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Abstract

In this paper, the disturbance attenuation properties for a class of linear hybrid
systems are investigated, and a hybrid optimal persistent disturbance attenuation
control problem is studied. First, a procedure is developed to determine the minimal
l∞ induced gain of linear hybrid systems. However, for general hybrid systems, the
termination of the procedure is not guaranteed. Then, the decidability issues are
discussed. The termination of the procedure in finite number of steps is shown for a
subclass of hybrid systems with simplified discrete event dynamics, called switched
linear systems. Finally, the optimal persistent disturbance attenuation controller
synthesis problem is studied. It is shown that the optimal performance level can be
achieved by a piecewise linear state feedback control law, and a systematic approach
is proposed to design such feedback control.
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1 Introduction

Hybrid systems are heterogeneous dynamical systems, the behaviors of which
are determined by interacting continuous variable and discrete event dynam-
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ics. By heterogeneity, we mean hybrid systems containing two different kinds
of dynamics. One is time-driven continuous variable dynamics, which is usu-
ally described as differential or difference equations; the other is event-driven
discrete logic dynamics, whose evolutions depend on if-then-else type of rules.
In addition, these two kinds of dynamics interact with each other and gener-
ate complex dynamical behaviors, such as switching once certain continuous
variable passes through a threshold, or state jumping upon certain discrete
event occurring etc. Hybrid systems have been identified in a wide variety
of applications in control of mechanical systems, process control, automotive
industry, power systems, aircraft and traffic control, among many other fields.

The history of hybrid system research can be traced back at least to the 1950’s
with the study of engineering systems that contain relays and/or hysteresis.
However, hybrid systems began to attract people’s attentions in the early
1990’s, mainly because of the vast development and implementation of digital
micro controllers and embedded devices. The last decade has seen considerable
research activities in the filed of hybrid systems involving researchers from a
number of traditionally distinct fields, such as computer science, control sys-
tems engineering, and mathematics [1,2]. The issues studied include modeling
[3–6], reachability analysis [4,7,8], stability and stabilization [9–14], observabil-
ity and controllability [15,3,16], optimal control [17,18] primarily. However, the
literature on robust control of hybrid systems is relatively sparse.

In this paper, we will focus on the induced gain analysis and robust optimal
control for classes of linear hybrid/switched systems. The robustness here is
with respect to the exterior disturbances. There are some related works in the
literature on analyzing the induced gain in switched systems. In [19], the L2

gain of continuous-time switched linear systems was studied based on piece-
wise quadratic Lyapunov functions incorporated with an average dwell time
concept, and the results were extended to the discrete-time case in [20]. In
[21], the root-mean-square (RMS) gain of a continuous-time switched linear
system with slow switching was computed in terms of the solutions to a col-
lection of Riccati equations. There are also papers on the robust controller
synthesis for hybrid systems, see for example [22,23]. In [22], a multiple out-
put feedback controller framework was employed to solve H∞ control problem
of a LTI plant. The controller design was reduced to solutions to a dynamic
programming equation and a Riccati equation. The H∞ control problem for
piecewise affine systems was investigated in [23] based on dissipativity theory
and LMI techniques. These robust performance and control problems consid-
ered in the literature so far are all in the signal’s energy sense, and assume that
the disturbances are constrained to have finite energy, i.e., bounded L2 norm.
In practice, there are disturbances that do not satisfy this condition and act
more or less continuously over time. Such disturbances are called persistent
[24], and can not be treated in the above framework. In this paper we consider
l∞ induced gains to deal with the robust performance problems in the signal’s
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magnitude sense, i.e., time domain specifications.

The persistent disturbance attenuation properties for hybrid/switched sys-
tems have been considered in our previous work [25–27]. In [26], a class of
uncertain switched linear systems affected by both parameter variations and
exterior disturbances was considered, and the uniformly ultimate bounded-
ness control problem was studied for both discrete-time and continuous-time
cases. Under the assumption that each subsystem admits a finite persistent
disturbance attenuation level, it was shown in [26] that, by proper switching,
the closed-loop switched systems could reach a better disturbance attenuation
level than any single subsystem. An optimal disturbance attenuation property
for uncertain switched systems and its decidability issue were discussed in
[25]. The results for optimal disturbance attenuation property analysis were
extended to classes of general uncertain hybrid systems in [27]. All of these
previous works are analysis results on the disturbance attenuation property
without addressing the controller design. This paper is an extension of [27]
and addresses the robust optimal hybrid controller synthesis problem.

This paper is organized as follows. In Section 2, we first define the linear
hybrid systems with persistent external disturbances. Then, the l∞ induced
gain analysis problem for the linear hybrid system and its robust optimal
controller synthesis problem are formulated. After introducing some neces-
sary preliminary results in Section 3, the l∞ induced gain analysis problem
is investigated in Section 4, and a bisection-based procedure is proposed to
determine a non-conservative bound on the optimal disturbance attenuation
level. The decidability issues of the proposed procedure are discussed in Sec-
tion 5, and a decidable subclass of the linear hybrid systems, called switched
linear systems, is specified. The robust optimal controller synthesis problem
is studied in Section 6. A systematic approach to design an explicit hybrid
state feedback control law is proposed, which is based on polyhedral algebra
and linear programming techniques. Finally, a numerical example is given and
concluding remarks are made.

Notation: The letters E ,P,S · · · denote sets, ∂P the boundary of set P, and
int{P} its interior. A polytope (bounded polyhedral set) P will be presented
either by a set of linear inequalities P = {x : Fix ≤ gi, i = 1, · · · , s}, and
compactly by P = {x : Fx ≤ g}, or by the dual representation in terms of the
convex hull of its vertex set {xj}, denoted by Conv{xj}. For x ∈ R

n, the l1 and
l∞ norms are defined as ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ = maxi |xi| respectively.

l∞ denotes the space of bounded vector sequences h = {h(k) ∈ R
n} equipped

with the norm ‖h‖l∞ = supi ‖hi(k)‖∞ < ∞, where ‖hi(k)‖∞ = supk≥0 |hi(k)|.
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2 Problem Formulation

We consider discrete-time piecewise linear hybrid systems of the form

x(t + 1) = Aqx(t) + Bqu(t) + Ed(t), t ∈ Z
+, if x ∈ Pq (1)

where x(t) ∈ R
n is the state variable, u(t) ∈ Uq ⊂ R

m is the control input,
and the disturbance input d(t) is contained in D ⊂ R

r, the l∞ unit ball,
i.e., D = {d : ‖d‖l∞ ≤ 1}. It is assumed that Uq is a polytope assigned to
each mode q. Let the finite set Q stand for the collection of discrete modes q.
The partition of the state space X ⊆ R

n is given as a finite set of polyhedra
{Pq : q ∈ Q}, where Pq ⊆ X and

⋃
q∈Q Pq = X .

Associated with the piecewise linear hybrid system (1), an output z(t) is con-
sidered as

z(t) = Cx(t) (2)

where C ∈ R
p×n and z(t) ∈ R

p. It is assumed that (Aq, E) is controllable and
(Aq, C) observable for all q.

Our primary concern here is what is the effect of the persistence disturbance
d(t) on the output z(t). It is often desirable to make the magnitude of z(t)
as small as possible, for example when the z(t) reflects some errors that need
to be eliminated. In this paper, we will study such disturbance attenuation
effects for the linear hybrid systems introduced above, and aim to design
hybrid control laws so as to keep z(t) as close to the origin as possible in
face of unknown disturbances. The control law refers to a map c : X × Z

+ →
Q × ∪q∈QUq. The control law c is hybrid in the sense that it includes both a
rule for active discrete mode selection and continuous variable control signal
determination. A hybrid control law c is called admissible, if at every time
instant t, the discrete mode q(x, t) being selected is a feasible mode for state
x(t), i.e., x(t) ∈ Pq(x,t), and the continuous control signal being determined
satisfies u(x, t) ∈ Uq(x,t).

For this linear hybrid system (1)-(2), we are interested in determining a non-
conservative bound for the l∞ induced norm from d(t) to z(t) that can be
achieved, which is defined as

µinf = inf {µ|∃x0, (q(t), u(t)) ∈ Q∗ × U∗ : ‖z(t)‖l∞ ≤ µ, ∀‖d(t)‖l∞ ≤ 1}
where Q∗ × U∗ stands the set of all the sequences of q(t) and u(t) that are
admissible. If the undisturbed linear hybrid systems, i.e., D = {0}, are not
asymptotically stabilizable, then there is no finite disturbance attenuation
level. Hence, it is necessary to require that there exist admissible control laws
asymptotically stabilizing the undisturbed linear hybrid system. In particular,
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we concern about semi-global asymptotic stability, which means that for any
finite bound on the initial conditions x0 given, there exist hybrid control laws
to drive all the initial conditions to the origin asymptotically.

In this paper, we will study the following two problems.

Problem 1 (Robust Performance Analysis Problem) Given the piece-
wise linear hybrid system (1)-(2), determine the minimal l∞ induced gain from
d(t) to z(t) that can be achieved by some admissible control law.

The second problem is to construct such an admissible control law that guar-
antees the l∞ induced gain from d(t) to z(t).

Problem 2 (Robust Optimal Control Problem) Given linear hybrid sys-
tems (1)-(2), construct an admissible control law, such that the minimal l∞

induced gain from d(t) to z(t), µinf , is achieved.

The robust optimal controller synthesis problem is studied in Section 6. It is
interesting to notice that the optimal performance level can be achieved by a
piecewise linear state feedback control law.

3 Preliminary Results

The basic idea employed in this paper is to translate the required level of
performance into constraints on the controlled system. Then, these constraints
can be dealt with by invariant set theory, since state and control constraints
can be satisfied if and only if the initial state belongs to some proper invariant
set for the closed-loop system. Therefore, we introduce the controlled robust
invariant set for the hybrid systems as follows.

Definition 3 The set Ω ⊂ X is controlled robust invariant for the linear hy-
brid system (1)-(2) if for all the initial condition x0 ∈ Ω, there exist admissible
control laws, such that x(t) ∈ Ω, ∀t ≥ 0, despite disturbances.

Invariant set theory has been studied in the literature for decades, see for
example [28–31] and references therein. Blanchini gave a compressive review
of the invariant set theory in [32]. In [30], a discrete-time linear system with
polyhedral state, control and disturbance constraints was considered, and the
controlled invariant set was geometrically and analytically characterized. The
authors of Ref. [33] considered a class of discrete-time hybrid systems with
piecewise linear time-invariant flow function and polyhedral constraints. They
also discussed two special classes which made the computation of controlled
invariant set decidable. The invariant sets for piecewise affine systems have
also been studied in [34] based on convex optimization techniques and linear
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matrix inequalities. In the literature of hybrid systems, a similar concept,
maximal safety set, has been studied, for example, in [7,35–37]. In addition,
controller design and verification based on invariant sets have been studied in
[36,38–41].

In this paper, the invariance checking and calculation for Ω is based on the
backward reachability analysis and robust predecessor operator, which will be
defined below.

Definition 4 The robust one-step predecessor set, pre(Ω), is the set of states
in X , for which there exist feasible modes and admissible control inputs to
drive these states into Ω in one step, despite disturbances, i.e.,

pre(Ω) = {x(t) ∈ X |∃q ∈ Q, u(t) ∈ Uq : x(t) ∈ Pq,

Aqx(t) + Bqu(t) + Ed(t) ∈ Ω, ∀d(t) ∈ D}

We can also define the one-step predecessor set under the q-th mode, preq(Ω),
as the set of all states x ∈ Pq, for which an admissible control input u ∈ Uq

exists and guarantees that the system will be driven to Ω by the transformation
Aqx + Bqu + Ed for all allowable disturbances.

Proposition 5 The robust one-step predecessor set pre(Ω) for piecewise lin-
ear hybrid systems can be computed as follows:

pre(Ω) =
⋃
q∈Q

preq(Ω) (3)

Therefore, we only need to calculate the one-step predecessor set for each q-th
subsystem. Proof is omitted here for space limit, see [42] for details. Notice that
the predecessor set of a piecewise linear set Ω under a single mode, i.e., preq(Ω),
has been studied extensively in the literature and can be computed by Fourier-
Motzkin elimination [43] and linear programming techniques, see for example
[29,31] and the references therein. Notice that the difficulty in calculating
preq(Ω) comes mainly from the fact that the region Ω is typically non-convex.
Even if one starts with convex sets, the procedure deduces non-convex sets
for hybrid systems after an one-step predecessor operation. Because of the
non-convexity, some of the linearity and convexity arguments do not hold and
extra care should be taken.

Proposition 6 The robust one-step predecessor set for a (non-convex) piece-
wise linear set Ω, pre(Ω), can be written as finite union of polyhedra.
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Although the convexity is not preserved under the one-step predecessor op-
eration, the piecewise linearity remains unchanged as Proposition 6 implies.
Therefore, one can apply the predecessor operation recursively, which will be
explored in the next section.

4 Hybrid Robust Performance Analysis

In this section, we will focus on the first problem and determine the minimal
l∞ induced gain from d(t) to z(t) that can be achieved by some admissible
control laws for the closed-loop linear hybrid systems. For such purpose, we
first introduce the performance level µ set as

Ωµ = {x : ‖Cx‖∞ ≤ µ} = {x :


 C

−C


 x ≤


 µ̄

µ̄


} (4)

where µ̄ stands for a column vector with µ as its elements. Note that Ωµ is a
polytope containing the origin in its interior.

A value µ < +∞ is said to be feasible if µ > µinf . Clearly, a sufficient condition
for µ to be feasible is that the hybrid performance level set Ωµ is controlled ro-
bust invariant. Therefore, the l∞ induced gain analysis problem is transformed
into checking the controlled robust invariance of the disturbance attenuation
performance level set. The following is an important, well-known geometric
condition [32] for a set to be controlled invariant.

Theorem 7 The set Ωµ is a controlled robust invariant set if and only if
Ωµ ⊆ pre(Ωµ).

In general, a given set Ωµ is not controlled robust invariant. However, Ωµ

may contain controlled robust invariant subsets. In other words, the sufficient
condition for µ to be feasible may be too conservative. In order to get neces-
sary and sufficient conditions for the admissibility of µ, we first introduce the
following definition.

Definition 8 The set C∞(Ωµ) is the maximal controlled robust invariant set
contained in Ωµ for the linear hybrid system (1)-(2) if C∞(Ωµ) is controlled
robust invariant and contains all the controlled robust invariant sets contained
in Ωµ.

The uniqueness of the maximal controlled robust invariant set C∞(Ωµ), if non-
empty, follows immediately from the fact that the union of two controlled
robust invariant sets is still controlled robust invariant, and that C∞(Ωµ) is a
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subset of Ωµ. In order to calculate the maximal controlled robust invariant set
in Ωµ, we introduce the one-step controllable set of Ωµ as

C1(Ωµ) = pre(Ωµ) ∩ Ωµ. (5)

It follows from Proposition 6 that the one-step controllable set C1(Ωµ) is a
piecewise linear set if Ωµ is given as a piecewise linear set. Therefore, the
one-step controllable set operator can be used recursively to define i-step con-
trollable set Ci(Ωµ) as follows.

Ci(Ωµ) = C1(Ci−1(Ωµ)) = pre(Ci−1(Ωµ)) ∩ Ci−1(Ωµ), (6)

for i ≥ 2. The sequence of finite-step controllable sets Ci(Ωµ) has the following
property.

Proposition 9 The sequence of finite step controllable sets Ci(Ωµ) is decreas-
ing in the sense of

Ci(Ωµ) ⊆ Ci−1(Ωµ),

for i ≥ 1 and C0(Ωµ) = Ωµ. The maximal controlled invariant set in Ωµ for the
piecewise linear hybrid system (1) is given by

C∞(Ωµ) =
∞⋂
i=0

Ci(Ωµ).

The proof of this result is similar to the proof of Theorem 3.1 in [29], and it
is omitted here.

Based on the maximal controlled robust invariant set C∞(Ωµ), we state now
the basic result of this section which will be used to give a solution to the
disturbance attenuation property analysis problem.

Proposition 10 A value µ (< +∞) is feasible, i.e., µ > µinf , if and only if
the maximal controlled robust invariant subset of Ωµ, C∞(Ωµ), is non-empty.

This result suggests the following constructive procedure for finding a robust
performance bound.

Procedure 1. Checking whether µ > µinf

(1) Initialization: Set i = 0 and set C0 = Ωµ.
(2) Compute the set Ci+1(Ωµ) = pre(Ci(Ωµ)) ∩ Ci(Ωµ).
(3) If 0 /∈ Ci+1 then stop, and the procedure has failed. Thus, the output does

not robustly meet the performance level µ.
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(4) If the Ci(Ωµ) = Ci−1(Ωµ), then stop, and set C∞(Ωµ) = Ci(Ωµ).
(5) Set i = i + 1 and go to step (2).

This procedure can then be used together with a bisection method on µ to
approximate the optimal value µinf arbitrarily close, which solves the distur-
bance attenuation property analysis problem. If the procedure stops at step
(3), we conclude that µ < µinf and we can increase the value of the output
bound µ. This comes from the fact that if C∞(Ωµ) 6= ∅ then 0 ∈ Ci+1. Else,
if the procedure stops at step (4), we have determined an feasible bound for
the output, say µ > µinf , that can be decreased. The above discussion can be
formalized as the following bisection algorithm:

Algorithm 1 Algorithm for Calculating µinf

(1) Initialization: Choose the initial interval [µ1, µ2] such that µ1 ≤ µinf < µ2.
Choose ε > 0, the tolerance level. If no knowledge of lower bounds of µinf

is available, µ1 may be chosen as µ1 = ε.
(2) While (µ2 − µ1) > ε, set µ3 = µ1+µ2

2
, and check whether µ3 > µinf by the

above procedure. If µ3 > µinf , then set µ2 = µ3, else set µ1 = µ3.
(3) Output µinf = µ1+µ2

2
.

Unfortunately, the reachability problem for general hybrid systems is unde-
cidable, see for example [8,44]. Therefore, the bisection method on µ that
approximates the optimal value µinf can not be guaranteed to terminate in
finite number of steps. However, in practice, the possibility of an endless loop
can be averted by putting an a priori limit on the number of iterations, or by
employing a grid based approximation as a termination condition. Neverthe-
less, to specify a subclass of hybrid systems, for which the above procedure can
be guaranteed to terminate in finite steps, is still of great theoretical interest.
We will focus on the decidability issue in the next section.

5 Decidable Switched Linear Systems

In the previous section, we studied the robust performance analysis problem of
linear hybrid systems. However, the termination of the proposed procedure in
finite number of steps is not guaranteed. The undecidability has been the main
deterrent for the implementation of hybrid system theory to solve practical
problems. Hence, a natural question is under what condition the procedure
can terminate in finite number of steps, i.e., decidable. To specify the decid-
able subclass of linear hybrid systems for the robust performance problems,
two kinds of simplification may be employed. One way is to simplify the con-
tinuous variable dynamics of the hybrid systems, see for example [8]. It turns
out that only a small portion of hybrid systems with simple or specific contin-
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uous variable dynamics, such as timed automata, multi-rate timed automata,
rectangular hybrid automata and o-minimal hybrid systems, have finite state
bisimular transition systems, and thus the reachability problem for such spe-
cific hybrid systems is known to be decidable [8]. To make the situation worse,
it was shown in [44,8] that even a minor generalization of the rectangular
hybrid automata would quickly made the reachability problem undecidable.
Although, [44,8] considered the continuous-time case only, the situation for
discrete-time case is similar. For the discrete-time case, it was shown in [33]
that finite bisimulation could be obtained for discrete-time hybrid automata
with nilpotent or controllable continuous variable LTI dynamics with single
input. However, this approach may not be attractive to control applications,
where simplified continuous variable dynamics may not be adequate to cap-
ture the system’s dynamics. Alternatively, one may restrict the discrete event
dynamics of the uncertain linear hybrid systems.

In this section, we will follow the second route and obtain a decidable subclass
of hybrid systems, called switched linear systems, by simplifying the discrete
event dynamics. In particular, for the switched linear systems, we do not
consider partition of the state space, i.e., Pq = X for all q. In other words,
the transitions between any two modes may happen at any point in the state
space. This gives us more freedom in the discrete event controller design, i.e.,
selecting the active mode q, without wondering about the implicit switching
caused by the state space partition. It will be shown that this simplicity on
the discrete dynamics induces the decidability of the performance analysis
problem.

5.1 Switched Linear Systems

In this section, we consider a family of discrete-time perturbed linear systems
described by the following difference equations.

x(t + 1) = Aqx(t) + Bqu(t) + Ed(t), t ∈ Z
+ (7)

where x(t) ∈ R
n is the state variable, u(t) ∈ Uq ⊂ R

m is the continuous control
input, and the disturbance input d(t) is contained in D ⊂ R

r, the l∞ unit ball.
The continuous variable dynamics of mode q are defined by the state matrices
Aq, Bq and E for every mode q. The finite set Q = {q1, q2, · · · , qn} is called
the set of modes. Notice that the main difference of switched systems from
general hybrid systems (1)-(2) is that the activation region of each mode Pq is
the whole state space, i.e., Pq = X for all q ∈ Q and X = R

n. This basically
means that all the switchings are controllable and one has the freedom to
switch to any mode in the whole state space. The simplification comes from
the exclusion of implicit switching caused by the state space partition, also
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known as autonomous switching.

Combine the family of discrete-time linear systems (7) with a class of piecewise
constant functions of time σ : Z

+ → Q. Then we can define the following time-
varying system as a discrete-time switched linear system

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t) + Ed(t), t ∈ Z
+ (8)

The signal σ(t) is called a switching signal. Let us denote the collection of all
possible switching signals as Σa, which is usually called arbitrary switching
signals in the literature [9].

Also consider the following output

z(t) = Cx(t). (9)

For this switched linear system (8)-(9), we are also interested in determining a
non-conservative bound for the l∞ induced norm from d(t) to z(t). It is known
that the switched system (8)-(9) has finite l∞ induced gain if and only if its
undisturbed system is (semi-globally) asymptotically stable [25]. Therefore, we
restrict our search only in the collection of asymptotically stabilizing control
signals, (σ(t), u(t)), which is denoted as Σs × Us. It is assumed that there
exist asymptotically stabilizing control signals, (σ(t), u(t)), namely Σs ×Us is
nonempty. In the sequel, we will develop a procedure to determine µinf for the
switched linear systems (8)-(9).

5.2 l∞ Induced Gain for Switched Linear Systems

We first introduce the definition of limit set, L(σ,u), under given switching law
σ ∈ Σa and admissible control signal u(t) ∈ Uσ(t).

Definition 11 The limit set L(σ,u) for the switched system (8), under given
switching law σ ∈ Σa and admissible control signal u(t) ∈ Uσ(t), is the set of
states x for which there exist admissible sequence d(t) and a non-decreasing
time sequence tk (with limk→+∞ tk = +∞) such that

lim
k→+∞

Φ(0, tk, σ(·), u(·), d(·)) = x

where Φ(0, tk, σ(·), u(·), d(·)) denotes the value at the instant tk of the solution
of (8) originating at x0 = 0 and corresponding to σ, u and d.

Intuitively, the limit set L(σ,u) captures all the possible drifted states from
the origin, x0 = 0, via disturbances and parametric perturbations, while
the switching sequence σ(t) and control signal u(t) are predetermined (just

11



functions of time). For the asymptotically stabilizing control signals (σ, u) ∈
Σs × Us, we know that the limit set L(σ,u) has the following property [45].

Lemma 1 For the asymptotically stabilizing control law (σ, u), the limit set
L(σ,u) is nonempty and the state evolution of the switched system (8), for every
initial condition x(0) and admissible sequence d(t) ∈ D, converges to L(σ,u).
Moreover, L(σ,u) is bounded and if x(t) ∈ L(σ,u) then x(t + 1) = Aσ(t)x(t) +
Bσ(t)u(t) + Ed(t) ∈ L(σ,u) for all possible d(t) ∈ D.

Next, we define the limit set for the switched linear system (8) as

L = inf{ ⋂
(σ,u)∈Σs×Us

L(σ,u)},

where the intersection is with respect to any finite collection of the admissible
control laws (σ, u) that asymptotically stabilize the switched system (8). The
“inf” is taken with respect to all these finite intersections of limit set L(σ,u)

which are polytopes with the origin in their interiors. The physical meaning
of the limit set L can be described as follows. Assume that the state x starts
at the origin, which is the ideal case for disturbance attenuation. However,
because of the disturbances and parametric perturbations, the state x(t) will
drift away from the origin no matter how one picks the mode q(t) (switching
sequence) or designs the control signal u(t). The limit set L captures all such
possible drifted states. In other words, the limit set L is the uncertainty of
the system that has to be dealt with, and it represents a lower bound of the
achievable performance level. Also, it can be shown that L has the property
as follows.

Proposition 12 The set L is bounded and nonempty. For every initial con-
dition x(0), admissible d(t) ∈ D, there exists an admissible control law (σ, u)
such that the state evolution of the switched system (8) converges to L. In
addition, L is controlled invariant for the switched system (8).

Proof : The boundedness and non-emptiness of L comes from the fact that
L(σ,u) is nonempty and bounded for all asymptotically stabilizing control law
(σ, u), and 0 ∈ L(σ,u). For any x(0), there exists proper asymptotically sta-
bilizing control law (σ1, u1) and finite t1 such that x(t) ∈ L(σ1,u1) for t ≥ t1
(from the definition of limit set L(σ1,u1)). If x(t1) /∈ L =

⋂
(σ,u) L(σ,u), then

there exists at least one limit set, say L(σ2,u2), such that x(t1) /∈ L(σ2,u2). From
the definition of L(σ2,u2), we know that there exists finite t2 > t1 such that
x(t) ∈ L(σ2,u2) for t ≥ t2 under the control law (σ2, u2). If x(t2) /∈ L, then the
arguments goes on until finally x(t) ∈ L. We claim that with finite number of
steps x(t) ∈ L. This claim and invariance of the set L can be easily shown by
contradiction.

2
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It should be pointed out that the introduction of the limit set L(σ,u) and L is for
the purpose of proving the decidability of the procedures for l1 analysis, namely
the termination in finite number of steps. It is not necessary to calculate these
limit sets L(σ,u) or L to implement the procedures for the determination of
induced gains.

Define now the performance level µ set as

Ωµ = {x : ‖Cx‖∞ ≤ µ} (10)

Recursively define the sets Ck, k = 0, 1, · · · as

C0 = Ωµ, Ck = pre(Ck−1) ∩ Ck−1 (11)

where the predecessor set for the switched system (8), pre(C), is the set of
states x from which, despite disturbances, there exist a subsystem (switching
signal σ) and continuous control signal u driving the states to C in one step.
The predecessor set for the switched system (8), pre(C), can be calculated as

pre(C) =
⋃
q∈Q

preq(C),

where preq(·) is defined in Section 3 with Pq = R
n.

By construction, C∞ has the property that there exists a switching signal σ(t)
and admissible continuous control signal u(t) with respect to which C∞ is
positive controlled invariant for the switched system (8). Also it can be shown
that C∞ is the maximal controlled invariant subset contained in Ωµ. Then,
given µ > 0, there exists a switching signal σ(t) and continuous control signal
u(t) such that the response of the switched system satisfies ‖z(t)‖l∞ ≤ µ for all
‖d(t)‖l∞ ≤ 1 if and only if the maximal controlled invariant subset contained
in Ωµ, C∞, is nonempty and 0 ∈ C∞ ⊆ Ωµ.

We now give a proposition which guarantees that C∞ can be finitely deter-
mined 1 .

Proposition 13 If L ⊂ int{Ωµ} for some µ > 0, then there exists k such
that C∞ = Ck and this k can be selected as the smallest integer such that
Ck+1 = Ck.

Proof : According to Proposition 5.1, there exists finite integer k such that for
all x(0) ∈ Ωµ, x(t) ∈ L ⊂ int{Ωµ} (∀t ≥ k) for some proper control signals.

Also notice that the set Ck has the property that for all x ∈ Ck, there always
exist sequences of admissible control signals to make the trajectory starting

1 This represents an extension of similar results for linear time varying systems in
[45] to switched systems.
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from x remain inside Ωµ for at least k steps, i.e., x(t) ∈ Ωµ, t = 0, 1, · · · ,k, for
all possible d(t) ∈ D. We will show that the above two facts imply Ck+1 = Ck.

Prove by construction, it is assumed that Ck+1 ⊂ Ck (Note that Ck+1 ⊆ Ck

by definition). Hence, there exists x ∈ Ck but x /∈ Ck+1. Starting from this
point x (Note that x ∈ Ck ⊆ Ωµ), there exist sequences of d ∈ D such that
x(k+1) /∈ Ωµ no matter how to choose control signals. This is because x /∈ Ck+1

and the construction of Ck+1.

This leads to a contradiction. Therefore, Ck = Ck+1, and this implies that
Ck = Ck+m, for m ≥ 0. Thus C∞ = Ck.

2

The calculation of µinf for switched systems (8)-(9) can now be solved by
determining the maximal controlled invariant set C∞ in Ωµ for several values of
µ and checking whether or not it contains the origin. Note that in both cases we
get an answer in finite number of steps, although there is no a-priori bound for
such a number. In the first case, this is due to the above theorem. In the second
case, this follows by the fact that the sequence of closed sets Ck is ordered by
inclusion and C∞ is their intersection. Thus 0 /∈ C∞ if and only if 0 /∈ Ck for
some k. These results suggest that the bisection algorithm (Algorithm 1) can
be employed to approximate the optimal value µinf arbitrarily close.

6 Robust Optimal Hybrid Controller

We have determined the minimal l∞ induced gain from d(t) to z(t) that can
be achieved by linear hybrid/switched systems in the above two sections, thus
answering the “Robust Performance Analysis Problem”. Next, we turn to
consider the “Robust Optimal Control Problem”.

Our objective in this section is to design a hybrid control law, c, such that the
closed-loop hybrid systems achieve the possible minimal l∞ induced gain from
d(t) to z(t), µinf . It has been shown in the previous section that the disturbance
attenuation problem is solved if and only if the set Ωµ has nonempty controlled
invariant subset, C∞(Ωµ). In addition, we know that the robust optimal con-
trol problem can be solved if and only if the closed loop trajectories remain
in the maximal invariant subset of the performance level set C∞(Ωµinf

). In
this section, we will present a systematic procedure for the hybrid controller
design, which robustly drives the system, with proper initial conditions, to
guarantee that the states remain within C∞(Ωµinf

) despite the disturbances.
For notational simplicity, we denote the maximal controlled invariant subset
C∞(Ωµinf

) as C in the sequel. Note that C is a (maybe non-convex) piecewise
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linear set.

A similar invariant control problem has been considered in [46,47,42], where a
receding horizon control approach was proposed to obtain the appropriate dis-
crete modes and control signals by solving a collection of linear programming
problems at each step. However, the computation burden is usually heavy
for practical applications. Therefore, an explicit state feedback controller is
desirable, especially for large dimensional systems or applications with fast
dynamics.

In this section, we will design the hybrid control law in an explicit state feed-
back form, i.e., {q(x(t)), u(x(t))}. For such purpose, we partition the region C
into a finite number of convex subregions. First, we coarsely divide C into a
finite union of convex piecewise linear sets Ci, i.e., C =

⋃m
i=1 Ci, which satisfy

the property

preq(
m⋃

i=1

Ci) =
m⋃

i=1

preq(Ci), (12)

for all feasible mode q. The existence and procedure to obtain such partition
are described in the appendix. It is assumed that the polytopic region Ci can
be represented as

Ci = {x : F ix ≤ gi},
with proper dimensional matrix F i and vector gi, for all i = 1, 2, · · · , m.

Secondly, we refine the above polyhedral partition by subdividing each poly-
hedra Cj into

Ci,j
q = preq(Ci)

⋂ Cj, for i, j = 1, · · · , m, q ∈ Q. (13)

Note that Ci,j
q is a convex polyhedral set and it has the following property.

Proposition 14 A controlled invariant set C can be written as the following
polytopic partition

C =
⋃
q∈Q

⋃
i,j

Ci,j
q , (14)

where Ci,j
q is defined in (13).

Proof : First,

⋃
i,j

Ci,j
q =

⋃
i,j

(preq(Ci)
⋂ Cj) =

⋃
i

(preq(Ci))
⋂

(
⋃
j

Cj)

= preq(
⋃
i

Ci)
⋂ C = preq(C)

⋂ C

Secondly, because preq(C)
⋂ C ⊆ C, for all q ∈ Q, so

⋃
q∈Q(preq(C)

⋂ C) ⊆ C.
On the other hand, C is controlled invariant, so C ⊆ pre(C) =

⋃
q∈Q preq(C).

15



2

These polytopic subregion Ci,j
q has the following property. For all the states

x contained in the polytopic subregion Ci,j
q , there exist admissible control

signals u ∈ Uq such that drive x into Ci (not Ci,j
q itself) along mode q for all

admissible disturbances. This property comes from the definition that Ci,j
q =

preq(Ci)
⋂ Cj, so x ∈ Ci,j

q implies x ∈ preq(Ci). The possible next step state
x′, which is guaranteed to be contained in Ci, also falls into another polytopic
subregion Ci′,i

q′ , for some q′ ∈ Q and i′ ∈ {1, 2, · · · , m}. For the state x′,
there also exist control signals u ∈ Uq′ to drive x′ into Ci′ along mode q′.
The procedure repeated for the next step state, and so on. Therefore, the
state trajectories under such control signals are contained in the region C =⋃

i Ci despite disturbances. This observation suggests that one may pick the
mode q as the active mode for a polytopic subregion Ci,j

q , and the existence of
the admissible continuous-variable control signal u ∈ Uq is guaranteed, which
makes the region C (=

⋃
q∈Q

⋃
i,j Ci,j

q ) robust controlled invariant. In the sequel,
we will propose a systematic method to construct such continuous-variable
control signals. In particular, a linear state feedback control law is designed
for each polytopic subregion Ci,j

q .

For such purpose, an optimization problem for each vertex of the polytopic
subregion Ci,j

q is formulated to calculate an admissible control signal for the
vertex xk

q ∈ vert{Ci,j
q }. Notice that the vertices can be easily determined by

solving some linear programming problems once the polytopic region Ci,j
q is

specified. The control signal for the vertex xk
q can be selected as the solution

to the following minmax optimization problem:

min
u∈Uq

max
d∈D

‖F j[Aqx
k
q + Bqu + Ed]‖∞

s.t.




F iBqu ≤ gi − F iAqx
k
q − δi

q

u ∈ Uq

(15)

where δi
q = maxd∈D(F iEd) componentwise, which incorporates the worst ef-

fects of the disturbance d. The optimal action of the controller is one that tries
to minimize the maximum cost, and tries to counteract the worst disturbance
and to keep the next step state inside the region Cj (not Ci,j

q itself). Of course,
one may choose another cost functional, but the key point here is that the
above constraints are linear inequalities in u and nonempty, i.e., feasible. This
is because xk

q ∈ Ci,j
q ⊂ preq(Ci).

Because of the guaranteed feasibility of the above optimization problem for
each vertex of the polytope Ci,j

q , the admissible control signals for each vertex
xk

q exist, which may be denoted as uk
q . In the next step, we will construct

the continuous variable control signals for the state contained in region Ci,j
q
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from the control signals at the vertices. The arguments are obtained through
convexity.

Note that any x ∈ Ci,j
q can be (not uniquely) written as the convex combination

of the vertices of Ci,j
q , that is x =

∑
k αk

q (x)xk
q , where the convex combination

coefficients αk
q (x) ≥ 0 and

∑
j αk

q (x) = 1. We set the control signal u(x) for
state x simply as the convex combination of the control signals at the vertex
uk

q . In particular,

u(x) =
∑
k

αk
q (x)uk

q (16)

and u(x) ∈ Uq comes from the convexity of Uq. And

F i[Aqx + Bqu(x)] = F i[Aq

∑
k

αk
q (x)xk

q + Bq

∑
k

αk
q (x)uk

q ]

=
∑
k

αk
q (x)F i[Aqx

k
q + Bqu

k
q ]

≤∑
k

αk
q (x)[gi − δi

q]

= gi − δi
q

holds. In other words, for any x ∈ Ci,j
q , the control signal u(x) given in (16) will

drive the next state in Ci (not Ci,j
q itself) despite disturbances. Therefore, the

control law of the form (16) solves the robust controlled invariance problem.

In summary, to make the performance level set C controlled invariant, the
control law is given as follows. For x(t) ∈ Ci,j

q , the discrete mode is selected as
q(t) = q. This is always possible since

x(t) ∈ Ci,j
q = preq(Ci)

⋂ Cj ⊂ Pq.

Secondly, the continuous variable control signal, u(t), is of the form (16). In
this expression, αk

q (x) is the convex combination coefficients of x(t) by the
vertices of Ci,j

q , and uk
q is the control signal for the corresponding vertices of

Ci,j
q . It has been shown that the vertex control signal uk

q can be derived by
solving a linear programming problem, which can be solved off-line.

A control law of the above form (16) can be implemented as a piecewise linear
state feedback controller. For example, let Xq

i,j be a matrix whose columns
are formed by the vertex vector of Ci,j

q . The columns of matrix U q
i,j are the

calculated continuous variable control vector, uk
q , corresponding to each vertex

of Ci,j
q . A piecewise linear state feedback controller is then obtained by applying

the control
u(x) =

∑
k

αk
q (x)uk

q = U q
i,j(X

qT

i,j Xq
i,j)

−1XqT

i,j x (17)

where (·)T stands for transpose, and (·)−1 inverse of matrix. The convex com-

bination coefficients αk
q (x) can be calculated as (XqT

i,j Xq
i,j)

−1XqT

i,j x if (XqT

i,j Xq
i,j)
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is invertible. Otherwise another procedure is needed to generate the convex
combination vector coefficients αk

q (x). Note that all the calculations to derive
the matrix Xq

i,j and U q
i,j can be done off-line by linear programming techniques.

The implementation of the control law only needs to calculate the convex com-
bination coefficients vector αk

q (x), which can be done by solving some linear
equations. Therefore, this computational advantage makes the above method a
good candidate to deal with high dimensional hybrid systems. This advantage
also makes the method developed above distinct from the robust tracking and
regulation controller design method presented in [46,47,42], which is based on
receding horizon control and on-line optimization.

Some remarks are in order. First, for some states x(t) ∈ C, there may exist
more than one feasible modes and admissible control signals. Then some crite-
ria could be designed for the selection of (q(x(t)), u(x(t))), e.g. the magnitude
or energy of u(x(t)) etc. This flexibility may also lead to optimal control with
respect to other kinds of cost functions. Secondly, the procedure developed
here answers the robust optimal control problem in a decidable way even for
the general hybrid systems (1)-(2) under the assumption that C is controlled
invariant. In addition, although we only synthesize a hybrid control law to
guarantee optimal l∞ induced gain µinf here, the procedure can be directly
used to achieve any admissible disturbance attenuation level, µ > µinf .

7 Example

Consider the following discrete-time linear hybrid system

x(t + 1)=




A0x(t) + B0u(t) + E0d(t), q = q0

A1x(t) + B1u(t) + E1d(t), q = q1.

z(t) = Cx(t)

where

A0 =


 1 1

0 1


 , B0 =


 0

1


 , E0 =


 0.1

0.1




A1 =


 0 1

−1 −1


 , B1 =


 0

1


 , E1 =


 0.1

0.1


 , C =

[
1 1

]

We assume that u ∈ U = [−1, 1], and d ∈ D = [−1, 1].
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First, determine the minimal l∞ induced gain from d(t) to z(t) that can be
achieved by some admissible control law for the polytopic uncertain linear
hybrid systems defined above. For such purpose, consider the region Ωµ =
{−µ ≤ |Cx| ≤ µ}. Using Algorithm 1 (with error tolerance ε = 0.01) we
compute the µinf , which is approximately µinf = 0.225.

The maximal controlled invariant subset C∞(Ωµinf
) is calculated, as shown in

Figure 1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Projection to 1−2 axes

Fig. 1. The illustration of C∞(Ωµinf
).

Our next step is to design the invariant controller. Note that C in this example
is a convex polyhedral set from calculation, i.e., m = 1. Therefore, C1,1

q0
can be

calculated as C1,1
q0

= preq0(C)
⋂ C. Similarly, C1,1

q1
= preq1(C)

⋂ C (see Figure 2).
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−1
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0
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Projection to 1−2 axes

Fig. 2. The illustration of C1,1
q0 (dashed line), C1,1

q1 (solid line).

Then we calculate the vertices control vectors for each single mode, by solv-
ing some linear programs. The coordinate of vertices and their corresponding
control vector for C1,1

q0
may be used to form the matrices Xq0 and Uq0 respec-

tively. Similarly, we obtain the matrices Xq1 and Uq1 from C1,1
q1

. For example,
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the coordinate of vertices and their corresponding control vector for C1,1
q1

is
represented as the matrices Xq1 and Uq1 as follows.

XT
q1

=




−0.2200 0.0000

0.2200 0.0000

−0.6355 0.4328

0.6355 −0.4328

−0.2350 0.4328

0.2350 −0.4328




, UT
q1

=




−0.2200

0.2200

−0.5820

0.5820

−0.1815

0.1815




For any state x(t) ∈ C∞(Ωµinf
), the hybrid control law is designed as following:

• If x ∈ C1,1
q0

, then the u is given by Equation (17) with Xq = Xq0 and Uq = Uq0 .
And the discrete mode is selected as q(t) = q0.

• If x /∈ C1,1
q0

, then x must be contained in C1,1
q1

(because C1,1
q1

⋃ C1,1
q1

= C∞(Ωµinf
)).

In this case, the u is given by Equation (17) with Xq = Xq1 and Uq = Uq1 .
And the discrete mode is selected as q(t) = q1.

8 Concluding Remarks

In this paper, we studied the robust performance analysis and synthesis prob-
lems of classes of linear hybrid systems into the framework of invariant set
theory. The robust performance problems were equivalently transformed into
the controlled robust invariance problems for a specific region decided by the
performance level. Based on the geometric condition for robust controlled in-
variance, a bisection-based procedure was proposed to determine the optimal
disturbance attenuation level µinf . The decidability issue of the robust per-
formance analysis problem was discussed, and switched linear systems were
specified as a decidable subclass of the linear hybrid systems. The decidability
comes from the simplicity of the discrete event dynamics. It is worth point-
ing out that this specific simple subclass of hybrid systems still can model a
large class of practical systems, such as multi-controller supervisory control
systems, controller failures, fault diagnosis and control reconfiguration etc.
For example, in [47,48], a class of networked control systems with uncertain
delays and package dropout effects was modeled as such switched systems.
Finally, a systematic procedure for explicit hybrid robust optimal controller
design was given, which was based on polyhedral algebra and linear program-
ming techniques. The robust optimal controller is in the form of a piecewise
linear state feedback control law. It is interesting to note that in [17] a va-
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riety of optimal control problems of piecewise linear systems could also be
solved by piecewise linear state feedback control laws, which were obtained
through multi-parametric linear (or quadratic) programming. However, differ-
ent approaches were employed in this paper. Based on predecessor operator
and polyhedral algebra, we directly partitioned the performance level set into
conic subsets, and designed linear feedback gain for each subset.
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Appendix

Notation: Given two sets Y ⊂ R
n and Z ⊂ R

n, the complement of Y is
Y c = {y ∈ R

n : y /∈ Y }, the Minkovski sum Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z}
and the Pontryagin difference Y ∼ Z = {x ∈ Rn : x + z ∈ Y, ∀z ∈ Z}.

First, we present some primary results on the Minkovski sum and Pontryagin
difference.

Lemma 2 Given two sets X ⊂ R
n and Y ⊂ R

n, we have

(X ∼ Y ) ⊕ Y ⊆ X ⊆ (X ⊕ Y ) ∼ Y.

Proof : First, for any z ∈ (X ∼ Y ), z+y ∈ X for all y ∈ Y , so (X ∼ Y )⊕Y ⊆
X. Secondly, for any x ∈ X, x+y ∈ X⊕Y for any y ∈ Y , so x ∈ (X⊕Y ) ∼ Y
by definition. Therefore, X ⊆ (X ⊕ Y ) ∼ Y .

2
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Lemma 3 [31] If X is a (non-convex) piecewise linear set and Y is a polytope,
then the Pontryagin difference X ∼ Y can be written as finite union of convex
polyhedral sets, i.e., X ∼ Y =

⋃
i φi.

Lemma 4 Assume that X ∼ Y =
⋃

i φi, where X is a piecewise linear set, Y
is a polytope and φi is convex polyhedral set. Then

X =
⋃
i

(φi ⊕ Y ).

Proof : First, X ⊇ (X ∼ Y ) ⊕ Y = (
⋃

i φi) ⊕ Y =
⋃

i(φi ⊕ Y ). On the other
hand,

⋃
i(φi ⊕ Y ) ∼ Y = [

⋃
i(φi) ⊕ Y ] ∼ Y ⊇ ⋃

i φi = X ∼ Y , which implies⋃
i(φi ⊕ Y ) ⊇ X. Therefore, X =

⋃
i(φi ⊕ Y ).

2

Note that φi ⊕ Y is a convex polyhedral set. Therefore, we write the non-
convex piecewise linear set X into finite union of convex polyhedral sets, i.e.,
X =

⋃
i(φi ⊕ Y ). And it has the following property.

Lemma 5

X ∼ Y =
⋃
i

[(φi ⊕ Y ) ∼ Y ].

Proof : X ∼ Y =
⋃

i(φi ⊕ Y ) ∼ Y ⊇ ⋃
i[(φi ⊕ Y ) ∼ Y ] ⊇ ⋃

i φi = X ∼ Y .
Therefore, X ∼ Y =

⋃
i[(φi ⊕ Y ) ∼ Y ].

2

Based on the above properties, we will show that the one-step robust prede-
cessor set for a non-convex piecewise linear set Ω can be written as a finite
union of one-step robust predecessor set of its subsets. Consider the operation
preq(·)

preq(Ω) = {x ∈ Pq | ∃u ∈ Uq, : Aqx + Bqu + Ed ∈ Ω, ∀d ∈ D}
= {x ∈ Pq | ∃u ∈ Uq : Aqx + Bqu ∈ Ω ∼ ED}

=Projx





 x

u


 ∈ Pq × Uq | [Aq, Bq]


 x

u


 ∈ Ω ∼ ED




where Projx is the projection operator, which can be calculated by Fourier-
Motzkin elimination method. Note that (Ω ∼ ED) can be written as finite
union of convex polyhedral sets φi, that is Ω ∼ ED = ∪iφi.

Because of Lemma 4, the region Ω can be divided into finite union of convex
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sets as:
Ω =

⋃
i

(φi ⊕ ED).

And it has the property according to Lemma 5 that

Ω ∼ ED = [
⋃
i

(φi ⊕ ED)] ∼ ED =
⋃
i

[(φi ⊕ ED) ∼ ED].

Therefore,

preq(Ω) =Projx





 x

u


 ∈ Pq × Uq | [Aq, Bq]


 x

u


 ∈ Ω ∼ ED




=Projx





 x

u


 ∈ Pq × Uq | [Aq, Bq]


 x

u


 ∈ ⋃

i

[(φi ⊕ ED) ∼ ED]




=
⋃
i

Projx





 x

u


 ∈ Pq × Uq | [Aq, Bq]


 x

u


 ∈ (φi ⊕ ED) ∼ ED




=
⋃
i

preq(φi ⊕ ED)

Denote φi ⊕ ED as Φi, then Ω =
⋃

i Φi and

preq(
⋃
i

Φi) =
⋃
i

preq(Φi). (18)

In conclusion, given a piecewise linear region Ω, which may be non-convex, it
is always possible to partition the region Ω into a finite number of polyhedrons
Pi, such that preq(Ω) =

⋃
i preq(Pi) for all q, and Ω =

⋃
i Pi. In addition, the

proof of this claim also gives a method to calculate such partition by using
Minkovski sum and Pontryagin difference.
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