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Abstract— The main contribution of this paper is a converse The other basic problem for switched systems is the
Lyapunov theorem derived for a class of switched linear gsynthesis of stabilizing switching laws for a given collection
systems with time-variant parametric uncertainties. Both of dynamical systems, which is called switching stabiliza-
discrete-time and continuous-time switched linear systems are . T e :
investigated. It is shown that the existence of asymptotically tion problem. In the switching stgblhzatl.o_n I|_terature, mo;t
stabilizing switching laws implies the existence of a polyhedral Of the work focused on quadratic stabilization for certain
Lyapunov function along with conic partition based stabiliz- classes of systems. For example, a quadratic stabilization
ing switching laws. The results presented here could be an switching law between two LTI systems was considered
important step towards a necessary and sufficient condition in [21], in which it was shown that the existence of a
for stabilizability of switched linear systems. The methods here ’ Lo .
are based on real analysis and polyhedral algebra. ;tab_le convex _combmatlon of the two subsystem n_1atr|ces

implies the existence of a state-dependent switching rule
that stabilizes the switched system along with a quadratic
Lyapunov function. A generalization to more than two

The stability issues of switched systems have been &ffl subsystems was suggested in [17] by using a “min-
increasing interest in the recent decade, see for examleojection strategy”. In [5], it was shown that the stable
the survey papers [9], [4], the recent book [10] and th€onvex combination condition is also necessary for the
references cited therein. The stability study of switchequadratic stabilizability of two mode switched LTI system.
systems can be roughly divided into two kinds of problemd-owever, it is only sufficient for switched LTI systems
One is the stability analysis of switched systems under give#ith more than two modes. A necessary and sufficient
switching signals (maybe arbitrary, slow switching etc.), angondition for quadratic stabilizability of switched controller
the other is the synthesis of stabilizing switching signals fosystems was derived in [23]. There are extensions of [21] to
a given collection of dynamical systems. output-dependent switching and discrete-time case [9], [27].

For the stability analysis problem, the first question i§0r robust stabilization, a quadratic stabilizing switching
whether the switched system remains stable when therel@v was designed for polytopic uncertain switched linear
no restriction (or naa priori knowledge) on the switching Systems based on LMI techniques in [27]. All of these
signals. This problem is usually called stability analysignethods guarantee stability by using a common quadratic
under arbitrary switchings, and is typically being dealt with-yapunov function, which is conservative in the sense that
by constructing a common Lyapunov function. For examplehere are switched systems that can be asymptotically (or
various approaches have been presented [16], [22], [LEXPonentially) stabilized without using a common quadratic
[12] to find a common quadratic Lyapunov function forLyapUnov function. There have been some results in the
the family of systems, ensuring the asymptotic stability ofiterature that propose constructive synthesis methods to
switched systems for any switching signal. In [11] and [1]sWitched systems using multiple Lyapunov functions [4].
Lie a|gebra conditions were given, which |mp|y the exiS_The first attempt of StabIIIZIng SWitChing law deSign based
tence of a common quadratic Lyapunov function. HowevePn multiple Lyapunov functions was proposed in [20],
most of the work was restricted to the case of quadratithere piecewise quadratic Lyapunov functions was em-
Lyapunov function, which only gave sufficient stability testPloyed for two mode switched LTI systems. An LMI based
criteria. Switched systems may fail to preserve stabilitjnethod was proposed in [14] for the stabilizing state-
under arbitrary switchings. Therefore, a natural question f§edback control design of discrete-time piecewise affine
what if we restrict the switching signal to some constraine8ystems. Exponential stabilization for switched LTI systems
subclass of switchings. It is shown in [6], [26], [7] thatWas considered in [18] also based on piecewise quadratic
the stability and performance could be preserved undéyapunov functions, and the synthesis problem was for-
certain constrained switchings, for example slow switchingulated as a bilinear matrix inequality (BMI) problem. In
with bounded average dwell time. The stability analysisS]. @ probabilistic algorithm was proposed for the synthesis
with constrained switchings has been usually pursued Rf an asymptotically stabilizing switching law for switched
the framework of multiple Lyapunov functions (MLF), seeLT! systems along with a piecewise quadratic Lyapunov

for examp|e [19]’ [25]' [4]’ [9], [10] and references therein.function. Notice that these Stabl“zabl“ty Conditions, which
may be expressed as the feasibility of certain LMIs or BMIs,
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vector field analysis. However, it was not apparent how terhereZ™* stands for non-negative integers.

extend the method to either higher dimensions or to the We also consider a collection of continuous-time linear

parametric uncertainty case. systems described by the differential equations with para-
This paper aims at addressing the complementary prometric uncertainties

lem of switching stabilization, and derive a necessary condi-

tion for asymptotic stabilizability of switched linear systems i(t) = Ag(w)a(t), teRT, ¢€Q={1-,N} (2

with time-variant parametric uncertainties. In particularwhereR* denotes non-negative real numbers.

we assume that there exist switching laws to asymptoti- In the above uncertain discrete-time and continuous-time

cally stabilize such uncertain switched linear systems, i.estate equations, the state variablg], z(t) € R". Note

switching asymptotically stabilizable. The main questionhat the originz. = 0 is an equilibrium for the systems

studied here is whether there exist (switching controljlescribed in (1) and (2). The finite sét stands for the

Lyapunov functions for such switching stabilizable switche@ollection of discrete modes. In particular, for glle Q,

linear systems, which is usually referred to as a conversg, (w) : W — R"*", and the entries ofl,(w) are assumed

Lyapunov problem. to be continuous functions af € W, where)V C R? is a
There are some related work on converse Lyapunayiven compact set.

theorem for switched systems. In [3], a converse Lya- Combine the family of discrete-time uncertain linear

punov theorem was derived for the globally uniformlysystems (1) with a class of piecewise constant functions,

asymptotically stable and locally uniformly exponentiallys : Z+ — @, which serves as the switching signal between

stable switched systems with arbitrary switching signalshe collection of discrete-time systems (1). The discrete-

It was shown that such arbitrary switching system admitsme switched linear system can be described as

a common Lyapunov function. This converse Lyapunov

theorem justifiyespthe common Lyapunov method which was wlk +1) = Agqry (w)alk], ke 27 ©)

pursued in the literature for arbitrary switching systemsrthe signalo (k) is called aswitching signal The particular

The converse Lyapunov theorem was extended in [13] tgalue of the switching signat(k) at any given time step

switched nonlinear systems that are globally uniformly; may be generated by a decision-making process. One

asymptotically stable with respect to a compact forwardesirable form of the decision-making process is state

invariant set. Notice that both papers are on the existence féfedback based transition law, which can be represented as
a common Lyapunov function for continuous-time switchedp|lows

systems with arbitrary switching signals. Our work differs o(k) = 6(o(k —1),z[k]) (4)
from theirs in that we are addressing the existence of _ _ ]

a (switching control) Lyapunov function for a switchingWhered : @ x R — Q. The discrete mode is determined
stabilizable switched system, instead of considering a corY the current continuous staték] and the previous mode
mon Lyapunov function for arbitrary switching systems? (k - _1)- ) ) _

In addition, we consider robust asymptotic stabilizability Similarly, we introduce a class of piecewise constant

for both discrete-time and continuous-time switched linedknctions,o : R — @, which serves as the switching sig-
systems with time-variant parametric uncertainties. nal between the class of continuous-time systems (2). The
The rest of the paper is organized as follows. In seccontinuous-time switched linear system can be described as

tion .II, mathematical model; for th_e discrete-time and #(t) = A (w)a(t), t e Rt (5)

continuous-time uncertain switched linear system are de-

scribed, and the converse Lyapunov problem is formulate@nd the switching signal is generated by

In Section I, the converse Lye_lpupov theo_r(.ems for d|scret§- o(t) = 6(o(t™), z(t)) ©6)

time and continuous-time switching stabilizable uncertain

switched linear systems are presented and proved respgdieres : Q x R" — Q andt™ = lim, .o ,>o(t — 7). The

tively. Finally, concluding remarks are presented. discrete mode is determined by the current continuous state
Notation: The letters€,P,S--- denote setspP the x(t) and the previous mode(t™). It is assumed that there

boundary of setP, andint{P} its interior. For any real are finite switchings within any finite time interval.

A > 0, the set)\S is defined as{z = \y, y € S}. The For this discrete-time switched system (3)-(4) and

term C-set stands for a convex and compact set containiggntinuous-time switched system (5)-(6), we assume that

the origin in its interior. they are asymptotically switching stabilizable, i.e., for any
initial condition ;, € R™ there exist switching laws to
[l. PROBLEM FORMULATION asymptotically stabilize the switched system. It is known

We consider a collection of discrete-time linear system@1@t if there exists a Lyapunov function, usually picked as

described by the difference equations with parametric uiluadratic or piecewise quadratic, then the switched system
certainties can be stabilized. However, the reverse of the statement

is not clear yet, that is whether there always exists a
z[k+1] = A (w)z[k], k€Z", ¢geQ={1,---,N} (1) (switching control) Lyapunov function for a given switching



stabilizable switched system, which is usually called theherez[l] = A, ) (w)x[0] for somew € W. Note that
problem of converse Lyapunov theorem. Up, (z[0]) = 1, sincex, is on the boundary of,. If we
We focus our attention on this converse Lyapunov probrepresent the polyhedral C-sBt canonically as
lem for both discrete-time switched linear systems (3)-(4)
and continuous-time switched linear systems (5)-(6) in this ~ Po(z) ={z €R": fixr <1, i=1,--- ,m}, (8)
paper, which are formulated as follows.
Problem 1: If there exist switching control laws that make .
the closed-loop discrete-time switched system (3) globall?f(press'On
asymptotically stable, then whether or not we may find a Up,(z) = max {fiz}, 9)
Lyapunov function for the switched system. -
Problem 2: If there exist switching control laws that where f; € R'*" is the gradient vector of facef; of P,,
globally asymptotically stabilize the uncertain continuousfor s =1,--- ,m.
time switched linear system (5), then whether or not there Assume that for the initial conditiony, ¥p_ (z[0]) =
exists a Lyapunov function for the switched system. fiox[0], then
The answer for the above questions are both positive.
In the next section, we will present and prove the con- fiox[1] < Up, (2[1]) < AUp, (z[0]).
verse Lyapunov theorems for the asymptotically stabilizable
discrete-time and continuous-time switched linear systemd1€refore,
respectively. fiox[1] < Afiox[0] (10)

then the Minkowski function?p_(x) has the following

I1l. MAIN RESULTS Let us denote the hyperplane to which the faé¢ét is
. . affiliated asH,,. The planeH,, can be represented as
A. Discrete-Time Case

A converse Lyapunov theorem for the asymptotically Hy, ={z € R": fi,(x — x0) = 0},
stabilizable discrete-time switched linear systems (3)-(4)
can be stated as the following theorem. or

Theorem 1:If there exist switching control laws that Hy, ={zr € R": fi,x =1},
make the closed-loop discrete-time switched system (3)
globally asymptotically stable, then there exists a Lyapunov nduced from the planél..,, we define a scalar function
function for the discrete-time switched system (3)-(4).  ¥H., () as
Proof : First, it is assumed that the switched system can .
be globally asymptotically stabilized by properly designed Vrg, (@) =nf{p: o € pHy, },
switching laws for all initial conditionszgy € R"™. In

) i ; for all the pointsx in R™. This is quite similar to the
particular, consider the unit sphere,

Minkovski functional for a convex set. However, the differ-
S={zeR":|z| =1}, ence is that/;HwD (x) may haye negative values. In addition,
the functionyy, (x) is continuous for alke € R™ and can
where|| - || stands for the Euclidian norm @&". be represented as an inner product
For any initial conditionzy € S, there exists a switch-
ing signalo(k), by assumption, such that the trajectories Vm,, (€) = fior.

starting fromz, via following the dynamics .
9 o g y Notice that

xlk 4+ 1] = Ay (w)z[k]
“ P,y (Agy ()2[0]) < M, (2[0]),
asymptotically converge to the origin. Based on the results .
in [15] and [2] for uncertain linear time-variant systemsWhere0 < A <1, w € W, and gy = o(0). Following

there exists a polyhedral C-sBt, such thatz, € 9P, and the modego, the difference of the function valuey, (-)
between these two steps is negative, i.e.,

AU(O) (w)x[O] € AP,, YweW
_ - Agy(20) = tm,, (Ago (w)z0) — Y, (z0) <0,
where ) is a positive scalar and < 1.

Consider the Minkowski function d®,, which is defined for all w € W.

as Therefore, there exists a positive scalag € < 1 — ),
Up, (z)=inf{pu > 0:z € uP,}, such that
we obtain that Ay (z0) = Y, (Agy (w)20)—YH,, (T0) < —€m, (T0) <O

Up, (z[1]) < AUp, (z[0]) (7)  Note thatyy, (v0) =1.



In addition, for any positive scalat > 0, cone that contain®,.,, which is denoted a§,. Therefore,
we may assign the modg to the the conic coné;.

Ag(pwo) = Yu,,(Ag (W)pxo) — Y, (Hao) This procedure can be repeated for all the open $&ts,
= fioAg (W)pzo — figpizo fori=1,---, M, and induce a finite number of conic cones
= nlfin Ay ()20 = figo) Ci as well.
Define a scalar
= ,U'Aqo ((Eo) _A ((L’)
< —petpp, (vo) (11) € = inf 4 >0 (12)

z€SNBy; m

= —e’LprO (M.ﬁo) <0 . .
Therefore, for all state: contained inS N B,,,, we have

for all w € W. This implies that all the states on the ray

passing through:, will decrease their values afy, (x) i, (1) < —Aq,(2)
at the next step along the modg. = &Y, (v) <Yu, (v) —Yu,, (Ag (w)z)
Next, because of continuity of the functions;, (z) and = ¢m, (Ag(w)z) < (1 —e)du, ()

Ay (x), there exists an open neighbor region around

such thatA,, (z) is negative as well. Let us denote suchor all wew.

open set aB,, . It is always possible to makB,, convex, |t IS €asy to derive that for alt  C;,

for example a small ball witlyy as center. The illustrations b, (Ag, (w)z) < (1 e)vm, (),

of such open seB,, and planeH,, are given in Figure 1.
which is simplify because of the relationship (11).

It is straightforward to verify that

M
Jei=r"
=1
For each con€;, draw the hyperplane of; € S as

Hy, = {o € R sy, (2) = 1}

Consider the induced half-space

HS;, ={r e R" : ¢y, (z) <1}
o ),”/,'

The intersection of the the finite number of these half-

Fig. 1. The illustration of the negativeness &, (zo), planeH.,, and ~Space will define a polyhedral set with the origin in its
open ball By, . interior

M
In fact, these procedures and negativeness properties can P = ﬂ HSs,
be applied for all the points o8. If we consider all the =1
points on the unit spher&, then we can derive a collection |t is easy to proveP = ﬂi‘il HS,, is bounded, since
of similar open sets, which is denoted &s. All these otherwise it will lead to a contraction to the fact that the
open setsB,, for z € S, represent an open cover of theunion of the cone<’; is the wholeR™. Therefore, the

unit sphere, i.e., intersection of these half-spaces, i.®., is a polyhedron
U B, DS. with the origin in its interior, called a polyhedral C-set.
zeS Denote the Minkowski function of the polyhedral C-set

. . . . , asUp(-), which can be expressed as
Notice that the unit spher§ is compact, so there exist P P() P

finite open sets,B,, for ¢ = 1,---,M, to cover it. Up(x) = max {Yg, (z)} (13)
1<i<M o

Therefore, ==
M The function¥p(z) is piecewise linear continuous func-
U By, 2 8. tion, and has the following properties.
=1 1) Non-negativenesst(z) > 0, U(z) =0 < z = 0;

In the following, we will induce a conic partition of the ~2) Radius-unboundedness: for apy > 0, ¥(uz) =
state spac®™ from this finite cover. ¥ (z);

Let us consider the regiom,, first. For any stater 3) Convexity:¥(x +y) < ¥(z) + ¥(y), Va,y € R™.
contained insideB,,, we haveA, (z) < 0. This implies Basically, U»(x) defines a distance af from the origin
that the value ofyx, (z) will decrease at the next step, if it which is linear in any direction.
follows the modey; at stater. In addition, because of (11), In the sequel, we will show that the Minkovski function
this decreasing property also holds for the smallest coni@f the polyhedral C-seP is a Lyapunov function, which is



/ post,(C) for any non-negative scalar. Hence post,(C) is
b st a cone as well. O

Note that the successor set of a cahenay be non-
convex. However, a non-convex cone can be written as a
finite union of convex cones. The illustration of conic cones
F; and its successor set are given in Figure 2.

With these preliminary results, we are ready to design a
conic partition based switching law under whigh () is
monotonically decreasing.

To obtain such conic partition based switching law, we
first need to select; dense enough o8 such that

M

Jpreq €)nei=R" (14)
Fig. 2. The illustration of conic cones and successor set. i=1
wherepreg, (C;) = {x € R" : posty, (x) C C;}. Itis easy to

piecewise linear, for the switched linear systems along with"OW thatre,, (C;) is a convex cone, and soisey, (C;) N
a conic partition based switching law C;. Notice that the cones; are overlapping each other. The

We first briefly describe some necessary notations. Ffocedure on how to pick; and expand’; to satisfy (14)
the polyhedral C-seP, let vert(P) = {uv1,vs,--- oy} 'S 9VEN in the Appendix.

stands for the vertices of a polytoffg while face(P) = Secondly, For any pair of modeg and g;, if their
{F1, Fs, ---, Far} denotes its facets. The set of vertices ofOresponding cones are adjacent in the sense of

F; can be found asert(F;) = vert(P)NF;. Finally, we de- ‘

note the cone generated by the vertice§ oy cone(F;) = Ci m Fi#0 (15)

{x € R : >, apvi,, ax > 0, vy, € vert(F;)}. The

then we assume that
cone(F;) has the property thatx € cone(F;),

1
Up(x) =, (). Y, (2) < 7= e (x) (16)
Induced from each facek; of the polyhedral C-seP, whereg; is defined beford.

we can get a polyhedral convex conene(F;), which is Based on the conic con& and the above assumptions,
denoted as¥;. Note that; C C; and a switching law is proposed as follows.

M Assume that the current staigk] € F; and the current

U F;, =R"™ discrete mode ig;. Consider the following two cases:

i=1 If z[k] € F;N(preq (Ci) NC;), then keep on following

Therefore, we participate the whole state space into the modey;, i.e.,
finite number of polyhedral conic congs, with modeg; _ o
assigned to each cow fori = 1,--- , M. Note that for all ok +1) = 3(qlk], 2[k]) = i (17)
the states: contained inside cong; we haveA,, (z) < 0. for z[k] € FiN(preg, (C:) N Cy).

Next, we introduce a switching law induced from these Giharwise. there must exists at least gng i, such that

conic cones and prove that the closed-loop switched systeﬂ%] € FiN(preg, (C;)NC;). This is simply because of the

is asymptotically stable. . assumption (14). For this case, switch modetpi.e.,
For such purpose, we define a successor operator,

posty(-), as o(k+1) = (q[k], z[k]) = gj, (18)

poste(R) = {a' : 2’ = Ag(w)a; 2 € R,w € W} for z[k] € F; N(preq, (C;) N C;).

which represents all the possible next step states from the!" the following, we will show the decreasing of the
current regiorR by the transformationt, (w)z for w € yy. ~ Lyapunov functiond'p (z[k}).

Let us first show some properties of the successor setFor the first case, there is no switching occur. Notice that
posty(+) xlk + 1] € C;, sincez[k] € pregy, (C;). Two cases may arise
7().

Lemma 1: The successor set of a cone is a cone as well€'e- First, ifz[k + 1] is still in 7;, then

Proof : Denote the cone aS. For anyx € post,(C), there - o
exist statezp € C andw € W such thatr = A, (w)zo. Up(elk+1]) = Yu,, (2lk+1)) < b, (2[k]) = Up(z[k]).

SinceC is a cone, then for any non-neggtl\{e SC'aJapxo € 1if we select the paitz; and —z; at the same time, then it is always
C and pur = Ay(w)pxo € posty(C). This implies, uz €  possible to make the functiop, (x) non-negative.



Otherwise,x[k + 1] falls into another conér; adjacent to decreasing of the Lyapunov function candidate is measured

C;. By the assumption (16), we may obtain that by the negativeness of its Dini derivative along solutions.
1 Mathematically, the Dini derivationD*W¥(z(t)), for a
Upalk +1) = vu,, (elk+1]) < 7= L (z[k +1]) continuous function?, is defined as
< (-, k) = v, @) DY) =l sup TN B
— €& ) ) 7—0,7>0 T
= Up(a[k])

Based on the arguments in [2] for linear time variant
Secondly, if the mode switches frogq to ¢; at the time  systems, it can be shown that the Dini derivativelofat

instantk, then the next step statgk + 1] = A, (w)z[k] the time instant, for z(¢t) = z, o(t) = ¢, andw(t) = w,

falls into the cone’;. This is also because of the fact thatcan be calculated as

z[k] € preg, (C;). In particular,z[k + 1] is contained inside Uz + 1A, (w)z) — Uz

one of the adjacent con&;,, wherej’ may be different ~ D" ¥(z(t)) =lim sup ( o(w)7) ~ V()

from j. Anyway, we have 70,720 T
1 By assumption, for any initial conditiom, € S, there
Up(alk+1)) = vn,, (zlk+1]) < 7=, (z[k +1])exists a switching signab(t) such that the trajectories
1 / starting fromzy and following the dynamics
< (1 — )¢, (2[k]) = ¢, (2[k])

1-— €5
< Y, (x[k]) = Up(z[k])

(1) = Ag () (w)x(t)

asymptotically converges to the origin, with(0) = .

The last inequality comes from the definitiondf(z) = Based on the results in [15] and [2] for uncertain linear
maxj<;< M{?/JHM (z)}. time-variant systems, there exists a polyhedral CPseand
In summary, we have a positive scalaf such thatxy € 9P, and
Up(zlk +1]) < Up(x[k]) I+ 7As0)](w)z(0) € APy, Yw e W
for both cases. forall 0 < 7 < 7, where)\ is a positive scalar and less than

Therefore, we showed that the Minkovski function of thegne.
polyhedral C-seP, ¥ (z([k]), is monotonically decreasing  Consider the Euler approximating system (EAS), which
along the solutions of the switched linear system (3)can be represented as
(4). Together with other properties &fp (x[k]), Up(x[k])
serves as a Lyapunov function for the switched system. alk + 1] = [I + 7Aq(w)][k], (19)

As an interesting observation, the existence of an asymps, <o~ < 1 The connection of the EAS (19) with
totically stabilizing switching law for the switched system;, original continuous-time systems is explored by the
(3)-(4) implies the existence of a conic partition base‘f‘ollowing lemma

switching law which globally asymptotically stabilizes the Lemma 2:[2] If there exists positive scalars > 0 and

plosed—lqop switchgd system. Sinc_:e a conic partition switc jositive scalan < 1 such thatl + 74, (w)z(0) € AP,
ing law is a specific class of switching law, we have th

. olds forall0 < 7 < 7 andw € W, then the Dini derivative
following corollary.

. of Up_ at pointx(0) satisfies
Corollary 1: A switched system can be globally asymp- P. @t pointz(0) satisfi

totically stabilized by a switching law if and only if it can D Up_(2(0)) < —f (20)

be stabilized by a conic partition switching law.
y P g where3 = =2,

B. Continuous-Time Case Note that
A converse Lyapunov theorem for the robust asymptotic Up, (2(0)) = ¥m,, (20),
stabilizability of the continuous-time uncertain switched lin- | . . . . . . .
: while following notations in the previous section. It is easy
ear systems (5)-(6) can be stated as the following theorert%. derive that for) < 7 < 7
Theorem 2:If there exist switching control laws that ="
globally asymptotically stabilize the uncertain continuous- Ay (0) = m, ([I+7Ag (w)]w0) — Y, (20) <0
! . . . zQ zQ ’
time switched linear system (5), then there exists a Lya-

Proof : The basic idea for the proof of the continuous-timg* > 0, we have
case is quite similar to the discrete-time counterpart. We Ay, (1) < 0 (1)

also construct a conic partition based switching law and

a piecewise linear Lyapunov function candidate. The key Based on Lemma 2, one obtains that the Dini derivative
part is to prove the decreasing of the Lyapunov functionf ¢, for all the states on the ray passing throughis
candidate along the solutions of the switched system. Theegative along the modg.



Also based on continuity arguments we may assign an V. CONCLUDING REMARKS
open ball, denoted aB,,,, for which the Dini derivative of

vy, IS negative. This procedures can be applied to all the, In this paper, the converse .Lyapun.ov proplem for both
poinots on the unit sphers, and obtaining an open cover iscrete-time and continuous-time switched linear systems
for S as ' affected by parameter variations were investigated. It was

shown here that if the uncertain switched linear systems
can be asymptotically stabilized by some switching laws,
then there exists a polyhedral Lyapunov function along
with conic partition based stabilizing switching laws. An

interesting observation from this paper’s results is that

U B:2s.

reS

Also based on the compactness of the unit spierere

derive a finite cover,, fori=1,---, M, if a switched linear systems is asymptotically switching
M stabilizable, then one can always find a stabilizing switching
UBz; oS, law which is characterized by a conic partition of the
iz T state space. The proofs for converse Lyapunov theorems

here also proposed constructive methods for constructing
such conic partition based stabilizing switching laws. The
results presented here could be an important step that leads
to a necessary and sufficient condition for stabilizability
of switched linear systems. It is worth pointing out that
the Lyapunov function proposed here is not smooth. The
existence of a smooth Lyapunov function for stabilizable
switched systems is still an open problem.

The following steps are to deduce a polyhedral C78et
and partition the state spaB into conic conesf;, which
are exactly the same as the discrete-time case.

The switching law induced from the conic partition is

a(t)

§(,x(t)) = qi, for z(t) € F; (22)

To show that the Minkowski function oP, ¥p, is a
Lyapunov function, we need to show the negativeness of
its Dini derivative under this switching law. Assume that
x(t) € F; and current mode (t) = ¢;. There are two cases
to consider.

First, if no switching occurs at, then there exists > 0
such thatv0 < 7 < 7, z(t + 7) € F;. Then¥p(x(t))
Y, (z(t) and¥p(z(t+7)) = ¥, (z(t+7)). Therefore
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APPENDIX This makes the extended segmetitD’ has no empty intersection

with the new coneC'one{OC’D}. To show that all the states in
the expanded cone preserve the negativenesd ofz), notice

thatyp (zp) > r(zp), While Y (zcr) < Yr(zcr).

In this appendix, we aim to show that there always exisand
its corresponding coné; such that (14),

M
U preq; (Ci)NC; =R",
i=1

is true. Since we can pick; dense enough o8, it suffices to
show that for anyz; we may always greedily expartt such that

preg, (Ci) NC; # 0.

For such purpose, we first focus on the planar casegie.R?.
For any pointz;, denote the lineff,, as F'. Assume the lineX"
intersects the coné; with a line segmentd B, which is illustrate
in Figure 3. Since a line segment under a linear transform, which
is given by A, (w) for certainw € W at a particular time instant,
is still a line segment. Hence we assume that the segménts
mapped to another segmedt B’ at the next step as shown in
Figure 3. By the definition of’; and the property of function
"pr» (:L'), the SegmemA/B’ and the Origin lie on the same side Fig. 4. The illustration of the case that the extended segmg’
of line F or H,, (negative side). intersects with the ling” outside the con€;.
Since we may always pick; and —z; as a pair and select
0-symmetric cones, there is no loss of generality for us to restrict This concludes for the planar case. For the case of higher
to half of the state space. There are several cases to be considefé@ension, one can project it into a hyperplane that passes through
First, if the segment’ B’ has no empty intersection with the the origin and follow the above argument to expand each projected
cone(C; as shown by the shaded region in Figure 3, then part ¢fone and re-inject them into the higher dimensional state space.
states inC; is still insideC; after the state transition. This implies S0 it is straightforward to extend to higher dimensions.
preq, (Ci) NC; # 0.




