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Abstract— The main contribution of this paper is a converse
Lyapunov theorem derived for a class of switched linear
systems with time-variant parametric uncertainties. Both
discrete-time and continuous-time switched linear systems are
investigated. It is shown that the existence of asymptotically
stabilizing switching laws implies the existence of a polyhedral
Lyapunov function along with conic partition based stabiliz-
ing switching laws. The results presented here could be an
important step towards a necessary and sufficient condition
for stabilizability of switched linear systems. The methods here
are based on real analysis and polyhedral algebra.

I. I NTRODUCTION

The stability issues of switched systems have been of
increasing interest in the recent decade, see for example
the survey papers [9], [4], the recent book [10] and the
references cited therein. The stability study of switched
systems can be roughly divided into two kinds of problems.
One is the stability analysis of switched systems under given
switching signals (maybe arbitrary, slow switching etc.), and
the other is the synthesis of stabilizing switching signals for
a given collection of dynamical systems.

For the stability analysis problem, the first question is
whether the switched system remains stable when there is
no restriction (or noa priori knowledge) on the switching
signals. This problem is usually called stability analysis
under arbitrary switchings, and is typically being dealt with
by constructing a common Lyapunov function. For example,
various approaches have been presented [16], [22], [11],
[12] to find a common quadratic Lyapunov function for
the family of systems, ensuring the asymptotic stability of
switched systems for any switching signal. In [11] and [1],
Lie algebra conditions were given, which imply the exis-
tence of a common quadratic Lyapunov function. However,
most of the work was restricted to the case of quadratic
Lyapunov function, which only gave sufficient stability test
criteria. Switched systems may fail to preserve stability
under arbitrary switchings. Therefore, a natural question is
what if we restrict the switching signal to some constrained
subclass of switchings. It is shown in [6], [26], [7] that
the stability and performance could be preserved under
certain constrained switchings, for example slow switching
with bounded average dwell time. The stability analysis
with constrained switchings has been usually pursued in
the framework of multiple Lyapunov functions (MLF), see
for example [19], [25], [4], [9], [10] and references therein.
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The other basic problem for switched systems is the
synthesis of stabilizing switching laws for a given collection
of dynamical systems, which is called switching stabiliza-
tion problem. In the switching stabilization literature, most
of the work focused on quadratic stabilization for certain
classes of systems. For example, a quadratic stabilization
switching law between two LTI systems was considered
in [21], in which it was shown that the existence of a
stable convex combination of the two subsystem matrices
implies the existence of a state-dependent switching rule
that stabilizes the switched system along with a quadratic
Lyapunov function. A generalization to more than two
LTI subsystems was suggested in [17] by using a “min-
projection strategy”. In [5], it was shown that the stable
convex combination condition is also necessary for the
quadratic stabilizability of two mode switched LTI system.
However, it is only sufficient for switched LTI systems
with more than two modes. A necessary and sufficient
condition for quadratic stabilizability of switched controller
systems was derived in [23]. There are extensions of [21] to
output-dependent switching and discrete-time case [9], [27].
For robust stabilization, a quadratic stabilizing switching
law was designed for polytopic uncertain switched linear
systems based on LMI techniques in [27]. All of these
methods guarantee stability by using a common quadratic
Lyapunov function, which is conservative in the sense that
there are switched systems that can be asymptotically (or
exponentially) stabilized without using a common quadratic
Lyapunov function. There have been some results in the
literature that propose constructive synthesis methods to
switched systems using multiple Lyapunov functions [4].
The first attempt of stabilizing switching law design based
on multiple Lyapunov functions was proposed in [20],
where piecewise quadratic Lyapunov functions was em-
ployed for two mode switched LTI systems. An LMI based
method was proposed in [14] for the stabilizing state-
feedback control design of discrete-time piecewise affine
systems. Exponential stabilization for switched LTI systems
was considered in [18] also based on piecewise quadratic
Lyapunov functions, and the synthesis problem was for-
mulated as a bilinear matrix inequality (BMI) problem. In
[8], a probabilistic algorithm was proposed for the synthesis
of an asymptotically stabilizing switching law for switched
LTI systems along with a piecewise quadratic Lyapunov
function. Notice that these stabilizability conditions, which
may be expressed as the feasibility of certain LMIs or BMIs,
in the existing literature are basically sufficient only, except
for certain cases of quadratic stabilization. A necessary and
sufficient condition for asymptotic stabilizability of second-
order switched LTI systems was derived in [24] by detailed



vector field analysis. However, it was not apparent how to
extend the method to either higher dimensions or to the
parametric uncertainty case.

This paper aims at addressing the complementary prob-
lem of switching stabilization, and derive a necessary condi-
tion for asymptotic stabilizability of switched linear systems
with time-variant parametric uncertainties. In particular,
we assume that there exist switching laws to asymptoti-
cally stabilize such uncertain switched linear systems, i.e.,
switching asymptotically stabilizable. The main question
studied here is whether there exist (switching control)
Lyapunov functions for such switching stabilizable switched
linear systems, which is usually referred to as a converse
Lyapunov problem.

There are some related work on converse Lyapunov
theorem for switched systems. In [3], a converse Lya-
punov theorem was derived for the globally uniformly
asymptotically stable and locally uniformly exponentially
stable switched systems with arbitrary switching signals.
It was shown that such arbitrary switching system admits
a common Lyapunov function. This converse Lyapunov
theorem justifies the common Lyapunov method which was
pursued in the literature for arbitrary switching systems.
The converse Lyapunov theorem was extended in [13] to
switched nonlinear systems that are globally uniformly
asymptotically stable with respect to a compact forward
invariant set. Notice that both papers are on the existence of
a common Lyapunov function for continuous-time switched
systems with arbitrary switching signals. Our work differs
from theirs in that we are addressing the existence of
a (switching control) Lyapunov function for a switching
stabilizable switched system, instead of considering a com-
mon Lyapunov function for arbitrary switching systems.
In addition, we consider robust asymptotic stabilizability
for both discrete-time and continuous-time switched linear
systems with time-variant parametric uncertainties.

The rest of the paper is organized as follows. In Sec-
tion II, mathematical models for the discrete-time and
continuous-time uncertain switched linear system are de-
scribed, and the converse Lyapunov problem is formulated.
In Section III, the converse Lyapunov theorems for discrete-
time and continuous-time switching stabilizable uncertain
switched linear systems are presented and proved respec-
tively. Finally, concluding remarks are presented.

Notation: The lettersE ,P ,S · · · denote sets,∂P the
boundary of setP , and int{P} its interior. For any real
λ ≥ 0, the setλS is defined as{x = λy, y ∈ S}. The
term C-set stands for a convex and compact set containing
the origin in its interior.

II. PROBLEM FORMULATION

We consider a collection of discrete-time linear systems
described by the difference equations with parametric un-
certainties

x[k + 1] = Aq(w)x[k], k ∈ Z
+, q ∈ Q = {1, · · · , N} (1)

whereZ
+ stands for non-negative integers.

We also consider a collection of continuous-time linear
systems described by the differential equations with para-
metric uncertainties

ẋ(t) = Aq(w)x(t), t ∈ R
+, q ∈ Q = {1, · · · , N} (2)

whereR
+ denotes non-negative real numbers.

In the above uncertain discrete-time and continuous-time
state equations, the state variablex[k], x(t) ∈ R

n. Note
that the originxe = 0 is an equilibrium for the systems
described in (1) and (2). The finite setQ stands for the
collection of discrete modes. In particular, for allq ∈ Q,
Aq(w) : W → R

n×n, and the entries ofAq(w) are assumed
to be continuous functions ofw ∈ W , whereW ⊂ R

v is a
given compact set.

Combine the family of discrete-time uncertain linear
systems (1) with a class of piecewise constant functions,
σ : Z

+ → Q, which serves as the switching signal between
the collection of discrete-time systems (1). The discrete-
time switched linear system can be described as

x[k + 1] = Aσ(k)(w)x[k], k ∈ Z
+ (3)

The signalσ(k) is called aswitching signal. The particular
value of the switching signalσ(k) at any given time step
k may be generated by a decision-making process. One
desirable form of the decision-making process is state
feedback based transition law, which can be represented as
follows

σ(k) = δ(σ(k − 1), x[k]) (4)

whereδ : Q × R
n → Q. The discrete mode is determined

by the current continuous statex[k] and the previous mode
σ(k − 1).

Similarly, we introduce a class of piecewise constant
functions,σ : R

+ → Q, which serves as the switching sig-
nal between the class of continuous-time systems (2). The
continuous-time switched linear system can be described as

ẋ(t) = Aσ(t)(w)x(t), t ∈ R
+ (5)

and the switching signal is generated by

σ(t) = δ(σ(t−), x(t)) (6)

whereδ : Q× R
n → Q and t− = limτ→0,τ≥0(t− τ). The

discrete mode is determined by the current continuous state
x(t) and the previous modeσ(t−). It is assumed that there
are finite switchings within any finite time interval.

For this discrete-time switched system (3)-(4) and
continuous-time switched system (5)-(6), we assume that
they are asymptotically switching stabilizable, i.e., for any
initial condition x0 ∈ R

n there exist switching laws to
asymptotically stabilize the switched system. It is known
that if there exists a Lyapunov function, usually picked as
quadratic or piecewise quadratic, then the switched system
can be stabilized. However, the reverse of the statement
is not clear yet, that is whether there always exists a
(switching control) Lyapunov function for a given switching



stabilizable switched system, which is usually called the
problem of converse Lyapunov theorem.

We focus our attention on this converse Lyapunov prob-
lem for both discrete-time switched linear systems (3)-(4)
and continuous-time switched linear systems (5)-(6) in this
paper, which are formulated as follows.
Problem 1: If there exist switching control laws that make
the closed-loop discrete-time switched system (3) globally
asymptotically stable, then whether or not we may find a
Lyapunov function for the switched system.
Problem 2: If there exist switching control laws that
globally asymptotically stabilize the uncertain continuous-
time switched linear system (5), then whether or not there
exists a Lyapunov function for the switched system.

The answer for the above questions are both positive.
In the next section, we will present and prove the con-
verse Lyapunov theorems for the asymptotically stabilizable
discrete-time and continuous-time switched linear systems
respectively.

III. M AIN RESULTS

A. Discrete-Time Case

A converse Lyapunov theorem for the asymptotically
stabilizable discrete-time switched linear systems (3)-(4)
can be stated as the following theorem.

Theorem 1:If there exist switching control laws that
make the closed-loop discrete-time switched system (3)
globally asymptotically stable, then there exists a Lyapunov
function for the discrete-time switched system (3)-(4).
Proof : First, it is assumed that the switched system can
be globally asymptotically stabilized by properly designed
switching laws for all initial conditionsx0 ∈ R

n. In
particular, consider the unit sphere,

S = {x ∈ R
n : ‖x‖ = 1},

where‖ · ‖ stands for the Euclidian norm ofRn.
For any initial conditionx0 ∈ S, there exists a switch-

ing signalσ(k), by assumption, such that the trajectories
starting fromx0 via following the dynamics

x[k + 1] = Aσ(k)(w)x[k]

asymptotically converge to the origin. Based on the results
in [15] and [2] for uncertain linear time-variant systems,
there exists a polyhedral C-setPσ such thatx0 ∈ ∂Pσ and

Aσ(0)(w)x[0] ∈ λPσ, ∀w ∈ W
whereλ is a positive scalar andλ < 1.

Consider the Minkowski function ofPσ, which is defined
as

ΨPσ(x)=̇ inf{µ > 0 : x ∈ µPσ},
we obtain that

ΨPσ(x[1]) ≤ λΨPσ (x[0]) (7)

wherex[1] = Aσ(0)(w)x[0] for somew ∈ W . Note that
ΨPσ(x[0]) = 1, sincex0 is on the boundary ofPσ. If we
represent the polyhedral C-setPσ canonically as

Pσ(x) = {x ∈ R
n : fix ≤ 1, i = 1, · · · ,m}, (8)

then the Minkowski functionΨPσ(x) has the following
expression

ΨPσ (x) = max
1≤i≤m

{fix}, (9)

wherefi ∈ R
1×n is the gradient vector of facetFi of Pσ,

for i = 1, · · · ,m.
Assume that for the initial conditionx0, ΨPσ (x[0]) =

fi0x[0], then

fi0x[1] ≤ ΨPσ(x[1]) ≤ λΨPσ(x[0]).

Therefore,

fi0x[1] ≤ λfi0x[0] (10)

Let us denote the hyperplane to which the facetFi0 is
affiliated asHx0 . The planeHx0 can be represented as

Hx0 = {x ∈ R
n : fi0(x− x0) = 0},

or

Hx0 = {x ∈ R
n : fi0x = 1}.

Induced from the planeHx0 , we define a scalar function
ψHx0

(x) as

ψHx0
(x) = inf{µ : x ∈ µHx0},

for all the pointsx in R
n. This is quite similar to the

Minkovski functional for a convex set. However, the differ-
ence is thatψHx0

(x) may have negative values. In addition,
the functionψHx0

(x) is continuous for allx ∈ R
n and can

be represented as an inner product

ψHx0
(x) = fi0x.

Notice that

ψHx0
(Aq0(w)x[0]) ≤ λψHx0

(x[0]),

where 0 < λ < 1, w ∈ W, and q0 = σ(0). Following
the modeq0, the difference of the function valueψHx0

(·)
between these two steps is negative, i.e.,

∆q0(x0) = ψHx0
(Aq0(w)x0) − ψHx0

(x0) < 0,

for all w ∈ W .
Therefore, there exists a positive scalar0 < ε < 1 − λ,

such that

∆q0(x0) = ψHx0
(Aq0 (w)x0)−ψHx0

(x0) < −εψHx0
(x0) < 0

Note thatψHx0
(x0) = 1.



In addition, for any positive scalarµ > 0,

∆q0(µx0) = ψHx0
(Aq0 (w)µx0) − ψHx0

(µx0)
= fi0Aq0(w)µx0 − fi0µx0

= µ(fi0Aq0(w)x0 − fi0x0)
= µ∆q0(x0)
< −µεψHx0

(x0) (11)

= −εψHx0
(µx0) < 0

for all w ∈ W . This implies that all the states on the ray
passing throughx0 will decrease their values ofψHx0

(x)
at the next step along the modeq0.

Next, because of continuity of the functionsψHx0
(x) and

∆q0(x), there exists an open neighbor region aroundx0

such that∆q0(x) is negative as well. Let us denote such
open set asBx0 . It is always possible to makeBx0 convex,
for example a small ball withx0 as center. The illustrations
of such open setBx0 and planeHx0 are given in Figure 1.
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Fig. 1. The illustration of the negativeness of∆q0 (x0), planeHx0 , and
open ballBx0 .

In fact, these procedures and negativeness properties can
be applied for all the points onS. If we consider all the
points on the unit sphereS, then we can derive a collection
of similar open sets, which is denoted asBx. All these
open setsBx, for x ∈ S, represent an open cover of the
unit sphere, i.e., ⋃

x∈S
Bx ⊇ S.

Notice that the unit sphereS is compact, so there exist
finite open sets,Bxi for i = 1, · · · ,M , to cover it.
Therefore,

M⋃

i=1

Bxi ⊇ S.

In the following, we will induce a conic partition of the
state spaceRn from this finite cover.

Let us consider the regionBx1 first. For any statex
contained insideBx1 , we have∆q1(x) < 0. This implies
that the value ofψHx1

(x) will decrease at the next step, if it
follows the modeq1 at statex. In addition, because of (11),
this decreasing property also holds for the smallest conic

cone that containsBx1 , which is denoted asC1. Therefore,
we may assign the modeq1 to the the conic coneC1.

This procedure can be repeated for all the open sets,Bxi ,
for i = 1, · · · ,M , and induce a finite number of conic cones
Ci as well.

Define a scalar

εi = inf
x∈S∩Bxi

−∆qi(x)
ψHxi

(x)
> 0 (12)

Therefore, for all statex contained inS ∩Bxi , we have

εiψHxi
(x) ≤ −∆qi(x)

⇒ εiψHxi
(x) ≤ ψHxi

(x) − ψHxi
(Aqi (w)x)

⇒ ψHxi
(Aqi (w)x) ≤ (1 − εi)ψHxi

(x)

for all w ∈ W .
It is easy to derive that for allx ∈ Ci,

ψHxi
(Aqi(w)x) ≤ (1 − εi)ψHxi

(x),

which is simplify because of the relationship (11).
It is straightforward to verify that

M⋃

i=1

Ci = R
n.

For each coneCi, draw the hyperplane ofxi ∈ S as

Hxi = {x ∈ R
n : ψHxi

(x) = 1}
Consider the induced half-space

HSxi = {x ∈ R
n : ψHxi

(x) ≤ 1}
The intersection of the the finite number of these half-

space will define a polyhedral set with the origin in its
interior

P =
M⋂

i=1

HSxi

It is easy to proveP =
⋂M

i=1HSxi is bounded, since
otherwise it will lead to a contraction to the fact that the
union of the conesCi is the wholeR

n. Therefore, the
intersection of these half-spaces, i.e.,P , is a polyhedron
with the origin in its interior, called a polyhedral C-set.

Denote the Minkowski function of the polyhedral C-set
P , asΨP(·), which can be expressed as

ΨP(x) = max
1≤i≤M

{ψHxi
(x)} (13)

The functionΨP(x) is piecewise linear continuous func-
tion, and has the following properties.

1) Non-negativeness:Ψ(x) ≥ 0, Ψ(x) = 0 ⇔ x = 0;
2) Radius-unboundedness: for anyµ > 0, Ψ(µx) =

µΨ(x);
3) Convexity:Ψ(x+ y) ≤ Ψ(x) + Ψ(y), ∀x, y ∈ R

n.

Basically,ΨP(x) defines a distance ofx from the origin
which is linear in any direction.

In the sequel, we will show that the Minkovski function
of the polyhedral C-setP is a Lyapunov function, which is
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Fig. 2. The illustration of conic cones and successor set.

piecewise linear, for the switched linear systems along with
a conic partition based switching law.

We first briefly describe some necessary notations. For
the polyhedral C-setP , let vert(P) = {v1, v2, · · · , vN}
stands for the vertices of a polytopeP , while face(P) =
{F1, F2, · · · , FM} denotes its facets. The set of vertices of
Fi can be found asvert(Fi) = vert(P)∩Fi. Finally, we de-
note the cone generated by the vertices ofFi by cone(Fi) =
{x ∈ R

n :
∑

k αkvik
, αk ≥ 0, vik

∈ vert(Fi)}. The
cone(Fi) has the property that∀x ∈ cone(Fi),

ΨP(x) = ψHxi
(x).

Induced from each facetFi of the polyhedral C-setP ,
we can get a polyhedral convex conecone(Fi), which is
denoted asFi. Note thatFi ⊆ Ci and

M⋃

i=1

Fi = R
n.

Therefore, we participate the whole state space into a
finite number of polyhedral conic conesFi, with modeqi
assigned to each coneFi for i = 1, · · · ,M . Note that for all
the statesx contained inside coneFi we have∆qi(x) < 0.

Next, we introduce a switching law induced from these
conic cones and prove that the closed-loop switched system
is asymptotically stable.

For such purpose, we define a successor operator,
postq(·), as

postq(R) = {x′ : x′ = Aq(w)x; x ∈ R, w ∈ W}
which represents all the possible next step states from the
current regionR by the transformationAq(w)x for w ∈ W .

Let us first show some properties of the successor set
postq(·).

Lemma 1:The successor set of a cone is a cone as well.
Proof : Denote the cone asC. For anyx ∈ postq(C), there
exist statex0 ∈ C andw ∈ W such thatx = Aq(w)x0.
SinceC is a cone, then for any non-negative scalarµ, µx0 ∈
C and µx = Aq(w)µx0 ∈ postq(C). This implies,µx ∈

postq(C) for any non-negative scalarµ. Hence,postq(C) is
a cone as well. 2

Note that the successor set of a coneC may be non-
convex. However, a non-convex cone can be written as a
finite union of convex cones. The illustration of conic cones
Fi and its successor set are given in Figure 2.

With these preliminary results, we are ready to design a
conic partition based switching law under whichΨP(x) is
monotonically decreasing.

To obtain such conic partition based switching law, we
first need to selectxi dense enough onS such that

M⋃

i=1

preqi (Ci) ∩ Ci = R
n (14)

wherepreqi(Ci) = {x ∈ R
n : postqi(x) ⊆ Ci}. It is easy to

show thatpreqi(Ci) is a convex cone, and so ispreqi(Ci)∩
Ci. Notice that the conesCi are overlapping each other. The
procedure on how to pickxi and expandCi to satisfy (14)
is given in the Appendix.

Secondly, For any pair of modesqi and qj , if their
corresponding cones are adjacent in the sense of

Ci

⋂
Fj 6= ∅ (15)

then we assume that

ψHxj
(x) ≤ 1

1 − εi
ψHxi

(x) (16)

whereεi is defined before1.
Based on the conic conesFi and the above assumptions,

a switching law is proposed as follows.
Assume that the current statex[k] ∈ Fi and the current

discrete mode isqi. Consider the following two cases:
If x[k] ∈ Fi

⋂
(preqi (Ci) ∩ Ci), then keep on following

the modeqi, i.e.,

σ(k + 1) = δ(q[k], x[k]) = qi, (17)

for x[k] ∈ Fi

⋂
(preqi(Ci) ∩ Ci).

Otherwise, there must exists at least onej 6= i, such that
x[k] ∈ Fi

⋂
(preqj (Cj)∩Cj). This is simply because of the

assumption (14). For this case, switch mode toqj , i.e.,

σ(k + 1) = δ(q[k], x[k]) = qj , (18)

for x[k] ∈ Fi

⋂
(preqj (Cj) ∩ Cj).

In the following, we will show the decreasing of the
Lyapunov functionΨP(x[k]).

For the first case, there is no switching occur. Notice that
x[k+ 1] ∈ Ci, sincex[k] ∈ preqi(Ci). Two cases may arise
here. First, ifx[k + 1] is still in Fi, then

ΨP(x[k+1]) = ψHxi
(x[k+1]) < ψHxi

(x[k]) = ΨP(x[k]).

1If we select the pairxi and−xi at the same time, then it is always
possible to make the functionψHxi

(x) non-negative.



Otherwise,x[k + 1] falls into another coneFj adjacent to
Ci. By the assumption (16), we may obtain that

ΨP(x[k + 1]) = ψHxj
(x[k + 1]) ≤ 1

1 − εi
ψHxi

(x[k + 1])

<
1

1 − εi
(1 − εi)ψHxi

(x[k]) = ψHxi
(x[k])

= ΨP(x[k])

Secondly, if the mode switches fromqi to qj at the time
instantk, then the next step statex[k + 1] = Aqj (w)x[k]
falls into the coneCj . This is also because of the fact that
x[k] ∈ preqj (Cj). In particular,x[k+ 1] is contained inside
one of the adjacent coneFj′ , where j′ may be different
from j. Anyway, we have

ΨP(x[k + 1]) = ψHx
j′

(x[k + 1]) ≤ 1
1 − εj

ψHxj
(x[k + 1])

<
1

1 − εj
(1 − εj)ψHxj

(x[k]) = ψHxj
(x[k])

≤ ψHxi
(x[k]) = ΨP(x[k])

The last inequality comes from the definition ofΨP(x) =
max1≤i≤M{ψHxi

(x)}.
In summary, we have

ΨP(x[k + 1]) < ΨP(x[k])

for both cases.
Therefore, we showed that the Minkovski function of the

polyhedral C-setP , ΨP(x[k]), is monotonically decreasing
along the solutions of the switched linear system (3)-
(4). Together with other properties ofΨP(x[k]), ΨP(x[k])
serves as a Lyapunov function for the switched system.2

As an interesting observation, the existence of an asymp-
totically stabilizing switching law for the switched system
(3)-(4) implies the existence of a conic partition based
switching law which globally asymptotically stabilizes the
closed-loop switched system. Since a conic partition switch-
ing law is a specific class of switching law, we have the
following corollary.

Corollary 1: A switched system can be globally asymp-
totically stabilized by a switching law if and only if it can
be stabilized by a conic partition switching law.

B. Continuous-Time Case

A converse Lyapunov theorem for the robust asymptotic
stabilizability of the continuous-time uncertain switched lin-
ear systems (5)-(6) can be stated as the following theorem.

Theorem 2:If there exist switching control laws that
globally asymptotically stabilize the uncertain continuous-
time switched linear system (5), then there exists a Lya-
punov function for the switched system (5)-(6).
Proof : The basic idea for the proof of the continuous-time
case is quite similar to the discrete-time counterpart. We
also construct a conic partition based switching law and
a piecewise linear Lyapunov function candidate. The key
part is to prove the decreasing of the Lyapunov function
candidate along the solutions of the switched system. The

decreasing of the Lyapunov function candidate is measured
by the negativeness of its Dini derivative along solutions.
Mathematically, the Dini derivation,D+Ψ(x(t)), for a
continuous functionΨ, is defined as

D+Ψ(x(t)) = lim sup
τ→0,τ≥0

Ψ(x(t+ τ)) − Ψ(x(t))
τ

.

Based on the arguments in [2] for linear time variant
systems, it can be shown that the Dini derivative ofΨ at
the time instantt, for x(t) = x, σ(t) = q, andw(t) = w,
can be calculated as

D+Ψ(x(t)) = lim sup
τ→0,τ≥0

Ψ(x+ τAq(w)x) − Ψ(x)
τ

.

By assumption, for any initial conditionx0 ∈ S, there
exists a switching signalσ(t) such that the trajectories
starting fromx0 and following the dynamics

ẋ(t) = Aσ(t)(w)x(t)

asymptotically converges to the origin, withx(0) = x0.
Based on the results in [15] and [2] for uncertain linear
time-variant systems, there exists a polyhedral C-setPσ and
a positive scalar̄τ such thatx0 ∈ ∂Pσ and

[I + τAσ(0)](w)x(0) ∈ λPσ, ∀w ∈ W
for all 0 < τ ≤ τ̄ , whereλ is a positive scalar and less than
one.

Consider the Euler approximating system (EAS), which
can be represented as

x[k + 1] = [I + τAq(w)]x[k], (19)

for some τ > 0. The connection of the EAS (19) with
its original continuous-time systems is explored by the
following lemma.

Lemma 2: [2] If there exists positive scalars̄τ > 0 and
positive scalarλ < 1 such that[I+ τAσ(0)](w)x(0) ∈ λPσ

holds for all0 < τ ≤ τ̄ andw ∈ W , then the Dini derivative
of ΨPσ at pointx(0) satisfies

D+ΨPσ(x(0)) < −β (20)

whereβ = 1−λ
τ .

Note that
ΨPσ(x(0)) = ψHx0

(x0),

while following notations in the previous section. It is easy
to derive that for0 < τ < τ̄ ,

∆q0 (x0) = ψHx0
([I + τAq0 (w)]x0) − ψHx0

(x0) < 0,

for all w ∈ W . Similar to (11), for any positive scalar
µ > 0, we have

∆q0(µx0) < 0 (21)

Based on Lemma 2, one obtains that the Dini derivative
of ψHx0

for all the states on the ray passing throughx0 is
negative along the modeq0.



Also based on continuity arguments we may assign an
open ball, denoted asBx0 , for which the Dini derivative of
ψHx0

is negative. This procedures can be applied to all the
points on the unit sphereS, and obtaining an open cover
for S as

⋃

x∈S
Bx ⊇ S.

Also based on the compactness of the unit sphereS, we
derive a finite cover,Bxi for i = 1, · · · ,M ,

M⋃

i=1

Bxi ⊇ S.

The following steps are to deduce a polyhedral C-setP
and partition the state spaceR

n into conic cones,Fi, which
are exactly the same as the discrete-time case.

The switching law induced from the conic partition is

σ(t) = δ(·, x(t)) = qi, for x(t) ∈ Fi (22)

To show that the Minkowski function ofP , ΨP , is a
Lyapunov function, we need to show the negativeness of
its Dini derivative under this switching law. Assume that
x(t) ∈ Fi and current modeσ(t) = qi. There are two cases
to consider.

First, if no switching occurs att, then there exists̄τ > 0
such that∀0 < τ ≤ τ̄ , x(t + τ) ∈ Fi. ThenΨP(x(t)) =
ψHxi

(x(t)) andΨP(x(t+τ)) = ψHxi
(x(t+τ)). Therefore

D+ΨP(x(t)) = lim sup
τ→0+

ψHxi
(x(t+ τ)) − ψHxi

(x(t))
τ

< 0

Else, if switching occurs at timet, then there exists̄τ > 0
such that∀0 < τ ≤ τ̄ , x(t + τ) ∈ Fj for j 6= i. Then
ΨP(x(t)) = ψHxi

(x(t)) = ψHxj
(x(t)) andΨP(x(t+τ)) =

ψHxj
(x(t+τ)). The equality ofψHxi

(x(t)) andψHxj
(x(t))

is because switching only occurs at the boundary ofFi and
x(t) is at the common boundary between conesFi andFj.
Therefore,

D+ΨP(x(t)) = lim sup
τ→0+

ψHxj
(x(t + τ)) − ψHxj

(x(t))

τ
< 0.

Therefore, the uncertain switched system (5)-(22) is asymp-
totic stable andΨP(x(t)) serves as a Lyapunov function for
the switched system. 2

Similarly, the existence of an asymptotically stabilizing
switching law for the continuous-time switched linear sys-
tem (5)-(6) implies the existence of a conic partition based
stabilizing switching law.

Corollary 2: A continuous-time switched linear system
(5)-(6) can be globally asymptotically stabilized by a
switching law if and only if it can be stabilized by a conic
partition switching law.

IV. CONCLUDING REMARKS

In this paper, the converse Lyapunov problem for both
discrete-time and continuous-time switched linear systems
affected by parameter variations were investigated. It was
shown here that if the uncertain switched linear systems
can be asymptotically stabilized by some switching laws,
then there exists a polyhedral Lyapunov function along
with conic partition based stabilizing switching laws. An
interesting observation from this paper’s results is that
if a switched linear systems is asymptotically switching
stabilizable, then one can always find a stabilizing switching
law which is characterized by a conic partition of the
state space. The proofs for converse Lyapunov theorems
here also proposed constructive methods for constructing
such conic partition based stabilizing switching laws. The
results presented here could be an important step that leads
to a necessary and sufficient condition for stabilizability
of switched linear systems. It is worth pointing out that
the Lyapunov function proposed here is not smooth. The
existence of a smooth Lyapunov function for stabilizable
switched systems is still an open problem.
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APPENDIX

In this appendix, we aim to show that there always existxi and
its corresponding coneCi such that (14),

M⋃

i=1

preqi(Ci) ∩ Ci = R
n,

is true. Since we can pickxi dense enough onS , it suffices to
show that for anyxi we may always greedily expandCi such that

preqi(Ci) ∩ Ci 6= ∅.
For such purpose, we first focus on the planar case, i.e.,x ∈ R

2.
For any pointxi, denote the lineHxi asF . Assume the lineF
intersects the coneCi with a line segmentAB, which is illustrate
in Figure 3. Since a line segment under a linear transform, which
is given byAqi(w) for certainw ∈ W at a particular time instant,
is still a line segment. Hence we assume that the segmentAB is
mapped to another segmentA′B′ at the next step as shown in
Figure 3. By the definition ofCi and the property of function
ψHxi

(x), the segmentA′B′ and the origin lie on the same side
of line F or Hxi (negative side).

Since we may always pickxi and −xi as a pair and select
0-symmetric cones, there is no loss of generality for us to restrict
to half of the state space. There are several cases to be considered:

First, if the segmentA′B′ has no empty intersection with the
coneCi as shown by the shaded region in Figure 3, then part of
states inCi is still insideCi after the state transition. This implies
preqi(Ci) ∩ Ci 6= ∅.

Secondly, if segmentA′B′ has empty intersection with the cone
Ci, then we extend the segmentA′B′ until it intersect the cone
Ci or intersect the lineF . For the first situation, we may simply
extend the coneCi to make the extended segmentA′B′ has no
empty intersection with the expanded coneCi, which falls into the
previous case being discussed.

Otherwise, the extended segmentA′B′ has intersection with
the lineF at pointC′ as illustrated in Figure 3. If the pointC′

is inside the coneCi, then we may extend the coneCi to the
new cone spanned byOAC, where the pointC is on the line
of AB and corresponds to the pointC′ by state transition. This
makes the extended segmentA′C′ has no empty intersection with
the new coneCone{OAC}. In addition, it is easy to check the
negativeness of the function∆qi(x) holds for the expanded cone.
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AA’

B’

B

F

C

C’

O

A

B

A’

B’

Fig. 3. The illustration of the cases that (a) segmentA′B′ has no empty
intersection with the coneCi, and that (b) the extended segmentA′B′
intersects with the lineF inside the coneCi.

If the intersection pointC′ is outside the coneCi, we need to
redefine the lineF . The redefined lineF ′ is given by a slight
rotation of lineF through the pointA in such a way that segment
A′C′ falls into the negative side ofF ′. Extend the segmentA′C′

and intersect the lineF ′ at pointD′, as illustrated in Figure 4.
Expand the coneCi to Cone{OC′D}, where the pointD is on
the line ofAB and corresponds to the pointD′ by state transition.
This makes the extended segmentA′D′ has no empty intersection
with the new coneCone{OC′D}. To show that all the states in
the expanded cone preserve the negativeness of∆qi(x), notice
thatψF ′(xD) > ψF (xD), while ψF ′(xC′) < ψF (xC′).

F

C’

O

A’

B’

F’

D’

B

D

A

Fig. 4. The illustration of the case that the extended segmentA′B′
intersects with the lineF outside the coneCi.

This concludes for the planar case. For the case of higher
dimension, one can project it into a hyperplane that passes through
the origin and follow the above argument to expand each projected
cone and re-inject them into the higher dimensional state space.
So it is straightforward to extend to higher dimensions.


