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1 Introduction

Recently, optimal control problems of switched and hybrid systems have attracted many

researchers from various fields in science and engineering, due to their theoretical chal-

lenges and importance in real-world applications (see, e.g., [2, 4, 10, 15] and the references

therein). Due to the diversity and complexity of such problems, there has been no general

solution technique either theoretically or numerically. However, many approaches have

been developed to solve special classes of such problems (e.g., [3, 5, 7, 9, 11, 13]).

In this paper, we study time optimal control problems of switched systems consist-

ing of integrator subsystems with polyhedral state constraint subsets. Such problems are

worth studying due to the followings. First, many real-world processes such as chemical

batch processes can be modelled as integrator switched systems [12, 14] and time optimal-

ity is a common control criterion. Second, such problems are among the few classes which

we can develop a theoretical framework for. Third, the study of such problems will shed

light on general problems and on many important research topics such as controllability

of integrator switched systems [14].
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Such time optimal control problems, though simple in appearance, actually present

difficulties due to the involvement of the discrete dynamics. Even though the subsystem

dynamics are simple, the overall system behavior is no longer linear. In this paper, we pay

attention to not only the continuous dynamics but also the discrete dynamics. The main

results of the paper concern both the discrete structure and the continuous evolution

of the system and are as follows. We first develop a directed graph representation of

the system discrete structure. Based on it, we generate candidate solution paths and

propose an algorithm which seeks the optimal solution among all candidate paths. A

linear programming method for finding the optimal timing information for each path is

then proposed. Besides these results, we also report a sufficient condition for eliminating

infeasible paths, a sufficient condition for reducing the looping times, and techniques

for dealing with zigzagging loops. These conditions and techniques can help reduce the

number of candidate paths.

Note that, in the computer science community, linear hybrid systems similar to inte-

grator switched systems have also been studied [1]. However, our focus here is on control

synthesis as opposed to verification in [1]. With different objectives in mind, our ap-

proach, which utilizes the discrete structure of the systems and uses linear programming

extensively, is different from the method in [1]. We believe that our result contributes to

controller design of hybrid systems and is a first step towards a more general and more

efficient solution of such time optimal control problems.

2 Problem Formulation

A switched system is a particular kind of hybrid system that consists of subsystems∗

ẋ = fi(x), fi : Xi → R
n, Xi ⊆ R

n, i ∈ I = {1, 2, · · · ,M} (1)

where fi is the vector field and Xi is the state constraint set for the i-th subsystem,

and a switching law orchestrating the active subsystem at each instant. The trajectory

of a switched system is determined by the initial state and the timed sequence of active

subsystems. A switching sequence defined as follows regulates the timed sequence of active

subsystems.

Definition 1 (Switching Sequence) A switching sequence σ in [t0, tf ] is defined as

σ =
(
(t0, i0), (t1, i1), · · · , (tK , iK)

)
(2)

where 0 ≤ K < ∞, t0 ≤ t1 ≤ · · · ≤ tK ≤ tf , ik ∈ I for k = 0, 1, · · · ,K. �

∗The term ‘subsystem’ is widely used in switched systems literatures (e.g., [8]), although ’mode’ might
be better than ‘subsystem’ here as the system dynamics can be different but the state variables remain
the same.
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σ defined in (2) indicates that the system starts with subsystem i0 at t0, and switches

to subsystem ik from ik−1 at instant tk for 1 ≤ k ≤ K. We only consider nonZeno

sequences which switch at most a finite number of times in any finite interval [t0, tf ].

Given an initial x(t0), we call a switching sequence σ in [t0, tf ] admissible if it is nonZeno

and the system under it generates a state trajectory x(t) for t ∈ [t0, tf ] satisfying the

conditions x(tk) ∈ Xik−1
∩ Xik and x(t) ∈ Xik for t ∈ [tk, tk+1). Finally, we note that the

continuous state of a switched system does not exhibit jumps at switching instants.

2.1 Integrator Switched Systems with State Constraints

Before we define the class of switched systems we will study in the sequel, let us first

introduce the following notion.

Definition 2 (Polyhedral Subset) A polyhedral subset P of R
n is a set of form

P = {x ∈ R
n|Ax ≤ b, A ∈ R

r×n, b ∈ R
r}. (3)

�

Remark 1 In (3), the inequality is in the componentwise sense, i.e., P is the intersection

of the closed halfspaces {x ∈ R
n|aT

j x ≤ bj}, j = 1, · · · , r, where aT
j is the j-th row of

the matrix A and bj is the j-th component of the column vector b. In view of this, a

polyhedral subset is a subset defined by (finitely many) linear inequalities. Also note that

a polyhedral subset is a closed, convex subset of R
n. �

In this paper, we are particularly interested in a class of integrator switched systems

whose subsystems have the form
ẋ = αi, x ∈ Pi (4)

where each Pi is a polyhedral subset of R
n.

Example 1 The following switched system in R
2 is an example of an integrator switched

system. It consists of 4 subsystems: subsystem 1: ẋ = [−1, 0.25]T , P1={[x1, x2]T ∈ R
2|0 ≤

x1 ≤ 3, 0 ≤ x2 ≤ 1}; subsystem 2: ẋ = [0.25, 1]T , P2={[x1, x2]T ∈ R
2|0 ≤ x1 ≤ 1.5, 0 ≤

x2 ≤ 3}; subsystem 3: ẋ = [1, −0.25]T , P3={[x1, x2]T ∈ R
2|0 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 3};

subsystem 4: ẋ = [−0.25, −1]T , P4={[x1, x2]T ∈ R
2|1.5 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 2}. Figure 1

shows the polyhedral subsets and the corresponding vector fields. �

Note that many chemical batch processes can be modelled as such integrator sys-

tems [14]. In batch processes, each combination of valve positions (on or off) corresponds

to an integrator subsystem. Due to certain logical constraints which specify the conditions

under which each combination is allowable, each subsystem will have certain polyhedral

state constraint subsets. The system in Example 1 can model a two tank system with the

continuous states corresponding to water levels and each subsystem corresponding to a

valve position combination.
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Figure 1: The polyhedral subsets and vector fields for Example 1.

2.2 Time Optimal Control Problem

Problem 1 (Time Optimal Control Problem) Consider an integrator switched sys-

tem (4) with polyhedral state constraint subsets Pi, i ∈ I. For any x0, xf ∈ X
�
=

⋃
i∈I Pi,

find an admissible switching sequence which transfers the continuous state from x0 to xf

in minimum amount of time. �

Remark 2 In [11], time optimal control problems of switched systems without state con-

straints are studied and a closed-loop control strategy is proposed. The idea in [11] is to

partition the state space into regions corresponding to subsystems to be activated. How-

ever, up to now, there has been no general approach for problems with state constraints.

�

Example 2 We will study the following example problem in the sequel. Consider the

system in Example 1. Given x0 = [2, 0.5]T and xf = [2, 2.5]T , find an admissible

switching sequence which drives the continuous state from x0 to xf in minimum amount

of time. �

In the sequel, we call Problem 1 feasible if there exists at least one switching sequence

that leads the system trajectory from x0 to xf .

3 A Linear Programming Approach

Now we propose a linear programming approach for Problem 1. Our approach consists of

several steps as follows where each step may utilize linear programming.

3.1 Directed Graph Representation of System Discrete Structure

An important question regarding the discrete structure of a switched system is whether

the system can switch from one given subsystem to another. To characterize such discrete

4



structural information, here we introduce a directed graph representation. In order to

obtain such a representation, we need the following notions.

Definition 3 (Adjacent Polyhedral Subsets) Two polyhedral subsets Pi1 and Pi2 are

said to be adjacent if Pi1 ∩ Pi2 �= ∅. �

The following linear programming feasibility problem can be solved to determine the

adjacency of two polyhedral subsets Pi1 = {x|Ai1x ≤ bi1} and Pi2 = {x|Ai2x ≤ bi2}.

∃x such that
{

Ai1x ≤ bi1

Ai2x ≤ bi2
? (5)

The two subsets are adjacent if and only if there exists a feasible solution to problem (5).

Definition 4 (Legal Successor) Subsystem i2 is said to be a legal successor of i1 if

(a). Pi1 and Pi2 are adjacent, and

(b). there exists x ∈ Pi1 ∩ Pi2 and τ > 0 s.t. x + ταi2 ∈ Pi2 . �

Remark 3 An alternative interpretation of subsystem i2 being a legal successor of i1 is

that there exists a point in the intersection of the two polyhedral subsets from where

subsystem i2 can be activated for a nonzero amount of time. �

The following linear programming problem can be solved to determine whether sub-

system i2 is a legal successor of subsystem i1 (assuming Pi2 is adjacent to Pi1).

maxτ∈R,x∈Rn τ + 0T x (6)

s.t.




Ai1x ≤ bi1 and Ai2x ≤ bi2

Ai2(x + ταi2) ≤ bi2

τ ≥ 0
(7)

Subsystem i2 is a legal successor of i1 if and only if the optimal solution τ to (6)-(7) is

greater than 0.

We can now depict the system’s discrete structure using a directed graph representa-

tion in which each node corresponds to a subsystem i and a directed branch exists from

node i1 to i2 if and only if subsystem i2 is a legal successor of subsystem i1. The following

is an example.

Example 3 By the methods above for pairs of subsystems, we construct the directed

graph representation for the system in Example 1 in Figure 2. In Figure 2, P1 and P3

are not adjacent; P3 and P4 are adjacent, however, only subsystem 4 is a legal successor

of 3 but not vice versa. Although P2 and P4 are adjacent, neither subsystem is a legal

successor of the other. �
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Figure 2: Example 3: a directed graph representation.

Remark 4 The directed graph representation can clearly lay out the system discrete

structure and help eliminate impossible discrete node sequences. Note that in Chapter 2

of [14], Tittus also proposed a directed graph representation for hybrid systems; in [1],

hybrid automata for linear hybrid systems were also modelled as a similar transition graph.

However, the graphs in [1, 14] are obtained from the mode transition functions instead

of being determined from the continuous constraint subset information as we did above.

Our construction of the directed graph representation actually shows how to obtain the

possible mode transition functions. �

Having the directed graph representation, we can determine all possible node se-

quences (i.e., sequences of active subsystems) starting from a given node i0 and ending at

a given node if by enumerating all possible paths from i0 to if .

Definition 5 (Path) A path from node i0 to if (i0, if ∈ I) is a sequence

π = (i0, i1, i2, · · · , iK−1, if ) (8)

in which each node ik is a legal successor of ik−1, 1 ≤ k ≤ K (we denote if also as iK).

�

Definition 6 (Loop) A path λ = (i0, i1, · · · , im, im+1) is called a loop if i0 = im+1 (m ≥
1). A loop is elementary if i0 and im+1 are the only pair of repeated nodes. If more than

one pair of repeated nodes can be found in a loop, the loop is said to be nonelementary. �

The presence of loops makes Problem 1 difficult because the number of possible paths

from one node to another might be infinite if loops are allowed in paths. A path is said

to contain a loop if one and the same node appear more than once in it. A path is called

an elementary path if it contains no loop, otherwise it is called a nonelementary path.

Any nonelementary path can be obtained by adding certain number of loops to some

elementary path. Given each elementary path (i0, i1, · · · , iK−1, if ) from node i0 to if , we

can add an elementary loop (ij , il1 , il2 , · · · , ilm , ij) to obtain the generic expression of a

6



nonelementary path π =
(
i0, i1, · · · , ij , (il1 , il2 , · · · , ilm , ij)∗, ij+1, · · · , iK−1, if

)
where the

operator (·)∗ means that the sequence inside the parenthesis can be repeated an arbitrary

number of times. Furthermore, we can add more elementary loops to π to form more

complicated nonelementary paths containing several loops or nested loops.

Example 4 Consider Figure 2, there is one elementary path π = (1, 2, 3) from node 1 to 3.

There are 4 elementary loops λ1 = (1, 4, 1), λ2 = (1, 2, 1), λ3 = (2, 3, 2), λ4 = (1, 2, 3, 4, 1).

We can construct all possible path expressions by adding elementary loops or combination

of them to the elementary paths to obtain infinite path expressions from node 1 to 3, e.g.,

π1=
(
1, (4, 1)∗, (2, 1)∗, 2, (3, 2)∗ , 3

)
,

π2=
(
1, (4, 1)∗ ,

(
2, (3, 2)∗, 1

)∗
, 2, (3, 2)∗ , 3

)
, π3=

(
1, (4, 1)∗, 2,

(
1, (4, 1)∗, 2

)∗
, (3, 2)∗, 3

)
,

π4=
(
1,

(
(4, 1)∗, (2, 1)∗, 2, (3, 2)∗ , 3, 4, 1

)∗
, (4, 1)∗, (2, 1)∗, 2, (3, 2)∗, 3

)
, · · · . �

3.2 An Algorithm

Given x0 and xf , we can determine the possible initial subsystem i0 that satisfies x0 ∈ Pi0

and similarly the possible final subsystem if (there may be several possible i0’s and if ’s).

Possible candidate paths that take the system from subsystem i0 to if can then be obtained

from the directed graph representation. There might be more than one such possible

paths and some paths might also contain loops. If x0 and/or xf belong to multiple

polyhedral subsets, then multiple paths with different starting and/or ending nodes should

be considered. Once we have the candidate paths, the following algorithm can be applied

to solve Problem 1.

Algorithm 1

(1). Construct the directed graph representation.

(2). Based on the directed graph representation, select a candidate path (i0, i1, · · · , iK−1,

if ), where x0 ∈ Pi0 and xf ∈ Pif , find the optimal timing information in this case.

(3). Vary the candidate path and repeat step (2) so as to find the global optimal solution.

�

Candidate paths can be obtained from generic path expressions by substituting each

∗ with a specific integer number (including 0). Due to the possibility of infinitely many

candidate paths, step (3) poses difficulty because it may require the repetition of step (2)

infinitely many times. Such difficulty may hinder us from finding the global minimum. In

practice, we usually enforce certain upper bound on the number of loops allowed or on

the times a loop may repeat. In so doing, Algorithm 1 can terminate after finite steps and

provide a suboptimal solution. We will present some preliminary results on reducing the

number of candidate paths in Section 4.
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3.3 A Linear Programming Method for Finding Optimal Timing

Now we propose a linear programming method to address step (2) in Algorithm 1. Given

a candidate path (i0, i1, · · · , iK−1, iK), we can solve the following linear programming

problem to determine the optimal timing at each node ik, 0 ≤ k ≤ K.

minτ0,τ1,··· ,τK
τ0 + τ1 + · · · + τK (9)

s.t.




τ0αi0 + · · · + τKαiK = xf − x0

Ai0(x0 + τ0αi0) ≤ bi0

Ai1(x0 + τ0αi0) ≤ bi1
...
Aik−1

(x0 + τ0αi0 + · · · + τk−1αik−1
) ≤ bik−1

Aik(x0 + τ0αi0 + · · · + τk−1αik−1
) ≤ bik

...
AiK−1

(x0 + τ0αi0 + · · · + τK−1αiK−1
) ≤ biK−1

AiK (x0 + τ0αi0 + · · · + τK−1αiK−1
) ≤ biK

τ0, τ1, · · · , τK ≥ 0

(10)

In (9)-(10), τk is the time duration at node ik. The first equality in (10) specifies that

the state trajectory goes from x0 to xf . The second to the second to the last inequalities

are constraints for the state at switching instants t1, · · · , tK . To show the meaning of

these inequalities, we look at the general terms in the middle two inequalities. In these

inequalities, x0 + τ0αi0 + · · · + τk−1αik−1
is the state x at tk, and the two inequalities can

be rewritten as Aik−1
x(tk) ≤ bik−1

and Aikx(tk) ≤ bik , which guarantee x(tk) being in

Pik−1
∩ Pik . Here we only need to be concerned with the state x at the switching instant

tk’s, since any x(t) for t ∈ [tk, tk+1) will always be in Pik as long as x(tk) and x(tk+1) are

in Pik due to the convexity of the polyhedral subsets.

Software packages such as Matlab or Maple can be used to solve (9)-(10). The given

path is infeasible if no feasible solution exists. If a solution exists, then it will provide

the optimal time duration τk at each node ik. With this information, we can determine

the optimal switching instants tk =
∑k−1

j=0 τj for 1 ≤ k ≤ K and the optimal switching

sequence σ =
(
(t0, i0), (t1, i1), · · · , (tK , iK)

)
(usually we regard t0 = 0). The minimum

total time along the given path can also be determined to be
∑K

k=0 τk.

Example 5 Consider the problem in Example 2. Given a candidate path (i0, i1, i2) with

i0 = 1, i1 = 2, i2 = 3, by solving (9)-(10), we can find the optimal τ0 = 0.9706, τ1 = 1.8824,

τ2 = 0.5000. The optimal switching sequence in this case is σ =
(
(0, 1), (0.9706, 2),

(2.8529, 3)
)

and the minimum time to bring x from x0 to xf is 3.3529. �
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4 Some Discussion on Paths with Loop

Steps (1) and (2) of Algorithm 1 can be addressed using linear programming methods as

detailed in Sections 3.1 and 3.3. However, step (3), which may require the repetition of

step (2) infinite times, hinders us from finding the global minimum. Now we propose some

preliminary sufficient conditions and techniques which help relieve such difficulty.

4.1 Elimination of Infeasible Nonelementary Loops

The following lemma provides us with a sufficient condition that can help eliminate paths

containing certain infeasible nonelementary loops from the candidate path list.

Lemma 1 (Infeasible Nonelementary Loop) Consider a nonelementary loop λ =
(
i0,

i1, · · · , ij−1, ij , (ij1 , ij2 , · · · , ijp , ij)∗, ij+1, · · · , im, i0
)

(j �= 0) which is the combination of

two elementary loops λ1 = (i0, i1, · · · , ij−1, ij , ij+1, · · · , im, i0) and λ2 = (ij , ij1 , ij2 , · · · , ijp ,

ij) (λ2 repeats at least once so that λ is nonelementary). λ is infeasible if ∃ a hy-

perplane H = {x ∈ R
n|aT x = b} s.t. S1

�
= (Pij−1 ∩ Pij )

⋃
(Pij+1 ∩ Pij ) and S2

�
=

(Pij1
∩ Pij )

⋃
(Pijp

∩ Pij ) are in the two different open halfspaces formed by H.

Proof: Consider the dynamics ẋ = αij of subsystem ij . If αij is in parallel with H, such

dynamics cannot drive the state trajectory from any open halfspace to the other. If αij

is not in parallel with H, such dynamics can drive the trajectory from one open halfspace

to the other, but not vice versa. Therefore, for either case of αij , it is impossible to drive

the trajectory back and forth between the two open halfspaces. While under the lemma’s

condition, in order for the loop to be feasible, the trajectory must be able to travel back

and forth between S1 and S2 which are in two different open halfspaces. This is impossible

due to our previous argument. �

Remark 5 Lemma 1 is useful and provides a way to eliminate candidate paths containing

infeasible nonelementary loops. Although the verification of the condition in the lemma

requires techniques in computational geometry, for some special case we can actually verify

the condition using linear programming. For example, consider the simple case where

λ1 = (i0, i1, i0) and λ2 = (i1, i2, i1) are two elementary loops. If (Pi0∩Pi1)
⋂

(Pi2∩Pi1) = ∅,
then by using Lemma 1 we can prove that any loop in the form of

(
i0, i1, (i2, i1)∗, i0

)
(λ2

repeats at least once) is infeasible. Moreover, if neither of Pi0 and Pi2 is a legal successor

of the other, then the loop
(
i0, i1, (i2, i1)∗, i0

)
(λ2 repeats at least once) is infeasible. �

4.2 A Sufficient Condition for Finiteness of Looping Times

In practice, we often content ourselves by suboptimal solutions resulted from enforcing

an upper bound on the number of times any loop is allowed to repeat and then solving
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finitely many times step (2). In many cases, such an upper bound is justifiable and a global

optimal solution can be obtained by considering only finitely many candidate paths.

Lemma 2 (A Sufficient Condition for Finiteness of Looping Times) Consider a

given feasible problem 1. Assume that a loop λ = (i0, i1, · · · , im, im+1) with i0 = im+1 is

given. If ∃ 0 ≤ j1 < j2 ≤ m s.t. (Pij1
∩ Pij1+1)

⋂
(Pij2

∩ Pij2+1) = ∅, then ∃ an L s.t., in

order to search for the global optimal solution, we only need to consider candidate paths

in which the loop λ repeats no more than L times.

Proof: Since the problem is feasible, ∃ at least one feasible trajectory from x0 to xf with

total time duration T . Let d be the minimum distance between the sets (Pij1
∩Pij1+1) and

(Pij2
∩Pij2+1) (d > 0 because (Pij1

∩Pij1+1)
⋂

(Pij2
∩Pij2+1) = ∅). In order for the loop λ to

repeat once, the trajectory must travel at least once from (Pij1
∩Pij1+1) to (Pij2

∩Pij2+1),

which takes no less than the time duration tmin = minj=0,1,··· ,m{ d
‖αij

‖}. An upper bound

L can be chosen to be the greatest integer no greater than T
tmin

. Any path in which λ

repeats more than L times will have the total time duration greater than T
tmin

tmin = T

and hence should not be considered as a candidate for the global optimal solution. �

Remark 6 If Pj1 ∩ Pj2 = ∅ for some 0 ≤ j1 < j2 ≤ m, the condition in Lemma 2 must

be satisfied. This provides a quick way to verify the sufficient condition in the lemma. �

4.3 Zigzagging Loops

Loops in the form of λz =
(
ij, (ij′ , ij)∗

)
are commonly encountered when constructing

candidate paths. Whenever ij and ij′ are legal successors of each other, such a loop can

appear in candidate paths. Here we propose a technique to simplify the computation along

paths containing such loops.

Figure 3(a) shows the general behavior of the portion of the state trajectory corre-

sponding to the loop (repeating at least once). First, subsystem ij is active. The state

trajectory follows its dynamics and reaches xa ∈ Pij ∩ Pij′ . At xa, the system switches to

subsystem ij′ . After evolving at ij′ for some time, the system switches back to ij (at the

switching instant, the state must also be in Pij ∩Pij′ ). The system then continues to switch

between subsystems ij and ij′ for finitely many times. At last, the system switches back

to ij and the state is driven to the next portion of the overall trajectory (corresponding

to the last line segment in Figure 3(a)).

If we choose a point xb on the intersection of the last line segment and Pij′ (see

Figure 3(a)), we observe that the trajectory portion between xa and xb then exhibits

zigzagging behavior and is totally inside Pij ∩Pij′ . Therefore we call λz a zigzagging loop.

The total time duration for each subsystem is important for zigzagging loops. However,

the zigzagging patterns are of minor importance because multiple patterns leading the
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Figure 3: (a) Portion of the system state trajectory corresponding to the loop. (b) Multiple
zigzagging patterns may exhibit the same total time duration for each subsystem.

state from xa to xb may exhibit the same total time duration for each subsystem, e.g.,

the trajectories denoted by the solid line and the dotted line in Figure 3(b) have different

zigzagging patterns but the same total time duration for subsystems ij′ and ij , respectively.

The above discussion therefore reveals the following way to simplify the computation for

zigzagging loops. In between xa and xb, we compute the total time durations for ij′ and

ij but are not concerned with the details of the zigzagging pattern, i.e., write

xb = xa + τ tot
j′ αj′ + τ tot

j αj. (11)

With the total time durations τ tot
j′ and τ tot

j , we can implement the state trajectory between

xa and xb as follows.

Algorithm 2 (An Implementation of Zigzagging Loops)

(1). At first, when the state trajectory reaches xa, set the active subsystem to be ij′ .

(2). Let the system evolve according to the currently active subsystem until either

(i). the total time duration τ tot for the current active subsystem is exhausted, or

(ii). the trajectory intersects the boundary of Pij ∩ Pij′ .

(3). Set the active subsystem to be the other subsystem and repeat (2) until xb is reached.

�

An illustration of Algorithm 2 is shown in Figure 4. In Figure 4(a), we let subsystem

ij′ evolve for time τ tot
j′ and then let subsystem ij evolve for time τ tot

j . However, such a

brute force implementation results in a trajectory violating the constraint subset Pij ∩
Pij′ . Figure 4(b) shows the implementation using Algorithm 2, which results in a valid

trajectory.

Now let us consider a general path expression π =
(
i0, i1, · · · , ij , (ij′ , ij)∗, ij+1, · · · , im

)
that contains a zigzagging loop λz =

(
ij , (ij′ , ij)∗

)
. To find the optimal timing information

for such a path, we propose the following technique which is based on two possible cases.
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Figure 4: (a) A brute force implementation. (b) Zigzagging trajectory implementation
using Algorithm 2.

Case 1: λz Repeats 0 Times

In this case, the path is reduced to π1 = (i0, i1, · · · , ij , ij+1, · · · , im). The optimal

timing for such a path can be directly obtained by solving (9)-(10).

Case 2: λz Repeats At Least Once

In this case, we can rewrite the path as π2 = (i0, i1, · · · , ij , (ij′ , ij)?, ij , ij+1, · · · , im)

in which the expression (ij′ , ij)? indicates that it corresponds to a zigzagging loop. For

this loop, we only need to find the total time durations for subsystems ij′ and ij . And

we duplicate an ij before ij+1 so that the portion after xb on the last line segment (see

Figure 4(b)) can be taken care of before the system switches to ij+1. To find the optimal

timing for path π2, (9)-(10) can be similarly applied except for some modifications on the

portion of constraints corresponding to the part of trajectory when x is evolving from xa

to xb. This portion of constraints are now posed as follows

Aij (x0 + τ0αi0 + · · · + τjαij ) ≤ bij (12)

Aij′ (x0 + τ0αi0 + · · · + τjαij ) ≤ bij′ (13)

Aij (x0 + τ0αi0 + · · · + τjαij + τ tot
j′ αj′ + τ tot

j αj) ≤ bij (14)

Aij′ (x0 + τ0αi0 + · · · + τjαij + τ tot
j′ αj′ + τ tot

j αj) ≤ bij′ (15)

Note (12)-(13) correspond to the constraint xa ∈ Pij ∩ Pij′ and (14)-(15) correspond to

xb ∈ Pij ∩Pij′ . We do not pose any constraints for x0 + τ0αi0 + · · ·+ τjαij + τ tot
j′ αj′ since

Algorithm 2 will help generate a valid zigzagging trajectory.

Example 6 There are infinitely many paths in Example 4. We can apply the sufficient

condition in Section 4.1 to paths containing loops
(
1, 2, (3, 2)∗ , 1

)
and

(
2, 1, (4, 1)∗ , 2

)
to

conclude that they are infeasible (see Remark 5). The number of path expressions can

then be greatly reduced, e.g., π2 and π3 in Example 4 do not need to be considered.

If we apply the sufficient condition in Section 4.2 to path expressions containing

loops (1, 2, 3, 4, 1) or loops containing this loop, we can determine an upper bound L for
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the number of times that these loops can repeat. If we combine this observation with

the above-mentioned elimination of infeasible paths, we only need to consider the path

expression

π =
(
1,

(
(4, 1)∗, (2, 1)∗, 2, (3, 2)∗ , 3, 4, 1

)<L>
, (4, 1)∗, (2, 1)∗, 2, (3, 2)∗ , 3

)
for this example,

where < L > indicates that the loop can repeat at most L times. By utilizing the total

time obtained in Example 5 and noting that the distance between P1 and P3 is 1, we

can choose L = 3 (see Proof of Lemma 2). Similarly, we only need to consider the

path expression π̂ =
(
4, 1,

(
(4, 1)∗, (2, 1)∗, 2, (3, 2)∗, 3, 4, 1

)<L>
, (4, 1)∗, (2, 1)∗, 2, (3, 2)∗ , 3

)
for paths starting at node 4 (since x0 also belongs to P4). Considering π and π̂ and using

the techniques for zigzagging loops, we only need to compute optimal timing information

for finitely many possible paths. After computing along all possible paths, we confirm

that the solution σ =
(
(0, 1), (0.9706, 2), (2.8529, 3)

)
we obtained in Example 5 is a global

minimum solution. �

Remark 7 It can be seen from [1] that in general reachability problem is undecidable for

linear hybrid systems†. Such a result can shed light on the computational complexity of

our time optimal control problem. In general, the time optimal control problem is also

undecidable since it is by itself also a reachability problem. Therefore, it is possible that

there may be infinitely many candidate paths to look into in order to find the optimal

solution. However, we point out that the approach we propose in this paper utilizes the

structural information of the problem and can significantly reduce the number of candidate

paths (or even reduce to finitely many paths as in Example 6). This could significantly

reduce computation and is the first step towards more efficient methods. In the case that

there are still infinitely many paths after reduction, suboptimal solutions by restricting

the maximum number of paths can usually be obtained to solve practical problems. �

5 Conclusion

This paper has reported some results on time optimal control of integrator switched sys-

tems with polyhedral state constraints. We first developed a directed graph representation

which helps generate candidate paths. A linear programming method for finding the op-

timal timing for each path was then proposed. An algorithm which seeks global optimal

solution among all candidate paths was also proposed. Since there may be infinitely many

candidate paths, an upper bound on looping times will usually be enforced in practice in

order to obtain a suboptimal solution. How to efficiently reduce the number of candidate

paths is still a largely open problem. We have proposed preliminary conditions and tech-

niques for reducing the number of candidate paths. In our future research, we will seek
†It is known that initialized rectangular automata are on the boundary of decidability. Slight general-

izations of them lead to undecidability [6].

13



more conditions under which a finite number of candidate paths can be guaranteed.
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