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Abstract— The problem of formation tracking can be stated
as multiple vehicles are required to follow spatial trajectories
while keeping a desired inter-vehicle formation pattern in
time. This paper considers vehicles with nonlinear dynamics
and nonholonomic constraints and very general trajectories
that can be generated by some reference vehicles. We specify
formations using the vectors of relative positions of neighboring
vehicles and use consensus-based controllers in the context
of decentralized formation tracking control. The key idea
is to combine consensus-based controllers with the cascaded
approach to tracking control, resulting in a group of linearly
coupled dynamical systems. We examine the stability properties
of the closed loop system using cascaded systems theory
and nonlinear synchronization theory. Simulation results are
presented to illustrate the proposed method.

I. INTRODUCTION

Control problem involving mobile vehicles/robots have
attracted considerable attention in the control community
during the past decade. One of the basic motion tasks
assigned to a mobile vehicle may be formulated as following
a given trajectory [12], [24]. The trajectory tracking prob-
lem was globally solved in [19] by using a time-varying
continuous feedback law, and in [3], [11], [15] through the
use of dynamic feedback linearization. The backstepping
technique for trajectory tracking of nonholonomic systems
in chained form was developed in [7], [9]. In the special
case when the vehicle model has a cascaded structure, the
higher dimensional problem can be decomposed into several
lower dimensional problems that are easier to solve [16].

An extension to the traditional trajectory tracking problem
is that of coordinated tracking or formation tracking (see
Fig. 1). The problem is often formulated as to find a
coordinated control scheme for multiple robots that make
them maintain some given, possibly time-varying, formation
while executing a given task as a group. The possible tasks
could range from exploration of unknown environments
where an increase in numbers could potentially reduce the
exploration time, navigation in hostile environments where
multiple robots make the system redundant and thus robust,
to coordinated path following; see recent survey papers [2],
[20].

In formation control of multi-vehicle systems, different
control topologies can be adopted depending on applications.
There may exist one or more leaders in the group with other
vehicles following one or more leaders in a specified way.
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Fig. 1. Six vehicles perform a formation tracking task.

In many scenarios, vehicles have limited communication
ability. Since global information is often not available to each
vehicle, distributed controllers using only the local infor-
mation are desirable. One approach to distributed formation
control is to represent formations using the vectors of relative
positions of neighboring vehicles and the use of consensus-
based controllers with input bias [4], [10].

In this paper, we study the formation tracking problem
for a group of vehicles/robots using the consensus-based
controllers combined with the cascade approach [16]. The
idea is to specify a reference path for a given, nonphysi-
cal point. Then a multiple vehicle formation, defined with
respect to the real vehicles as well as to the nonphysical
virtual leader, should be maintained at the same time as
the virtual leader tracks its reference trajectory. The vehicles
exchange information according to a communication digraph,
G. Similar to the tracking controller in [16], the controller
for each vehicle can be decomposed to two “sub-controllers,”
one for positioning and one for orientation. Different from
the traditional single vehicle tracking case, each vehicle
uses information from its neighbors in the communication
digraph to determine the reference velocities and stay at
their designation in the formation. Based on nonlinear syn-
chronization results [26], we prove that consensus-based
formation tracking can be achieved as long as the formation
graph had a spanning tree and the controller parameters are
large enough (They can be lower-bounded by a quantity
determined by the formation graph.)

Related work includes [1], [5], [6], [18], [21]. In [1], the
vehicle dynamics were assumed to be linear and formation
control design was based on algebraic graph theory. In [18],
output feedback linearization control was combined with
a second-order (linear) consensus controller to coordinate
the movement of multiple mobile robots. The problem of



θ

ω

 

Fig. 2. Mobile robots and the error dynamics.

vehicles moving in a formation along constant or periodic
trajectories was formulated as a nonlinear output regulation
(servomechanism) problem in [5]. The solutions adopted in
[6], [21] for coordinated path following control of multiple
marine vessels or wheeled robots built on Lyapunov tech-
niques, where path following and inter-vehicle coordination
were decoupled.

The contributions of this work are: 1) The consensus-based
formation tracking controller for nonlinear vehicles is novel
and its stability properties are examined using cascaded sys-
tems theory and nonlinear synchronization theory; 2) Global
results allow us to consider a large class of trajectories with
arbitrary (rigid) formation patterns and initial conditions.

II. PRELIMINARIES

A. Tracking Control of Mobile Vehicles

A kinematic model of a wheeled mobile robot with two
degrees of freedom is given by the following equations

ẋ = vcosθ , ẏ = vsinθ , θ̇ = ω , (1)

where the forward velocity v and the angular velocity ω are
considered as inputs, (x, y) is the center of the rear axis of
the vehicle, and θ is the angle between heading direction
and x-axis (see Fig. 2).

For time varying reference trajectory tracking, the refer-
ence trajectory must be selected to satisfy the nonholonomic
constraint. The reference trajectory is hence generated using
a virtual reference robot [8] which moves according to the
model

ẋr = vr cosθr, ẏr = vr sinθr, θ̇r = ωr, (2)

where [xr yr θr]
T is the reference posture obtained from the

virtual vehicle. Following [8] we define the error coordinates
(cf. Fig. 2)

pe =

⎡
⎣ xe

ye

θe

⎤
⎦ =

⎡
⎣ cosθ sinθ 0

−sinθ cosθ 0
0 0 1

⎤
⎦

⎡
⎣ xr − x

yr − y
θr −θ

⎤
⎦ . (3)

It can be verified that in these coordinates the error
dynamics become

ṗe =

⎡
⎣ ẋe

ẏe

θ̇e

⎤
⎦ =

⎡
⎣ ωye − v+ vr cosθe

−ωxe + vr sinθe

= ωr −ω

⎤
⎦ . (4)

The aim of (single robot) trajectory tracking is to find
appropriate velocity control laws v and ω of the form

v = v(t,xe,ye,θe)
ω = ω(t,xe,ye,θe)

(5)

such that the closed-loop trajectories of (4) & (5) are stable
in some sense (e.g., uniform globally asymptotically stable).

As discussed in Sect. I, there are numerous solutions to
this problem in the continuous time domain. Here, we revisit
the cascaded approach proposed in [16]. Let us first introduce
the notion of globally K-exponential stability.

Definition 1: A continuous function α : [0,a) → [0,∞) is
said to belong to class K if it is strictly increasing and α(0)=
0.

Definition 2: A continuous function β : [0,a)× [0,∞) →
[0,∞) is said to belong to class KL if for each fixed s the
mapping β (r,s) belongs to class K with respect to r, and for
each fixed r the mapping β (r,s) is decreasing with respect
to s and β (r,s) → 0 as s → ∞.

Definition 3: Consider the system

ẋ = g(t,x), g(t,0) = 0 ∀t ≥ 0 (6)

where g(t,x) is piecewise continuous in t and locally Lip-
schitz in x.

We call the system (6) globally K-exponentially stable if
there exist ξ > 0 and a class K function k(·) such that

‖x(t)‖ ≤ k(‖x(t)‖)e−ξ (t−t0).
Theorem 1 ([16]): Consider the system (4) in closed-loop

with the controller

v = vr + c2xe,
ω = ωr + c1θe,

(7)

where c1 > 0 c2 > 0. If ωr(t), ω̇r(t), and vr(t) are bounded
and there exist δ and k such that∫ t+δ

t
ωr(τ)2dτ ≥ k, ∀t ≥ t0 (8)

then the closed-loop system (4) & (7), written compactly as

ṗe = h(xe, ye, θe)|vr ,ωr = h(pe)|vr ,ωr (9)

is globally K-exponentially stable. �
In the above, the subscriptions for h(·)|vr ,ωr mean that the

error dynamics are defined relative to reference velocities v r

and ωr. The tracking condition (8) implies that the reference
trajectories should not converge to a point (or straight line).
This also relates to the well-known persistence-of-excitation
condition in adaptive control theory.

Note that control laws in (7) are linear with respect to
xe and θe. This is critical in designing consensus-based
controller for multiple vehicle formation tracking as we shall
see below.



B. Formation Graphs

We consider formations that can be represented by acyclic
directed graphs. In these graphs, the agents involved are iden-
tified by vertices, and the leader-following relationships by
(directed) edges. The orientation of each edge distinguishes
the leader from the follower. Follower controllers implement
static state feedback-control laws that depend on the state of
the particular follower and the states of its leaders.

Definition 4 ([23]): A formation control graph G =
(V,E,D) is a directed acyclic graph consisting of the fol-
lowing.

• A finite set V = {v1, . . . ,vN} of N vertices and a map
assigning to each vertex a control system ẋ i = fi(t,xi,ui)
where xi ∈ R

n and ui ∈ R
m.

• An edge set encoding leader-follower relationships be-
tween agents. The ordered pair (vi,v j)

∆= ei j belongs to
E if u j depends on the state of agent i, xi.

• A collection D = {di j} of edge specifications, defining
control objectives (setpoints) for each j: (vi,v j) ∈ E for
some vi ∈V .

For agent j, the tails of all incoming edges to vertex
represent leaders of j, and their set is denoted by L j ⊂ V .
Formation leaders (vertices of in-degree zero) regulate their
behavior so that the formation may achieve some group
objectives, such as navigation in obstacle environments or
tracking reference paths.

Given a specification dk j on edge (vk,v j) ∈ E, a setpoint
for agent j can be expressed as xr

j = xk − dk j. For agents
with multiple leaders, the specification redundancy can be
resolved by projecting the incoming edges specifications into
orthogonal components

xr
j = ∑

k∈Lj

Sk j(xk −dk j) (10)

where Sk j are projection matrices with ∑k rank(Sk j) = n.
Then the error for the closed-loop system of vehicle j is
defined to be the deviation from the prescribed setpoint
x̃ j

∆= xr
j − x j, and the formation error vector is constructed

by stacking the errors of all followers

x̃
∆= [· · · x̃ · · · ]T , v j ∈V\LF .

C. Synchronization in networks of nonlinear dynamical sys-
tems

Definition 5: Given a matrix V ∈R
n×n, a function f (y, t) :

R
n+1 → R

n is V -uniformly decreasing if (y− z)TV ( f (y, t)−
f (z, t)) ≤ −µ‖y− z‖2 for some µ > 0 and all y, z ∈ R

n and
t ∈ R.

Note that a differentiable function f (y,t) is V -uniformly
decreasing if and only if V (∂ f (y)/∂y)+δ I for some δ > 0
and all y, t. Consider the following synchronization result
for the coupled network of identical dynamical systems with
state equations:

ẋ = ( f (x1, t), . . . , f (xn,t))T +(C(t)⊗D(t))x+ u(t), (11)

vr

v1

v
N

v2

dr1

d
r2

drN

reference
trajectory

Fig. 3. Formation tracking using baseline FTC. The reference vehicle sends
to vehicle i the formation specification dri as well as the reference velocities
vr and ωr.

where x = (x1, . . . ,xN)T , u = (u1, . . . ,uN)T and C(t) is a zero
sums matrix for each t. C⊗D is the Kronecker product of
matrices C and D.

Theorem 2 ([26]): Let Y (t) be an n by n time-varying
matrix and V be an n by n symmetric positive definite matrix
such that f (x, t)+Y (t)x is V -uniformly decreasing. Then the
network of coupled dynamical systems in (11) synchronizes
in the sense that ‖xi − x j‖ → 0 as t → ∞ for all i, j if the
following two conditions are satisfied:
(i) limt→∞ ‖ui−u j‖ = 0 for all i, j.
(ii) There exists an N by N symmetric irreducible zero row
sums matrix U with nonpositive off-diagonal elements such
that

(U ⊗V)(C(t)⊗D(t)− I⊗Y(t)) ≤ 0 (12)

for all t.

III. BASIC FORMATION TRACKING CONTROLLER

The control objective is to solve a formation tacking
problem for N vehicles. This implies that each vehicle must
converge to and stay at their designation in the formation
while the formation as a whole follows a virtual vehicle.

Equipped with the results presented in the previous sec-
tion, we first construct a basic formation tracking controller
(FTC) from (7). Let dri=[dxri dyri ]

T denote the formation
specification on edge (vr, vi). In virtue of linear structures
of (7), we propose:

Basic FTC for vehicle i:{
vi = vr + c2xei ,
ωi = ωr + c1θei ,

(13)

where c1 > 0, c2 > 0 and

pei = [xei yei θei ]
T

=

⎡
⎣ cosθi sinθi 0

−sinθi cosθi 0
0 0 1

⎤
⎦

⎡
⎣ xr − xi−dxri

yr − yi−dyri

θr −θi

⎤
⎦ .(14)

Remark 1: It is not required to have constraints for every
pair of vehicles. We need only a sufficient number of
constraints which uniquely determine the formation.

Theorem 3: The basic FTC (13) and (14) solves the
formation tracking problem.
Proof: By Theorem 1, every vehicle i follows the virtual (or
leader) vehicle (thus the desired trajectory) with a formation
constraint dri on edge (vr, vi). Thus all vehicles tracks the
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Fig. 4. Circular motion of three vehicles with a triangle formation. Initial
vehicle postures are: [−8 −9 3π/5]T for vehicle 1 (denoted as ∗); [−15 −
20 π/2]T for vehicle 2 (�); [−10 −15 π/3]T for vehicle 3 (
).

reference trajectory while staying in formation, which is
specified by formation constraints dri’s as shown in Fig. 3.
�

Corollary 1: Suppose only vehicle 1 follows the virtual
vehicle. The composite system with inputs vr and ωr and
states x̃1 = [xe1 ye1 θe1 ]

T is globally K-exponentially stable
and therefore formation input-to-state stable (see the defini-
tion in [22]).

Example 1 (Basic FTC): Assume that we have a system
consisting of three vehicles, which are required to move in
some predefined formation pattern. First, as in [5], we will
consider the case of moving in a triangle formation along a
circle. That is, the virtual (or reference) vehicle dynamics are
given by: xr = vrcos(ωrt)+ xr0, yr = vrsin(ωrt)+ yr0, where
vr is the reference forward velocity, ωr the reference angular
velocity, and [xr0 yr0]

T the initial offsets.
Assume that the parameters vr = 10, ωr = 0.2, [xr0 yr0]

T =
[−25 0]T . In our simulations we used an isosceles right
triangle with sides equal to 3

√
2, 3

√
2, and 6. Also, fix the

position of the virtual leader at the vertex with the right
angle. Then, from the above constraints the required (fixed)
formation specifications for the vehicles are given by

dr1 =
[

0
0

]
, dr2 =

[
3
3

]
, dr3 =

[
3
−3

]
.

For FTC we chose the parameters as c1 = 0.3 and c2 =
0.5. Fig. 4 shows the trajectories of the system for about
100 seconds. Initially the vehicles are not in the required
formation; however, they form the formation quite fast (K-
exponentially fast) while following the reference trajectory
(solid line in the figure). Fig. 4 shows the control signals v
and ω for each vehicle.

�
IV. CONSENSUS-BASED FORMATION TRACKING

CONTROLLER

The basic FTC has the advantage that it is simple and leads
to globally stabilizing controllers. A disadvantage, however,

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

v

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

ω

Fig. 5. Control signals v and ω for Virtual vehicle: solid line; Vehicle 1:
dotted line; Vehicle 2: dashed line; and Vehicle 3: dot-dash line.

is that it requires every vehicle to get access to the reference
velocities vr and ωr. This further implies that the reference
vehicle needs to establish direct communication links with
all other vehicles in the group, which may not be practical
in some applications.

In a more general setting, we assume that only a subset
of vehicles (leaders) have direct access to the reference
velocities. Other vehicles (followers) use their neighboring
leaders’ information to accomplish the formation tracking
task. In this case, formation tracking controllers operate
in a decentralized fashion since only neighboring leaders’
information has been used.

Consensus-based FTC for vehicle i
⎧⎪⎪⎨
⎪⎪⎩

vi = vri + c2xei + ∑ j∈Li
ai j(xei − xej),

ωi = ωri + c1θei + ∑ j∈Li
ai j(θei −θe j),

v̇ri = ∑ j∈Li
ai j(vr j − vri),

ω̇ri = ∑ j∈Li
ai j(ωr j −ωri)

(15)

where

pei =

⎡
⎣ xei

yei

θei

⎤
⎦ =

⎡
⎣ cosθi sinθi 0

−sinθi cosθi 0
0 0 1

⎤
⎦

⎡
⎣ xr

i − xi

yr
i − yi

θ r
i −θi

⎤
⎦ .

and ai j represents relative confidence of agent i in the
information state of agent j.

Remark 2: As one can see from (15), the communication
between vehicles is local and distributed, in the sense that
each vehicle receives the posture and velocity information
only from its neighboring leaders.

We have the following theorem regarding the stability of
the consensus-based FTC.

Theorem 4: The consensus-based FTC (15) solves the
formation tracking problem if the formation graph G has
a spanning tree and the controller parameters c1, c2 > 0 are
large enough. Lower bounds for c1 and c2 are related to the
Laplaican matrix for G.



Proof: Let LG be the Laplacian matrix induced by the
formation graph G and it is defined by

(LG)i j =
{

∑N
k=1,k �=i aik, j = i

−ai j, j �= i

We will write Pe = [pe1 , . . . , peN ]T ∈ R
3N , [Vr Ωr]T =

[vr1 , . . . ,vrN ,ωr1 , . . . ,ωrN ]T ∈ R
2N . The closed loop system

(15)-(4) for all vehicles can be expressed in a compact form
as

Ṗe =

⎡
⎢⎣

h(pe1)|vr1 ,ωr1
...

h(peN )|vrN ,ωrN

⎤
⎥⎦+(−LG ⊗D)Pe, (16)

[
V̇r

Ωr

]
= (−LG ⊗ I2)

[
Vr

Ωr

]
. (17)

where

D =

⎡
⎣ −1 0 0

0 0 0
0 0 −1

⎤
⎦ (18)

describes the specific coupling between two vehicles.
It can be seen that (17) is in the form of linear consensus

algorithms. Since the formation graph is acyclic and has
a rooted spanning tree (with the root corresponding to
the virtual vehicle), the reference velocities (coordination
variables) vri(t) and ωri(t) for any vehicle i in the group
will approach to vr(t) and ωr(t), respectively [14], [17]. (It
is important for the formation graph to be acyclic such that
each vehicle can follow arbitrary root reference velocities.
For general graphs with loops, the consensus algorithms have
band-limited properties [13].)

We thus re-write (16) as

Ṗe =

⎡
⎢⎣

h(pe1)|vr ,ωr
...

h(peN )|vr ,ωr

⎤
⎥⎦+(−LG ⊗D)Pe +

⎡
⎢⎣

φ1(t)
...

φN(t)

⎤
⎥⎦ (19)

and φi(t) → 0 as t → ∞. The functions φi can be considered
as residual errors that occurred when replacing vri and ωri

in (16) with vr and ωr, respectively.
Now (19) is in the same form of (12). We further set

Y = αD so that h(pe)+αDpe is V -uniformly decreasing (see
Lemma 11 in [25]) provided that c1 −α > 0 and c2 −α >
0. Theorem 2 says that (19) synchronizes if there exists a
symmetric zero row sums matrix U with nonpositive off-
diagonal elements such that (U ⊗V )(−LG ⊗D− I ⊗Y ) ≤ 0.
Since VD ≤ 0 and Y = αD, this is equivalent to

U(−LG −αI)≥ 0. (20)

Let µ(−LG) be the supremum of all real numbers such that
U(−LG −αI) ≥ 0. It was shown in [27] that µ(−LG) exists
for constant row sums matrices and can be computed by a
sequence of semidefinite programming problems. Choose c 1

and c2 to be large enough such that

min{c1,c2} > µ(−LG) (21)

1

0

0rd
⎡ ⎤= ⎢ ⎥
⎣ ⎦

13

3

3
d
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3
d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

23

0

6
d

⎡ ⎤= ⎢ ⎥−⎣ ⎦

 
Fig. 6. A formation graph with formation specifications on edges
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Fig. 7. Tracking a sinusoidal trajectory in a triangle formation. Initial
vehicle postures are: [12 12 0]T for vehicle 1 (denoted as ∗); [−15 −
20 π/4]T for vehicle 2 (�); [−10 15 −π/4]T for vehicle 3 (
).

and the proof is complete.
In particular, an upper bound for µ(−LG) is given by

µ2(−LG) = minRe(λ ) where Re(λ ) is the real part of λ , the
eigenvalues of −LG that do not correspond to the eigenvector
e. It suffices to make min{c1,c2} > µ2(−LG). �

Example 2: In this example, we chose virtual vehicle
dynamics of a sinusoidal form: (xr(t), yr(t)) = (t, sin(t)).
The acyclic formation graph with formation specifications is
shown in Fig. 6.

The (unweighted) Laplacian matrix corresponds to Fig. 6
is given by:

LG =

⎡
⎢⎢⎣

1 −1 0 0
0 2 −1 −1
0 0 1 −1
0 0 0 0

⎤
⎥⎥⎦ . (22)

Since µ2(−LG) = −2 we used consensus-based FTC (15)
with positive c1, c2, say c1 = 0.3 and c2 = 0.5. As shown in
Fig. 7, successful formation tracking with a desired triangle
formation is achieved. Vehicle control signals vi’s and ωi’s
are shown in Fig. 8.

�

V. CONCLUSIONS AND FUTURE WORK

This paper addressed the formation tracking problem for
multiple mobile vehicles with nonholonomic constraints.
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Fig. 8. Vehicle control signals vi’s and ωi’s.

We developed a basic formation tracking controller (FTC)
as well as a consensus-based one using only neighboring
leaders information. The stability properties of the multiple
vehicle system in closed loop with these FTCs were studied
using cascaded systems theory and nonlinear synchronization
theory. In particular, we established connections between
stability of consensus-based FTC and Laplaican matrices for
formation graphs. Our simple formation tracking strategy
holds great potential to be extended to the case of air and
marine vehicles.

We did not discuss collision avoidance and formation error
propagation problems. Our FTC does not guarantee avoid-
ance of collisions and there is a need to take care of them in
the future work. Furthermore, Corollary 1 showed that two
vehicles with a cascaded interconnection is formation ISS.
Its invariance properties under cascading could be explored
to quantify the formation errors when individual vehicle’s
tracking errors are bounded.
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