
1

A BRIEF REVIEW OF THE LAPLACE TRANSFORM USEFUL
IN CONTROL FUNCTIONS

Panus Antsaklis, Zhiqiang Gao

Given a function f(t) its Laplace transform is given by

The Laplace variable s can be seen as a generalized frequency s = s + jw.
This is the one-sided Laplace transform, as the lower integration limit starts at 0 and not at −∞. Note

that the lower integration limit is in fact 0−, that is, the integration starts just before 0. This is to include
any possible discontinuities in f(t) that may occur exactly at 0; this is the case, for example, with the
impulse or delta function d(t). In control, it is common for the signals of interest to be assumed to be zero
for t < 0 and so no signal information is lost when moving into the transform domain. This one-sided
Laplace transform is particularly convenient when solving linear ordinary differential equations using
Laplace transforms.

There is one-to-one correspondence between f(t) and F(s). To recover f(t) from F(s) one can use the inverse
Laplace transform given by

However, in control it is common to obtain f(t) from F(s) using partial fraction expansion and properties and
tables of common Laplace transforms.

It is not difficult to derive the Laplace transforms of simple functions. To demonstrate, we select some func-
tions common in control:

Impulse (Delta or Dirac) function d(t)
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An important property of the delta function is given by

where in fact the integration range needs to cover only the point where the argument in d(.) becomes zero.
Then
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2 CONTROL SYSTEMS

f(t) F(s)
d(t) 1
q(t) 1/s
e−at ⋅ q(t) 1/(s + a)
sin wt ⋅ q(t) w/(s2 + w2)
cos wt ⋅ q(t) s/(s2 + w2)
ta ⋅ q(t) n!/sn+1

tne–at ⋅ q(t) n!/(s + a)n+1

Unit Step

Some Properties of Laplace Transform

When solving linear ordinary differential equations with constant coefficients using Laplace transform prop-
erties that involve derivatives of the time functions are useful. These include
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It is not difficult to show that L{q(t)} = 1/s where q(t) is the unit step (zero for t < 0 and 1 for t ≤ 0). Also that
L{eat ⋅ q(t)} = 1/(s + a); note that eatq(t) is zero for t < 0 and e–at for t ≤ 0.

Laplace transform useful in control functions:
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where F(s) = L{f(t)}. These and other properties are included in the list below:

CONTROL SYSTEM DESIGN 3

f(t) F(s)

Sk F(s)~Sk−1 f(0) − Sk−2 f (1) (0) − …− f (k−1)(0)

e-atf(t) . q(t) F(s + a)

Delay f(t − a) ⋅ q(t − a) e–as F(s)

F(s) ⋅ G(s)
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Partial Fraction Expansion

Write

as the sum of simple terms, namely,

where pj , j = 1,…,n, are the n roots of the denominator polynomial (poles of G(s))

1. When all n pj are distinct then

2. When two poles are complex conjugate, that is, p1 = a + jb and p2 = a − jb (also written p2, p
*
1) then

from which

f (t) = 2 |c1|e
at cos [bt + arg(c1)]

Note that it is also common in the case of complex conjugate poles to allow a
second-order term in the partial fraction expansion of the form

which could then be found directly from the tables in some cases.
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3. When a pj is repeated r times then the expansion must include r terms that correspond to the pole pj. These
r terms are of the form

where

Example 1

Then

Note that if F(s) represents the transfer function of a system then f(t)= L−1{F(s)} is the impulse response
of the system.

Example 2

From the tables,

f(t) = (2 cos t + sin t)q(t)

Note that the poles of F(s) are at ± j. Alternatively, using the formulas for poles p1 − j and p2 − j

and

Similarly for the other term.
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