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Abstract. The supervision based on place invariants (SBPI) is an efficient tech-
nique for the supervisory control of Petri nets. This paper reveals the significance of
the SBPI based on a literature survey, applications, and an analysis of problems and
supervisory settings that can be addressed using SBPI. Special attention is given
to the various settings within which the problem can be formulated. Such settings
can be distinguished based on the concurrency type, the type of controllability and
observability, and the centralized or decentralized type of supervision. As we show, it
is possible to approach the most general settings in a purely structural way, without
resorting to reachability analysis. We begin by describing the SBPI problem and
the literature methods that address this problem or are related to it. Then, we
proceed to show classes of problems that can be reduced to the SBPI problem. In
the SBPI, the specification is described as a system of inequalities that the Petri net
marking must satisfy at any time. However, as we show, problems involving more
general specifications can be approached in the SBPI setting, sometimes under ad-
ditional assumptions, by performing net and/or specification transformations. Four
of the specifications we will consider are logic constraints, language specifications,
disjunctions of linear constraints, and liveness. We conclude with a presentation of
possible applications of the SBPI approach to programming with semaphores, fault
tolerance, and synchronic-distance based designs.
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1. Introduction

Petri nets (PNs) are an important class of discrete event systems, allow-
ing a compact representation of concurrent systems. The literature on
the supervision of PNs contains numerous references to the enforcement
of specifications consisting of linear inequalities on the PN marking.
Such constraints have the form

Lµ ≤ b (1)

where µ is the marking, L ∈ Z
nc×m, b ∈ Z

nc , Z is the set of integers, m
is the number of places of the PN, and nc the number of constraints.
The constraints (1) are sometimes called generalized mutual exclusion
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constraints (Giua et al., 1992), since a simpler form of (1) correspond
to mutual exclusion specifications.

The constraints (1) have been proposed for a variety of applications:
a constrained optimal control problem of chemical processes (Yamali-
dou and Kantor, 1991), the coordination of AGVs (Krogh and Hol-
loway, 1991), manufacturing constraints (Moody and Antsaklis, 1998),
and mutual exclusion in batch processing (Tittus and Egardt, 1999).
Moreover, by considering also classes of constraints that can be reduced
to (1) on transformed PNs, specifically the generalized linear con-
straints of (Iordache and Antsaklis, 2003b), other applications can be
mentioned here as well: supervisory control of railway networks (Giua
and Seatzu, 2001) and fairness enforcement, such as bounding the
difference between the number of occurrences of two events, in pro-
tocols (Genrich et al., 1980) and manufacturing (Li and Wonham,
1993).

Other interesting qualities of the constraints (1) are as follows. They
can describe any forbidden marking specification on safe Petri nets (Ya-
malidou et al., 1996; Giua et al., 1992), where a Petri net is safe if
all reachable markings are binary vectors (i.e. consisting of 0 and 1
elements). This property is very interesting for supervision problems on
certain subclasses of Petri nets, and notably on marked graphs. Further,
as we show in this paper, more general specifications can be reduced
to specifications (1) on transformed PNs. Such specifications include
language specifications on labeled PNs and disjunctions of constraints
(1), under certain boundedness assumptions. Note that a labeled PN
is a PN in which the transitions are labeled with (not necessarily dis-
tinct) events, just as in the automata setting. Further, a disjunction of
constraints (1) is described by [L1µ ≤ b1] ∨ [L2µ ≤ b2] ∨ . . . [Lpµ ≤ bp],
requiring the marking µ to satisfy at least one of Liµ ≤ bi, i = 1 . . . p.
Note also that the constraints (1) are also interesting in the representa-
tion of deadlock prevention and liveness specifications (Iordache et al.,
2002; Iordache and Antsaklis, 2003a).

From a historical perspective, the supervisory control of discrete
event systems has been related to the problem of Church (1963), in
Computer Science. In Computer Science, this line of thought was con-
tinued with work on program synthesis for open systems (e.g. (Pnueli
and Rosner, 1989)), with focus on automata models and specifications
on infinite sequences of events (temporal logic, ω-languages). In Con-
trol Systems, the supervisory control was proposed by Ramadge and
Wonham (1989), with focus on automata and specifications on finite
sequences of events. The results of Ramadge and Wonham prompted
also research work on the supervisory control of PNs. However, note
that the supervision of PNs can also be traced back to earlier work,
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such as the use of monitors for liveness enforcement by Lautenbach
and Thiagarajan (1979). The initial work on the supervision of PNs
considered forbidden state problems (Krogh, 1987) and specifications
requiring a PN to reach a target state with additional constraints on
the firing sequence (Ichikawa et al., 1985; Ichikawa and Hiraishi, 1988).
In the subsequent developments on the supervision of PNs, several
major approaches can be identified, as follows. First, the supervision
of PNs for forbidden state specifications has been approached with
path-based methods, as in (Holloway and Krogh, 1990; Krogh and
Holloway, 1991; Zhang and Holloway, 1995), and also with monitor-
based solutions, as in the supervision based on place invariants (Giua
et al., 1992; Yamalidou et al., 1996; Moody and Antsaklis, 2000). Then,
there is also an extension of the Ramadge and Wonham (1989) super-
visory control to PNs by Li and Wonham (1993; 1994; 1995) as well
as work on the enforcement of languages on labeled PNs, e.g. by Giua
and DiCesare (1994; 1995) and Kumar and Holloway (1996). Excellent
surveys on the methods proposed for the supervision of Petri nets can
be found in (Holloway et al., 1997) and also in (Holloway and Krogh,
1994). While these surveys focus on the path-based approach, here we
survey work that is most relevant to the SBPI and present new results
that emphasize the significance of this approach. Note also that much
of the work surveyed here was not available at the time of (Holloway
et al., 1997).

The contribution and the organization of the paper is as follows.
First, the supervision based on place invariants (SBPI) is introduced in
section 3. The notation of the paper and several important definitions
are also included in this section. To simplify the introduction of the
SBPI, section 3 considers the simpler case of full controllability and
observability. Then, section 4 presents the various ways partial con-
trollability and partial observability is modeled in the literature. These
include individually controllable/observable transitions, controlled PNs
(CtlPNs), labeled PNs, and marking observation. In section 4 we also
introduce a new concept, which we call double-labeled PNs. Double-
labeled PNs are shown to be able to represent the systems described
by any of the previous modeling techniques (CtlPNs, labeled PNs,
PNs with individually controllable/observable transitions). Further, as
shown in the following section 5, the admissibility based methods for
the SBPI (e.g. in (Moody and Antsaklis, 1998)) can be adapted for
double-labeled PNs.

After outlining the principle of the admissibility-based methods and
presenting structural admissibility tests in section 5, the literature
approaches that can deal with specifications (1) are overviewed in
section 6. The literature survey of section 6 is classified according to
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the type of the methods, such as methods based on structural condi-
tions for admissibility, or on a path analysis, or on the computation of
the maximal controlled-invariant set, or for decentralized control. Sec-
tion 7 deals with the expressiveness of the constraints (1). This section
overviews several results showing how various supervision problems can
be reduced to the enforcement of constraints (1). Thus, we overview
logic constraints, the generalized linear constraints of (Iordache and
Antsaklis, 2003b), the representation of liveness constraints in the form
(1), and two very recent results (Iordache and Antsaklis, 2005) on
language constraints and disjunctive constraints. We emphasize the
results on language constraints and disjunctive constraints, as they
significantly expand the area of applicability of the supervision methods
for constraints (1).

In section 8 we show three applications of the constraints (1). First,
we examine the relation between the SBPI and programming with
semaphores, discussing also the implications to automated code genera-
tion in software engineering. Then, we present a new result showing that
the constraints (1) and one of their extensions can be used to represent
redundant embeddings for fault tolerant applications. Finally we show
that one of the extensions of (1) can represent a class of specifications
arising in the context of the Theory of Synchrony.

2. Notation

A Petri net (PN) will be denoted by the structure N = (P, T,D−,D+),
where P is the set of places, T the set of transitions, D−,D+ ∈ N

|P |×|T |

are the input and output matrices, and N is the set of nonnegative
integers. Further, we denote by D = D+ − D− the incidence matrix
and by µ the marking. A Petri net with initial marking µ0 will be
denoted by (N , µ0).

In this survey we will distinguish between the firing vector q, the
Parikh vector v and the firing count vector σ. The firing vector q
describes the transition(s) that fire at a firing instance. The Parikh
vector is a state variable, indicating how many times each transition
has fired since the initialization of the system. Finally, the firing count
vector σ is defined with respect to a finite firing sequence σ, indicating
how many times each transition t occurs in σ. In particular, if σ is the
sequence fired since the initialization of the system, v = σ.

The set of reachable markings of (N , µ0) will be denoted by R(N , µ0).
Recall, a Petri net (N , µ0) in which all reachable markings are binary
vectors (i.e. R(N , µ0) ⊆ {0, 1}|P |) is said to be safe.
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We call (1) a set of constraints, because it consists of the constraints
L(i, ·)µ ≤ b(i), for i = 1 . . . k, and k the number of rows of L. Fur-
ther, we also say that (1) is a conjunction of constraints, since all
L(i, ·)µ ≤ b(i), i = 1 . . . k, must be satisfied when (1) is satisfied. In
contrast, a disjunction of constraints liµ ≤ ci, i = 1 . . . k, describes the
requirement that at all times there is i such that µ satisfies liµ ≤ ci.
We denote the disjunction of constraints by

∨

i[liµ ≤ ci].

3. The Supervision Based on Place Invariants

This section introduces the supervision based on place invariants (SBPI).
The presentation of this section focuses on the simplest case: no con-
currency and full controllability and observability. At the end of the
section we will present also various concurrency settings, together with
the simple extension of the SBPI for concurrency. The SBPI under
partial controllability and observability is more involved, and will be
presented in subsequent sections.

In the SBPI, the system to be controlled is called plant, and is
assumed to be given in the form of a PN N = (P, T,D−,D+). The
SBPI provides a supervisor enforcing (1) in the form of a PN Ns =
(Ps, T,D−

s ,D+
s ) with

Ds = −LD (2)

µ0,s = b − Lµ0 (3)

where Ds is the incidence matrix of the supervisor, µ0,s the initial
marking of the supervisor, and µ0 is the initial marking of N . The
places of the supervisor are called monitors1 (Giua et al., 1992). The
supervised system, that is the closed-loop system, is a PN Nc of
incidence matrix:

Dc =

[

D
−LD

]

(4)

The relation to place invariants is as follows. Recall, a place invariant
of N is an integer vector x ∈ Z

1×|P | such that xD = 0. Recall also that
for a place invariant x, xµ = xµ0 for all reachable markings µ. Note
that all rows of [L, I] are place invariants of Nc. Then, from (3) it
follows that at all reachable markings of the closed loop:

µs = b − Lµ (5)

1 In much of the literature, the monitors are called control places. In this paper we
do not call them control places, to avoid confusion with the quite different concept
of control places of the CtlPN approach to the supervision of PNs (Krogh, 1987;
Holloway and Krogh, 1990; Krogh and Holloway, 1991).
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Figure 1. Example of plant and closed-loop system.

Since µs, the marking of the monitors, is nonnegative, (1) is enforced.
Furthermore, we can say that (1) is enforced by creating the invariants
[L, I] in the closed-loop. This is why the approach is “based on place
invariants.”

EXAMPLE 1. The PN of Figure 1(a) adapts a PN model from (Moody
and Antsaklis, 1998) of an unreliable machine (Desrochers and Al’Jaar,
1995). Let’s denote µ(pi) by µi. Assume we desire to enforce

µ1 + µ2 + µ5 ≤ 1 (6)

µ3 + µ7 ≤ 1 (7)

By (2–3), we obtain the supervisor shown in Figure 1(b), consisting of
the monitors p8 and p9. Thus, (5) is described by

µ8 = 1 − µ1 − µ2 − µ5 (8)

µ9 = 1 − µ3 − µ7 (9)

where (8) and (9) correspond to the two place invariants created by p8

and p9.

The supervisors constructed as above are optimal (Giua et al., 1992;
Moody and Antsaklis, 1998; Yamalidou et al., 1996). Following (Moody
and Antsaklis, 1998), the optimality can be stated as follows:
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THEOREM 1. (Moody and Antsaklis, 1998) If Lµ0 ≤ b then the PN
supervisor with incidence matrix Ds = −LD and initial marking µ0,s =
b − Lµ0 enforces the constraint Lµ ≤ b when included in the closed-
loop system Dc = [DT , DT

s ]T . Furthermore, the supervision is least
restrictive.

Much of the PN literature is written under the assumption that only
one transition may fire at a time. This is known as the no concurrency
assumption. This will also be the usual assumption in this survey.
However, since many results are not limited to this setting, we will
consider also other concurrency assumptions. A very good presentation
of the various concurrency settings can be found in (Stremersch, 2001).

Let q denote the firing vector. Under the no concurrency assumption,
q ∈ {0, 1}|T |,

∑

t∈T q(t) = 1, and the entry with q(t) = 1 indicates the
transition that is to fire. Another concurrency setting is under the con-
currency assumption. Under this assumption, groups of transitions
may fire at the same time. In this case, q ∈ {0, 1}|T | and {t : q(t) = 1}
identifies the transitions t that are to be fired at the same time. Still an-
other setting corresponds to the transition-bag assumption. Under
this assumption, the transitions in a group may be fired each several
times, at the same firing instance. Thus, q ∈ N

|T | and for each t, q(t)
indicates how many times t is fired. Following (Stremersch, 2001), we
can incorporate these concurrency assumptions in a general setting in
which we require q ∈ ∆, for a given ∆ ⊆ N

|T |.
Under any concurrency setting, a firing vector q is enabled by the

plant at the marking µ when

µ ≥ D−q (10)

While under the no concurrency assumption it is convenient to consider
that a supervisor enables transitions, for the general case we consider
that a supervisor enables firing vectors. Following (Stremersch, 2001),
we restrict our attention to the supervisors with the property that if
they enable q, then they enable every q′ ≤ q.

Note that the SBPI design remains optimal under concurrency, as
Theorem 1 still applies. This has been formally proved in (Stremersch,
2001).

In the literature, the study of the SBPI began with the work of Giua
et al. (1992). The paper deals with the redundancy, equivalence and
modeling power of the specifications (1), and the enforcement of (1)
for fully controllable and observable PNs. The authors show how to
construct the supervisor based on L, D and µ0, and prove a result
equivalent to Theorem 1. While the results of (Giua et al., 1992) assume
that L and b in (1) have nonnegative elements, most results there apply
also in the general case.
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The benefits of the SBPI were further detailed in (Yamalidou et al.,
1996), which considers also a more general set of linear constraints that
involve both the marking µ and the firing vector. A simple approach
for the conversion of boolean expressions to (1) for safe PNs appears
also in the paper. Moody and Antsaklis (1998; 2000) provide a very
accessible presentation of the SBPI, together with extensions for PNs
with uncontrollable and unobservable transitions. For the most part,
our notation follows that of Moody and Antsaklis (1998; 2000).

As seen in this section, the SBPI design is both simple and opti-
mal in the case of fully controllable and observable PNs. Thus, in the
literature, the focus has been on the development of design methods
for PNs with partial controllability and partial observability. Before
surveying this part of the literature, we present the various concepts of
controllability and observability that have been used.

4. Uncontrollability and Unobservability

Our developments in the previous section rely on the assumptions that
(a) all transitions of the PN can be disabled at will, that is, are con-
trollable; (b) the firings of any transition can be detected; (c) each
transition firing produces a distinct event. By relaxing (a), (b), and (c)
we obtain PNs with partial controllability, partial observability, and
with a labeling, respectively.

In the literature, we can distinguish two main types of uncontrol-
lability and unobservability. In the first one, events can be controlled
and observed, as in the Ramadge and Wonham (1989) setting. Thus,
when the transitions have distinct event labels, individual transitions
can be controlled/observed. Another view of partial controllability has
been introduced by Krogh (1987), who proposed the controlled PNs. In
the controlled PN setting, sets of transitions (as opposed to individual
transitions) may be disabled. Further, a different kind of partial ob-
servability results when the supervisor is assumed to rely on the state
(marking) rather than transition firings. In this section we describe
and compare the various controllability and observability settings. In
particular, we will introduce a class of PNs, called double-labeled PNs,
and show that it can model or simulate all types of uncontrollability
while modeling also event unobservability. This result is significant,
as we will show in the next section that double-labeled PNs can be
approached by structural methods of supervisor design.
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4.1. Individually Controllable and Observable Transitions

In this setting, the set of transitions T is partitioned in T = Tc ∪ Tuc

and T = To ∪ Tuo, where Tc (To) is the set of controllable (observable)
transitions and Tuc (Tuo) is the set of observable (unobservable) transi-
tions. Thus, a supervisor has the ability to control only the transitions
t ∈ Tc and to observe only the firings of t ∈ To.

As an illustration, consider the PN of Figure 2(c), modeling a part
of a manufacturing system. In the manufacturing system, AGVs going
in opposite directions can enter a common loading area. In the model,
firing t1 (t2) corresponds to AGVs entering (exiting) in one direction,
and firing t3 (t4) corresponds to AGVs entering (exiting) from the other
direction. Thus, t1 ∈ To corresponds to the case in which we can detect
when an AGV enters the loading area from one of the two directions.
Further, t1, t3 ∈ Tc corresponds to the case when we can prevent AGVs
from entering the loading area from either direction.

A possible way to generalize this setting appears in (Basile et al.,
2000), which proposes replacing Tuc and Tuo with control and obser-
vation costs. Other ways to generalize this setting are discussed in the
remaining part of this section.

4.2. Controlled PNs (CtlPNs)

This setting introduces a different kind of uncontrollability. Follow-
ing (Holloway et al., 1997), a controlled PN (CtlPN) is a triple
N c = (N , C,B), where N = (P, T, F ) is an ordinary PN, C is a finite
set of control places, C ∩ P = ∅, and B ⊆ C × T is a set of directed
arcs. As expected, given a marking µ of N , a transition t is enabled by
the plant, or state enabled, when for all places p ∈ P , (p, t) ∈ F ⇒
µ(p) ≥ 1. A control for a CtlPN is a function u : C → {0, 1}. Given
a control u, a transition t is control enabled when for all control
places c, (c, t) ∈ B ⇒ u(c) = 1. Of course, a transition can be fired only
when it is both control and state enabled. In a concurrency setting, the
control allows all control-enabled transitions to be fired simultaneously.

Note that firing a transition has no effect on the control (there are no
tokens flowing out of the control places). This distinguishes the control
places of CtlPNs from the monitors in the context of the SBPI, which
behave completely like the normal places of a PN.

As an example, consider Figure 2(a). The control places in the CtlPN
shown there are c1 . . . c4. The firings of t2 and t5 cannot be controlled,
as no control places are connected to t2 and t5. On the other hand,
c1 . . . c4 control the firings of the other transitions. For instance, t7
may be fired only if u(c1) = 1 and t6 only if both u(c3) = 1 and
u(c4) = 1. In a CtlPN, it may not be possible to disable individually
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Figure 2. Illustrations of various controllability and observability settings.

each “controllable” transition. For instance, if u(c1) = 0, both t7 and t4
are disabled, and if u(c1) = 1, both t7 and t4 are control-enabled. This
makes the controllability concept of CtlPNs more general than the one
of section 4.1.

A modeling example illustrating this kind of controllability is as
follows. Consider a train-gate controller, at the crossing of a railway
with a two-way road. There are two gates, one for each direction of the
traffic. The system is modeled in Figure 2(b): firing t1 corresponds to
a vehicle entering the crossing from one direction, and firing t3 corre-
sponds to a vehicle entering from the other direction. The controller
is only given the ability to either lower both gates or raise both gates.
Thus, the controller cannot have one gate lowered and the other raised.
This is modeled by controlling t1 and t3 with the same control place c1.

4.3. State Observation

In the structural setting, transition firings are observed. However, we
could observe instead markings (the state). In this case, limited ob-
servability corresponds to limited information on the marking of the
system. As shown in (Holloway et al., 1997), this can be modeled by
a function O : M → {o1, o2, . . . on}, mapping the set of markings M
onto a set of observability classes o1, o2, . . . on.

As an illustration, consider again the manufacturing model of Fig-
ure 2(c). Recall, AGVs going in opposite directions can enter a common
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loading area; firing t1 (t2) corresponds to AGVs entering (exiting) in one
direction, while firing t3 (t4) corresponds to AGVs entering (exiting)
from the other direction. Assume only one AGV can be in the loading
area at any time. Assume also that we can only detect the presence
of an AGV in the loading area, but not its direction. Then, we cannot
distinguish between the markings µ = [1, 0]T and µ = [0, 1]T . So we
can associate an observation class o1 for the markings [1, 0]T and [0, 1]T ,
and a class o2 for the marking [0, 0]T .

4.4. Labeled Petri Nets

The controllability and observability concepts of section 4.1 can be ex-
tended to labeled PNs. A labeled PN is a PN enhanced with a labeling
function ρ : T → 2Σ ∪ {λ}, where Σ is the set of events, ρ the labeling
function, and λ the null event. Following the Ramadge-Wonham set-
ting, Σ can be partitioned into controllable and uncontrollable events,
Σ = Σc ∪ Σuc and observable and unobservable events Σ = Σo ∪ Σuo.
In this setting, when a transition t fires, an event e ∈ ρ(t) is gener-
ated. If e ∈ Σc (e ∈ Σo), the supervisor is able to disable (observe)
this event. Note that t is disabled by the supervisor only when all
events e ∈ ρ(t) are disabled. Compared to section 4.1, one difference
is that two transitions t1 and t2 may produce the same event when
fired. Here, a supervisor controls/observes transitions indirectly, by
disabling/observing events.

The Ramadge-Wonham setting is usually associated with the no
concurrency assumption. However, in the context of labeled PNs we can
use also the other concurrency settings, allowing control-enabled tran-
sitions to fire at the same time, including multiple firings of individual
transitions.

As an illustration, recall the train-gate controller example of sec-
tion 4.2, modeled in Figure 2(b). We can model the same example
with the structure of Figure 2(c) and a labeling function ρ such that
ρ(t1) = ρ(t3). However, note that this model assumes not only that t1
and t3 cannot be individually controlled, but also that they cannot be
individually observed (firing t1 or t3 produces the same event). This
motivates introducing double-labeled PNs next.

4.5. Double-Labeled PNs

Double-labeled PNs combine the concepts of transition controllability
and observability of CtlPNs and labeled PNs, respectively. A double-
labeled PN is a PN enhanced with two labeling functions: ρ : T →
2Σ∪{λ} and o : T → Ω∪{λ}, where ρ labels transitions with subsets of
control events e ∈ Σ, and o labels transitions with observation events
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Figure 3. A CtlPN and its double-labeled PN counterpart.

o ∈ Ω. Thus, Σ (Ω) is the set of control (observation) events. The
meaning of the two labellings is as follows: a transition t ∈ T is control-
enabled when there is an event e ∈ ρ(t) that is enabled. Further, when
t fires, the event o(t) is generated. Note that when the underlying
PN is safe and has a state machine structure, a double-labeled PN
corresponds to a Mealy type automaton. In fact, the reachability graph
of any double-labeled PN is a Mealy automaton.

By using the two labeling functions in the train-gate example (Fig-
ure 2(c)), we can model the situation in which vehicles entering from
different directions produce different observation symbols (o(t1) 6= o(t3)),
while the flow from one direction cannot be interrupted apart from the
flow of the other direction (ρ(t1) = ρ(t3)).

4.6. Comparison

Clearly, the controllability concept of CtlPNs is more general than that
of section 4.1, as in section 4.1 we assume each controllable transition
can be individually disabled. Moreover, the setting of labeled PNs does
not capture the ability to control only certain groups of transitions
either. Indeed, a possibility would be to use a common label for all
transitions in a group. However, this would imply not only that the
transitions can be enabled/disabled as a group, but also that they gen-
erate the same event when fired. Further, we would not be able to have
a transition in two groups unless both groups would generate the same
events. Thus, it is known (Holloway et al., 1997) that enabling groups of
transitions as opposed to individual transitions, corresponds to a more
unusual setting in the Ramadge-Wonham framework, in which not all
combinations of controllable events can be disabled (Golaszewski and
Ramadge, 1988a). We show next that double-labeled PNs can model
the type of uncontrollability of CtlPNs. This is an important observa-
tion, for as we show in section 5.3, structural methods can deal with
double-labeled PNs.
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Figure 4. A double-labeled PN equivalent to the CtlPN of Figure 3(a).

As an example, Figure 3(b) shows a double-labeled PN. The obser-
vation events are shown in Greek letters. For instance, o(t1) = α and
o(t4) = γ. The control events are the events ei, i = 1 . . . 4. For instance,
ρ(t2) = {e1, e2} and ρ(t1) = {e1}. Note that the PN of Figure 3(b)
can simulate the behavior of the CtlPN of Figure 3(a) by enabling e1

for controls u satisfying u(c1) = u(c2) = 1, e2 for u(c1) = 1, e3 for
u(c2) = 1, and e4 for u(c3) = 1. The two PNs of Figure 3 are not
perfectly equivalent, since in the double-labeled version it is possible to
enable t2 and t3 while disabling t1 (e2 and e3 enabled and e1 disabled).
If this is a concern, we can use the simple remedy of Figure 4.

The conversion of CtlPNs to double-labeled PNs, as illustrated in
Figure 3, can be performed as follows. Given a CtlPN N c = (N , C,B),
let U be the set of controls. The observation labeling o of N is assumed
to be given, as we know from the beginning the observation events
generated by transitions. It remains to construct the control labeling
ρ. For each transition t, let ut ∈ U denote the minimal control enabling
t: ut(c) = 1 when (c, t) ∈ B and ut(c) = 0 otherwise. Let Umin be the set
of minimal controls: Umin = {u ∈ U : u minimal for some t ∈ T}. The
set of control events Σ is constructed as follows: for each uk ∈ Umin\{0}
associate a distinct event ek ∈ Σ. Let’s denote by u[ek] the control
associated to an event ek. Note that given a control uj , a transition t
of N c is control-enabled when its minimal control ut satisfies ut ≤ uj .
So we define ρ(t) = {ej ∈ Σ : ut ≤ u[ej ]}.

The construction ensures that applying a control u to the CtlPN
corresponds to enabling all events ej with u[ej ] ≤ u, resulting in the
same transitions being control-enabled in the CtlPN and the double-
labeled PN. However, the converse may not be true: enabling the events
e1 . . . ek may not result in the same set of transitions being enabled
in the CtlPN. The control applied to the CtlPN when e1 . . . ek are
enabled must satisfy u(i) = 1 iff ∃j ∈ {1 . . . k}: u[ej ](i) = 1, that is,
u = u[e1] ∨ u[e2] ∨ . . . ∨ u[ek], where ∨ stands for the binary operator
OR taken element by element (e.g. [1, 1, 0] = [1, 0, 0] ∨ [0, 1, 0]). While
the construction presented so far is expected to be satisfactory for most
supervisory control problems, let’s notice that it is possible to refine it
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Figure 5. Examples illustrating two distinct observability concepts.

to obtain a perfectly equivalent double-labeled PN, as shown next. If
enabling e1 . . . ek does not result in the same set of enabled transitions
as applying u = u[e1] ∨ u[e2] ∨ . . . ∨ u[ek] to the CtlPN, the only
possibility is that there is some other event ek+1 (not enabled) such
that u ≥ u[ek+1]. Thus, our construction is to avoid this possibility.
Let e1, . . . ek+1 be such that k ≥ 2, u[e1] ∨ u[e2] ∨ . . . u[ek] ≥ u[ek+1],
u[e2]∨u[e3]∨. . . u[ek] 6≥ u[ek+1], u[e1]∨u[e3]∨. . . u[ek] 6≥ u[ek+1],. . . and
u[e1]∨u[e2]∨ . . . u[ek−1] 6≥ u[ek+1]. Then, if there is no event ek+2 such
that u[ek+2] = u[e1]∨u[e2]∨ . . . u[ek], the event ek+2 is created and the
labeling function is updated such that ρ(t) = {ej ∈ Σ : ut ≤ u[ej ]}.
Then, a monitor of marking k − 1 similar to p5 in Figure 4 (k = 2
in the figure) is added for each group of transitions t1, t2, . . . tk such
that ei ∈ ρ(ti) for all i = 1 . . . k. The monitor ensures that t11, . . . tkk
cannot fire at the same time, where tji denotes the transition ti under
the event ej (as in Figure 4). These operations are repeated for all
groups of events e1. . . ek+1 satisfying the properties above.

The converse operation is also possible: a double-labeled PN can be
converted to a CtlPN enhanced with an observation labeling o. That
is, it is possible to replace the control labeling with control places.

From a supervision viewpoint, the definition of CtlPNs limits CtlPNs
to the concurrency assumption. Indeed, under more general concur-
rency settings (which allow also multiple firings of the same transition
at one time), the controls become very liberal, as they allow an unlim-
ited number of firings for all enabled transitions. However, there is no
such limitation for double-labeled PNs. For instance, in Figure 1(b),
the number of simultaneous firings of t1 can be limited by the marking
of the monitor p8.
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Comparing the two observability settings, state observation and
event observation, note that no setting is more general than the other,
in the sense that a problem formulated in one setting may not be
approachable in the other.

An example of problem that can be dealt with in the event obser-
vation setting, but not in the state observation setting, is as follows.
Figure 5(a) shows a PN in which only t1 is observable and only t6 is
controllable. Assume the initial marking is known and corresponds to
the marking shown in Figure 5(a). The specification requires t6 be dis-
abled until t1 fires, and then enabled. This problem is trivial in the event
observation setting: the supervisor disables t6 until it observes a firing of
t1. In the state observation setting, note the following. There are three
reachable markings: µ1, µ2, and µ3, each corresponding to one token
being in p1, p2, and p3, respectively. Since t2 and t3 are unobservable, we
must define the observation map O such that O(µ1) = O(µ3). Similarly,
we need O(µ2) = O(µ3). It follows that all reachable markings must
belong to the same observation class! Therefore, we have no information
regarding whether t6 should be enabled or not. In this particular exam-
ple, it is still possible to solve the problem by changing the structure of
the PN: let p4 be a sink place added to t1 (i.e. •p4 = t1 and p4• = ∅).
Since t1 is observable, we can define two classes of markings: o1 for
markings with µ4 = 0, and o2 for markings with µ4 ≥ 1. Then, we
disable (enable) t6 whenever the marking is in o1 (o2).

On the other hand, a problem that cannot be treated in the event
observation framework is as follows. In the PN of Figure 5(b), assume
we have three observation classes: o1 for markings with µ2 = 0, o2 for
1 ≤ µ2 ≤ 2 and o3 for µ2 ≥ 3. The specification is that t4 may fire
only if µ2 ≥ 3, where t4 is controllable. Regardless of the observation
labels we choose for t2, t3, and t4, there is no solution, unless the initial
marking is assumed to be known.

Finally, note that from events we can estimate the state by means of
observers. Work on PN observers appears in (Giua and Seatzu, 2002).
There, the initial marking is unknown, and the marking of the plant
is estimated by observing the transitions. The paper considers also
the enforcement of specifications (1) based on the estimated marking.
However, as shown in (Giua et al., 2004), deadlock may arise in the
enforcement of (1) due to estimation errors. Thus, a deadlock recov-
ery solution is proposed, based on integer programming and timing
information on the firing delays of enabled transitions.
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5. A Structural Approach to Supervision

When dealing with fully observable and controllable systems, we have
seen that the SBPI provides a very simple and optimal solution for
the design of supervisors. The result is summarized in Theorem 1.
However, when uncontrollability and unobservability is present, the su-
pervisor designed as in Theorem 1 may not be admissible. For instance,
the supervisor may include monitors that are supposed to prevent
plant-enabled uncontrollable transitions from firing, and may contain
monitors with marking varied by firings of closed-loop enabled unob-
servable transitions. Such a supervisor is clearly not implementable.
A supervisor is admissible, when it respects the uncontrollability and
unobservability constraints of the plant. The constraints Lµ ≤ b are
admissible if the supervisor defined by (2–3) is admissible. When
inadmissible, the constraints Lµ ≤ b are transformed (if possible) to an
admissible form Laµ ≤ ba such that

Laµ ≤ ba ⇒ Lµ ≤ b (11)

Then, the supervisor enforcing Laµ ≤ ba is admissible, and enforces
Lµ ≤ b as well.

EXAMPLE 2. Assume t2 and t5 uncontrollable in Fig. 1(a). Then
µ2 + µ5 ≤ 1 is not admissible, as enforcing it may attempt controlling
either of t2 and t5. However, it can be checked that µ1 + µ2 + µ5 ≤ 1 is
admissible and µ1 + µ2 + µ5 ≤ 1 ⇒ µ2 + µ5 ≤ 1.

Various conditions on the constraints Lµ ≤ b could be used to
guarantee Lµ ≤ b are admissible, such as the conditions presented
later in this section. Given some admissibility conditions, the design
approach is as follows:

ALGORITHM 1.

1. Check whether the admissibility conditions are satisfied by the su-
pervisor (2–3). If so, the supervisor is optimal and admissible.

2. If not, transform the specification Lµ ≤ b to Laµa ≤ ba such that
the admissibility conditions and (11) are satisfied.

3. Design the supervisor enforcing Laµ ≤ ba as in (2–3).

Various design methods result, depending on the admissibility con-
ditions used in the algorithm and the approach used at the second
step. Being known that a minimally restrictive solution may not cor-
respond to constraints Laµ ≤ ba (Giua et al., 1992), one can give up
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the requirement that the transformed specification is a conjunction
Laµ ≤ ba, and allow disjunctions

∨

i[La,iµ ≤ ba,i]. In either case, the
method is suboptimal whenever the admissibility conditions used in the
algorithm are not necessary. In this section we describe “structural”
admissibility constraints, which are sufficient for admissibility, but not
necessary. While they may result in suboptimal designs, the structural
admissibility conditions have the advantage that they have allowed the
development of computationally efficient methods for supervisor design.
The rest of this section presents structural admissibility conditions for
three cases:

1. Individually controllable and observable transitions

2. Labeled PNs

3. Double-labeled PNs

We will see that in the first two cases the conditions have the form
LA ≤ 0 (expressing that all elements of LA are negative or zero), where
A is an integer matrix. However, in the third case, the conditions require
each constraint liµ ≤ ci of Lµ ≤ b to satisfy a disjunction

∨m
j=1[liBj ≤

0], where B1 . . . Bm are integer matrices. By bringing
∧

i

∨m
j=1[liBj ≤ 0]

to the disjunctive normal form, the conditions of the third case take the
form

∨n
i=1[LAi ≤ 0], where A1 . . . Am are integer matrices. Note that

any method that is applied at the second step of the Algorithm 1 and
that relies on conditions LA ≤ 0, can also be used for our conditions
∨n

i=1[LAi ≤ 0]. This is how. First, given lµ ≤ c, find for every j =
1, 2, . . . m a solution laµ ≤ ca satisfying laBj ≤ 0 and (11). Then, select
the “best” solution laµ ≤ ca out of the m cases i = 1, 2, . . . m. Finally,
take Laµ ≤ ba as the conjunction of the constraints laµ ≤ ca that were
selected for each constraint lµ ≤ c of Lµ ≤ b.

5.1. Individually controllable and observable transitions

If Tuc denotes the set of uncontrollable transitions, the supervisor (2–3)
controls only the controllable transitions if all elements of LD(·, Tuc) are
nonpositive (Chen and Hu, 1994; Moody and Antsaklis, 1998; Moody
and Antsaklis, 2000), which is written as:

LD(·, Tuc) ≤ 0 (12)

Further, to ensure that the supervisor (2–3) detects only the observable
transitions it is sufficient to require (Moody and Antsaklis, 1998; Moody
and Antsaklis, 2000):

LD(·, Tuo) = 0 (13)
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where Tuo is the set of unobservable transitions. Given (1) and an initial
marking µ0, (12) and (13) are only sufficient for admissibility. However,
if L is fixed and µ0 and b are variables, we have the following optimality
property.

THEOREM 2. (Iordache, 2003) The supervisor of (2–3) is admissible
for all µ0 and b ≥ Lµ0 iff L satisfies (12–13).

This result can be exploited for fault-tolerant supervisory control (Ior-
dache and Antsaklis, 2004).

5.2. Labeled PNs

Without loss of generality, we may assume the labeling to be defined
as ρ : T → Σ ∪ {λ} instead of ρ : T → 2Σ ∪ {λ}. Indeed, if ρ(t) =
{e1, . . . en}, we can replace t by n copies of t named t1, . . . tn, such that
ρ(ti) = {ei}. Further, if ρ(t) = ∅, we can label t by the null event λ.
Thus, we can write the following sufficient conditions for admissibility:

∀t1, t2 ∈ T, ρ(t1) = ρ(t2) ⇒ LD(·, t1) = LD(·, t2) (14)

∀t ∈ T, ρ(t) ∈ Σuc ∪ {λ} ⇒ LD(·, t) ≤ 0 (15)

∀t ∈ T, ρ(t) ∈ Σuo ∪ {λ} ⇒ LD(·, t) = 0 (16)

Note that (14–16) can be written compactly as LA ≤ 0, for some
matrix A. This means that the same methods used for finding La and
ba subject to (11) and (12) or (11–13) can be applied also here, by
replacing (12) with LA ≤ 0.

5.3. Double-Labeled PNs

Again, without loss of generality, we may assume the control labeling
to be defined as ρ : T → Σ∪{λ} instead of ρ : T → 2Σ∪{λ}. Here, it is
more convenient to write the conditions in terms of single constraints
lµ ≤ c instead of sets of constraints Lµ ≤ b. We have the following
sufficient conditions for the admissibility of lµ ≤ c (note that Lµ ≤ b
is admissible if all its constraints lµ ≤ c are admissible):

∀t1, t2 ∈ T, o(t1) = o(t2) ⇒ lD(·, t1) = lD(·, t2) (17)

∀t ∈ T, o(t) ∈ Σuo ∪ {λ} ⇒ lD(·, t) = 0 (18)

∀t ∈ T, ρ(t) ∈ Σuc ∪ {λ} ⇒ lD(·, t) ≤ 0 (19)

∀t1, t2 ∈ T, ∀α ∈ Σ, ρ(t1) = ρ(t2) = α ⇒
lD(·, t1) = lD(·, t2) ∨ [lD(·, t1) ≤ 0 ∧ lD(·, t2) ≤ 0]

(20)
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The constraint (20) is sufficient to guarantee that any two transitions
with the same label are either both disabled or both enabled in the
closed-loop. Due to the constraint (20), the conditions for the admis-
sibility of Lµ ≤ b are no longer linear. Instead, they have the form
∨n

i=1 LAi ≤ 0.

6. Supervision Methods

6.1. Admissibility Based Methods

Here, we refer to the Algorithm 1, and describe methods that can
implement the second step of the algorithm. The methods presented
here are based on the admissibility conditions (12) and (13). They
assume free-labeled PNs with individually controllable and observable
transitions. However, as noticed in section 5, such methods can be easily
adapted to the more general settings of labeled or double-labeled PNs.

The design of admissible constraints has been approached by Moody
and Antsaklis (1998; 2000) using the following parameterization:

La = R1 + R2L (21)

ba = R2(b + 1) − 1 (22)

where R1 is an integer matrix with nonnegative elements and R2 is
a diagonal matrix with positive integers on the diagonal. This pa-
rameterization is used as a sufficient condition for (11). Thus, at the
step 2 of Algorithm 1, the constraints (21–22) replace (11). Now, the
problem is to find La and ba subject to (21–22), (12) and (13). This is
a linear integer programming problem for which, sometimes, solutions
may be found using an efficient matrix row operation algorithm of
Moody and Antsaklis (1998; 2000). Note that this integer programming
formulation of the problem allows introducing additional requirements
of interest. For instance, communication constraints and a minimum-
communication objective were used in a distributed version of this
problem (Iordache and Antsaklis, 2003d). While the approach of Moody
and Antsaklis (1998; 2000) is computationally efficient, it is also subop-
timal. That is, a solution may not be found when solutions exist, and
if one is found, it may not be the least restrictive solution. A source
of suboptimality is that the computation is not constrained to ensure
that if L′

a and b′a are another solution to (21–22), (12) and (13), then
Laµ ≤ ba 6⇒ L′

aµ ≤ b′a.
The approach of Moody and Antsaklis (1998; 2000) can be improved

in several ways. First, it should be noticed that it is difficult to express
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by linear inequalities the requirement that Laµ ≤ ba should be as per-
missive as possible. However, it is easy to constrain the computation
of La and ba to guarantee some weaker properties: (a) that a set of
markings of interest is included in {µ : Laµ ≤ ba} and (b) that a set
of firing count vectors x is included in {x : Dcx ≥ 0}, where Dc is the
incidence matrix of the closed-loop. These simple extensions can be
found in (Iordache and Antsaklis, 2003d). As noticed in (Basile et al.,
1998b), the admissible constraints Laµ ≤ ba satisfying (11) may not
have a unique supremal element. Thus, further work has been done
by the authors of (Basile et al., 1998a) towards finding the supremal
constraints Laµ ≤ ba subject to (21–22), (12) and (13) by means of a
parameterization.

Another way to control the selection of La and ba is by means of
observation and control costs. Thus, in (Basile et al., 2000), the opti-
mal design of supervisors is considered, where optimality here is with
respect to control and observation costs. Here, instead of having sets of
uncontrollable and unobservable transitions Tuc and Tuo, we have maps
zc : T → R

+ and zo : T → R
+, associating control and observation costs

to each transition. The setting is general, as we can still consider some
transitions uncontrollable/unobservable by associating with them very
large control or observation costs. The design problem of (Basile et al.,
2000) is solved by an integer programming approach, using (21–22) and
admissibility conditions equivalent to (12) and (13).

The optimal design of supervisors with respect to the admissibility
constraints (12) and (13) is approached also in chapter 8 of (Stremersch,
2001). The proposed method applies to specifications (1) in which for
all rows of L, all elements on a row have the same sign. Note that the
solution is given in the form of a disjunction of constraints.

Still another approach appears in (Chen, 2000). The setting of (Chen,
2000) assumes full observability. Essentially, given the constraint lµ ≤ c
with l ∈ N

m and c ∈ N, lµ ≤ c is replaced with the disjunction

∨

li∈SDmin(l)

[liµ ≤ c] (23)

where SDmin(l) is the set of minimal integer vectors x satisfying x ≥ l
and xD(·, Tuc) ≤ 0. In particular, lµ ≤ c is replaced with the single
admissible constraint l1µ ≤ c when SDmin(l) is the singleton {l1}.
Under the conditions of (Chen and Hu, 1994; Chen, 1998), which are
discussed later in section 6.2, the resulting supervisor is least restrictive.
It is interesting to notice that some of the assumptions of (Chen, 2000)
can be dropped. Indeed, (23) is still a valid supervisor even if l ∈ Z

m and
c ∈ Z (as opposed to l ∈ N

m and c ∈ N). Further, partial observability
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can be incorporated by defining SDmin(l) as the set of minimal integer
vectors x satisfying x ≥ l, xD(·, Tuc) ≤ 0 and xD(·, Tuo) = 0.

6.2. Path-based approaches

Here we outline other structural approaches from the literature. In
the literature, there are several results dealing with the supervision of
marked graphs. We begin by outlining how these results can be used
for enforcing specifications (1), when the plant is a marked graph and
various other modeling assumptions are satisfied. Then, we will present
some other results that deal with more general PN models.

Powerful results for the supervision of marked graphs were first ob-
tained in (Holloway and Krogh, 1990; Krogh and Holloway, 1991). The
setting is as follows. The plant is a CtlPN in which the underlying PN
is a cyclic marked graph with an initial marking that places exactly one
token in every directed cycle. Thus, the PN is safe (i.e., all reachable
markings are binary vectors). Full observability is implicitly assumed.
The supervisory goal is to avoid a set of forbidden markings MF .
In (Holloway and Krogh, 1990), MF is specified in terms of place, set
and class conditions. A place condition requires µ(p) > 0 for a place
p. A set condition requires µ(p) > 0 for all places p of a set F . A class
condition requires one of the set conditions from a set F to be satisfied.
In (Krogh and Holloway, 1991), MF has the form:

MF =
⋃

(F,k)∈F







µ :
∑

p∈F

µ(p) > k







(24)

Since the plant is a safe PN, the class conditions of (Holloway and
Krogh, 1990) correspond to (24) with k = |F | − 1. Further, taking
in account that the plant is also a cyclic marked graph, both class
conditions and (24) can specify arbitrary sets MF . (In section 7.3, we
will show how to obtain inequalities (1), not (24) though, from arbitrary
sets MF of safe PNs.) Since the set of forbidden markings has the form
(24), its complement corresponds to a particular form of specifications
(1) in which all elements of L are binary. Some mild assumptions are
made on the set MF . As mentioned in (Holloway and Krogh, 1992),
the assumptions on MF guarantee that the design approach results in
least restrictive supervisors.

The design of supervisors in (Holloway and Krogh, 1990) is ap-
proached by analyzing the paths of the marked graph that do not
involve controllable transitions. This solution is simplified in (Krogh
and Holloway, 1991). The solution of (Krogh and Holloway, 1991) in-
volves identifying a number of paths in the marked graph offline, and
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evaluating certain place and path predicates online. Note that the
supervisor is not represented as a Petri net.

In (Boel et al., 1995), the design of supervisors is studied in a sim-
ilar setting in which the CtlPN has a state machine structure. The
forbidden sets are represented in a form more general than (24). The
specification corresponds to the requirement that the marking satisfy a
disjunction

∨

i[Liµ ≤ bi] with matrices Li of nonnegative elements. The
use of disjunctions is necessary in order to describe more general sets of
forbidden states, as the PN is not assumed to be safe. The supervisors
obtained in (Boel et al., 1995) are not represented as Petri nets.

The results of (Holloway and Krogh, 1990; Krogh and Holloway,
1991) are generalized in (Holloway et al., 1996), by extending the plant
model from marked graphs to arbitrary ordinary PNs. The specification
is given in terms of a set F of subsets of places, by defining MF =
{µ : ∃F ∈ F ∀p ∈ F, µ(p) ≥ 1}. Compared to (Holloway and Krogh,
1990), this specification corresponds to class conditions. However, since
the PNs are no longer assumed to be safe cyclic marked graphs, the
specification is no longer able to capture all possible sets of forbidden
markings. Further, this type of specifications is neither a subset nor
a superset of the specifications expressed by (1). As in the previous
work (Holloway and Krogh, 1990; Krogh and Holloway, 1991), the least
restrictive supervisor is found by a path based approach.

6.3. Controlled-invariant approaches

The setting of the papers of surveyed in section 6.2 can be described
as follows. A supervisor can avoid the states in MF if it keeps the
marking in a set AF , where any marking µ /∈ AF is either a marking of
MF or a marking that leads to µ′ ∈ MF by firing only uncontrollable
transitions. Let Tuc be the set of uncontrollable transitions and Nu =
(P, Tuc,D

−(·, Tuc),D
+(·, Tuc)) a subnet of the plant N that does not

contain the controllable transitions. Then AF can be expressed as:

AF = {µ : R(Nu, µ) ∩MF = ∅} (25)

This set is known as the maximal controlled-invariant set (Krogh and
Holloway, 1991; Ramadge and Wonham, 1987). The approaches dis-
cussed above design supervisors that keep the state in AF , without
explicitly computing AF . However, a possible approach to supervision is
to compute AF . Once we know AF , the control task is simply to disable
any control actions that lead to a marking outside of AF . Note that
keeping the state in AF , as opposed to a subset E ⊆ AF , corresponds
to least restrictive supervision. In particular, as noticed in (Giua et al.,
1992), solutions replacing a specification Lµ ≤ b with an admissible
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Laµ ≤ ba correspond to supervisors that keep the state in subsets
E ⊆ AF , since AF may not be representable as a set of constraints
of the form (1), even when MF is given as the complement of a set
of constraints (1). We discuss briefly below literature methods that
compute AF .

In (Chen, 1998) specifications (1) are considered, where L and b are
restricted to have only nonnegative elements. Given a single constraint
lµ ≤ c (so l ∈ N

m and c ∈ N), the influential subnet N l
u is defined,

which is the subnet of Nu containing the places p with l(p) 6= 0 and
the directed paths of Nu to these places. The main result of the paper
shows how to express AF as the set of markings satisfying a disjunction
of linear marking inequalities. This result relies on two conditions, as
follows. First, N l

u should be a marked graph. (Note that N l
u, not N ,

is restricted to a marked graph structure.) Second, for all reachable
markings of (N , µ0), every directed circuit of N l

u should have at least
one token. In (Chen, 1998) the supervisor is not represented as a PN.
However, the subsequent work of (Chen, 2000) proposes an extended
PN representation of the supervisor, in which negative markings are
allowed. Note that a similar result was obtained in (Chen and Hu, 1994)
for the case in which N l

u is a state machine, instead of a marked graph.
For this case, it is shown that AF has the form AF = {µ : laµ ≤ c},
where la can be easily computed. Thus, the monitor enforcing laµ ≤ c
is the least restrictive supervisor.

The efficient computation of (Chen and Hu, 1994) for PNs and
specifications for which the subnets N l

u are state machines, may not be
surprising in light of the complexity findings of (Ramadge, 1989). The
model of (Ramadge, 1989) is as follows. The plant consists of p compo-
nents that do not interact with each other, where the components are
represented by deterministic Büchi automata Gi = (Qi,Σi, δi, q0i, Qmi)
over disjoint alphabets Σi. Given the subsets of states Qi ⊂ Qi, a
mutual exclusion specification requires less than k components to have
their states qi in Qi at the same time. Note that the plant can be
represented by a safe labeled PN with a state machine structure, and
the mutual exclusion constraint by a constraint lµ ≤ c in which c = k
and all elements of l are 0 or 1. One of the problems considered in
the paper is to find nonblocking coordinators that enforce the mutual
exclusion constraint. Roughly, a nonblocking coordinator is a supervisor
that guarantees certain strong liveness properties. The paper shows
that the existence of a solution can be decided in polynomial time in p
and n, where n = maxi |Qi|. Further, it is shown that if a solution exists,
the minimally restrictive solution can be found in polynomial time in p
and n. It is interesting to note that in the equivalent PN representation
of the plant, the supervisor found in (Ramadge, 1989) corresponds
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to a monitor place enforcing a constraint laµ ≤ c, provided the PN
is free-labeled. Note also that in view of (Golaszewski and Ramadge,
1988b), the assumption that the sets Σi are disjoint, seems to be critical
for polynomial complexity. In (Golaszewski and Ramadge, 1988b) it is
shown that when the components of the plant have a shared event,
the solvability of the problem can no longer be decided in polynomial
time. A restriction of the problem for which polynomial complexity is
maintained is also proposed.

A method that finds the optimal design for specifications (1) appears
in (Li and Wonham, 1994). Several assumptions are made, as seen from
the following outline of the method. Let L(Nu, µ) denote the set of firing
sequences σ of Nu that are enabled at the marking µ. Let σ be the firing
count vector with respect to N (not Nu). Finally, let lµ ≤ c, l ∈ Z

|P |

and c ∈ Z, denote a single constraint of (1). The set AF corresponding
to lµ ≤ c is given by AF = {µ : (∀σ ∈ L(Nu, µ)) lµ + lDσ ≤ c}. By
assuming Nu (not N ) to be acyclic, AF = {µ : lµ+lDv∗(µ) ≤ c}, where
v∗(µ) is the solution of the linear integer program max lDv subject
to D(·, Tuc)v ≥ −µ and v ≥ 0. As shown in the paper, a closed-form
expression of AF can be computed under additional assumptions. First,
subnets are defined for each t ∈ Tuc, consisting of all paths of Nu ending
in t. Denoting by T̂uc = {t ∈ Tuc : lD(·, t) > 0}, all subnets of t ∈ T̂uc

are required to be independent (disjoint). Further, when the subnets
have the TS1 structure described in the paper, AF can be expressed by
a disjunction of inequalities: AF = {µ :

∨k
i=1[liµ ≤ c]} for some k and

li ∈ Z
|P |. Moreover, when the subnets have the TS2 structure described

in the paper, then AF = {µ : laµ ≤ c} for some la ∈ Z
|P |. Thus, in the

TS1 case the optimal supervisor of lµ ≤ c enforces
∨k

i=1[liµ ≤ c], and
in the TS2 case laµ ≤ c. The approach is computationally efficient,
as AF is calculated independently of µ and without resorting to the
traditional methods for solving integer programs.

Stremersch and Boel (1999) consider the enforcement of k-safeness
on state machines, where k-safeness is expressed by the constraints
µ(p) ≤ k ∀p ∈ P . The authors show that the set AF can be ex-
pressed by a particular form of (1), and develop an algorithm that
minimizes the number of monitors that implement the specification.
The results are obtained under the transition-bag concurrency setting.
For the supervision problem of general PNs with arbitrary forbidden
set specifications and the same concurrency setting, Stremersch and
Boel (2000) show that the calculation of AF can be done on a subnet
NA of the uncontrolled subnet Nu. This result is applied in (Stremersch
and Boel, 2002) to the calculation of AF for specifications (1). The set
AF is obtained in the form (1) under three hypotheses: NA is acyclic,
the transitions t of NA satisfy | • t| ≤ 1 as well as a condition which, in
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particular, is satisfied when the input arcs of t have the weight 1. The
computation of AF has low polynomial complexity. The observation
that the computation of AF is easier when the uncontrolled subnet Nu

is acyclic, was made also by Chen and Hu (1991).
Results on the supervision of marked graphs appear in (Ghaffari

et al., 2003b). Compared to (Holloway and Krogh, 1990; Krogh and
Holloway, 1991), the marked graphs considered here may not be safe.
However, the results are presented in the no concurrency setting and
the uncontrollability model is simpler: the set of transitions is parti-
tioned into controllable (Tc) and uncontrollable (Tuc) transitions. The
specifications have the form (1). A least restrictive supervision policy is
computed first for several particular cases. The policy is very efficient,
as it involves little online computations. Finally, a supervision policy
is proposed for the general case, which involves solving online linear
programs, for every reachable marking. This last result is based on the
observation that given a constraint lµ ≤ c, l ∈ Z

1×m and b ∈ Z, finding
max{lµ∗ : µ∗ ∈ R(Nu, µ)} is equivalent to the integer linear program
max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ N

|Tuc|}, which is equivalent to the

linear program max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ R
|Tuc|
+ }. These two

equivalences result from the fact that the plant is a live marked graph.
In (Ghaffari et al., 2003a), the supervisory control problem is ap-

proached based on the reachability graph. Here, the supervisor is de-
signed as a set of monitors acting upon the PN plant. First, a subset of
the reachability graph is obtained, such that from any of the markings
of the subgraph, forbidden states and blocking states cannot be reached
by firing uncontrollable transitions. This subgraph becomes the desired
reachability graph that is to be achieved by the closed-loop. Then, the
authors deal with the design of supervisors that ensure the closed-loop
has the specified reachability graph. Given a set Ω containing the pairs
(µ, t) such that t should be disabled at the marking µ, monitors are
designed, such that each monitor deals with at least one of the pairs
(µ, t) of Ω. The connections of a monitor to the plant are determined
by finding an integer solution to a system of inequalities. Due to the
particular form of the inequalities, the solution can be found using
linear programming.

6.4. Methods for partial observability

Partial observability, as long as described by some events being ob-
servable and others not, can be easily dealt with in the setting of the
admissibility-based methods. The admissibility-based methods were pre-
sented in section 6.1. However, more substantial extensions are needed
in order to incorporate partial observability in the methods of sec-
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tions 6.2 and 6.3. This section presents several methods, which are not
admissibility-based, and which can deal with partial observability.

The extension to partial observability of the path-based approach
of (Holloway and Krogh, 1990; Krogh and Holloway, 1991) appears
in (Zhang and Holloway, 1995). Ordinary PN structures are consid-
ered, instead of marked graphs. The set of transitions is partitioned in
controlled and uncontrolled transitions, T = Tc ∪ Tuc, and in observed
and unobserved transitions, T = To ∪ Tuo, with To ⊇ Tc. Note that
a transition is controlled if connected to some control place. Further,
each transition is labeled by one event, and a transition is observed
if its label is not the null event. The authors propose a path algebra,
described in more detail in (Holloway et al., 1996). This algebra is used
to define reachability predicates, which are then used to define the least
restrictive control policy. (The supervision is nondeterministic, so least
restrictive control policies exist.) The paper considers the same type of
specifications as (Holloway et al., 1996).

Several important results on the control of live marked graphs ap-
pear in (Darondeau and Xie, 2003). The specification considered in the
paper is more powerful than (1), as it has the form av ≤ c, where
v is the Parikh vector, a ∈ Z

1×n and c ∈ Z. The set of transitions
T is partitioned in three disjoint subsets, T = Tc ∪ Tf ∪ Ti, where
Tc is the set of controllable transitions, and To = Tc ∪ Tf the set of
observable transitions. The approach of the paper is as follows. Suspect
vectors are defined as Parikh vectors v such that v|To = v′|To for some
v′ with the property that there is v′′ ≥ v′ such that v′′ is forbidden (i.e.
av′′ > c) and all nonzero entries of v′′−v′ correspond to uncontrollable
transitions. The paper shows that any deterministic supervisor has to
avoid reaching the set of suspect vectors, and that the projections
of these vectors on To are the integral points of a convex set. The
paper shows also how to compute this set. Since the complement of the
set of suspect vectors may not correspond to the integral points of a
convex set, it follows that the least restrictive supervisor may not be
implementable by control (monitor) places. Even when monitors can be
used, the paper shows that the number of monitors may be exponential.
Another observation of the authors is that the number of linear con-
straints defining the set of suspect vectors may depend exponentially on
the size of D(·, Tuc). The alternative to the computation of this set is to
solve online at every state and for all t ∈ Tc a linear program, in order
to decide whether t should be enabled. Since linear (not integer linear)
programming is used, the computation has polynomial complexity.

The control of live marked graphs under partial observability is con-
sidered also by Achour et al. (2004), for specifications (1) and the same
partition T = Tc ∪Tf ∪ Ti, where To = Tc ∪Tf are the observable tran-
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sitions. The paper extends the previous work of Ghaffari et al. (2003b)
to account for unobservable transitions. Thus, the authors propose a
solution in which the supervisor decides whether a controllable tran-
sition should be enabled or not by solving online a linear program. In
addition, the authors identify particular cases in which the supervision
involves little offline and online computational effort.

6.5. Decentralized Control

The decentralized control of PNs has been approached by Iordache
and Antsaklis (2003c; 2003d) in the following setting. A PN N =
(P, T,D−,D+) is given, representing the plant. The plant has m com-
ponents, each having a set of controllable transitions Tc,i ⊆ T and a
set of observable transitions To,i ⊆ T , for i = 1 . . . m. In this setting,
we are to design m supervisors Si, each allowed to disable transitions
t ∈ Tc,i and observe transitions t ∈ To,i, such that the joint operation
of the supervisors Si ensures the specification (1) is satisfied.

A specification (1) is d-admissible if all its constraints lµ ≤ c
are d-admissible (l ∈ Z1×|P | and c ∈ Z). Further, a constraint lµ ≤
c is d-admissible if there is a set C ⊆ {1, 2, . . . n} such that lµ ≤ c
is admissible (in the centralized sense) with respect to the plant and
the sets of controllable and observable transitions Tc =

⋃

i∈C Tc,i and
To =

⋂

i∈C To,i. Consequently, when the sets To,i are disjoint and event
observation is required for the enforcement of a constraint lµ ≤ c,
d-admissibility requires that there is an index i such that lµ ≤ c is
admissible (in the centralized sense) with respect to the plant and the
sets of controllable and observable transitions Tc = Tc,i and To = To,i.
An efficient structural test for d-admissibility based on (12–13) is given
in (Iordache and Antsaklis, 2003c).

Decentralized supervision has been studied under several settings:

1. The specification (1) is d-admissible.

2. The specification (1) is not d-admissible and communication of
transition firings is allowed.

3. The specification (1) is not d-admissible and communication is not
allowed or is restricted.

Case 1 is solved by a construction similar to that of (2) and (3). Case 2 is
reduced to case 1 by allowing event communication add more elements
to the sets Tc,i and To.i. However, case 3 is more involved. Assuming
no communication is allowed, the problem is to decompose the specifi-
cation (1) into sets of constraints L1µ ≤ b1 . . . Lrµ ≤ br such that each
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Liµ ≤ bi is d-admissible and

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lrµ ≤ br) ⇒ Lµ ≤ b (26)

The d-admissibility requirement can be tested by inequalities similar
to (12) and (13). In (Iordache and Antsaklis, 2003d) this problem is
approached using the parameterization (21–22), by replacing (26) with
the conservative requirement that

L1 + L2 + . . . Lm = R1 + R2L (27)

b1 + b2 + . . . bm = R2(b + 1) − 1 (28)

where R1 has nonnegative integer elements and R2 is diagonal with
positive integer elements on the diagonal. Integer programming is then
used to find Li, bi, R1 and R2. The problem is solved in a similar way
when communication is allowed.

A distributed setting appears in (Chen and Hu, 1991), in which
PNs that may share common places, form the subsystems of a large
scale PN. The specification has the form (24). In this approach, the
set AF is to be computed as in the centralized case, using one of the
methods from the literature. Then, assuming AF has the form (1),
each constraint is assigned for implementation to a local supervisor
(if possible) or to a central coordinator. Compared to a centralized
controller, the coordinator can be less complex.

7. Expressiveness of the constraints

This section reports several situations in which problems involving
constraints of a different form than (1) can be reduced to problems
involving constraints (1). First, we consider a class of general linear con-
straints that correspond to the languages of the free-labeled PNs. Next,
we consider constraints expressing general PN languages. Then, we
consider logical constraints for safe PNs. We continue with disjunctions
of constraints (1) under some boundedness assumptions. Finally, results
showing (1) can express constraints for liveness enforcement are pre-
sented. The section ends with a discussion concerning the implications
of the presented results.

7.1. Generalized Constraints

An interesting class of linear constraints that can be represented in the
form (1) by PN transformations is given by

Lµ + Hq + Cv ≤ b (29)
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Figure 6. Illustration of the q and v parameters.

where q is the firing vector and v the Parikh vector. To simplify our
presentation, we will focus on the no concurrency assumption. The
general case can be found in (Iordache, 2003). Let n = |T |. Under
the no concurrency assumption, q ∈ {0, 1}n identifies the transition
that is to be fired next: qi = 1 if ti is to be fired next, and qi = 0
otherwise. Recall, the Parikh vector v ∈ N

n records how many times
each transition has fired. For instance, v1 = 4 indicates t1 has fired
four times. q and v are illustrated in Figure 6. Further, H ∈ Z

nc×n and
C ∈ Z

nc×n are matrices, and nc is the number of constraints.
The constraints (29) are to be satisfied when no transition is firing

(q = 0) as well as when a transition is fired (q 6= 0). Thus, a supervisor
enforcing (29) ensures that: (i) all states (µ, v) satisfy Lµ+Cv ≤ b; (ii)
a transition t is fired only if its firing vector q satisfies Lµ+Hq+Cv ≤ b

and the next reached state satisfies Lµ′ + Cv′ ≤ b, where µ
ti−→ µ′ and

v′ = v + q.
In (Iordache and Antsaklis, 2003b) it is shown that:

- The class of constraints

Hq + Cv ≤ b (30)

is as general as the class Lµ+Hq+Cv ≤ b. That is, given any set of
constraints Lµ+Hq+Cv ≤ b, there is C ′ such that Lµ+Hq+Cv ≤ b
and Hq + C ′v ≤ b are equivalent.
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- Assuming full controllability and observability, any set of constraints
(29) can be implemented by monitors, without loss of permissive-
ness. Thus, each constraint of (29) corresponds to a monitor.

- Conversely, any monitor of a PN can be seen as enforcing a con-
straint of the form (30), where b corresponds to the initial marking
of the monitor.

- However, the places of a PN can be seen as monitors enforcing
constraints on the transition firings. Therefore, any PN (N , µ0),
N = (P, T,D−,D+), can be described by constraints (30), for H =
D−, C = D− − D+ and b = µ0.

It follows that the specifications (29) correspond to the P -type lan-
guages of the free-labeled PNs. (Following (Peterson, 1981), a labeled
PN is freely-labeled when each transition of the net has a unique and
distinct label, different from λ, the null symbol; further, a language
L is a P -type PN language if there is a PN with an initial marking
such that L consists of the words associated with the firing sequences
enabled by the initial marking.)

Another important result that appears in (Iordache and Antsaklis,
2003b; Iordache, 2003) shows that under the partial controllability and
observability setting of section 4.1, the design of supervisors enforcing
(29) can be reduced to the design of supervisors enforcing (1). Thus, if
(29) is to be enforced on a PN N , the problem is transformed into the
design of a supervisor enforcing constraints of the form (1) on a PN
NH . The solution to this problem is then used to obtain the solution
to the original problem of designing a supervisor enforcing (29) on N .
The uncontrollability and unobservability setting used in (Iordache and
Antsaklis, 2003b; Iordache, 2003) is that of section 4.1.

7.2. Language Constraints

As shown above, we can reduce the problem of enforcing certain PN
languages to the enforcement of constraints (1). The plants considered
there are free-labeled PNs and the specifications are P -type PN lan-
guages of free-labeled PNs. This section shows that we can approach in
a similar way more general problems, that do not assume free-labeling
for the plant and the specification. As in the previous considerations,
the requirements here are that the closed-loop generates a sublanguage
of the specification.

As an example, consider the PN and the specification shown in Fig-
ure 7. In this example, the specification is described by a PN labeled by
the events a and b. To simplify the notation, it is assumed that all events

svf.tex; 25/07/2005; 17:57; p.30



31

d

SPECIFICATION

a a

b b

PLANT

a
c

c

b b

t 1 t 2t 3

t 4

p1

2p p3p4 p5t 5 t 6

p8

p9

p6

p7

t 1 2t

t 3t 4

Figure 7. A problem involving language constraints.
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Figure 8. Composition of the specification and the plant.

of the plant that do not appear in the specification are always enabled
in the specification. The closed-loop in our example can be computed
immediately by a parallel composition of the plant and specification,
and is shown in Figure 8. Note that in the closed-loop, the transition
t1 of the plant appears in the form of t11 and t21, corresponding to the
synchronization of t1 with the transitions t1 and t2 of the supervisor.
Similarly, t32 and t42 correspond to the synchronization of t2 with t3 and
t4. A formal description of the algorithm composing PN plants with
PN specifications can be found in (Giua and DiCesare, 1991).

The supervision is interpreted as follows. The plant and the supervi-
sor have each a distinct set of transitions, Tp and Ts, respectively. The
supervisor cannot observe/control the plant transitions directly, but
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Figure 9. Composition of the designed supervisor and the plant.

it can observe/control events generated by the plant. When the plant
generates the event a, the supervisor picks one of its own enabled tran-
sitions t ∈ Ts that is labeled by a, and fires it. Note that the supervisor
is free to choose which of its enabled transitions labeled by a fires. For
instance, in Figure 7, when the plant generates a, the supervisor can
select either of t1 or t2, since both are enabled and labeled by a. So we
can relabel the closed-loop, to indicate the supervisor can distinguish
between its own transitions that have the same label. Thus, in Figure 8
we have the following new labels: a1 for t11, a2 for t21, b3 for t32 and t34,
and b4 for t42 and t44.

According to our previous section 7.1, in the closed-loop, every place
of the supervisor corresponds to a specification in terms of constraints
(29). For instance, p9 enforces v2

1−v1
1 ≤ 1 and p8 enforces v1

1−v4
2−v4

4 ≤
1. This gives us a readily available approach for supervisor design in
the case of partial controllability and partial observability:

- Compose the PN plant and the PN specification (supervisor).

- Relabel the closed-loop, to take in account the supervisor can dis-
tinguish between its own transitions.

- Find the constraints (29) corresponding to the constraints enforced
by the monitors of the closed-loop.

- Transform the constraints (29) to an admissible form, which is at
least as restrictive.
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Figure 10. Supervisor enforcing the language constraints.

For instance, assume in our example that t1 (the event a) is uncontrol-
lable but the other transitions are controllable. Assume all events are
observable. Notice that in Figure 8 p8 and p9 may attempt disabling t1.
So, the specification is inadmissible. The transformation to admissible
constraints could be done by adapting the approach of (Iordache and
Antsaklis, 2003b) to labeled PNs. A possible solution is to replace the
inadmissible constraints of p8 and p9, namely v1

1 − v4
2 − v4

4 ≤ 1 and
v2
1 − v1

1 ≤ 1, by the admissible constraints v1
1 − v4

2 − v4
4 + µ4 ≤ 1 and

v2
1 − v1

1 + µ4 ≤ 1. The resulting closed-loop and supervisor are shown
in Figure 9 and Figure 10, respectively. The supervision is admissible,
while ensuring the plant generates only words that satisfy the original
specification of Figure 7.

It is known that the supremal controllable sublanguage of a P -type
PN language may not be a P -type PN language (Giua and DiCe-
sare, 1994). This is an indication that the approach presented here
is suboptimal, in the sense that it may not lead to the least restrictive
supervisor. Note that in the literature it has been shown that the com-
putation of the least restrictive supervisor can be reduced to a forbidden
marking problem, provided both the plant and specification generate
deterministic languages (Kumar and Holloway, 1996). (Given a labeled
PN (N , ρ, µ0), the P -language it generates is deterministic if for any
of its strings w, there is a unique transition sequence σ enabled by µ0

that generates w: ρ(σ) = w.) In the setting of (Kumar and Holloway,
1996), partial controllability and full observability are assumed.

7.3. Logical Constraints

This section shows that for safe PNs, the enforcement of logical con-
straints can be reduced to the enforcement of constraints (1). Recall, a
PN (N , µ0) is safe if all reachable markings are binary vectors. In the
literature, the observation that logic constraints on the marking can be
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reduced to (1) was made in (Giua et al., 1992; Yamalidou and Kan-
tor, 1991; Yamalidou et al., 1996). The derivation of inequalities from
logic expressions is rather easy, as shown in (Yamalidou and Kantor,
1991; Yamalidou et al., 1996).

Indeed, let the conjunctive normal form of the specification be Φ1 ∧
Φ2 ∧ . . . ∧ Φg with Φi ≡ Ψi1 ∨ Ψi2 ∨ . . . ∨ Ψihi

, for i = 1 . . . g. This can
be expressed by

hi
∑

k=1

Ψik ≥ 1 for all i = 1 . . . g (31)

Note that negation is algebraically represented as ¬Ψik = 1 − Ψik .
This approach can be applied to specifications described by logic

constraints in the marking of a safe PN. The specifications can also
include q, provided the concurrency setting ensures q is also a bi-
nary variable. As an example, assume the markings [0, 0, 0]T , [1, 0, 0]T ,
[1, 1, 0]T and [1, 1, 1]T are to be forbidden. Then, the specification can
be expressed in the conjunctive normal form as (µ1 ∨µ2 ∨µ3)∧ (¬µ1 ∨
µ2∨µ3)∧ (¬µ1∨¬µ2∨µ3)∧ (¬µ1∨¬µ2∨¬µ3), which can be simplified
to (µ2 ∨ µ3) ∧ (¬µ1 ∨ ¬µ2). So, we obtain the constraints µ2 + µ3 ≥ 1
and −µ1 − µ2 ≥ −1.

7.4. Disjunctions of Constraints

Here we show that under certain boundedness assumptions, the basic
SBPI design described in section 3 can be applied to the design of su-
pervisors enforcing disjunctive constraints. A disjunction of constraints
has the form:

∨

i

[Liµ ≤ bi] (32)

where Li ∈ Z
mi×n and bi ∈ Z

m
i . Since Liµ ≤ bi is a conjunction of mi

constraints ljµ ≤ cj , where lj ∈ Z
1×n and cj ∈ Z, we can write (32) in

the conjunctive normal form
∧

j

∨

i∈Aj

[liµ ≤ ci] (33)

where Aj is a set of integers. The idea is to include additional binary
variables δi for each constraint liµ ≤ ci such that:

[liµ ≤ ci] ↔ [δi = 1] (34)

Then, the disjunctions in (33) can be replaced by
∑

i∈Aj

δi ≥ 1 (35)
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for all indices j. If we know that liµ is between the bounds mi and Mi,
(34) becomes:

liµ + (Mi − ci)δi ≤ Mi (36)

liµ + (ci + 1 − mi)δi ≥ ci + 1 (37)

Note that this technique of adding auxiliary variables has been used
to solve propositional logic via integer programming (Williams, 1987;
Williams, 1993). This technique has also been applied to Hybrid Sys-
tems in (Bemporad and Morari, 1999).

So far we have shown that enforcing (32) is equivalent to enforcing
constraints (35–37), which can be done using the SBPI. However, note
that we cannot apply the SBPI approach directly, since the constraints
contain variables δi that do not correspond to the markings of any of the
plant places. Thus, supervisor places di are created first, to represent
the places of marking δi. Then the SBPI is applied. Each place di

corresponds to a constraint liµ ≤ ci and is added to the PN according
to the following algorithm:

1. Let T+
i = {t ∈ T : liD(·, t) < 0} and T−

i = {t ∈ T : liD(·, t) > 0}.

2. Add a place di, a copy t+j of each transition tj ∈ T+
i , and a copy

t−j of each transition tj ∈ T−
i . (We say that t′ is a copy of t if

D−(·, t′) = D−(·, t) and D+(·, t′) = D+(·, t).)

3. Connect di to the transitions t+j by input arcs (t+j , di) of weight 1,

and to the transitions t−j by output arcs (di, t
−
j ) of weight 1.

Once the places di have been added to the PN, the constraints (35–37)
are enforced, with δi denoting the marking of di. The result of this
construction can be seen as the closed-loop of the plant with a PN
supervisor enforcing (32).

To illustrate this construction, assume we desire to enforce

[µ2 ≤ 0] ∨ [µ4 ≤ 0] (38)

on the Petri net of Figure 11(a). Assume also the following bounds are
known: µ2 ≤ 2 and µ4 ≤ 3. Note that (38) cannot be represented by
conjunctions of inequalities that use only the variables µ2 and µ4. For
µ2 ≤ 2, the relations (36–37) become (for ci = 0, mi = 0 and Mi = 2):

µ2 + 2δ1 ≤ 2 (39)

µ2 + δ1 ≥ 1 (40)

Similarly, for µ4 ≤ 3 we have

µ4 + 3δ2 ≤ 3 (41)

µ4 + δ2 ≥ 1 (42)
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The places d1 and d2 are shown in Figure 11(b). Figure 11(c) shows
also the monitors a1, e1, a2, e2, and h, which correspond to (39–42)
and (35), in this order, where (35) is δ1 + δ2 ≥ 1 in our example.
Thus, Figure 11(c) represents the closed-loop PN, which can be seen as
the composition of a PN supervisor (Figure 11(d)) with the plant PN
(Figure 11(a)). Unlike to the SBPI, here the closed-loop is obtained by
adding not only places but also transitions to the plant. It can be seen
that the additional transitions are used to represent the disjunctions in
the supervisory rule.

The method introduced here for the enforcement of disjunctions of
constraints has been presented under the assumption of full control-
lability and observability. The issues arising in the presence of partial
controllability and observability are a matter of further investigation. A
related topic is the study of Stremersch and Boel (2001) on the enforce-
ment of specifications that require the marking to stay within a union
of legal sets M1∪M2. Structural conditions are given under which the
least restrictive supervisor enforcing a union of legal sets M1∪M2 can
be implemented by combining the least restrictive supervisor enforcing
M1 with the one enforcing M2. Further, in (Stremersch and Boel, 2002)
a method is given to calculate the maximal controlled-invariant set for
specifications

∨

i[liµ ≤ ci]. The result is obtained in the form of another
disjunction of linear inequalities. Several assumptions are made in terms
of a certain uncontrolled subnet NA. Two of the assumptions are that
NA is acyclic and that the transitions t of NA satisfy D−(p, t) = 1
∀p ∈ •t. The result is obtained under the no concurrency assumption.

7.5. Liveness Enforcement

Here we consider a procedure that designs liveness enforcing supervisors
as supervisors enforcing constraints (1). This approach has appeared
in (Iordache, 2003; Iordache and Antsaklis, 2003a). While the approach
is very general, in that it makes no assumptions on the PN structure, it
does not have guaranteed termination and the nonterminating behavior
can be encountered often in practice.

Given a PN N of initial marking µ0, a transition t is live if for all
reachable markings µ, there is an enabled firing sequence that includes
t. Given T ⊆ T , (N , µ0) is T -live if all t ∈ T are live. Further, (N , µ0)
is live if T -live (i.e., all transitions t are live).

EXAMPLE 3. Note that the PN of Fig. 1(b) is not live, and not even
deadlock-free: the sequence t1, t2, t7 leads to deadlock. Here, the super-
visor causes deadlock, as the plant in Fig. 1(a) is live. So we consider
enhancing a specification Lµ ≤ b with additional constraints L′µ ≤ b′

such that the resulting supervised system is live.
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Figure 11. (a) the plant; (b) adding the places di; (c) the closed-loop; (d) the
supervisor.
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The procedure for T -liveness enforcement has the following input:

1. A PN N and the set T ⊆ T ;

2. The sets of uncontrollable and unobservable transitions Tuc and Tuo;

3. Optionally, a set of reachable-marking constraints (RMC) Gµ ≤ h.

Note that the RMC describe constraints that the reachable markings
are known to satisfy. Formally, given a set of initial markings of interest
MI , the RMC satisfy that ∀µ0 ∈ MI ∀µ ∈ R(N , µ0): Gµ ≤ h, where
R(N , µ0) is the set of reachable markings of (N , µ0). The RMC is
an optional argument, and its implicit value corresponds to N

m (all
possible markings). The output of the procedure is the following:

1. Two sets of constraints Cµ ≤ d and C0µ ≤ d0, describing the
supervisor.

2. A boolean variable LR, where LR = TRUE indicates least-restrictive
supervision.2 (LR is set by checking sufficient conditions for least-
restrictive supervision; in principle, the supervision could be least-
restrictive also when LR = FALSE).

3. A boolean variable TERM , where TERM = TRUE indicates
successful termination.

The role of the constraints Cµ ≤ d and C0µ ≤ d0 is described in the
following result of (Iordache, 2003; Iordache and Antsaklis, 2003a).

THEOREM 3. If the procedure terminates and TERM = TRUE,
then Cµ ≤ d is admissible and (N , µ0) supervised according to Cµ ≤ d
is T -live for all initial markings µ0 ∈ MI satisfying C0µ0 ≤ d0 and
Cµ0 ≤ d.

Note that MI = N
m when no RMC is given. On the other hand,

when an RMC is given, the supervisor design may rely on it, and so
T -liveness enforcement is not guaranteed for µ0 /∈ MI .

As Theorem 3 shows, the initial marking is a variable, not a given
input, just as in the SBPI. In this context, this is what “least restrictive
supervision” means. The supervisor defined by Cµ ≤ d and C0µ ≤ d0

is least restrictive if for all initial markings µ0 ∈ MI

- if Cµ0 6≤ d or C0µ0 6≤ d0, no T -liveness enforcing supervisor of
(N0, µ0) exists.

2 For the simplicity of the presentation, LR has not been included in the proce-
dures of (Iordache, 2003; Iordache and Antsaklis, 2003a); however, it is implemented
in the software package (Iordache and Antsaklis, 2002).
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- if Cµ0 ≤ d and C0µ0 ≤ d0, the supervisor enforcing Cµ ≤ d is the
least restrictive T -liveness enforcing supervisor of (N0, µ0).

Note that if the procedure terminates and certain sufficient conditions
are satisfied, the supervisor given by Cµ ≤ d and C0µ ≤ d0 is guaran-
teed to be least restrictive. In particular, when T = T (full liveness
enforcement), N is fully controllable and observable (Tuc = ∅ and
Tuo = ∅) and the procedure terminates, the procedure generates the
least restrictive liveness enforcement supervisor, if a liveness enforcing
supervisor exists.

EXAMPLE 4. As shown before, enforcing the specification (6–7) on
the PN of Fig. 1(a) leads to deadlock. To add new constraints that
ensure liveness, we start with the closed-loop of Fig. 1(b). Consider
applying the T -liveness enforcing procedure with T = T (full liveness
desired), Tuo = ∅ and Tuc = {t2, t5}. Due to (8–9), the RMC are µ1 +
µ2 + µ5 + µ8 = 1 and µ3 + µ7 + µ9 = 1. The procedure terminates with
the following constraints Cµ ≤ d:

µ1 + 2µ2 + µ5 + µ7 + µ8 + µ9 ≥ 2 (43)

µ1 + µ2 + µ3 + 2µ5 + µ8 + µ9 ≥ 2 (44)

and the following constraints C0µ ≤ d0

µ3 + µ4 ≥ 1 (45)

µ6 + µ7 ≥ 1 (46)

In view of the RMC, µ8 and µ9 can be substituted, and then (43) and
(44) become

µ2 − µ3 ≥ 0 (47)

µ5 − µ7 ≥ 0 (48)

The supervised PN is shown in Figure 12(a), while Figure 12(b) shows
the original plant supervised with (6–7) and the additional constraints
(47–48) for liveness enforcement.

When the procedure generates a least restrictive supervisor and
MI = N

m, Cµ ≤ d and C0µ ≤ d0 identify the set of markings for
which T -liveness can be enforced. Note that for fully controllable and
observable PNs, the problem of characterizing the set of markings
for which a PN can be made T -live is decidable (Valk and Jantzen,
1985). The algorithm proposed in (Valk and Jantzen, 1985) searches
the marking space to find a set of minimal markings; based on this set
the least restrictive T -liveness enforcing supervisor can be immediately
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Figure 12. Enforcing liveness in the PN of Figure 1(b).

derived. The algorithm of Valk and Jantzen has the drawbacks that: (a)
the coverability graph is to be evaluated for every marking considered
during the search; (b) the number of minimal markings may be large
(e.g. exponential in the size of the net).

In the literature, there is another liveness enforcing method that
represents the supervisor by means of a set of constraints (1). In (Park
and Reveliotis, 2002), dealing with a class of resource allocation sys-
tems (Reveliotis, 2005), the liveness enforcing supervisor is represented
by constraints (1) on the marking of the sequential processes, where
L has nonnegative elements. The method allows constraints (1) of the
same form to be used as forbidden state specifications, due to the fact
that the monitors enforcing them can be seen as virtual resources of the
resource allocation system. Thus, both forbidden state specifications
and liveness can be enforced.

Literature results expressing supervisory policies in terms of moni-
tors of a PN plant are of special interest in our survey, as any monitor-
based solution can be expressed by constraints (1) or their extension
(30). In the literature, there are numerous papers that use monitor-
based solutions for deadlock prevention or liveness enforcement, such
as the following. In a computer science context, a monitor-based solu-
tion for least restrictive liveness enforcement in processes with resource
allocation appears in (Lautenbach and Thiagarajan, 1979; Suraj, 1980).
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The class of PN models used in these papers is very much related to
the PN models used for liveness enforcement in flexible manufacturing
systems. One of the first papers dealing with liveness enforcement for
PN models of flexible manufacturing systems is (Banaszak and Krogh,
1990). While the supervisory policy of (Banaszak and Krogh, 1990)
was not given a monitor-based interpretation, some of the subsequent
work on related PN models resulted in monitor-based solutions. Thus,
a less restrictive supervisory policy appears in (Xing et al., 1996), to-
gether with conditions guaranteeing least restrictive supervision and a
monitor-based implementation of the policy. Monitor-based solutions
for extended classes of PN models appear in (Ezpeleta et al., 1995; Park
and Reveliotis, 2001; Tricas et al., 2000). The approaches of (Barkaoui
et al., 1997; Tricas et al., 2000) are more closely related to the procedure
of this subsection, due to the fact that they detect and correct deadlock
situations iteratively.

7.6. Discussion

This section has shown that various types of specifications can be
approached by structural methods and SBPI. Among language specifi-
cations, we have only considered specifications requiring the language
of the closed-loop to be a sublanguage of the specification. We have
not considered the languages of labeled PNs with final states. For such
PNs, a word is accepted only if it leads to a marking contained in the
set of the final states. For such problems the supervision is to be non-
blocking, that is, words leading to states from which the final states are
unreachable should not be allowed. Thus, if L is the language describing
the specification, the approach of section 7.2 can be used to ensure all
sequences of plant events are in L. However, the approach of section 7.2
may allow the plant to deadlock after generating a word w ∈ L \ L.
Thus, a final state may never be reached. A topic of further research
is to enhance the approach of section 7.2 to guarantee this situation
cannot occur. This topic is related to (Ichikawa et al., 1985; Ichikawa
and Hiraishi, 1988), dealing with specifications requiring target states
to be reached and prespecified sequences to be fired.

Another type of languages considered in the literature deal with the
infinite behavior of a plant. They express the requirement that there are
no deadlocks and that for all infinite words some final state is infinitely
often visited. Automata with this acceptance rule are called Büchi
automata. It is known that specifications expressed in LTL (linear-
time temporal logic) can be translated into Büchi automata (Clarke
et al., 1999). This result is interesting, as it suggests temporal logic can
be approached in our PN setting. Thus, given a Büchi automaton A,
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we can first apply the approach of section 7.2, to generate a supervisor
enforcing the part of the specification described by the structure of A.
Then, deadlock prevention or T -liveness enforcement methods could be
applied to guarantee some final states are infinitely often visited. The
application of PN structural methods to temporal logic is an interesting
topic of further research.

The application to temporal logic highlights the importance of a
reliable tool for T -liveness enforcement. The need for T -liveness en-
forcement and deadlock prevention arises also from the methods enforc-
ing (1) and its extensions to generalized linear constraints, disjunctive
constraints, and language constraints. Indeed, many of these methods
do not guarantee that the closed-loop will be live.

The procedure of section 7.5 could be applied for liveness enforce-
ment, having the benefits that it is a structural approach, it can enforce
not only liveness but also T -liveness, it makes no assumptions on the
structure of the PN, and supports partial controllability and partial ob-
servability. However, as mentioned in section 7.5, the procedure of (Ior-
dache, 2003; Iordache and Antsaklis, 2003a) does not have guaranteed
termination and the nonterminating behavior can be encountered often
in practice. While improvements that mitigate the termination issue are
possible, such as in (Iordache, 2003), the total elimination of this issue
is a matter of further research. As discussed in section 7.5, there are
other liveness enforcement methods that have guaranteed termination.
However, most results can only be applied to special classes of PNs.
An exception is (Valk and Jantzen, 1985), which can deal also with
arbitrary PN structures. Moreover, most work has been done under
the assumption of full controllability and observability. Papers that
consider partial controllability include (Barkaoui et al., 1997; Park
and Reveliotis, 2002; Sreenivas, 2000). These facts indicate that more
research work is needed in the area of liveness enforcement for arbitrary
PN structures with partial controllability and partial observability.

8. Applications

The constraints (1) have been proposed for various applications, such
as in chemical processes (Yamalidou and Kantor, 1991), AGV coordi-
nation (Krogh and Holloway, 1991), manufacturing constraints (Moody
and Antsaklis, 1998), and mutual exclusion in batch processing (Tittus
and Egardt, 1999). Moreover, the class of constraints Lµ + Hq ≤ b has
also been applied for the supervisory control of railway networks (Giua
and Seatzu, 2001). The constraints Cv ≤ b have also been used for fair-
ness enforcement, such as bounding the difference between the number
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of occurrences of two events, in protocols (Genrich et al., 1980) and
manufacturing (Li and Wonham, 1993).

In this section we mention some other areas of application for the
constraints (1). We consider here an application to semaphores in Op-
erating Systems, an application to fault tolerance, and the relation of
(1) to synchronic distances.

8.1. Semaphores

The application of supervisory control techniques in software engineer-
ing has been proposed in (Lemmon et al., 2000; Lemmon and He, 2000).
There, the supervisor can be seen as a plug-in to other software mod-
ules, ensuring certain specifications are satisfied. The approach there
is to use the unfolding3 of PN models for supervisor design. Other
approaches could be applied as well for the supervisor design of soft-
ware modules. In this section we consider monitor-based supervisors,
we show such supervisors can be implemented in software by means
of semaphores, and we discuss some of the potential benefits of the
supervisory control approach for automatic code generation.

Semaphores, monitors and rendez-vous mechanisms have been used
in the context of Operating Systems for synchronization and control
of access to shared resources. The PN modeling of these mechanisms
has been considered in the literature (Zuberek, 1999). In particular,
the relation between PNs and semaphores has been known for a long
time (Kosaraju, 1973). The observation that monitors correspond to
semaphores is also known (Holloway et al., 1997; He and Lemmon,
2000).

Semaphores are nonnegative integer variables that can be accessed
by means of two indivisible operations provided by the operating sys-
tem: wait and signal. Given a semaphore x, when a process calls
wait(x), the operating system acts as follows: (a) if x ≥ 1, x → x−1; (b)
if x = 0, the process calling wait(x) is suspended. The calls signal(x)
result in the following: (a) if there are processes suspended on wait(x),
one of them is selected to resume its execution; (b) otherwise, x → x+1.

Semaphores can easily be modeled by monitors, as illustrated in
Figure 13. The figure shows three processes PR1, PR2, and PR3, that
share a memory location. The process PR1 may access the memory
when p2 is marked, PR2 when p5 is marked, and PR3 when p8 is
marked. To ensure the memory is not read and written at the same
time by different processes, a semaphore is added, which is represented
by the marking of the place C. Thus, the transitions t ∈ C• correspond
to wait calls and the transitions t ∈ •C to signal calls. For the marking

3 Unfolding is a partial order method that constructs a reduced reachability graph
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Figure 13. PN model of three processes with a semaphore.

shown in the figure, PR3 is running, while PR1 and PR2 are sus-
pended, as they cannot execute t2 and t6. However, after PR3 executes
t11 (signal), one of PR1 or PR2 may resume its execution. Note also
that the constraint enforced by the semaphore is µ2 + µ5 + µ8 ≤ 1.

This example illustrates also that given a specification, such as that
a memory location should only be accessed by one process at a time,
the semaphores implementing it may be automatically generated us-
ing the supervisory techniques of this paper. The specifications (1)
may result in more complex control structures, with more than one
monitor connected to a single transition. This situation requires some
simple extensions of the semaphore operations wait and signal. Other
minor extensions are needed to implement specifications (29), as the
monitors enforcing (29) may have self-loops. However, the extensions
are somewhat more involved in the case of specifications represented
by disjunctions (section 7.4). Note that the usage of semaphores may
lead to deadlocks. However, a liveness enforcing approach (section 7.5)
could be used to automatically enhance the code with calls to additional
semaphores such that no deadlock can occur. While semaphores have
been typically used in a centralized setting, by means of the approach
of section 6.5, it is possible to decompose a centralized specification for
enforcement in a decentralized or distributed setting.
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8.2. Fault Tolerance

Recent research on the robustness of the SBPI based designs to faults
in a plant appears in (Iordache and Antsaklis, 2004). There it is shown
that the designs based on the SBPI and the related liveness enforcing
approach of (Iordache and Antsaklis, 2003a) have remarkable built-in
qualities that simplify the fault accommodation process. In fact, only
minor updates may be required for certain faults and reconfigurations.
The kind of faults/reconfigurations considered in (Iordache and Antsak-
lis, 2004) are: faults modeled by token loss/gain, a class of changes in
the constraints, and changes in the controllability/observability of the
system.

In what follows, we focus on a different approach to fault toler-
ance (Hadjicostis and Verghese, 1999; Sifakis, 1979; Suarez, 1985), in
which additional places are added to a PN that allow detecting and
correcting errors. Namely, we show that these places can be described
by constraints Lµ ≤ b and Lµ + Hq ≤ b.

NE = (PE , T,D−
E ,D+

E) is an embedding of a PN N = (P, T,D−,D+)
if P ⊆ PE and the input/output matrices are related by:

D−
E =

[

D−

X−
E

]

D+
E =

[

D+

X+
E

]

NE is a separate redundant embedding (Hadjicostis and Verghese,
1999) if for every initial marking µ0 of N and initial marking µ0,E =
Gµ0 of NE, all firing sequences enabled by µ0 in N are also possible
from µ0,E in NE. The matrix G is required to have the form:

G =

[

In

C

]

for n = |P |. Note that for a separate redundant embedding, the places
of the embedding are implicit, as their marking always enable a tran-
sition t if the marking of P enables t. Given a matrix X, let’s write
X ≥ 0 if all elements of X are nonnegative; given the matrices X and
Y , let’s write X ≤ Y if Y − X ≥ 0, and let min(X,Y ) denote the
minimum taken element by element, that is, the matrix Z such that
Zi,j = min(Xi,j , Yi,j). Let’s define also max(X,Y ) in a similar way.

THEOREM 4. (Hadjicostis and Verghese, 1999) NE is a separate re-
dundant embedding iff C ≥ 0, X−

E = CD− − A and X+
E = CD+ − A,

where 0 ≤ A ≤ min(CD−, CD+).

We show that constructing a redundant embedding is equivalent
to designing the supervisor enforcing Lµ + Hq ≤ 0 for L ≤ 0 and
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H ≤ −LD−. From (Iordache and Antsaklis, 2003b), it is known that in
the fully controllable and observable setting, the least restrictive super-
visor enforcing Lµ + Hq ≤ 0 corresponds to a PN of input and output
matrices X− = max(0, LD,H) and X+ = max(0,−LD) + max(0,H −
max(0, LD)). Thus, the closed-loop is given by the input and output
matrices:

D−
C =

[

D−

X−

]

D+
C =

[

D+

X+

]

It turns out that we have the following result:

THEOREM 5. NE is a separate redundant embedding iff there are
Lµ + Hq ≤ 0 with L ≤ 0 and H ≤ −LD− such that X− = X−

E and
X+ = X+

E .

The result can be proved based on Theorem 4: if NE is a separate
redundant embedding, we can define L = −C and H = CD− − A,
and then prove X− = X−

E and X+ = X+
E . On the other hand, if

Lµ + Hq ≤ 0 with L ≤ 0 and H ≤ −LD−, we can define C = −L and
A = min(−LD−,−LD+) − max(0,H − max(0, LD)), and then prove
0 ≤ A ≤ min(CD−, CD+).

In (Hadjicostis and Verghese, 1999), two types of faults are consid-
ered. The first one, place failures, results in a change in the number
of tokens. The second one, transitions failures, result in marking errors
when the postcondition or the precondition of a transition t is not
executed, that is, when we have either µ′

E = µE − D−
E(·, t) or µ′

E =
µE + D+

E(·, t) instead of µ′
E = µE + D+

E(·, t) − D−
E(·, t). The detection

and identification of failures relies on C for place failures, and on A for
transition failures. Note that if we limit ourselves to place failures, we
are free to chose any A such that 0 ≤ A ≤ min(CD−, CD+). In particu-
lar, the choice A = min(CD−, CD+) corresponds to an embedding that
does not add self-loops to the Petri net. This corresponds to constraints
with L = −C and H = CD− − A, that is, H = max(0, LD). However,
the constraints Lµ + Hq ≤ b with H = max(0, LD) can be simply
expressed (under the no concurrency assumption) as Lµ ≤ b (Iordache,
2003). This shows that the constraints (1) can also be used in the
context of fault detection and identification.

8.3. Synchronic Distances

An area of interest in the study of PNs is the Theory of Synchrony.
Introductions to the field may be found in (Genrich et al., 1980; Suarez,
1987). The main issue here is the dependence between transition fir-
ings, such as, for instance, how many times can one transition t1 be
fired without firing another transition t2. An important concept in this
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theory is the synchronic distance, defined below. We show here that
specifications requiring bounds on synchronic distances are related to
the specifications of the form Cv ≤ b. This observation is important
because, as mentioned also in section 7.1, enforcing constraints Cv ≤ b
can be reduced to enforcing constraints (1).

Given a finite firing sequence σ of firing count vector σ, let σi =
σ(ti). Thus, σi denotes the number of occurrences of ti in σ. Let’s
recall also that the Parikh vector v equals σ when σ is the sequence of
firings since the initialization of the system. Given a PN with an initial
marking and given two transitions t1 and t2, the synchronic distance
can be defined by δ(t1, t2) = supσ |σ1 − σ2|, where the supremum is
taken over all finite sequences σ enabled from some reachable marking.
However, this definition may not be appropriate for systems in which
a transition t1 may fire n times as often as t2, in which case it would
be more natural to evaluate supσ |σ1 − nσ2|. For this reason and in
order to compare sets of transitions instead of just single transitions,
the synchronic distance is defined with respect to weight vectors W1

and W2 as δ(W1,W2) = supσ |W1σ − W2σ|.
As shown on an example in (Genrich et al., 1980), it may be useful to

have specifications of the form δ(W1,W2) ≤ d. Note that |W1v−W2v| ≤
d/2 ⇒ δ(W1,W2) ≤ d. Indeed, for any sequence σ1 fired from the initial
state, if σ1 = σ0σ, we can write that |W1σ −W2σ| ≤ |W1σ

0 −W2σ
0|+

|W1σ
1 −W2σ

1|. However, |W1σ
1 −W2σ

1| ≤ d/2 and |W1σ
0 −W2σ

0| ≤
d/2. Therefore, δ(W1,W2) = supσ |W1σ − W2σ| ≤ d. The facts that
|W1v − W2v| ≤ d/2 ⇒ δ(W1,W2) ≤ d and that |W1v − W2v| ≤ d/2 is
of the form Cv ≤ b, indicate that the constraints Cv ≤ b are relevant
for problems involving synchronic distance constraints.

9. Conclusions

The problem of enforcing specifications Lµ ≤ b can be approached
by numerous methods, as shown in this survey. We have emphasized
a subset of structural methods, showing that they can be extended to
very general plant models, including labeled Petri nets. Enforcing spec-
ifications Lµ ≤ b is of interest to numerous problems, as more general
specifications can be reduced to the form Lµ ≤ b by transforming the
plant model. The general specifications treated in this paper include
languages and disjunctions of linear inequalities.

Finally, it should be noted that some of the methods mentioned in
this paper have been implemented in software. In particular, the SPN-
BOX (Iordache and Antsaklis, 2002) is a Matlab toolbox available on
the web, that implements supervisor design approaches of (Moody and
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Antsaklis, 2000; Iordache and Antsaklis, 2003b; Iordache and Antsaklis,
2003a) for SBPI design and liveness enforcement.
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