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Firing Vector Constraints
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Abstract— This paper presents a new result concerning In this paper we consider disjunctions of the form
the design of supervisors for specifications involving firing a
vectors. The result shows that without loss of permissiveness,
a solution to the design problem can be found by solving \/[L“‘—F Hig < bi] ®3)
another supervisor design problem, involving only marking i=1

Specliﬁcﬁ“ons'hi” ahtra”Sf%m;edf Petri “ke.t' On Or.‘f‘? hand, this  requiring that there i$ = 1. ..n, such that: andq satisfy
result shows that the methods for marking specifications can L : X

be applied to specifications involving also firing vectors. On the speCIflcatlorY_Ziu + Hiq < l_)i_’ in the sense d|§(_:us_sed at
the other hand, the specifications involving firing vectors have (2). Due to partial controllability and observability issues,
been shown to be necessary in order to describe the P- the problem of enforcing specifications (3) is difficult. The
type languages of free-labeled Petri nets. Since the method main result of this paper is that given a specificatdof

of this paper could be used without loss of permissiveness, the form (3) on a PNV, ), a solution to the supervisor

it is complementary to our previous work on structural and . . . .
suboptimal methods for the design of supervisors with firing design problem can be found by solving first a supervision

vector specifications. design problem on a transformed PN, umo) for a
specificationSy of the form
I. INTRODUCTION na

The constraints of the form \ Lmipm < bil. (4)
=1

Lu+Hqg+Cv<b 1 . .

a e U= @ Note that(Nw, umo) and the matriced.y; are obtained

have been proposed in [3], as a description of the constrairftem (N, 19) and (3) by means of a PN and constraint
enforced by a set of places arbitrarily connected to a set tfansformation that we cathe H-transformationThus, our
transitions. Thus, (1) describe the P-type languages of freeesults show that if we find a specificatidtj, of the form
labeled Petri nets (PNs). In (1), is the markingyg is the (4) that is at least as restrictive @; and that satisfies
firing vector, andv is a parameter called the Parikh vectoralso certain feasibility and compatibility constraints, then a
representing the number of firings of each transition sincgpecificationS’ of the form (3) can be easily derived, such
the initialization of the system. Furthel, H, C, andb are thatS’ is feasible and at least as restrictiveSag-urther, we
integer matrices of appropriate dimensions. As the Parikéhow that ifS}; is optimal with respect to permissiveness, so
vector term can be easily incorporated in the marking teriis S’. Note that the paper does not show how to g, it
by adding a sink place to each transition [3], we will onlyonly shows that without loss of permissiveness, the problem
refer to constraints of the form of enforcing (3) can be reduced to a problem of enforcing
a specification (4) (in which the ter ¢ is missing).
Lp+Hg<b @ The results of this paper are obtained under the con-
Given a PNN = (P, T,D—, D7), where P is the set currency setting of the transition bag assumption [7], [6],
of places,T the set of transitionsD~ the input matrix, N Which bags of transitions can fire at the same time.
and D* the output matrix, a specification (2) ok” is  This means that a firing vectarmay be any nonnegative
interpreted as follows. First, a marking satisfies (2) if integer vectorg € NI/, provided there are enough many
Ly < b. Further, a transitiort may fire atu only if its tokens to enablg. Further, note that a supervisor derived
corresponding firing vectog satisfiesLy + Hq < b and under the transitipn bag assumption is valid also u_ndgr other
the next reached marking’ (that is, N /) satisfies concurrency settings, though it may be more restrictive than

Ly < b. Moreover, in a concurrency setting, a firing vectof€C€ssary. _The set_tlng _of partlallcontrollablhty and opserv—
¢ is enabled only if for all integer vectorg,q” > 0 ability considered in thls paper is general. We consm_ier a
< L'+ Hd' < b wh P class of labeled PNs in which different labeling functions
¢+q sq= L+ Hg < b, Wherep —— . are used for control events and for observation events. In
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method is the best way to approach constraints (3). It shouttlie to the controllability and observability constraintste
be emphasized that the reduction method in itself has vepjant.
little computational complexity: the transformation regd A specification is said to benforced by a supervisor
to go betweeriV, 10) and (3) on one hand, and/x, pro) = of a plant(NV, uo) if the closed-loop(\V, 1o, Z) allows
and (4) on the other hand, has low polynomial complexityonly firing sequences that satisfy the specification. A spec-
However, more work is needed in order to investigate thiication is said to beoptimally enforced if the closed-
benefit of working with specifications in the simplified formloop (A, 1o, =) disables only the firing sequences of the
(4). In any case, these results are a step forward towargknt that do not satisfy the specification. In other words,
understanding the permissiveness properties of the gtalct a supervisoE that optimally enforces the specification has
method of [3], which uses the same reduction technique.the permissiveness of a least restrictive supervisor dedig
in the setting of fully controllable and observable PNs.
o ) ) In this paper we considedouble-labeled PNs which

Let D = D™ — D~ denote the incidence matrix. It is 516 PNs enhanced with two labeling functions, as follows.
known [3] that in the fully controllable and observable casegach transition is labeled by control events and by one
a least restrictive supervisor enforcing (2) can be implespservation event. A transition may fire only if one of the
mented by a PN supervisor of input and output matrices control events is enabled. Further, when a transition fires,

D} = max(0,—LD,H — LD) (5) it generates the observation event that labels it. Without

loss of generality, we will assume each transition is latbele

Il. PRELIMINARIES

D; = max(0,LD, H) ©) by a single control event. LéC and O denote the sets of
In the equations (5-6), the operatatax is taken el- control and observation events. The events used for control
ement by element. That isYY = max(0,X) means are mapped by : T — K, and the events used for
Y, = max(0,X;;) and Z = max(X,Y) meansZ;; = observation by : T — O. In particular, for labeled PNs

max(X;;,Y;;). By definition, the constraintdu+ Hg <b  p(t) = o(t) ¥t € T andK = O = X, whereX is the set
are interpreted as requiring thét’, ¢” > 0, ¢’ +q¢” < q = of events. Further, for PNs with individually controllable
Ly + Hq" < b, wherep KR (. It is important to notice and observable transitiong(t) = o(t) = {t} V¢t € T and
that this interpretation of (2) can be simply expressed bl = @ = T' In order to define formally the feasibility of
the inequality a specification, the following notation is introduced.

Lpu+ Haqg<b @) 1) Let K. C K denote the set of controllable events.
Given a firing vectorg, p*(¢) denotes a vectot €

for Hy = D_, as proved in the following lemma. NIX<| indexed by the events d,, such thate € K,

Lemma 2.1p andq > 0 satisfy (7) iftVq', q” > 0, ¢ +q" < z(e) = Ztep,l(e) q(t).
qg= Ly +Hq" <b, wherep , . 2) Let O, C O denote the set of observable events.
) Given a firing vectorg, o*(¢) denotes a vectot €
Proof: First, let's note thatLy’ + Hq” < b can be NI©-| indexed by the events @, such thate € O,
written asLy + LDq' + Hq” < b. 2e) =3 (t)
u » . . . - tEQiI(E) q .
=" In view of (6), the conclusion follows based on the 3) Given a fiing sequencer = qigoqs... let
observation thaD "¢ > D (¢’ +¢") = (LD)¢" + Hq". 0*(c) denote the sequence of observation vectors

“<" Let [, h ande denote thek'th row of L, H andb. We
prove thatifvg’,¢” > 0, ¢'+¢" < g = lu+IDq'+hq" <e,
thenly +d; g < e, whered; = max(0,1D,h). We prove Definition 2.1 A specification on a PN\, uo) is feasible
it by showing that the maximum df D¢’ + hq"] subject to  if a supervisor optimally enforcing it ensures that

¢,q"20andq’ +q¢" < ¢ equalsdzg. 1) If ¢ and ¢’ are two plant-enabled firing vectors and
Leta = //[QI7Q2;/-f-qn] v ¢ = [qlqu"/"qn] , and p*(q) = p*(¢'), then the closed-loop enables either
¢" = lai, g, -q;]". Note thatmax[IDq" + hq"] = both ¢ and ¢’ or none of them.

max[}_, ((1D)ig; + hig;')], where(lD); andh; are thei'th 2) If o1 and o, are two firing sequences closed-loop
components of D and h. Sinc.emax[(lD)l-qlg + hiq}’»/’)] = enabled at the initial stateo*(o;) = o* (o), and

¢i max(0, (I1D);, h;), we obtain max[(ID)¢’ + hq"] = q # 0 is a firing vector such that both,¢ and o2q
22 gi max(0, (1D);, hi) = d, g, which ends the proof. m are plant-enabled at the initial state, then either both

Let @ denote the set of firing vectorg), the_s_e; of firing o1¢ anda»q or none of them are closed-loop enabled
sequences = qiq2..., and M the set of initial states at the initial state

(initial markings). In this paper, we consider determiiist

supervisors defined as maps : M x Q* — Q. For all In Definition 2.1, note that the firing vectogsandq’ are

x € M xQ*, Z(x) represents the set of supervisor-enabledot necessarily nonzero, and the sequengeand o, are
firing vectors, where a firing vectaris enabled whem <  not necessarily nonempty. In our convention, a firing vector
=(z). As defined, supervisors may or may not be feasible, = 0 and an empty firing sequeneeare always enabled.
where a supervisor is infeasible if it cannot be implementedext, we define feasible supervisors. K&tdenote the set

0*(q1)0* (q2)0*(g3) - - .-



i 4 Py t 3) Forallt € T,:
. . ::> . . a) Add a new placey, and a new transition; to
] . : . Ny as in Figure 2.

b) Set LH(apk) = Hd(atl) + LD—(atl) and
Fig. 2. lllustration of the transition split operation. LEHO (pk) =0.
4) For allt € Ty, the controllability and observability of
the transitiong; is defined as follows:

a) o(tee) =o(t).

of observation vectors®(q) for ¢ € @ and Q" the set b) The set of control events is extended such that
of sequences of observation vectot$q; )o*(¢2)o*(g3) - . .. ¢ NeteT

p(tee) & {p(t):teT}.
Let I' denote the set of control vectops(q) for g € Q. A c) p(t e e) is controllable iff p(t) is controllable.
feasiblesupervisor should be implementable by observing d) Fort,t' € Ty, p(tee) = p(t'ee)iff p(t) = p(t').
only observation vectors and controlling only control&bl _
events. A formal definition follows. The H~!-Transformation
Definition 2.2 A supervisor= is feasibleif there is a map Input: The PNA = (P,T,D~, D), the H-transformed
Z . MxQF — I such thatvs € M, Yo € Q*, v = NnetNm = (Pu,Tu, Dy, D};), and a set of constraints
E(s,mo(0)) = E(s,0) = {q € Q: p*(q) <} Lzp < b onNy.

Note that a feasible specification has the property thQ@utput: The H™!-transformed constraints. + Hq < b.
there is a f§a5|ble supervisor that_ optimally enf_orces it. 1) SetL(-,p) = Lu(-p) ¥p € P and H to the null
Next, we define the PN and constraint transformations used ~ iy
?n this paper. The H-transforma}tion is a modificaftion of the 2) For allpy € Py \ P
indirect method for enforcing firing vector constraints .| a) Lett; be the transition such thdt,} — e
The idea of the transformation is illustrated on the follogyi ’ i = Pk

example. Consider the PN of Figure 1(a). Assume that we b) SetH(.,t) = L (o) - L}ZDH("“)' ,
desire to enforce Note several properties of the H- and Htransformations.

To simplify our notation, assume single constraifjis+
w1+ pe +2us +q3 <5 (8) hg<bandigug <b. Further, letPy = Py \ P. Thus, if

< b is the H-transformation ofu + hq < b, then:
Then, we can transform the PN as shown in Figure 1(b§{wH - g

The transformation adds a place and a transition which L (p) = { llp)ifpeP _ B (10)
correspond to the factar;. Then ha(ep) + 1D~ (-, ep) if p € Py

In addition, the relation betweeNy and\ is such that
VteT \ .FH :

p1 + p2 + 2p3 + 4ps <5 9)

is the transformed constraint, where the tetpy is ob- D- ; P
tained as follows. Consider firingg in the transformed net. Dy (p,t) = { (P, t()) for peE 7 (11)
If ts, 1 anda is the coefficient ofus, we desire orpefa

Dt (p,t) = { D*(p,t) forpe P (12)

a+py+ph 4+ 2us =1+ py + pe + 2u3 0 forpe Py

where the facton is the coefficient ofgz in (8). Thus we Vte TNePy :
obtaina = 4. The transformation is defined as follows. _ D~ (p,t forpe P

‘ CRTE R e B € D)
The H-Transformation TP SH

0 for Pynt
Input: The PN of structureN = (P,T,D~,D%), the Df(p,t) = { 1 foriiﬁi ﬂt: (14)
constraintsLu+ Hq < b, and optionally the initial marking Ve Tw\ T
wo and a sefl, iy C T (by default, T, g = (). €Ty \T:
_ 0 forp#et

Output: The H-transformed PNANp of structure Dy(p,t) = 1 forp=et (15)
Ny = (PH,TH,D;I,DE), the H-transformed constraints n
Lypy < b, and the initial marking:zo of AVy. D} (p,t) = { D¥(p.ee t()) ;g: g ; i (16)

1) Let Hy =max(LD,H,0), T" = Tyn U{t € T+ Fyrthermore, iflu + hq < b is the H!-transformation of
Hd(',t) #+ 0} and T, = {t e T : p(t) = lpg <b
p(t') for somet’ € T'}. (ThusTs O T*)) -

2) Initialize Ny to be identical toA\, with the same Ip) = lu(p)VpeP (17)
controllability and observability attributes. Initiaéiz ht) - { la(p) —luDy (1), if te OEH =p (18)
also Ly to L and uugo to po. 0,if tenPy =10



@

Fig. 1.

(b)

Example for the H-transformation.

The following relation can be easily verified based on (10— (b) Let ugy1 = mpg(p1). Note thaty; > D™ g < ppr >
16). The relation will prove very useful in the further D qg, by (11) and (13). Thereforg, is enabled iffgy is

developments.

LD(,t) forteT\ePy

Hy(-t) forte TNePy

LD(-,eet)— Hy(-,00t)
forte Ty \T

LyDpg(-,t) = (19)

Let D., D, andD/ denote the incidence, output, and inpu

matrices of the supervisor enforcirlg: + Hg < b. Simi-

larly, let's defineD.. x, D_,; and D}, for the supervisor

enforcing Ly < b in Ny. Note thatD, i = —Ly Dy

and D_;; = max(0,LyDy). Thus, based on (19), the

followiﬁg is obtained:

, | DZ(,t) forteT
Don(t) = { 0 forte Ty \T (20)
Further, sinceDgfH =max(0,—LyDg)
DF(-,t) fort €T\ ePy
D:H(vt): 0 fortETﬂ.ﬁH (21)
Df(,eet) forteTy\T

IIl. MAIN RESULTS

t

enabled, which concludes our proof by part (a). ]

Proposition 3.2 Consider (N, uo) in closed-loop with a
supervisor = optimally enforcingLy + Hqg < b, and
(Ne,mu(po)) in closed-loop with a supervisoEy op-
timally enforcingL 157 < b. Letq be a firing vector in\
andop(q) = qudy-
(a) At all reachable markingsyy is closed-loop enabled
iff o (q) is closed-loop enabled.
(b) p is reachable and; is closed-loop enabled at iff
wr = mp(u1) is reachable and (¢) is closed-loop
enabled atug.

Proof: (a) By (20), D_ ;¢ = 0. Thus,Zg never
restricts the firing ofq};. Therefore, in view of Proposi-
tion 3.1(a),qx is closed-loop enabled iffx ¢}, is closed-
loop enabled.

(b) We show that a sequengg — 1 —2 pg ... —=

wr is possible in the closed-loop oV iff im0 ou(@)
L o (a2) WHS - - - ou () pHK 1S possible in the

closed-loop ofNVy. Note thatqiqs ... g is plant-enabled
iff om(qige...qx) is plant-enabled, based on Proposi-

First, we introduce the following notation. If a transitiontions 3.1(b) and 3.3(a), where Proposition 3.3(a) shows tha

t; is split in the H-transformation as in Figure 2, tet (¢;)
be the firing sequenadgt;. If a transitiont; is not split, let
o (t;) equalt;. Further, we also usey for firing vectors:
on(q) = quqy, Whereqy(t;) = qy(t;) = qt;) for a
transitiont; splitin ¢, andt;, gu (t;) = ¢(t;) for a transition
t; that is not split,¢};(t;) = 0 V¢t; € T andgu(t;) = 0
Vt; € Tu \T. If 0 = qig2... is a firing sequence WV,
let o (o) = on(q1)om(q2) . ... Further, letmy map the
markings of\/ into markings of AV as follows:

1(p)

forpe P
i =) = ) = { 400 D

forp e Py (22)
Proposition 3.1 Given (N, o) and (Mg, mu(uo)), let g
be a firing vector inN" and oy (q) = quqly-
(a) At all reachable markings;y is enabled iffoy (¢) is
enabled.
(b) ¢ is enabled at the marking, iff o5 (q) is enabled
at the markingm g (141).

Proof: (a) By (14) and (15)q is enabled iffgr g},
is enabled.

wri = mp(p;) for ¢ = 0,1,...k. Thus, we only need
to prove that ifg1g2...q; andog(giq2 ... ¢;) are closed-
loop enabled, then,qs . .. ¢;q;+1 IS supervisor-enabled iff
ou(q1q2 - - - qigi+1) is supervisor-enabled.

Note that the constrainté yugy < b are not violated
by firing gy when Lyug + D;HqH < b. Further, the
constraintsLy + Hqg < b are not violated by firingg
when Lu + Hgyq < b. By definition, H; = D_ . Further,
by (20) D_ yyqu = Hag, and by (10) anduy = mu(p),
LH,LLH = L;L. It follows that LHMHi + D(:_,Hqu+1 <b
< Lp; + Hyqiv1 < b (wheregg,41 is the first term of
or(giv1) = qHi+1q5:,1)- Therefore,q i, is supervisor-
enabled iff gy;11 is supervisor-enabled. By part (a), this
concludes the proof. [ ]

Given a firing sequence of NV, we have already defined
o (o) to denote the equivalent firing sequeneg of
Ng. In the following developments, we will need also the
converse operatioa(oy ), associating a firing sequenee
of \V to each firing sequencey of Ny. Assumeuy and
wro = mp(po) are the initial markings of\V' and NVy.
Given a firing sequencey of Ny, let 75 be the firing



count vector. Letvy (o) be the largest integer vectog
such thatvy < Gy andVt € Py, vg(t) = vg(tee).
Further, letxy(on) = oy — va(om). Thus, if gg =
XH(O'H)- thenVvt € Ty \ OﬁH, qH(t) = 0. Let V(O’H)
and x(og) be the restrictions of g (oy) and xg(oy) to
the transitions inT. If oy = quiqu2 ... que, 1€t oo
be an empty sequencey1 = qmi1, OH2 = qH1GH?2,
- OHe = qH14H2 - - - qHz aNdq; = v(og;) —v(omgi—1) for
t=1...2. We defines(oy) as the sequencggs . . . ¢..

Proposition 3.3 Consider (N, 1), the set of constraints

Ly + Hg < b, and their H-transformation N, pmo) and
Lypm < b, whereuso = mpg (o).

@) If om(q) = audy, 11— po, pm 25 phyy
pre and ppy = my(p1), thenpps = my(p2) and
Lupyy = Ly + Hag.

(b) If pro 2% up, theno(oy) is enabled atu, and

firing it results inp = po + Dv(og). Further, ¢ =

x(om) is enabled aty and Lyupg = Ly + Hagq.

Givenoy andqg, if ogqy is enabled afugo and x

is the restriction ofgy to T', theno(oy)q is enabled

at po, whereq = x(oy) + .

Let= be a supervisor optimally enforcingu+ Hq <

(©)

(d)

if t € T\ ePg and By (t) = 0 otherwise, andyg (t) =
qrit1(t) if t € TNePy andyg(t) = 0 otherwise. By (11—
16), D. mqui+1 = DYa+ D.S— D_~, where3 and~ are
the restrictions ofdy and~yy to T, anda(t) = ag(t e e)
for t € T NePy and a(t) = 0 otherwise. Thus, from
Lupmivh = Lipi + Hqu; — De gqmi1 and D, = Hg we
obtainLHuHiH = Liﬂi — Dc(a + ﬁ) + Hd(ui —a+ ’Y).
Note thatg;;1 = a+ 8 and u;41 = u; — a + 7, SO
Lypgivi = Lipipiv1 + Hquirq, Which concludes our
induction proof.

It only remains to show thatf = x (o) is enabled aj..
Let ¢, be defined ag/;(t) = pu(et) Vt € Ty \ T and
¢y (t) = 0 otherwise. Thusyy enablesyy;. Therefore, by
the first part of the proofy enables;, = v(ouqly)—v(on).
Note thatq, = ¢q. Therefore,, enables;.

(c) Letaxy = qu(t) Vt € T andzy(t) = 0 otherwise.
Let ¢}, be defined asyy;(t) = pu(et) V¢ € T \ T
and gj; (t) = 0 otherwise, wherg.y &L igo. Note that
ocnraqy is enabled. Further, let}; and ¢y be defined
asxy(t) = xp(t) Vt € TN ePy, x%(t) = 0 otherwise,
g5 @t) =zp(t) Vt € T\ oPy, q5;(t) = ¢y (t) Vt € Ty \ T,
and g3 (t) = 0 otherwise. (Sar}; + ¢y = xu + ¢z.) In
view of (11-16), sincesgzrq}y iS enabledoray;qsy iS

bin (N, 1o) and=y a supervisor optimally enforcing t00. Note that(onz3q5) = o(on)g for ¢ = x(om) + =

Lgpg < b in (Ng,pmo). If oy is closed-loop

enabled atupg, theno(oy) is closed-loop enabled

at po.

Proof: (&) Ly, = L1+ Hag follows from (10-14)
and pg2 = my(p2) from (11-16).

(b) Let umi, pmo,
pro 5 g 2 g ... 3 up,. Let opo be an
empty sequencesgy = qg1, 02 = qH14H2, -+ -OHe =
qH19H2 - - - qQH2- Further, lety; = p;i 1 + D(v(om:) —
v(iogi—1)) andu; = x(om;) for i = 1...2. We show
by induction thatyu; is reachable fromu;_; by firing
qgi = I/(O’Hi) — V(UHi—l)a Whereﬂi = i1 if q; = 0,
and that Lypug; = Lup; + Hqu; for ¢ = 1...z. For
¢t = 1, note thatv(og1) = 0 and pu; = po. Further,

Then,o (o )q is enabled by part (b).

(d) The induction proof of part (b) can be used, once we
show thaty;, 1 is supervisor-enabled at the marking that
iS, Lu; + Hyq;+1 < b. Sinceqy;11 is closed-loop enabled,
Lupmi+D_ gqrit1 <b. By (20),D_ yqmi+1 = Hqz. By
Lupmi = Lpi+Haui, Lpi+Hagip1+Ha(v+ui—gip1) <

..., be markings such that b. Sincex + u; > qiy1, Lpi + Hyqiv1 < b, and s0g; 41 is

supervisor-enabled. ]

Next, a relaxed concept of feasibility is introduced for
specifications on\Vy. Compared to Definition 2.1, the
second requirement is relaxed to constrain only the firing
sequencewy of Ny that have the formry = opg(o),
whereos is a sequence ot/

Definition 3.1 A specification on Ny, 1mo) is h-feasible

Lyum = Lpy + Hguy is satisfied by part (a). Now, if a supervisor optimally enforcing it ensures that

assume the induction hypothesis satisfied at stepet
Git1 = v(omis1)—v(om;). Let's show first that if; ., # 0
then ¢; 1 is plant-enabled, that isy; > D™ ¢;+1. Note
that pm; = pro + Dave(omi) + Duxu(own:), and so
pri = my(pi) + Daxua(owm;). Sinceqmiy1 is enabled,
pri > Dyquivi. Then, by (11-14)p; > D™ (u; + x),
where z is the restriction ofgy;11 to T. Note that since
wro = mu(uo), any firing of a transitiort € T \ T must
be preceded by a firing of the transitier ¢t. Thus,Vt €
Tu\T: qui+1(t) < ui(e ot) andquit1(t) = giy1(e o t).
Further,Vt € T \ Py z(t) = gi+1(t). Therefore, we
can conclude that;+1 < u; +z and sou; > D™ qi11.
Next we show thatl g1 = Lpip1 + Hquir1. NOw,
Lupmivi = Lapmi—De Hqmiv1. Let's decomposes; 1
asqgi+1 = ag + By + vH, WhereaH(t) = quL'Jrl(t) for
t € Ty \ T andag(t) = 0 otherwise,By (t) = qmit+1(t)

1) If gg and ¢, are two plant-enabled firing vectors
and p*(¢gu) = p*(¢%), then the closed-loop enables
either bothgy and ¢j; or none of them.

2) Let g # 0 be a firing vector ofA" and o; and o, be
two sequences of firing vectors &f. If oy (o) and
ou(o2) are enabled by the closed-loop at the initial
state,0*(og (01)) = 0*(0m(02)), and botho g (o19)
and oy (02q) are plant-enabled at the initial state,
then either bothoy(o1¢9) and oy (o2g) or none of
them are closed-loop enabled at the initial state.

The H-transformation can be defined also for disjunctions
of constraints (3), requiring all reachable states to Batis

nd

\/ [Lip < by

i=1

(23)



and that a firing vectog should be enabled only i and (b) n is reachable and; is closed-loop enabled at iff
q satisfy wr = mp(u1) is reachable and (¢) is closed-loop

e bled .
\/[Liﬂ + Hg:q < b;] (24) enabled ay.y

i=1 Proof: (a) By Proposition 3.1(a)yy is plant-enabled
where Hy; = max(L;D,H;,0). Hy,; is the H; matrix iff ox(q) is plant-enabled. By (20)D;H7iqjq = 0 for all
defined in the H-transformation, which is also the same a@s= 1...n4, and so firingg}; cannot violate any of the
D_, calculated by (6). Note that this interpretation of a disconstraintsL ;g < b; that are satisfied. The conclusion
jun’ction (3) is not the most general. Recall, the constsainfollows.
(1) were defined to require the inequaliby + Hq < b (b) The proof is the same as in Proposition 3.2(b), once
satisfied for all possible intermediary states reachedchduri we substitutelp. + Hqg < b (Lypyg < b) by the constraints
the firing of ¢, that is, for allg’, ¢” > 0, if ¢ +¢”" < gthen L;u+H;q<b; (Lujpa <b;),j€{1,2,...nq}, that are
Lyl + H¢" < b, wherep > 4. Thus, it was shown in satisfied whenyi1 (quit1) is fired atu; (urs). u
Lemma 2.1 that the constraints (1) enable a firing vegtor Part (a) of the next result shows that Proposition 3.3(c,d)
iff the inequality Ly + Haq < b is satisfied. On the other can also be extended to disjunctions of constraints.

1 2 > H /! 2 < . . . .
hand, the rt;:‘quwerr)/ent thqt for afl, ¢" > 0, 1f ¢+ ¢ =9 Proposition 3.5Let = be a supervisor optimally enforcing
thenV/; Ly’ + Hig" < by, is weaker than the reqU|rement(3) in (N, uo) andZg a supervisor optimally enforcing (4)
that ;. andq satisfy (24). However, (24) is easier to checkIn W, ’“0) WheTg f (o) P y 9
online and allows us to easily extend our results from' "7 HHO) Hro = MH{Ho)-

conjunctions of constraints to disjunctions of constmint () If ox is closed-loop enabled atyo, theno (o) is

In the particular case of no concurrency alid= 0 for all closed-loop enabled ato.

i, these two interpretations of (3) are equivalent. (b) Assume thaty is closed-loop enabled gty and
_ _ ogqy is plant-enabled ati . Theno g gy is closed-

The H-transformation for constraints (3) loop enabled atuy iff ¢ = x(og) + = is closed-

o ‘ ‘ . loop enabled afu = o + Dv(og), wherez is the
1) Let Hy,;, = magj(LlD,HZ,O) and modify T, i to restriction of gz to T
TsyH:TS_’HU U{tGT: Hd’i(gt);ﬁ()}.

i=1 Proof: (a) The proof of Proposition 3.3(d) can be

2) For alli = 1..:.nd, apply the H-transformation to . :
the constraintsLiy + Hiq < b; with the argument adapted here based on the following observaugg. For

qH1
T, g calculated at step 1. Leby,uny < b; be the any C'Oseﬁ,!o"p enabled sequensgo — pm1 —
transformed constraints ’ tHe-.. — g, there is a sequence of indices

3) The result of the H-transformation consists of th fo, ki, ka1 € {1,2,...na} such that Ly k,pmi +

. X o . e o dHi+1 < bk, for all « = 0,1,...2 — 1. Thus,
disjunction (4), the PNV, and th_e initial marking the proof of Proposition 3.3(d) can be used to show that
g0, Where Ny and ugo are obtained from any of

. i - 1 < by, " T i1 <
the H-transformations of step 2. Lrwiprmi + Doy, quivt < bk, = L + Hy i <

. br., where ...q, denotes the sequen .
Note that the choice of the st ; guarantees that the ki 0az- - -4 .. 9 OQ.GH)
. ; ’ : (b) By part (a) and Proposition 3.3(b), is reachable
same PNVy is obtained by all H-transformations of step 2.. - on
1 . - : -~ ’in the closed-loop by firingr(ox). Let ug <— pmo-
The H '-transformation of a disjunction (4) results in a : - _

. . ) . S ; Foralli=1,2,...nq, D_p,q5 = D_,x by (20), and
disjunction (3), obtained by taking the disjunction of the o H i Gt
H—!-transformations of the constraintsy ;uy < b; Ly ipn = Lipt + Ha,ix(o) by Proposition 3.3(b). Thus,

AfH = i Lyipm + D_ a0 = Lip + Haiq. If ¢ is closed-loop
The H ~!-transformation for constraints (4) enabled, then there is € {1,2,...nq4} such thatL;u +
_ . _ Hgiq < b;. Thus, Ly iy + D_ a1 < bi, which shows
1) Foralli=1...nq, apply the H-transformation t0 that ¢ is supervisor-enabled aty. On the other hand, if
the constraintd i ;i < bi. Let Lip+ Hig < bi be ¢ is closed-loop enabled aty;, there isi € {1,2,...n4}

the transformed constraints. such thatL g ;g + D 1 squ < b, SO Lipt + Hyaiq < b;.
2) The result of the H'-transformation is the disjunc- Thus, 4 is supervisor-enabled at. Therefore, in view of
tion (3). Proposition 3.3(c)q is closed-loop enabled at [ ]
The next result shows that Proposition 3.2 can be ex-
tended to disjunctions of constraints. Theorem 3.1 Let (4) denote the H-transformation of (3),

» . . ) 1o the initial marking ofVV and o = mpu (o) the initial
Proposition 3.4 Consider (V, o) in closed-loop with @ 1,4 ing of A, Then (4) is h-feasible iff (3) is feasible.
supervisorZ optimally enforcing (3), and N, mu(po))

in closed-loop with a supervisdEy optimally enforcing Proof: The proof shows that each of the two require-

(4). Letq be a firing vector inV and oy (q) = quqy- ments of Definition 2.1 implies its corresponding require-

(a) At all reachable markings;y is closed-loop enabled ment in Definition 3.1 and vice-versa. The proof for the
iff orr(q) is closed-loop enabled. first requirement is by contradiction.



Case la: The first requirement is satisfied in DefiniT" : H(’i,i(-,t) # 0}, where Hy; = max(L;D, H;,0) and
tion 3.1 but not in Definition 2.1. Thus, there is a reachH} ; = max(L;D, H},0).
able markingyu of N_ such that two plant-enabled firing Théorem 32LetS and S’
vectorsq; and ¢» satisfy thatp*(¢1) = p*(¢2) and that
the closed-loop enableg, but disablesg,. Since ¢; is
supervisor-enabled angh is supervisor-disabled, there is
ke {1,2,...n4} such thatlyu + Hy g1 < by, andL;p+
Hgigo £ b, foralli = 1...n4. Let op(q1) = qmdiy
and oy (q2) = qu2q)y,- By Propositions 3.4(b) and 3.1(b), Proof: The proof is by contradiction. First, we prove
wr = my(p) is reachable in the closed-loapy; isclosed- Zr =X =y = Z =X ='. Assumeo enabled atug in
loop enabled and;- is only plant-enabled. However, this (A, po, Z) and not in(N, p9,Z’). Then,ox (o) is enabled
contradicts the first requirement of Definition 3.1, sinceét o in (Na, im0, Eg) but not in (N, piro, Ey), by
0 (q1) = p*(q2) = p*(qm1) = p*(qm2)- Proposition 3.4(b). This contradicBy < Z=%;. Next we

Case 1b: The first requirement is satisfied in Definiprove that= < = = Ey =< Ej;. Assumeoy enabled
tion 2.1 but not in Definition 3.1. Thus, there is a reachabl@t ro IN (Nu, ro, Ex) and (Nu, pwo, Ey), butogqy
marking puy of Ay such that two firing vectorgy; and €nabled only in(Ny, pwo,Ex). Let ¢ be defined as in
a2 satisfy thatp* (qz1) = p*(qu2) and thatgy is closed- Proposition 3.5(b). Theng(op)g is enabled aty in
loop enabled angy;; is only plant-enabled. Far= 1,2, let (N, 0, Z) and not in(\, uo, ='), by Proposition 3.5(b).
xp; be defined as g (t) = qus(t) Vt € T andzg;(t) = 0 This contradicts= < Z=’. Now, we prove:z < = =
otherwise. By (20)z 1 is closed-loop enabled angy, is Z# < Ey. AssumeZy A Ej. Since= < E =
only plant-enabled. Lety be a firing sequence such that= = £ = Ep =< Ej, it must be thatEy and =, are
pio 25 uy and letz; andz, be the restrictions of;  €qually permissive. Thu§y = Ef. Then,= = E’, which
andzps 0 T, ¢1 = x(on) + x1 and gz = x(og) + 2. coONtradicts= < E'. The proof ofEy < Ejy = E<E'is

By Propositions 3.5 and 3.3(b-g) 2%’ 11, 1 is closed- similar. -

. : In the following developments, it will be useful to guar-
loop enabled aj: and ¢g» is only plant-enabled at. This ) S
contradicts the first requirement of Definition 2.1, sinc antee that the successive application of the'Hand H-

N " %ransformations to a set of constraints (4) produces exactl
p*(am) = p*(qu2) = p*(¢1) = p*(q2). “p F

Case 2: We show that the second requirement in Deg'e same set of constraints. To this end, each component
_— " e _ N < b of a disjunction (4) will be constrained to satisf
inition 3.1 is not satisfied iff the second requirement in HiH = J ) y

be two sets of constraints (3),
andSy andSy, their joint H-transformation. LeE, 2/, Ey
and =; be supervisors optimally enforcing, S’, Sy and
S}y, respectively, inN, o) and (Nu, pmo), wherepgg =
mH(/Lo). ExZ (E =< EI) iff =y < E/H (EH < E/H)

Definition 2.1 is not satisfied. The second requirement of Vp e Py : { Ly (-,p) > LuDy (-, pe) (25)
Definition 2.1 is not satisfied iff there are two sequenees ' Ly(-,p) > LuDy(-, ep)
ando, and a firing vector such thatr; ¢ ando, are closed- Vte T\ Py : LyDg(-,t) <0 (26)

loop enabled,ozq is only plant-enabled, and*(c;) = ) _ )

o*(0). Further,o1q and o, are closed-loop enabled and The following result summarizes the properties of (25-26).

o2q is only plant-enabled iffoy(o19) and op(o2) are  Theorem 3.3 (a) The H-transformation of any set of

closed-loop enabled ang; (o2¢) is only plant-enabled, by constraintsLy. + Hq < b satisfies (25-26).

Propositions 3.4(b) and 3.1(b). Sinog&(c1) = 0™ (02) < (b) Given an H-transformed net’y and a set of con-

0*(or(01)) = 0*(ou(02)), the conclusion follows. B straints Lyuy < b, let Ly + Hq < b denote the H!-
Given (N, uo), we say that a supervisa is at least as transformation ofLyuy < b and let L',y < b and N,

restrictive as a supervis@s;, which we write=; < =, if  denote the H-transformation of (2). If;; satisfies (25—26)

any sequence closed-loop enabled at the initial state ofand the H-transformation generating’;nj; < b has the

(N, o, Z1) is also closed-loop enabled at the initial state oparameterT i = ¢Py, then Ny and A}, are identical,

(N, po, Z2). Further,Z, is more restrictive thafs, which  and L}, = Ly.

we write Z; < =,, if Z; < Z5 and there is a sequenee ] —

closed-loop enabled at the initial state(df, g, =) that is Proof: () By definition, Ha(, .p)h E

not closed-loop enabled at the initial state(df, 1, Z1). max(0, LD(:, ep), H(-, ep)) Vp .S Py Further, by

Let S denote a set of constrainig!, [Liu + Hiq < b;] (13) and (16).LD(-, ep) = LDy (,pe) — LDy, ep)

" =1 =" and LD~ (-,ep) = LyDy(-,ep). Then, (25) is obtained
and &’ denote\/;2, [Ljp + Hjg < bi]. Let Sy denote .y qnstitutingLD in H,, thenH, and LD~ in Vp € Py:
\/?:dl[LHi/,LH < b;], the H-transformation ofS, and S}, Ly, p) = Hy(-,ep) + LD~ (-, ep), where this expression
denote\/;, [Ly;um < b}, the H-transformation o8’. In  is true by (10). According to the H-transformation, all
order to ensure that the H-transformationssadndS’ result  transitionst for which Hy(-,t) # 0 are split. Therefore,
in the same PNV, we define thgoint H-transformation Vt € T\ oPy, Hy(-,t) =0, and SoLD(-,t) < 0. By (19),
of S and &’ to consist of an H-transformation & and  this proves (26).
an H-transformation ofS’ that use the same parameter (b) By definition, H; = max(LD,H,0). For t €

Tog 2 Ui {t € T :+ Hy,(t) # 0y U Uiy {t € T nePy we haveHy(-,t) = H(-t), in view of (25),



LD(-,t) = LyD}(-,t e e) — Ly Dy (-, t), and H(-,t) =
Ly(-,te) — LyDy(-,t) (by (18)). Fort € T \ oPy,
Hy(-,t) = H(-,t) = 0, in view of (18), (19), and (26).
This shows thati; = H. Then, by (10), (13) and (18) we
get L'y (-,p) = Lu(-,p) Vp € Pj;. Note thatH,; = H =
P}, C Py; Pj; = Py is guaranteed by, y = ePy. ®
Let S denote the specification (3) qiV, uo). Based on

the results obtained so far, the following procedure coulBy Theorem 3.2=%,~ < Egc. Therefore=4 . <

be used to find a feasible specificatiSp that is at least as
restrictive asS. The procedure could be used wheneser
is not feasible or its feasibility is not known.

Procedure 3.1

1) Apply the H-transformation. LeSy and (N, pmo)
be the transformed constraints and PN.

2) Find h-feasible constraintSy, that satisfy (25-26)
such thatty, < =g, whereZy, and=y are super-
visors optimally enforcingsy, andSy, respectively.
If no solution is found, declare failure and exit.

3) Apply to Sy, the H '-transformation. LetS, be the
result. EnforceS, in (N, uo).

Theorem 3.3(b), the total C- and H-transformation&f
is Sgcq. The proof is by contradiction. Assume there is
another supervisde’ € X enforcingS such that=" £ =,,.
Since 2/ € X, &’ optimally enforces a feasible set of
constraintsS’ of the form (3). By Theorems 3.1 and 3.3(a),
Eye € Xmce, where Zy ., is a supervisor optimally
enforcing theSy; ., the total C- and H-transformation 6f.
EHCa,
sinceZ g, is least restrictive. By Theorem 3.2/ < =,
which contradicts the original assumption.

(c) The proof is similar to that of part (b). [ ]

Theorem 3.4 shows that the problem of enforcing con-
straints (3) can be solved in terms of the simpler conssaint
(4) in a transformed PN, without loss of permissiveness.
Since our results were derived under the transition-bag con
currency setting, a loss of permissiveness is possible when
the Procedure 3.1 is used for other concurrency settings.
Indeed, a feasible least restrictive supervisor enfor¢8)g
may be too restrictive for other concurrency settings, tftou
it would still enforce (3). This suggests that for a diffetren
concurrency setting, the second step of Procedure 3.1ghoul
incorporate additional constraints besides (25—26), soien
the design remains optimal. Finally, no specific method has

The set of constraints obtained by this procedure h&¥en referenced for the second step of the procedure. Under
interesting properties when the H-transformation split§ertain assumptions, including no concurrency, a solution
all transitions and the C-transformation adds sink placd8' SPecifications (4) is available [8]. However, an optimal
to all transitions. Therefore. let's define thetal H- Solution appears to be difficult to obtain in the general case
transformation as the H-transformation with parameter” Structural solution is possible, and we plan to present it
T.n = T. Let X be the set of all supervisors optimally N & future paper. The structural solution, while applying
er{forcing feasible constraints of the form (3). L&y © double-labeled PNs and the most common concurrency
be the set of all supervisors optimally enforcing h-feasiblS€ttings, including the one of this paper, can use previous

constraints of the form (3) that satisfy (25-26). methods developed for constrairig. < b, such as in [1],

[2], [4], [7], to obtain a suboptimal solution.

Theorem 3.4 Given the notation of Procedure 3.1, let

= and E, be supervisors optimally enforcin§ and S,
respectively.

(@) S, is feasible ancE, < =. (1]
Assume that the total H-transformation is applied at the
first step of the procedure.

. . . [2
(b) Z, is least restrictive among the supervisors &f
enforcing S iff Zgy¢, is least restrictive among the
supervisors oft'y ¢ enforcingSgc. 3]
(c) There is no supervisae* - =, of X that enforcesS
if there is no supervisoE};~ = Epcq of Xyc that  [4]
enforcesSgc. 5]
Proof: (a) Let P and Py¢ be the set of places of the
PNs obtained by the C- and H-transformationSofin view  [6]
of Theorem 3.3(b), the same PNy is obtained by the 7
C- and H-transformations af,, when the transformations
use the parametef®, - = ¢(Pc\ P) andT; iy = o(Pryc\ [8]

Pc). Further,Sg ¢, is the C- and H-transformation &,.
Therefore,S, is feasible by Theorem 3.1 arffl, < Z in
view of Egc. < Egc and Theorem 3.2.

(b) Note that the total C- and H-transformation of any
set of constraints (3) results in the same RN;c. By
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