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set, and also in other contexts, e.g. [4], [2]. Note that
some model uncertainties could be incorporated in this
framework [6]. To our knowledge, the entire material of
this paper is new.

The paper is organized as follows. After presenting
our notation and definitions in section Il, a motivation is
presented in section Ill. The motivation shows the rele-
vance of the controllable invariant sets to a hybrid system
abstraction problem. Then, the computation is approached
in section IV. The approach is formally proved in the
same section. Section IV includes also an investigation of
the properties of the computational approach and of the

_ I INTRODUCTION _ controllable invariant sets, in general.
Controlled invariant sets have been used in the hybrid

systems literature for the solution to the safety problem Il. DEFINITIONS

(e.g. [7]). This paper introduces a new class of controlled This is our notation. Given a hybrid system of set of
invariant sets, called controllable invariant sets. The contertodes), we denote by nuv(q) the invariant set of the mode
is that of mode dynamics of hybrid systems with control € Q. Also, let X denote the domain of the continuous
inputs and bounded disturbances. The controllable invariastiate variabler. In this paper we assume that the dynamics

Abstract—In this paper we introduce a new class of
controlled invariant sets, called controllable invariant sets.
Intuitively, a controllable invariant set has the property that
from any “large enough” connected region of the set it is
possible to reach any such other region of the set, regardless
of disturbances. Disturbances are assumed to be bounded.
The range of the control inputs is assumed to be given and
is allowed to be bounded. The main result of the paper is
a nonrecursive approach for the computation of controllable
invariants. The other results of the paper deal with properties
of the proposed method and of controllable invariance. The
results of the paper assume hybrid system modes with linear
discrete-time dynamics.

sets are defined as follows. Given a closed neighborhood @f each mode; can be described by

the origin (2, let Q, denote the neighborhodd aroundz
(.e. Q. = {y : y—2x € Q}). ThenJ is a controllable

z(t +1) = A(g)z(t) + B(q)u(t) + E(g)d(t) (1)

invariant set if(2, is a controlled invariant at all points whereu is the control input and is the disturbance, which
x of J, and for all pointsr; andx, of J it is possible to will be assumed bounded. For each madeve define the
reachQ,, from any point of(2,., , regardless of disturbances. following

Thus, this definition implies a certain reversibility, meaning
that as long as we keep the state within it is always
possible to return it to the initial condition (i.e., initial
neighborhood). Such a reversibility fits most engineering
systems. Note that in general the controllable invariant sets
are proper subsets of a maximum controlled invariant set.
In practice, one factor that may cause a controlled invariant ,
set to be not controllable is the bounded range of the control
inputs.

In this paper we approach the computation of the con-
trollable invariant sets for linear discrete-time dynamics ,
and rectangular neighborhoo€ls The computational ap-
proach is nearly optimal, in the sense that the controllable
invariant setJ that is obtained is an open set whose
closureJ contains all controllable invariant sets with the
same neighborhood tyge as.J. The computation involves

The operatoPre represents theredecessor operator
That is, Pre(M) is the set of continuous states from
which M can be robustly reached. In other words,
Vxo € Pre(M) there is a control policy (which may
depend onxy) which, no matter of disturbances, leads
the continuous state from x, to somez; € M.

I C Inv(q) is a controlled invariant set if for all

x € [ there is an admissible control law such that
for all subsequent times x(t) € I, regardless of the
disturbance input.

Let Reach : X — P(P(X)), where forM C X
we haveM € Reach(z) if it is possible to robustly
reach) starting fromz (i.e. no matter of disturbances,
it is possible to reach\/ from z.)! In other words
Reach(z) is the collection of setd8/ with the property
that it is possible to robustly reachd from .

linear programming and projections (also known as Fourier- |4 this paper, we introduce the following class of con-

Motzkin eliminations). Related approaches have been usgd|ied invariant sets, that we call controllable invariant sets.
in [5], [10] for predecessor operator computations, in [3]; et )° denote the interior ofy.

[11] for the computation of the maximal controlled invariant

Definition 2.1 Given a setQ? C R, let Q, = {z €
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:Jy € Q, z = y+ x}. For someq € Q we say that
I C Inv(q) is a controllable invariant set if a connected
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YP(Y) = {E: E C Y} denotes the collection of all subsets %f
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Fig. 1. lllustration of a desirable situation in the controlled behavior of &ig. 2. lllustration of another desirable situation in the controlled behavior
hybrid system. (a) A hybrid system mode with input $ednd output sets of a hybrid system. (a) A hybrid system mode with input etnd output

01, O2 and O3 corresponding to the thick lines, controlled invariant setsetsO1, Oz and O3 corresponding to the thick lines, controllable invari-

J and Pre(O1), Pre(Oz2), Pre(Os) and Pre(J) represented through ant setJ and Pre(O1), Pre(Oz2), Pre(O3) and Pre(J) represented

the shaded areas. (b) Equivalent DE abstraction of the mode, where theough the shaded areas. (b) Equivalent DE abstraction of the mode, where
selfloop corresponds td and the other transitions to the transitions exitingthe selfloop corresponds td and the other transitions to the transitions

01, O2 and Os. exiting O1, O2 and Os.
1) Vz € I: Q, is a controlled invariant set control law. An ideal situation for the DE abstraction is
2) U Q CInv(g) when for allg € @ there isJ, such that:
3) @311,932 € I,Va € Qy,: Q, € Reach(z). (a) J, is a controlled invariant set.
(b) I, C Pre(Jy).
[1l. M OTIVATION € J,C N Pre(Og—gy).
q'€q—

The ability to move between any desirable setpoints i$his situation is illustrated in Figure 1, together with the DE
clearly an interesting benefit of the controllable invariangbstraction of the mode. Thus, once we have thelseasd
sets. In this section we show that the controllable invariar@qéq,, we are interested to compute the maximal controlled
sets can be useful also in the discrete-event (DE) abstractipfvariant setJ, satisfying (i) and (c). Indeed, if the maximal
of hybrid systems. controlled invariant set does not satisfy (b), there is no

Given(Q, Edg), the state machine of a hybrid automatorcontrolled invariant set/, satisfying (a-c). However, even
with time-invariant mode-dynamics, consider the abstragvhen (b) is not satisfied, we may still be able to reduce the
tions (Q', Edg’) with the following property. There are set1, (through a control law) such that (b) is satisfied. An
mapsv : @ — Q and x : @ — X, such that if interesting variant of the requirements (a-c) is given below:
(¢1,42) € Edg' is a controllable transition, theviz, €  (g) J, is a controllable invariant set with a s@tsuch that
x(q}), there is a control law yielding a trajectory from U Q. € Inv(q) N Safe(q).

(q1,%1,0) to (g2, x2,t2) for somezy € x(g5) and time z€J,

to > 0, regardless of disturbances, and at all intermediaf’) I, € Pre(Jy).

states(q,z,t), 0 < t < ty, it is true thatq = ¢; and (C¢) V¢ € ¢ — 3z € J4: Qy C Pre(Og—q ).

x € x(q}). Note thatg; and g, denotev(q;) andv(g;), This situation is illustrated in Figure 2, together with the
respectively. DE abstraction of the mode. Again, once we have the sets

A process by which such abstractions could be found i§ andO,_.,, we are interested to compute a controllable
not presented in this paper. However, note two favorablevariant set/, satisfying (4) and (¢). This can be achieved
situations an abstraction process should take advantage lof.computing a maximal controllable invariant set satisfying
First, we define for every modge Q the following sets:  (&). Then, if (¢) is not satisfied and/, is maximal no

() J, € Inv(q) N Safe(q), where Safe(q) is the set Solution to (&) exists, but if (B) is not satisfied, we may
specifying the safety specification for the maglgthat ~Still be able to reduce the séj. _
is, Inv(q) \ Safe(q) is the forbidden state set of the Note that the qqn_dltlons @) are a varla_nt of_ (a-c). In-
modeq.) deed, by the definition of the controllable invariant set) (c

(”) For every (q,q/) c Edg, let Oq—>q’ C Inv(q) N |mplles Jq - PT@(OQ_,QI). ThUSJq - /Q_, PT@(OQ_,QI).
Safe(q) denote the continuous states for which thergyrther, every controllable invariant set is a controlled
is an input leading the system frognto ¢’, no matter invariant set. (However, the converse is not true.) The (a
of disturbances. ¢’) variant may be computationally advantageous when it

(i) Let I, be the set of continuous states in which thgs not easy to comput&re(0,_.,); then we do not need
modeq may be entered from the modes such that to compute the whole setBre(O,_.,), but only to show
(¢c,q) € Edy. that they intersect/, as shown at (§. This quality may be

(iv) Let's write ¢’ € ¢ — if g andq’ satisfy (q,q') € Edg.  of interest especially in the discrete-time case, in which the

Note that the sefl, could be reduced by an appropriatecomputation of the predecessor operator is iterative and may
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not terminate. Note also that here the controllable invariamtr
set is computed first, and then the predecessor sets. On the . “ Y (G M) 4Gt Hb+MB < o (5
other hand, in the previous situation the maximal controlled”® € 1 © [ < b} : (G+M)at+Ga+Hb+ MG < g (5)

invariant set was computed only after the computation Qfhereq = 2 — 2% and = 23 — z*. Note thata can too be

the predecessor sets. eliminated, as max Ga = |G|b, where the maximum
acir:|z|<
IV. COMPUTATION is taken separately on each row G, and|G| = [|G;]]
A. The Intuition denotes the absolute value Gf We obtain:
Considering a system of dynamics (G + M)zt + (|G] + H)b+ MB < g (6)
ot +1) = Az(t) + Bu(t) + Ed(t) (@) 1o satisfy (6) for allg € [—6, 4], wheres € R™, § > 0, is

if the system is stabilizable, there is a state feedback cogiven, the following constraint is obtained:

troller w = Kz such that the system is stable. Furthermore, N

for eachu = Kz + r, wherer is a constant, there is a (G + Moy + (1G] + H)b + [M]o < g (7)
pointz™ to which (in the absence of disturbances) the stafRote that (7) describes the set of points such that(,:
converges. Intuitively it is clear that there is a region ofs a controlled invariant and from all poinis € Qg it is
attraction around™, such that no matter of the disturbancegpossible to reach anf,: with |23 — 27| < § in one time
(which are assumed to be bounded), that region is invariagep. Obviously, we would like this set of point$ to be as

for the givenr. Furthermore, if each such point has a large as possible. At the same time, we are also interested
region of attraction, the state can be moved from one in having the set$),. as small as possible (i.é,as small
region to another. Indeed, if is in the region of(z},71), as possible). In view of (3) the minimum value bis:

by applying the controkh = K« + ro we can move it to 4+ d-

the region of(z3,72). Also, in order to keep the control b> ——— (8)

u = Kz + r within its admissible domair/, we can 2

“slowly” changer from r; to 5. Therefore, the controllable On the other hand, the minimum value dfs 0. From (7)
invariant set would correspond to the points While linear with 6 = 0 we derive the controllable invariant set

state feedback was used in this illustration, we are not going

to refer to it in what follows. We consider a more general (G+M)z+ (Gl + H)b<g ©)
state feedback solution. Note that< denotes strict inequality on all elements, that

B. The Computation s,y < z = y; < z; for all indicesi.

We consider the dynamics of equation (2) and Sesee Example 4.1 Assume a system described by the dynamics
Definition 2.1) of the form(2 = {z : |z| < b} whereb € R" _
andb > 0. Recall, givenz*, Q- = {z : |[x — 2*| < b}. z(t+1) = az(t) + u(t) +d(t) (10)
Let ¢/ denote the domain of the control input aftithe wherea € R. Assumed™ = d~ = d, and the control input

(bounded) domain of the disturbance. domain—ug < u < ug. The relation (3) can be written as
Given z7, the set of points} satisfying that9u(t) € U futdy < )

Vz(t) € Qg+ z(t + 1) € Q.+ can be expressed as . arTuTdo = T3
x(t) szt +1) 3 p EIuéU,VxéQzl.{_am_u_'_do < _at+b

Ar+Bu+d™ < a3 +b (11)

Ju € U, Vo € Q5 : { Av+Bu—d- > a3—b ) Then (4) becomes

wherez = z(t), u = u(t), dt = I;la%Ed, andd~ = dy < b
(S . *
—min Fd and the maximum/minimum is taken separately Ve € Qg o + ZO i T3 + Uo +Z (12)
c _ _ ¥
on each row offd. Note that the requirement thet,. be artdo = —Tpuot
invariant corresponds to (3) wher§ = z%. while (7) is
Assuming a convex domaitY = {u : L,u < by}, do < b
:\r/}etlrllputul_ can tl_)e gllrg:\r;létedBfrogn (?2] using Itth_e F;)ltjr?er- (@—1)zt+ (ja| = Db+6+do < uo (13)
focr)mz. in elimination< ( ) [8], [9]. The result is of the (cat+ Dat+ (la] —Vb+d+dy < uo
Vo € Quy : Gr+ Hb+ Mxy < g (4) We see that there is no solution unleggdy < wuo or

o . g _ la] < 1. Once these conditions are satisfied, the controllable
Given a system of inequalities\z < ~ and a variablex; to be

eliminated, the FME generates a new syst&fx < ~' in which z; does invariant is given by:
not appear. The new system contains the inequalitieAof< ~ that do
Vo y 0 ot { (@—=1Dz+(la| =1b+do < uo

not involve z;, and the inequalities obtained from all pairs of inequalities
(—a+1D)z+(la|—Db+dy < wup

i andk with A;; > 0 andAy; < 0, by a weighted sum with appropriate
positive weights. Geometrically\’z < ~’ describes the projection of the
polyhedronAz < + on the hyperplanes; = a, a € R. for a b such thath > dy and (Ja] — 1)b + do < up. O
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The following results establish properties of the con-
trollable invariant sets computed this way. Notably, we
prove that (9) describes a controllable invariant set and that,
with the possible exception of (some of) its boundary, it
coincides with the maximal controllable invariant set with

Q = {z : |z| < b}. For the moment, we assume that in
Definition 2.1Inv(q) = R™.

Let Js = {z: (G+ M)x+ (|G| + H)b+ |M|é < g},
where the notation of (7) is used.

Proposition 4.1 The setJ; is a controllable invariant of
setQ = {xz : |z| < b}.

Proof: The proof is divided in three parts. Part (a)
shows thatvz] € Js Va3 € [ — 0,27 + 6] Va(t) € Qs
Ju € U Vd € D: x(t + 1) € Q. Part (b) shows tha@,,-
is a controlled invariant for alt* € Js. Part (c) shows that
Vat,xs € Js Vo € Qur: Qus € Reach(x).

(a) Leta = z—27] andf = x5 —x]. From3 < § we get
that M 5 < |M|é. Sincex; satisfies (7), it follows that (6)
is also satisfied. Similarly, we derivgs + M)z} + Ga +
Hb+ Mp < g, and soGx + Hb + Mzh < g. However,
this is the projection of

Az + Bu+dt < x5+b
Axr+Bu—d~ > x5-b

that removes the variable € /. Therefore, there is € U
such that (15) is satisfied for the givenandz3 Vd € D.
However, (15) is precisely the condition that sonfe+1) €
Q. is reached from:(t) = = by applying the input..

(b) This results from (a) for; = =5 = z*.

(c) Let z7,z5 € Js be chosen arbitrarily. Let > 0 be
an integer such thates — x| < nd. Let z§, 27, ... 2z be
such thatz; = £a7 4+ 2=£43 for k = 0...n. SinceJ; is
convex,z; € Jsforall k =0...n. Further|z;, , —2;| <4
fork=0...n —1. Then, in view of (a), we reackl,; in
n steps by going fronx(t) € Q. to Q.-, then tof2.;, and
SO on tofl. . [}

Proposition 4.2 z* satisfies(G + M)z* + (|G| + H)b < g
if and only if Q.- is a controlled invariant.

Proof: “=" Let x € Qy+. From (G + M)z* + (|G| +
H)b < gandG(z—z*) < |G|b we getGz+Hb+Mz* < g.
SinceGz + Hb+ Mz* < g is the projection of

{ Ar+Bu+dt < z*+5b

(15)

Az +Bu—d- > zx*—b (16)
that removes the variable € U, it follows that there is
u € U such that wherc(t) =« € Qu+, Vd € D: z(t +1) €
Qo

“<"If Qg+ is a controlled invariant, then (3) is satisfied
for 7 = x5 = z*. This is also true of (4) and (6) with
B = 0. So the conclusion follows. [ |

Proposition 4.3The set/ = {z : (G+M)z+(|G|+H)b <
g} is a controllable invariant.

Proof: By Proposition 4.2, is a controlled invariant
for all z € J. It remains to show that for any;, =5 € J,

31<32<33, J=int(J)

Fig. 3.
J.

lllustration of the (inclusion) relation among the sédts J, and

. can be reached from anye (2,:. Letz],z3 € J. Note
that361,d2 > 0: (G+ M)z + (|G|+ H)b+|M|é < g and
(G+M)z5+(|G|+H)b+|M|d2 < g. Letd = min(dy, 2).
It follows that z7, x5 € Js, and so the conclusion follows
by Proposition 4.1. [ |

Proposition 4.4 All controllable invariant sets of se@ =
{z : |z| < b} are subsets of the set= {z: (G+ M)z +
(IGl+ H)b < g}.

Proof: For any controllable invariant sét the set2,
for x € I should be a controlled invariant. Therefore, the
conclusion follows immediately from Proposition 4.2.1

Propositions 4.3 and 4.4 indicate that the construction
of the controllable set/ in (9) is nearly optimal, as all
controllable invariant set§ of set() satisfyl C J. Further,
if the maximal controllable sef,,, exists, it satisfies/ C
J., C J. Note thatJ is the interior of.J. SoJ is a very
tight approximation of the optimum.

The computation of the set has been done assuming
Inv(g) = R™. In the general case, a controllable invariant
set can be computed as follows. U8t = {z € Inv(q) :

O, C Inv(q)}. Assumingl¥ to be connected, note that a
controllable invariant set idy = J N W. This construction
ensures that regardless of the current statas long as
x € Q, for somez’ € Jy, the state is insidénuv(q).

Note that the computation of the controllable invariant
sets J is not recursive (there are no iterations, and so
no termination issues). In contrast, the computation of the
maximal controlled invariant sets is recursive [3], [10].
Since controllable invariants are also controlled invariants,
we could use the approach of this section for a nonrecursive
computation of controlled invariants. However, if we are
only interested in the computation of controlled invariants,
a better (larger) controlled invariant thahand its closure
J can be obtained by eliminatirigfrom (G+ M)z + (|G| +
H)b < g via FME.

A question to be addressed is what happens in our ap-
proach when no nonempty controllable invariant set exists.
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To this end, we show that = () if and only if there is no the subspace of the state space that can be affected by the
nonempty controllable invariant of s& = {x : |z| < b}. control input. Naturally, this would suggest the uncontrol-
This result has the weakness that the class of nonempéaple part of the system should be stable. The next results
controllable invariants include the singletohs= {2} such shows that under common circumstances the existence of a
that 2, is a controlled invariant. Future work is to find nonempty controllable invariant requires the uncontrollable
conditions in terms of nontrivial controllable invariants,eigenvalues of the systef, B) to be in or on the unity
where a controllable invariant set is nontrivial if containingeircle. Recall, the pair4, B) can be transformed by a

more than one element. similarity transformation tq A, B) such that
Proposition 4.5 A nonempty controllable invariant of set A Ay App B B (17)
Q= {z:|z|] < b} exists if and only if/ = {z : (G + Tl 0 A ()

M)z + (1G] + Ii)b <g}#0. B and (A1, By) is controllable [1]. Thus, the eigenvalues of
Proof: If J # () there isx € J, and sol = {z} A, are called the uncontrollable eigenvalues df B).
is a nonempty (but trivial) controllable invariant set, by,

definition and Proposition 4.2. On the other hand] i 0, Proposition 4.7 Assume) € D. Then a nonempty control-

there is no nonempty controllable invariant of $&t by lable invariant _eX|sts only if all uncontrollable eigenvalues
" A of (A, B) satisfy|A\| < 1.
Proposition 4.4.

The relation between controllability and the existence  Proof: Assume a nonempty controllable invariant
of nonempty controllable invariant sets is also of interestf of set Q exists. LetQ be a similarity transformation
First we show that controllability is neither sufficient nortransforming(A4, B) to the standard form (17). We have
necessary. A=Q'AQ, B=Q 'B, F = Q'F andi = Q.
Proposition 4.6 The controllability of (A, B) is neither Note tt\at (1_71)Ahas the nonempty (A:ontroﬂ?tjle nvariant
sufficient nor necessary for the existence of a nonemply (o Q T e I} of seitAQ ={i: Qi € O}
controllable invariant set. e can writez(t + 1) = Az(t) + Bu(t) + Fd(t) as

X1 (t + 1) = A (t) + Algl’g(t) + Blu(t) + Eld(t) and

Proof: The proof is by examples. For the nonsuffi-vo(t + 1) = Asxa(t) + Eqd(t) for & = [T, 277 and
ciency proof, the system (10) is considered with arbitraryy = [EL,ENT. Let 2* € I. Then(,- is a controlled
sets() and “large” disturbances. Then we show that noinvariant. Letz(t) € Q.- such thatzs(t) # 0. Assume
even for controllable invariants of sefs= {z : |z| < b} do(t +i) = 0 Vi = 0...k. We have thatrs(t + k) =
is controllability necessary. Akxo(t). Let X be an eigenvalue ofd; and w its left

Nonsufficiency:The proof is by contradiction. Assume aeigenvector. Themas (t + k) = \fwaa (). Since(),- is a
nonempty controllable invariant sét exists. Letz* € I  controlled invariant, in order to have(t + k) € Q.- we
and z(0) € .- such thatz(0) # 0. Without loss of need a boundedzs(t + k) at all k, and so|\| < 1. [ |
generality, assume(0) > 0. Now consider the system (10)
with @ > 1 anddy > ug. The system(a, 1) is controllable.
Assumed(k) = do for all k. Then, z(t) = a'z(0) + This paper has introduced the controllable invariant sets,
Zzzl a'~*(u(k — 1) + d(k — 1)), and soz(t) — oo as as a subclass of the controlled invariant sets. A nearly opti-

k — oo, regardless ofi(k). It follows the input cannot keep mal method for the computation of the controllable invariant
the state inQ2,-, soI cannot be a controllable invariant. sets has been proposed. The computation approach assumes
Non-necessity:Assume a system consisting of two statdinear discrete-time dynamics with bounded disturbances.

variablesz and z’, wherex obeys (10) andi’(t + 1) =  This approach is very dissimilar to the approaches used
a'z'(t) +d'(t), —do < d'(t) < dp for all t, and|a’| < 1. for the computation of controlled invariant sets in that it
Clearly, the system is not controllable, ashas no effect involves no iterations, and so has guaranteed termination.
onz’. Note that for! > do/(1—|a’|) the set?’ = [-V/,1/] Extensions to classes of nonlinear dynamics are possible,
is an invariant oft’ (¢t + 1) = a’2/(t) + d'(¢). It follows that and may be considered in the future work.

if I is a controllable invariant of sé? for the system (10),
a controllable invariant for our system I$ = I x {0} of
setQ x Q. Moreover, nonempty controllable invariants [1] Pg;7 Antsaklis and A. N. Michel.Linear Systems McGraw-Hill,

of set{) = {x : |z| < b} can be constructed, as shown in [2] F. Blanchini and W. Ukovich. A linear programming approach to the
Example 4.1. ] control of discrete-time periodic system with state and control bounds

The fact that controllability is neither sufficient nor nec- in the presence of disturbancdournal of Optimization Theory and
b .. | itivel ffici | Applications 73(3):523-539, 1993.
essary may be surprising. Intuitively, nonsutficiency resultSs; ¢ 'perea and J. Hennet. (A,B)-Invariant polyhedral sets of linear

from the fact that large enough disturbances can render discrete time systemslournal of Optimization Theory and Applica-
controllability ineffective. On the other hand, in case of _ tions 103(3):521-542, 1999. _ . _

ial llabili lable i . b [4] S. Keerthi and E. Gilbert. Computation of minimum-time feedback
partial controllability, a controllable invariant set may be control laws for discrete-time systems with state-control constraints.

the Cartesian product of the origin and of a portion of IEEE Transactions on Automatic Contr@2(5):432—435, 1987.
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