadratic Lyapunov
function, which is conservative in the sense that there are
switched systems that can be asymptotically or even exponen-
tially stabilized without using a common quadratic Lyapunov
function [34]. There have been some results in the literature
that propose constructive synthesis methods in switched sys-
tems using multiple Lyapunov functions [20]. A stabilizing
switching law design based on multiple Lyapunov functions
was proposed in [85], where piecewise quadratic Lyapunov
functions were employed for two mode switched LTI sys-
tems. Exponential stabilization for switched LTI systems was
considered by Pettersson in [65], also based on piecewise
quadratic Lyapunov functions, and the synthesis problem was
formulated as a bilinear matrix inequality (BMI) problem.
In the next subsection, we will briefly describe the BMI
conditions derived in [65].

B. Piecewise Quadratic Switching Stabilization

According to Theorem 13, if there exist real matrices Pi

(Pi = PT
i ) and scalars α > 0, β > 0, µi ≥ 0, νi ≥ 0, ϑi ≥ 0

and ηi,j ≥ 0, satisfying




αI + µiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I
Pj + ηi,jQi,j ≤ Pi

then the switched linear system (1) is exponentially stable.
Different from the stability analysis problem, the state space

partitions Ωi are not given a priori any more. Actually,
the state partitions Ωi, which induces the state-dependent
switching signals, are to be designed. Moreover, the state space
cannot be partitioned in an arbitrary way. The partition of
the state space should facilitate the search of proper quadratic
Lyapunov-like functions, and satisfy the non-increasing condi-
tions when switching occurs. This will be discussed in detail
in the sequel.

1) State Space Partition: Once again, the purpose of di-
viding the whole state space Rn into pieces, denoted as Ωi,
is to facilitate the search for Lyapunov-like functions for
one of these subsystems. After successfully obtaining these
Lyapunov-like functions associated with each region Ωi, one
may patch them together, following the conditions of the above
MLF theorem, so to guarantee global stability.

For this purpose, it is necessary to require that these regions
Ωi cover the whole state space, i.e., the following covering
property holds.

Ω1

⋃
Ω2

⋃
· · ·

⋃
ΩN = Rn.

This condition merely says that there are no regions in the
state space where none of the subsystems is activated.

Since we will restrict our attention to quadratic Lyapunov-
like functions for purpose of computational efficiency, we will

consider regions given (or approximated) by quadratic forms

Ωi = {x ∈ Rn| xT Qix ≥ 0},

where Qi ∈ Rn×n are symmetric matrices, and i ∈
{1, · · · , N}.

The following lemma gives a sufficient condition for the
covering property.

Lemma 2: [65] If for every x ∈ Rn

N∑

i=1

θix
T Qix ≥ 0 (13)

where θi ≥ 0, i ∈ I, then
⋃N

i=1 Ωi = Rn. 2

2) Switching Condition: In order to guarantee exponential
stability we also need to make sure that

1) Subsystem i is active only when x(t) ∈ Ωi,
2) When switching occurs, it is required to guarantee that

the Lyapunov-like function values are not increasing.

To verify the first requirement, we consider the largest
region function strategy [65], i.e.,

σ(x(t)) = arg
(

max
i∈I

x(t)T Qix(t)
)

. (14)

This is due to the selection of subsystems (at state x(t))
corresponding to the largest value of the region function
x(t)T Qix(t).

Suppose that the covering condition (13) holds, i.e.,

N∑

i=1

θix
T Qix ≥ 0

for some θi ≥ 0, i ∈ I. Then, based on the largest region
function strategy, the state x with the current active mode i
satisfies xT Qix ≥ 0. This implies that x ∈ Ωi. So the first
condition holds for the largest region function strategy (14).

To satisfy the second energy decreasing condition at switch-
ing instants, we need to know in which direction the state
trajectory x(t) is passing through the switching surfaces.
However, the switching surface is to be designed, and so such
information is lacking in general. The author in [65] makes a
compromise and requires that

xT Pix = xT Pjx

for states at the switching plane, i.e., x ∈ Ωi∩Ωj . Assume that
the set Ωi ∩Ωj can be represented by the following quadratic
form

Ωi ∩ Ωj = {x|xT (Qi −Qj)x = 0}.

Again, applying the S-procedure, we obtain

Pi − Pj + ηi,j(Qi −Qj) = 0,

for an unknown scalar ηi,j , as the switching condition.
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3) Synthesis Condition: In summary, the above discussion
can be encapsulated by the following sufficient conditions for
the continuous-time system (1) to be exponentially stabilized.

Theorem 17: [65] If there exist real matrices Pi (Pi = PT
i )

and scalars α > 0, β > 0, µi ≥ 0, νi ≥ 0, θi ≥ 0, ϑi ≥ 0 and
ηi,j , solving the optimization problem:

minβ

s.t.





αI + µiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I
Pj = Pi + ηi,j(Qi −Qj)
θ1Q1 + · · ·+ θNQN ≥ 0

for all i, j ∈ {1, · · · , N}, then the switched linear system (1)
can be exponentially stabilized (with decay rate 1

2β ) by the
largest region function strategy (14). 2

4) Discrete-time Switching Stabilization: The extension of
the synthesis method for continuous-time switched linear
systems to discrete-time counterpart is not obvious. The main
difficulty is that, unlike the continuous-time case, discrete-
time switched systems do not have the nice property that the
switching occurs exactly on the switching surface. Instead, the
switching happens in a region around the switching surface.
As a result, we can not simply capture the switching instants
for discrete-time switched systems as the time instants when
the state trajectories cross the switching surfaces. Therefore,
in order to guarantee the non-increasing requirement at the
switching instants for the discrete-time case, we need to
include more constraints involving state transitions for the
discrete-time switched systems around the switching surfaces.
This makes the switching stabilization problem for discrete-
time switched systems more challenging.

A piecewise quadratic Lyapunov function based switching
stabilization for discrete-time switched linear systems is stud-
ied in [51], where the state transitions at switching instants
were treated as additional constraints and were incorporated
into matrix inequalities via Finsler’s Lemma [9]. The main
results in [51] can be stated as follows.

Theorem 18: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), Fi, Gi, Fij , Qij , and scalars ν > 0, αi > 0,

βi > 0, ηi ≥ 0, ρi ≥ 0, µi ≥ 0, µij ≥ 0, θi ≥ 0, solving
the optimization problem (15) for all i, j ∈ {1, · · · , N}, i 6=
j, then the largest region function strategy implies that the
origin of the discrete-time switched system (2) is exponentially
stable. 2

Some remarks are in order. First, for both the continuous-
time and discrete-time cases, the optimization problem above
is a Bilinear Matrix Inequality (BMI) problem, due to the
product of unknown scalars and matrices. BMI problems are
NP-hard, and not computationally efficient. However, practical
algorithms for optimization problems over BMIs exist and typ-
ically involve approximations, heuristics, branch-and-bound,
or local search. As suggested in [65], one possible way to
solve the BMI problem is to grid up the unknown scalars, and
then solve a set of LMIs for fixed values of these parameters.
It is argued that the gridding of the unknown scalars can be
made quite sparsely [65].

Other approaches exist in the literature. A probabilistic
algorithm was proposed in [38] for the synthesis of an

asymptotically stabilizing switching law for switched LTI
systems along with a piecewise quadratic Lyapunov function.
In [15], exponentially stabilizing switching laws were designed
based on solving extended LQR optimal problems. Practical
stabilization problem for switched nonlinear systems were
investigated in [89], [90]. Related to switching stabilization
literature as described above, there is work on feedback
stabilization of switched systems or piecewise affine systems,
where state or output feedback (continuous-variable) control
laws are designed, given a class of switching signals. Several
classes of switching signals are considered, for example arbi-
trary switching [17], [23], slow switching [14], [31], restricted
switching induced by partitions of state space [16], [24], [44],
[74], [75] etc. The distinctive feature of feedback stabilization
compared with the switching stabilization problem is that the
switching signal is no longer a free design variable. Although
the continuous control inputs may have indirect effects on
switching signals, the design focuses on the continuous feed-
back control law instead of the switching signals.

C. Switching Stabilizability

So far, we have only derived sufficient conditions for the
existence of stabilizing switching signals for a given collection
of linear systems. A more elusive problem has been the
necessity part of the switching stabilizability problem, and
particularly challenging part has been the problem of necessary
and sufficient conditions for switching stabilizability. In [81],
Sun proved the following necessary condition for switching
stabilizability.

Theorem 19: If there exists an asymptotically stabilizing
switching signal among a finite number of LTI systems

ẋ(t) = Aix(t),

where i = 1, 2, · · · , N , then there exists a subsystem, say Ak,
such that at least one of the eigenvalues of Ak + AT

k is a
negative real number. 2

This condition can be easily checked, but it is necessary
only. A necessary and sufficient condition for asymptotic sta-
bilizability of second-order switched LTI systems was derived
in [87] by detailed vector field analysis. However, it was not
apparent how to extend the method to either higher dimensions
or to the parametric uncertainty case.

Recently, Lin and Antsaklis [52] proposed a necessary and
sufficient condition for the existence of a switching control
law (in static state feedback form) for asymptotic stabilization
of continuous-time switched linear systems. The approach is
briefly described below.

For each unstable subsystem,

ẋ(t) = Aix(t) (16)

it is assumed that there exists a full row rank matrix Li ∈
Rmi×n, where mi < n, such that the auxiliary system for the
i-th subsystem

ξ̇(t) = LiAiRiξ(t), t ∈ R+ (17)

is asymptotically stable. Here Ri ∈ Rn×mi is a right inverse
of Li [52].
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max ν

s.t.





αiI + ηiQi ≤ Pi ≤ βiI − ρiQi[
AT

i FT
i + FiAi − Pi + µiQi + νI AT

i GT
i − Fi

GiAi − FT
i Pi −Gi −GT

i

]
≤ 0,

[
AT

i FT
ij + FijAi − Pi + µijQi AT

i GT
ij − Fij

GijAi − FT
ij Pj −Gij −GT

ij + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

(15)

Intuitively, the above assumption can be interpreted as
considering a linear combination of the states of the original
system (16) that evolves in an asymptotically stable man-
ner. The auxiliary system evolves in the lower dimensional
subspace, to which the original system can be projected for
stability. Note that even when all parts of the states of the
original system (16) are unstable, there still may exist L to
satisfy the assumption. For example,

Example 1: Consider a continuous-time linear system,

ẋ(t) =
[

0.5 1
0 1

]
x(t)

The above continuous-time system is obviously unstable.

However, we may select L =
[

1 0
]

and R =
[

1
−1

]

to obtain

LAR =
[

1 0
] [

0.5 1
0 1

] [
1
−1

]
= −0.5 < 0.

Therefore, the auxiliary system

ξ̇(t) = −0.5ξ(t)

is asymptotically stable.
It can be shown that there always exist L and R satisfying

the above assumptions in (17), except for the case when all the
eigenvalues of A equal the same positive real number λ > 0
and the geometric multiplicity of the eigenvalue λ equals to
n. The proof of this claim explores the structure of the Jordan
canonical form of A and uses straight-forward computations.

For the case when there does not exist an L to satisfy the
above assumption for a particular subsystem, we simply set L
as the null row vector, which implies that the corresponding
subsystem makes no contribution to the stabilization of the
switched system. To justify this, note that in this case the ma-
trix A is similar to the matrix λI for some positive real number
λ > 0. Here I stands for the identity matrix. If we look at the
phase plane of the LTI system, ẋ(t) = λIx(t), all the field
vectors point to infinity along the radial directions. Intuitively
speaking, the dynamics are explosive and do nothing but drag
all the states to infinity, which we would like to avoid.

The basic idea is that a polyhedral Lyapunov-like function
can be constructed for each subsystem by transforming the
corresponding polyhedral Lyapunov function of its auxiliary
system. Notice that every auxiliary system is asymptotically
stable, so such polyhedral Lyapunov functions exist [54], [61],
in a lower dimension. Via inserting the level sets of these
polyhedral Lyapunov functions from a lower dimensional state
space into Rn, one obtains their corresponding polyhedral

Lyapunov-like functions in Rn. An important observation is
that for each subsystem the polyhedral Lyapunov-like function
is decreasing for all state values x in the range space of Ri.

Assume there is no sliding motion occurring in the switched
system. If for all the subsystems, the matrix




L1

L2

...
LN


 ∈ R

P
q mi×n, (18)

has full row rank and the union of the range space of Ris’ is
the whole state space, then one can patch together these poly-
hedral Lyapunov-like function and construct an asymptotically
stabilizing switching law. This shows the sufficiency part of
the above condition. Actually, it is shown that the above two
conditions are also necessary for switching stabilizability. The
necessity proof is based on the lemma that a switched linear
system can be asymptotically stabilized by a static switching
signal if there exists a conic partition based switching law. A
necessary and sufficient condition for switching stabilizability
can now be presented, under the assumption that there is no
sliding motion in the closed-loop switched system.

Theorem 20: [52] Assume that there is no sliding mo-
tion in the closed-loop switched system. The continuous-
time switched linear system can be globally asymptotically
stabilized, if and only if

1) there exist matrices Li, which satisfy (17) for each
subsystem, such that the matrix (18) has n linear in-
dependent row vectors,

2) Let Ωi stand for conic cones induced through the in-
tersection of these polyhedral Lyapunov-like functions’
level sets, and Ωi be required to be contained in the
range space of Ri. These induced conic cones cover the
whole state space, i.e.,

⋃

i∈I
Ωi = Rn.

2

So far, all the arguments are under the assumption that no
sliding motion is generated by the switched systems. However,
sliding motions may occur through the proposed conic parti-
tion based switching laws. It is also possible that the generated
sliding motion causes instability in the closed-loop switched
system. Therefore, it is important to explicitly consider sliding
motions. Similar issues arise in the methods for switching
stabilization based on piecewise quadratic Lyapunov functions,
where special care needs to be taken, see e.g., [66].
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To explicitly deal with possible sliding motions, a necessary
and sufficient condition for the occurrence of unstable sliding
motions was identified in [52]. To avoid generating unstable
sliding motions, we need to introduces an additional require-
ment to the above theorem:

Theorem 21: [52] The continuous-time switched linear
system can be globally asymptotically stabilized, if and only
if

1) there exist matrices Li, which satisfy (17) for each
subsystem and the rank condition, i.e., (18) has full row
rank;

2) the union of Ωi cover the whole state space;
3) along the switching surface (Ωi∩Ωj 6= ∅ for i 6= j ∈ I),

there exists a row vector Lij such that

Lij [θAi + (1− θ)Aj ]Rij < 0,

for θ ∈ [0, 1]. Here, Rij is selected such that LijRij 6= 0
and Ωi ∩ Ωj is contained in the range space of Rij .

2

Note that the first two conditions are exactly the same as in
Theorem 20, while the third condition is added to exclude
possible unstable sliding motions. It is shown in [52] that
this additional requirement of common Lij and Rij on the
switching surface is not conservative, in the sense that it
excludes exactly the unstable sliding motions; and, clearly,
a switched system is stabilizable only when it can be done so
without unstable sliding motions.

It is very interesting to note that if a switched linear system
can be asymptotically stabilized by a static state feedback
switching law without sliding motion, then one can always
implement it in a conic partition based switching law. How-
ever, it is not known yet whether a stabilizable switched system
can always be stabilized by a switching law in a static state
feedback form.

Although the conditions given in [52] were proved to be
necessary and sufficient, the checking of the necessity is
not easy, as it requires to parameterize all Lq and Rq that
satisfy (17). The calculation of such Lq and Rq for a given
subsystem could be tedious, and systematic approaches need
to be developed for parameterizations of such generalized
similarity matrices. Fortunately, it is always possible to restrict
the search to the vector case, i.e., mq = 1, Lq ∈ R1×n

and Rq ∈ Rn×1. This makes it is possible to formulate the
determination of Lq and Rq into an optimization problem.
Nevertheless, the properties of such generalized similarity
transformations and the parameterizations of such Lq and Rq

need further study. Interested readers may find further details
in [52].

V. CONCLUDING REMARKS

In this paper, we gave a, by necessity, brief overview of
the most recent developments in the field of stability and
stabilizability of switched linear systems. Especially, several
recent results are highlighted in this survey. First, neces-
sary and sufficient conditions for the asymptotic stability
of switched linear systems under arbitrary switching were
explored. Secondly, a necessary and sufficient condition for

the switching stabilizability of continuous-time switched linear
systems was oulined.

The past decade has seen a lot of research activities in the
field of switched systems. This survey is far from a complete
review of stability and stabilizability of switched systems.
There are results that are not mentioned here either due to
space limitation or because the authors were not aware of
them, and we apologize for these omissions.
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