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In this paper, both the asymptotic stability and l1 persistent disturbance attenuation issues are
investigated for a class of networked control systems (NCSs) under bounded uncertain access

delay and packet dropout effects. The basic idea is to formulate such NCSs as discrete-time
switched systems with arbitrary switching. Then the NCSs’ stability and performance prob-
lems can be reduced to the corresponding problems of such switched systems. The asymptotic
stability problem is considered first, and a necessary and sufficient condition is derived

for the NCSs’ asymptotic stability based on robust stability techniques. Secondly, the NCSs’
l1 persistent disturbance attenuation properties are studied and an algorithm is introduced to
calculate the l1 induced gain of the NCSs. The decidability issue of the algorithm

is also discussed. A network controlled integrator system is used throughout the paper for
illustration.

1. Introduction

By networked control systems (NCSs), we mean feed-

back control systems where networks, typically digital

band-limited serial communication channels, are used

for the connections between spatially distributed system

components like sensors and actuators to controllers.

These channels may be shared by other feedback control

loops. In traditional feedback control systems these

connections are established by point-to-point cables.

Compared with point-to-point cables, the introduction

of serial communication networks has several advan-

tages, such as high system testability and resource utili-

zation, as well as low weight, space, power and wiring

requirements (Zhang et al. 2001, Ishii and Francis

2002). These advantages have made the networks

connecting sensors/actuators to controllers increasingly

popular in many applications including traffic control,

satellite clusters, mobile robotics, etc. Recently, model-

ling, analysis and control of networked control systems

with limited communication capability has emerged as a

topic of significant interest to the control community,

see for example Wong and Brockett (1999), Brockett

and Liberzon (2000), Elia and Mitter (2001), Zhang

et al. (2001), Ishii and Francis (2002), and recent special

issue edited by Antsaklis and Baillieul (2004).
Time delay typically has negative effects on the NCSs’

stability and performance. There are several situations

where time delay may arise. First, transmission delay

is caused by the limited bit rate of the communica-

tion channels. Secondly, the channel in NCSs is usually

shared by multiple sources of data, and the channel

is usually multiplexed by a time-division method.

Therefore, there are delays caused by a node waiting

to send out a message through a busy channel, which

is usually called accessing delay and serves as the main

source of delays in NCSs. There are also some delays

caused by processing and propagation which are usually

negligible for NCSs. Another interesting problem in

NCSs is the packet dropout phenomenon. Because of

the uncertainties and noise in the communication chan-

nel there may exist unavoidable errors or losses in the

transmitted packet even when an error control coding

and/or Automatic Repeat reQuest (ARQ) mechanisms

are employed. If this happens, the corrupted packet is*Corresponding author. Email: hlin1@nd.edu
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dropped and the receiver (controller or actuator) uses
the packet that it received most recently. In addition,
packet dropout may occur when one packet, say sampled
values from the sensor, reaches the destination later
than its successors. In this situation, the old packet is
dropped and its successive packet is used instead.
There is another important issue in NCSs, namely the
quantization effect. With the finite bit-rate constraints,
quantization has to be taken into consideration in
NCSs. Therefore, quantization and limited bit rate
issues have attracted many researchers’ attention with
the aim to identify the minimum bit rate required to sta-
bilize a NCS, see for example Delchamps (1990),
Brockett and Liberzon (2000), Elia and Mitter (2001),
Nair et al. (2004), Tatikonda and Mitter (2004). In
this paper we will focus on packet exchange networks,
in which the minimum unit of data transmission is the
packet which typically is with the size of several hundred
bits. Therefore, sending a single bit or several hundred
of bits does not make a significant difference in the
network resource usage. Hence, we will omit the quanti-
zation effects here and focus our attention on the effects
of network induced delay and packet dropout on NCSs’
stability and performance.
The effects of network induced delay on the NCSs’

stability have been studied in the literature. In
Branicky et al. (2000), the delay was assumed to be con-
stant and then the NCSs’ could be transformed into a
time-invariant discrete-time system. Therefore, the
NCSs’ stability could be checked by the Schurness of
certain augmented state matrix. Since most network
protocols introduce delays that can vary from packet
to packet, Zhang et al. (2001) extended the results to
non-constant delay case. They employed Lyapunov
methods, in particular a common quadratic Lyapunov
function, to study bounds on the maximum delay
allowed by the NCSs. However, the choice of a common
quadratic Lyapunov function could make the conclu-
sion for maximum allowed delay conservative in some
cases. The packet dropouts have also been studied
and there are two typical ways to model packet
dropouts in the literature. The first approach assumes
that the packet dropouts follow certain probability
distributions and describes NCSs with packet dropouts
via stochastic models, such as Markovian jump linear
systems. The second approach is deterministic, and spe-
cifies the dropouts in the time average sense or in terms
of bounds on maximum allowed consecutive dropouts.
For example, Hassibi et al. (1999) modelled a class of
NCSs with package dropouts as asynchronous dynami-
cal systems, and derived a sufficient condition on packet
dropouts in the time-average sense for the NCSs’ stabi-
lity based on common Lyapunov function approach.
Note that most of the results obtained so far are for
the NCSs’ stability problem and the delay and packet

dropouts are usually dealt with separately. Here, we
will consider both network induced delay and packet
dropouts in a unified switched system model. In addi-
tion, the disturbance attenuation issues for NCSs are
investigated as well as stability problems.

In this paper, the asymptotic stability and l1 persistent
disturbance attenuation properties for a class of NCSs
under bounded uncertain access delay and packet drop-
out effects are investigated. The basic idea is to formulate
such NCSs as discrete-time switched systems with
arbitrary switching signals. Then the NCSs’ stability
and performance problems can be studied in the switched
system framework. The strength of this approach comes
from the solid theoretic results existing in the literature
of switched systems. By a switched system, we mean a
hybrid dynamical system consisting of a finite number
of subsystems described by differential or difference
equations and a logical rule that orchestrates switching
between these subsystems. Properties of this type of
model have been studied for the past fifty years to
consider engineering systems that contain relays and/or
hysteresis. Recently, there has been increasing interest
in the stability analysis and switching control design of
switched systems (see, e.g., Liberzon and Morse (1999),
Decarlo et al. (2000) and the references cited therein).

The paper is organized as follows. The assumptions
on the network link layer of the NCSs are described in
x 2, and the NCSs with bounded uncertain access delay
and packet dropout effects are modelled as a class of
discrete-time switched linear systems with arbitrary
switching in x 3. The stability for such NCSs is studied
in x 4, and a necessary and sufficient matrix norm condi-
tion is derived for the NCSs’ global asymptotic stability.
This result also improves the sufficient only conditions
found in the literature of asymptotic stability for arbi-
trarily switching systems. The persistent disturbance
attenuation properties for such NCSs are studied in
x 5, and a non-conservative bound of the l1 induced
gain for the NCS is calculated. The techniques are
based on the recent progress on robust performance of
switched systems (Lin and Antsaklis 2003). A networked
controlled integrator with disturbances is used through-
out the paper for illustration. Finally, concluding
remarks are presented.

Notation: The letters E,P,S . . . denote sets, @P the
boundary of set P, and intfPg its interior. A bounded
polyhedral set P will be presented either by a set of
linear inequalities P ¼ fx : Fix � gi, i ¼ 1, . . . , sg, and
compactly by P ¼ fx : Fx � gg, or by the dual represen-
tation in terms of the convex hull of its vertex set
vertfPg ¼ fxjg, denoted by Convfxjg. For x 2 R

n, the l1

and l1 norms are defined as kxk1 ¼
Pn

i¼1 jxij and
kxk1 ¼ maxi jxij respectively. l

1 denotes the space of
bounded vector sequences h ¼ fhðkÞ 2 R

n
g equipped with
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the norm khkl1 ¼ supi khiðkÞk1 <1, where khiðkÞk1 ¼
supk�0 jhiðkÞj.

2. The access delay and packet dropout

For the network link layer we assume that the delays
caused by processing and propagation are ignored,
and we only consider the access delay which serves as
the main source of delays in NCSs. Dependent on the
data traffic, the communication bus is either busy or
idle (available). If the link is available the communica-
tion between sender and receiver is assumed to be
instantaneous. Errors may occur during the communica-
tion and destroy the packet and this is considered as a
packet dropout.
The model of the NCS used in this paper is shown in

figure 1. For simplicity, but without loss of generality,
we may combine all the time delay and packet dropout
effects into the sensor to controller path and assume that
the controller and the actuator communicate ideally.
We assume that the plant can be modelled as a

continuous-time linear time-invariant system described
by

_xxðtÞ ¼ AcxðtÞ þ BcuðtÞ þ EcdðtÞ
zðtÞ ¼ CcxðtÞ

�
, t 2 R

þ, ð1Þ

where R
þ stands for non-negative real numbers,

xðtÞ 2 R
n is the state variable, uðtÞ 2 R

m is control input,
and zðtÞ 2 R

p is the controlled output. The disturbance

input d(t) is contained in D � R
r. Ac 2 R

n�n, Bc 2

R
n�m and Ec 2 R

n�r are constant matrices related to

the system state, and Cc 2 R
p�n is the output matrix.

For the above NCS, it is assumed that the plant

output node (sensor) is time driven. In other words,

after each clock cycle (sampling time Ts), the output

node attempts to send a packet containing the most

recent state (output) samples. If the communication

bus is idle, then the packet will be transmitted to the

controller. Otherwise, if the bus is busy, then the

output node will wait for some time, say $ < Ts, and

try again. After several attempts or when newer sampled

data become available, if the transmission still cannot be

completed, then the packet is discarded, which is also

considered as a packet dropout. On the other hand,

the controller and actuator are event driven and work

in a simpler way. The controller, as a receiver, has a

receiving buffer which contains the most recently

received data packet from the sensors (the overflow of

the buffer may be dealt with as packet dropouts).

The controller reads the buffer periodically at a higher

frequency than the sampling frequency, say every

Ts=N for some integer N large enough. Whenever

there are new data in the buffer the controller will

calculate the new control signal and transmit it to

the actuator. Upon the arrival of the new control

signal, the actuator updates the output of the Zero-

Order-Hold (ZOH) to the new value.
Based on the above assumptions a typical time delay

and packet dropout pattern is shown in figure 2. In this

Sampler

{ x(t)=Ac x(t)+Bc u(t)+Ec d(t)•

z(t) = Cc x(t)

Sampler

ZOH

ZOH

Quantization

Delay

Dropout

τ

Digital Controller

ϕ : x[k] → u[k]

u[k] u(t)

d[k] d(t) z(t)

x(t) x[k]

z[k]

Event Driven

Time Driven

Ts

Figure 1. The networked control systems’ model.

0 Ts nTs

Delay or Dropout Dropout

Sucess

Figure 2. The illustration of uncertain time delay and packet dropout of networked control systems.
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figure the small bullet � stands for the packet being
transmitted successfully from the sensor to the control-
ler’s receiving buffer, maybe with some delay, and
being read by the controller, at some time t ¼ kTsþ

hðTs=NÞ (k and h are integers). The new control signal
is sent to the actuator and the actuator holds this new
value until the next update control signal comes. The
symbol � denotes the packet being dropped due to
error, bus being busy, conflict or buffer overflow etc.

3. A switched system model for NCSs

In this section, we will consider the sampled-data model
of the plant. Because we do not assume time synchroni-
zation between the sampler and the digital controller,
the control signal is no longer of constant value within
a sampling period. Therefore the control signal within
a sampling period has to be divided into subintervals
corresponding to the controller’s reading buffer period,
T ¼ Ts=N. Within each subinterval, the control signal is
constant under the assumptions of the previous section.
Hence the continuous-time plant may be discretized and
approximated by the following sampled-data model

x½kþ 1� ¼ Ax½k� þ ½B B � � � B�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

u1½k�

u2½k�

..

.

uN½k�

2
66664

3
77775þ Ed ½k�

ð2Þ

where A ¼ eA
cTs , B ¼

Ð Ts=N
0 eA

c�Bcd� and E ¼Ð Ts

0 eA
c�Ecd�. The controlled output z½k� is given by

z½k� ¼ Cx½k� ð3Þ

where C¼C c. Note that for a linear time-invariant
plant and constant-periodic sampling, the matrices A,
B, C and E are constant.

3.1. Modelling uncertain access delay

During each sampling period, there are several different
cases that may arise.
First, if there is no delay, namely �¼ 0,

u1½k� ¼ u2½k� ¼ � � � ¼ uN½k� ¼ u½k�, then the state transi-
tion equation (2) for this case can be written as

x½kþ 1� ¼ Ax½k� þ ½B B � � � B�

u½k�

u½k�

..

.

u½k�

2
6666664

3
7777775þ Ed ½k�

¼ Ax½k� þN � Bu½k� þ Ed ½k�:

Secondly, if the delay � ¼ h� T, where T ¼ Ts=N, and
h ¼ 1, 2, . . . , dmax (the value of dmax is determined as
the least integer greater than the positive scalar �max=T,
where �max stands for the maximum access delay),
then u1½k� ¼ u2½k� ¼ � � � ¼ uh½k� ¼ u½k	 1�, uhþ1½k� ¼
uhþ2½k� ¼ � � � ¼ uN½k� ¼ u½k�, and (2) can be written as

x½kþ 1� ¼ Ax½k� þ ½B B � � � B�

u½k	 1�

..

.

u½k	 1�

u½k�

..

.

u½k�

2
66666666666664

3
77777777777775
þ Ed ½k�

¼ Ax½k� þ h � Bu½k	 1�

þ ðN	 hÞ � Bu½k� þ Ed ½k�:

Note that h¼ 0 implies �¼ 0, which corresponds to the
previous ‘‘no delay’’ case.

Finally, if a packet-dropout happens, which may be
due to a corrupted packet or sending it out with delay
greater than �max, then the actuator will implement
the previous control signal, i.e. u1½k� ¼ u2½k� ¼ � � � ¼
uN½k� ¼ u½k	 1�. Therefore, the state transition
equation (2) for this case can be written as

x½kþ 1� ¼ Ax½k� þ ½B B � � � B�

u½k	 1�

u½k	 1�

..

.

u½k	 1�

2
6666664

3
7777775þ Ed ½k�

¼ Ax½k� þN � Bu½k	 1� þ Ed ½k�:

In the following, we will model the uncertain multiple
successive packet dropouts.

3.2. Modelling packet dropout

Here, we assume that the maximum number of the
consecutive dropped packets is bounded, by some inte-
ger Dmax. In this subsection, we will analyse the bounded
uncertain packet dropout pattern and model the NCSs
as switched systems with arbitrary switching.

We first consider the simplified case when the packets
are dropped periodically, with period Tm. Note that Tm is
integer multiple of the sampling period Ts, i.e.,
Tm ¼ mTs. In case of m ¼ Tm=Ts � 2, the first (m	 1)
packets are dropped. Then, for these first (m	 1) steps,
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the previous control signal is used. Therefore

xðkTm þ TsÞ ¼ AxðkTmÞ þNBuðkTm 	 TsÞ

þ EdðkTmÞ

xðkTm þ 2TsÞ ¼ A2xðkTmÞ þN � ðABþ BÞu

� ðkTm 	 TsÞ þ AEdðkTmÞ

þ EdðkTm þ TsÞ

..

.

xðkTm þ ðm	 1ÞTsÞ ¼ Am	1xðkTmÞ

þN �
Xm	2
i¼0

AiBuðkTm 	 TsÞ

þ ½Am	2E, . . . ,E�

�

dðkTmÞ

..

.

dðkTm þ ðm	 2ÞTsÞ

2
664

3
775:

Note that the integer N ¼ Ts=T, where T is the period of
the controller reading its receiving buffers. During
the period t 2 ½kTm þ ðm	 1ÞTs, ðkþ 1ÞTmÞ, the new
packet is transmitted successfully with some delay, say
� ¼ hðTs=N Þ, where h ¼ 0, 1, 2, . . . , dmax. Then

xððkþ1ÞTmÞ ¼AxðkTmþðm	1ÞTsÞþhBuðkTm	TsÞ

þ ðN	hÞBuðkTmþðm	1ÞTsÞ

þEdðkTmþðm	1ÞTsÞ

¼AmxðkTmÞþ N �
Xm	1
i¼1

Aiþh

" #
BuðkTm	TsÞ

þ ðN	hÞBuðkTmþðm	1ÞTsÞ

þ ½Am	1E, . . . ,E �

dðkTmÞ

..

.

dðkTmþðm	 1ÞTsÞ

2
664

3
775

Note that xðkTm þmTsÞ equals xððkþ 1ÞTmÞ, and
xðkTm þ ðm	 1ÞTsÞ ¼ xððkþ 1ÞTm 	 TsÞ. Let us assume

that dðkTmÞ ¼ dðkTm þ 1Þ ¼ � � � ¼ dðkTm þm	 1Þ, and

that the controller uses just the time-invariant linear
feedback control law, uðtÞ ¼ KxðtÞ. Then, we may substi-
tute the u( � ) to obtain

xððkþ 1ÞTm 	 TsÞ

¼ Am	1xðkTmÞ þN
Xm	2
i¼0

AiBKxðkTm 	 TsÞ

þ
Xm	2
i¼0

AiEdðkTmÞ

and

xððkþ 1ÞTmÞ ¼ AmxðkTmÞ

þ N
Xm	1
i¼1

Ai þ h

" #
BKxðkTm 	 TsÞ

þ ðN	 hÞBKxððkþ 1ÞTm 	 TsÞ

þ
Xm	1
i¼0

AiEdðkTmÞ:

Substitute xððkþ 1ÞTm 	 TsÞ into the above equation.
Then

xððkþ 1ÞTmÞ ¼ ½A
m þ ðN	 hÞBKAm	1�xðkTmÞ

þ N
Xm	1
i¼1

Ai þ ðN	 hÞNBK
Xm	2
i¼0

Ai þ h

" #

� BKxðkTm 	 TsÞ þ ðN	 hÞBK
Xm	2
i¼0

Ai

"

þ
Xm	1
i¼0

Ai

#
EdðkTmÞ:

If we let x̂x½k� ¼
xðkTm 	 TsÞ

xðkTmÞ

� �
and d ½k� ¼ dðkTmÞ, then

the above equations can be written as

x̂x½kþ 1� ¼ �ðm, hÞx̂x½k� þ Emd ½k�,

where

In this case, m ¼ Tm=Ts � 2, and h ¼ 0, 1, . . . , dmax.

�ðm, hÞ ¼

N
Xm	2
i¼0

AiBK Am	1

N
Xm	1
i¼1

Ai þ ðN	 hÞNBK
Xm	2
i¼0

Ai þ h

 !
BK Am þ ðN	 hÞBKAm	1

2
66664

3
77775

Em ¼

Xm	2
i¼0

AiE

ðN	 hÞBK
Xm	2
i¼0

AiEþ
Xm	1
i¼0

AiE

2
66664

3
77775:
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For the case of m¼ 1, namely no packet dropout, the
following dynamic equation is derived

x̂x½kþ 1� ¼ �ð1, hÞx̂x½k� þ E1d ½k�,

where

�ð1, hÞ ¼
0 I

hBK Aþ ðN	 hÞBK

� �
, E1 ¼

0

E

� �
:

For the the case of aperiodic packet dropouts, one may
look at the delay and packet dropout pattern (figure 2)
of the NCS as a succession of ramps of various lengths
(Tm1
þ h1, Tm2

þ h2, . . . , Tmk
þ hk, . . .). Therefore, the

NCS along with a typical aperiodic delay and packet
dropout pattern can be seen as a dynamical system
switching among the dynamics with different periodic
delay and packet dropout pattern �ðm, hÞ, for m ¼
1, . . . ,Dmax and h ¼ 0, 1, 2, . . . , dmax. This observation
leads to modelling the NCS as a switched system
namely as

x̂x½kþ 1� ¼ �ðm, hÞx̂x½k� þ Emd ½k�

z½k� ¼ C 0
� �

x̂x½k�,

)
ð4Þ

where

Here �ðm, hÞ 2 f�ð1, 0Þ,�ð1, 1Þ, . . . , �ð1,DmaxÞ,�ð2, 0Þ, . . . ,

�ðDmax, 0Þ, . . . , �ðDmax, dmaxÞg, where Dmax corresponds to

the maximum number of successively dropped packets,

and dmax is the maximum access delay.
For notational simplicity, let us denote the index of all

the subsystems by q ¼ mþ h�Dmax, and call the collec-

tion f1, 2, . . . ,Dmax � ðdmax þ 1Þg the mode set Q, q 2 Q.

Therefore, we rewrite (4) as

x̂x½kþ 1� ¼ �qx̂x½k� þ Eqd ½k�

z½k� ¼ C 0
� �

x̂x½k�:

)
ð5Þ

Associate (5) with a class of piecewise constant functions
of time �: Z

þ
! Q, called switching signals. Note that

each switching signal � corresponds to a (maybe aperio-
dic) delay and packet dropout pattern. In order to study
the effects of bounded uncertain access delay and packet
dropouts on the NCSs’ stability and performance, one
needs to consider all possible delay and packet dropout
patterns which corresponds to considering the arbitrary
switching signals for (5). Therefore, the stability and
performance problems of the NCS are equivalent to
the stability and performance problems of the switched
system (5) with arbitrary switching. To illustrate, we
consider the following example.

Example 1: Consider the continuous-time integrator
with disturbances as the plant

_xxðtÞ ¼
0 1

0 0

" #
xðtÞ þ

0

1

" #
uðtÞ þ

0:1

0:1

" #
dðtÞ

zðtÞ ¼ 1 1
� �

xðtÞ:

Assume that the sampling period Ts is 0.1 second. The

controller reads the receiving buffer every T ¼ 0:01s,
i.e. N ¼ Ts=T ¼ 10. It is assumed that the sensor only

tries to send the new sampled state value during the

first 0.02s of each sampling period Ts, from which we
may obtain that the maximum delay (if successfully

arrived) is �max ¼ 0:02s and dmax ¼ 0:02=T ¼ 2.

�ðm, hÞ ¼

0 I

hBK Aþ ðN	 hÞBK

� �
, m ¼ 1

N
Xm	2
i¼0

AiBK Am	1

N
Xm	1
i¼1

Ai þ ðN	 hÞNBK
Xm	2
i¼0

Ai þ h

 !
BK Am þ ðN	 hÞBKAm	1

2
66664

3
77775, m � 2

8>>>>>>>>>><
>>>>>>>>>>:

Em ¼

0

E

� �
, m ¼ 1

Xm	2
i¼0

AiE

ðN	 hÞBK
Xm	2
i¼0

AiEþ
Xm	1
i¼0

AiE

2
66664

3
77775, m � 2:

8>>>>>>>>>><
>>>>>>>>>>:

1452 H. Lin and P. J. Antsaklis



Also assume that at most three successive packet-
dropouts can occur, namely Dmax ¼ 4. Therefore, the
above NCS can be modelled as an arbitrary switching
system with Dmax � ðdmax þ 1Þ ¼ 12 modes. The state
matrices for each mode can be determined by
substituting the following values

A ¼ eA
cTs ¼

1 0:1

0 1

" #
, B ¼

ðT
0

eA
ctBcdt

¼
0:00005

0:01

" #

E ¼

ðTs

0

eA
ctEcdt ¼

0:105

0:1

" #
, K ¼ 	2 	1

� �

into the expressions for �ðm, hÞ and Em in (4) for all
possible values of m 2 f1, 2, 3, 4g and h ¼ f0, 1, 2g. For
instance, the mode corresponding to the case of two
successive packet dropouts (m¼ 3) and the third
packet arriving with delay 0:02s (h¼ 2), i.e., the eleventh
mode (2�Dmax þ 3 ¼ 11), can be described by

x̂x½kþ 1�

¼

	0:0220 	0:0110 1:0000 0:2000

	0:4000 	0:2000 0 1:0000

	0:1020 	0:0510 0:9992 0:2994

	0:4047 	0:2023 	0:1600 0:8880

2
66664

3
77775x̂x½k�

þ

0:2200

0:2000

0:2399

0:1736

2
66664

3
77775d ½k�

z½k� ¼ 1 1 0 0
� �

x̂x½k�: &

Remarks: Similar techniques were used in Bauer et al.
(2001), in which a NCS with bounded packet dropout
was modelled as a polytopic uncertain linear time-
variant system. In Bauer et al. (2001), it is assumed
that the plant and the controller are well synchronized,
while in this paper we do not have the synchronization
assumption. In addition, we also consider uncertain
access delay in our switched NCS model.
Now we have modelled the NCS with uncertain access

delay and packet dropout effects as a switched system
(5) with arbitrary switching between its N ¼ Dmax�

ðdmax þ 1Þ modes. In the following sections we will
study the asymptotic stability and disturbance attenua-
tion properties of such NCSs within the framework of
switched systems. For notational simplicity we will
write x̂x as x in the sequel.

4. Stability analysis

The effects of the uncertain access delay and packet

dropouts on the persistent disturbance attenuation

property, namely the l1 induced norm from d ½k� to

z½k� for the NCSs (5) will now be investigated. It is

assumed that the disturbance d ½k� is contained in the

l1 unit ball, i.e., D ¼ fd : kdkl1 � 1g. The l1 induced

norm from d ½k� to z½k� is defined as

�inf ¼ inff� : kz½k�kl1 � �, 8d ½k�, kd ½k�kl1 � 1g:

The first problem we need to answer is

Problem 1: Under what conditions the l1 induced

norm from d ½k� to z½k� for the NCSs with bounded

uncertain access delay and packet dropouts is finite?

The answer to Problem 1 is equivalent to the condition

for the arbitrarily switching system (4) to have a finite l1

induced gain. In Lin and Antsaklis (2003), it is shown

that a necessary and sufficient condition for an arbitra-

rily switching system (5) to have a finite �inf is that the

corresponding autonomous switched system x½kþ 1� ¼

��x½k� be asymptotically stable under arbitrary switch-

ing signals. Therefore, Problem 1 is transformed into

a stability analysis problem for autonomous switched

systems under arbitrary switching, which has been

studied extensively in the literature, and is typically

being dealt with by constructing a common Lyapunov

function; see the survey papers by Liberzon and Morse

(1999), Decarlo et al. (2000), Lin an Antsaklis (2005),

the recent book by Liberzon (2003) and the references

cited therein. Various attempts have been made, for

example in Narendra and Balakrishnan (1994),

Shorten and Narendra (1998), Liberzon et al. (1999)

and Liberzon and Tempo (2003) to find a common

quadratic Lyapunov function for the family of systems,

ensuring the asymptotic stability of switched systems for

all switching signals. In Liberzon et al. (1999) and

Agrachev and Liberzon (2001), Lie algebra conditions

were given which imply the existence of a common

quadratic Lyapunov function. It is worth pointing out

that a converse Lyapunov theorem was derived in

Dayawansa and Martin (1999) for the globally asympto-

tic stability of arbitrary switching systems. This converse

Lyapunov theorem justifies the common Lyapunov

method which was pursued in the literature. However,

most of the work has been restricted to the case of quad-

ratic Lyapunov function which only gives sufficient

stability test criteria. In the present paper a necessary

and sufficient condition for asymptotic stability of arbi-

trarily switching systems is given thus improving the

sufficient only conditions found in the literature.
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Let us first introduce a technical lemma (Bauer et al.
1993) for the robust stability of linear time variant
systems

x½kþ 1� ¼ �ðkÞx½k�, ð6Þ

where �ðkÞ 2 A ¼̂¼Convf�1,�2, . . . ,�Ng.

Lemma 1: The polytopic uncertain linear time-variant
system (6) is globally asymptotically stable if and only
if there exists a finite n such that k�i1�i2 � � ��ink < 1
for all n-tuple �ij 2 vertfAg ¼ f�1,�2, . . . ,�Ng, for
j ¼ 1, . . . , n.

Here the norm k � k stands for either 1 norm or1 norm
of a matrix. A necessary and sufficient condition for
the asymptotic stability of the switched NCS (5) can
be presented as the following proposition.

Proposition 1: A switched linear system x½kþ 1� ¼
��ðkÞx½k�, where ��ðkÞ 2 f�1,�2, . . . ,�Ng, is globally
asymptotically stable under arbitrary switching if and
only if there exists a finite n such that

k�i1�i2 � � ��ink < 1, 8�ij 2 f�1,�2, . . . ,�Ng, ð6aÞ

for j ¼ 1, . . . , n.

Proof: See Appendix. œ

Example 2: For the NCS example considered in the
previous section (Example 1), we tested the matrix
norm condition via stochastic methods and observed
that

k�i1�i2 � � ��i24k1 < 1, 8�ij 2 f�1,�2, . . . ,�12g,

holds for j ¼ 1, . . . , 24. Therefore, by Proposition 1, the
NCS in the above example is globally asymptotically
stable.

It is worth pointing out that the above matrix norm con-
dition, although necessary and sufficient, is not easy to
check. It requires a permutation of all possible matrix
products of length n. In addition, the result does not
give any clue on how large the integer n needs to be.
However, starting from the condition obtained here
some equivalent conditions could be identified in the lit-
erature, which are expressed in matrix equation form
and efficient numerical methods have been proposed.
Interested readers may refer to Bhaya and Mota
(1994), Liu and Molchanov (2002), and the references
therein.
Based on Proposition 1 and Lemma 1, we may

conclude the equivalence between the robust asymptotic
stability for polytopic uncertain linear time-variant

systems and the asymptotic stability for switched
linear systems with arbitrary switching.

Corollary 1: The global asymptotic stability for arbi-
trary switching systems x½kþ 1� ¼ ��ðkÞx½k� is equiva-
lent to the global asymptotic stability for polytopic
uncertain linear time-variant systems x½kþ 1� ¼
�ðkÞx½k�, where �ðkÞ 2 Convf�q1 ,�q2 , . . . ,�qNg,
or �ðkÞ ¼

PN
i¼1 wiðkÞ�qi , where wiðkÞ � 0 andPN

i¼1 wiðkÞ ¼ 1 for all k.

Remarks: It is quite interesting that the study of robust
stability of a polytopic uncertain linear time-variant
system, which has infinite number of possible dynamics
(modes), is equivalent to only considering a finite
number of its vertex dynamics as an arbitrary switching
system. In fact, it is not a surprising result since this fact
has already been implied by the finite vertex stability cri-
teria for robust stability in the literature e.g. Molchanov
and Pyatnitskiy (1989), Bhaya and Mota (1994). By
explicitly exploring this equivalence relationship, we
may obtain some ‘‘new’’ stability criteria for switched
linear systems using the existing robust stability results.
Although we only discuss here the discrete-time case,
this result is also true in the continuous-time case.
This fact bridges two distinct research fields. Therefore,
existing results in the robust stability area, which has
been extensively studied for over two decades, can be
directly introduced to study the arbitrarily switching
systems and vice versa.

5. Disturbance attenuation property

In view of the above discussion on the conditions for �inf

to be finite, we limit our attention to asymptotically
stable switched systems under arbitrary switching in
the sequel. We aim to calculate a non-conservative
bound on �inf for the NCS with bounded uncertain
access delay and packet dropouts. This leads to the
second problem studied in this paper.

Problem 2: Determine the minimal l1 induced norm
from d ½k� to z½k� for NCSs with bounded uncertain
access delay and packet dropouts.

To solve this problem, we consider the disturbance
attenuation performance that the switched system (5)
can preserve under arbitrary switching. We will calculate
a non-conservative bound on �inf for the arbitrarily
switching system (5). The basic idea is to translate the
required level of performance into constraints on the
controlled system. The techniques are based on the posi-
tive invariant set theory and our recent results on robust
performance for switched linear systems (Lin and
Antsaklis 2003).
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We first introduce the definition of a positive distur-
bance invariant set for the switched system (5) under
arbitrary switching signals.

Definition 1: A set P in the state space is said to be
positive disturbance invariant for the switched system
(3.4) with arbitrary switching if for every initial condi-
tion x½0� 2 P we have that x½k� 2 P, k� 0, for every
possible switching signal �(k) and every admissible dis-
turbance d ½k� 2 D.

We now formalize the definition of a limit set.

Definition 2: The limit set L for the switched system (5)
with arbitrary switching is the set of states x for which
there exist a switching sequence �(k), admissible sequence
d ½k� and a non-decreasing time sequence tk such that

lim
k!þ1

�ð0, tk, �ð�Þ, d ½��Þ ¼ x

where limk!þ1 tk ¼ þ1 and �ð0, tk, �ð�Þ, d ½��Þ denotes
the value of the solution of (5) at the instant tk, which
originates at x0¼ 0 and corresponds to � and d.

The limit set L has the following property.

Lemma 2: Consider the switched system (5) with arbi-
trary switching, under the asymptotic stability assump-
tion, the limit set L is non-empty and the state evolution
of the switched system (5) converges to L, for every initial
condition x½0�, all switching sequences �(k) and all admis-
sible disturbances d ½k� 2 D. Moreover, L is bounded and
positive disturbance invariant.

The boundedness and convergence of the limit set come
from the asymptotic stability of the switched system
under arbitrary switching. The invariance can be easily
shown by contradiction. The detailed proof is omitted
here due to space limitations. (Similar concepts and
lemma were previously given in Blanchini et al. (1997)
for uncertain linear time-varying systems. The results
developed here are direct extensions to the switched
systems.)
Define now the set

X0ð�Þ ¼ fx : kCxk1 � �g

¼ x :
C

	C

� �
x �

���

���

� �� �
,

where ��� stands for a column vector with each of its
elements equals to �. X0ð�Þ is a polytope containing
the origin in its interior.
A value � < þ1 is said to be admissible for arbitrary

switching signals if � > �inf. Clearly, given �>0, the
response of the switched system satisfies kz½k�kl1 � �
and kd ½k�kl1 � 1 if and only if the switched system (5)

admits a positive disturbance invariant set P under
arbitrary switching such that 0 2 P 
 X0ð�Þ.

In the following, we provide a procedure to com-
pute a positive disturbance invariant set, for arbitrary
switching signals, containing in X0ð�Þ. This is accom-
plished by finding the maximal positive disturbance
invariant set for the switched system (5) under arbi-
trary switching, i.e., a set contains any other positive
disturbance invariant set under arbitrary switching
in X0ð�Þ.

Given a compact set P 
 R
n, we can define its prede-

cessor set for switched systems (5) under arbitrary
switching, preðPÞ, as all the states x that can reach the
set P in the next step in spite of disturbances or switch-
ing signals. It can be calculated as

preðPÞ ¼
\
q2Q

preqðPÞ, ð7Þ

where preqðPÞ stands for the predecessor set of the q-th
subsystem, that is the set of all states x that are mapped
into P by the transformation �qxþ Eqd, for all
admissible d 2 D. See (Blanchini 1994) for linear
programming procedures to calculate the preqðPÞ for a
polyhedral set P.

By recursively defining the sets PðkÞ, k ¼ 0, 1, . . . as

Pð0Þ ¼ X0ð�Þ, P
ðkÞ ¼ Pðk	1Þ

\
pre Pðk	1Þ
� 	

ð8Þ

it can be shown (Blanchini 1994) that Pð1Þ is the maxi-
mal positive disturbance invariant set under arbitrary
switching in X0ð�Þ. We now introduce a lemma guaran-
teeing that this set can be expressed by a finite set of
linear inequalities (i.e. it is a polyhedral) and thus can
be finitely determined.

Proposition 2: Under the asymptotic stability assump-
tion, if L � intfX0ð�Þg for some �> 0, then there exists
some integer k such that Pð1Þ ¼ PðkÞ and this k can be
selected as the smallest integer such that Pðkþ1Þ ¼ PðkÞ.

Proof: See Appendix. œ

In order to check whether a given performance level
�>0 is admissible for the switched system under
arbitrary switching, one may compute the maximal
positive disturbance invariant set Pð1Þ in X0ð�Þ and
check whether or not Pð1Þ contains the origin. If
it does, then � > �inf, otherwise � < �inf. Note that
in both cases we obtain an answer in a finite number
of steps. In the first case, this is due to the above propo-
sition. In the second case, this stems from the fact
that the sequence of closed sets PðkÞ is ordered by inclu-
sion and Pð1Þ is their intersection. Thus 0 =2Pð1Þ

if and only if 0 =2PðkÞ for some k. Thus checking
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whether � > �inf can be obtained by starting from the
initial set X0ð�Þ and computing the sequence of sets
PðkÞ until some appropriate stopping criterion is met.
Note that another useful stopping criterion is derived
as follows.

Proposition 3: If the set PðkÞ � intfX0ð�Þg for some k,
then the switched system (5) does not admit a positive
disturbance invariant set under arbitrary switching in
X0ð�Þ. In other words, � < �inf.

Proof: See Appendix. œ

These results suggest the following constructive proce-
dure for finding a robust performance bound.

Procedure 1: Checking whether � > �inf

1. Initialization: Set k¼ 1 and set Pð0Þ ¼ X0ð�Þ.
2. Compute the set PðkÞ ¼ Pðk	1Þ \ preðPðk	1ÞÞ.
3. If 0 =2Pðkþ1Þ or PðkÞ � intfX0ð�Þg then stop, the proce-

dure has failed. Thus, the output does not robustly
meet the performance level �.

4. If the Pðkþ1Þ ¼ PðkÞ, then stop, and set Pð1Þ ¼ PðkÞ.
5. Set k ¼ kþ 1 and go to step 1.

This procedure can then be used together with a bisec-
tion method on � to approximate the optimal value
�inf arbitrarily close. This solves the Problem 2. In
fact, if the procedure stops at step 3, we conclude that
� < �inf and we should increase the value of the
output bound �. Otherwise, if the procedure stops at
step 4, we have determined an admissible bound for
the output, say � > �inf, that can be decreased. This
can be formalized as a bisection algorithm:

Algorithm 1: Algorithm for Calculating �inf

1. Initialization: Choose the initial interval ½�1,�2� such
that �1 � �inf < �2. Choose �>0, a tolerance level.
A good candidate for �1 is �1 ¼ maxq2Qf�

q
infg 	 �,

where �q
inf is the l1 norm of the q-th subsystem. If

no value for �q
inf is available, �1 may be chosen to

be �1 ¼ �.
2. While ð�2 	 �1Þ > �, set �3 ¼ ð�1 þ �2Þ=2, and check

whether �3 > �inf by the above Procedure. If
�3 > �inf, then set �2 ¼ �3, else set �1 ¼ �3.

3. Output �inf ¼ ð�1 þ �2Þ=2.

Example 3: Consider Example. A non-conservative
bound of �inf for the switched NCSs under arbitrary
switching sequences is obtained as �inf ¼ 0:809, via the
bisection method (with error tolerance �¼ 0.01).

6. Concluding remarks

In this paper, NCSs under bounded uncertain access
delay and packet dropout were modelled as switched

linear systems with arbitrary switching. The asymptotic
stability and persistent disturbance attenuation proper-
ties of the NCSs were studied in the switched system
framework. It was shown that the asymptotic stability
of switched linear systems with arbitrary switching is
equivalent to the robust stability of polytopic uncertain
linear time-variant systems. Therefore, a necessary and
sufficient condition, which roots from robust stability
literature, was given for the NCSs’ asymptotic stability.
This equivalence bridges two distinct research fields and
the stability study of arbitrary switching systems may
benefit from the existing results in the robust stability
area, which has been extensively studied for over two
decades.

Assuming an absolute upper bound on the maximum
number of packets dropped in a row could be conserva-
tive in certain cases. In Lin et al. (2003), we provided an
alternative way to model NCSs as switched systems.
Instead of incorporating all possible delay-dropout pat-
terns to relax the switching signal to be arbitrary, we
specified a subclass of the switching signal by restricting
the occurring frequency and the number of dropped and
seriously-delayed packets in the time average sense. In
particular, it was shown that there exist bounds on the
delay and packet dropout rate and percentage, below
which the NCS stability and L2 disturbance attenuation
properties may be preserved to a desired level. In
Lin et al. (2003), these bounds were identified based
on multiple Lyapunov functions incorporated with aver-
age dwell time scheme.

We believe that switched system approaches to NCSs
are promising, as many research topics like networked
continuous-controller design, controller and scheduling
policy co-design could be pursued in the switched
system framework. For example, in Lin et al. (2005), a
stability and L2 performance preserving network band-
width management policy was proposed based on
switched systems approaches. The potential of dealing
with NCSs as switched systems comes from the existence
of solid theoretic results in the field of switched systems,
jump linear systems etc. Interested readers may refer to
Sun and Ge (2005) and Lin and Antsaklis (2005) for
surveys on the most recent progress on switched linear
systems.
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Appendix

Proof for Proposition 1: The sufficiency is obvious
because under the conditions stated, the uncertain time
variant system x½kþ 1� ¼ �ðkÞx½k� is robustly stable
according to the Lemma 1, where �ðkÞ 2 A ¼̂¼
Convf�1,�2, . . . ,�Ng. This implies the globally asymp-
totic stability of the switched systems x½kþ 1� ¼
��ðkÞx½k� with arbitrary switching.
To prove the necessity, let us assume that there exists

no such n that

k�i1�i2 � � ��ink < 1, 8�ij 2 f�1,�2, . . . ,�Ng,

for j ¼ 1, . . . , n. Therefore, given any n, we may always
find a switching sequence �(k) such that k��ð0Þ��ð1Þ � � �

��ðn	1Þk � 1. Then there exists an initial vector x½0�
such that kx½n�k � kx½0�k, for any n, which contradicts
the condition for globally asymptotic stability. œ

Proof for Proposition 2: By the asymptotic stability
assumption, the switched system is asymptotically
stable under arbitrary switching. Then according to
Lemma 2, there exists k such that for all x½0� 2 X0ð�Þ,
x½k� 2 L � intfX0ð�Þg (8k � k) for all possible switching
signals. By construction, the set PðkÞ has the property
that x½k� 2 X0ð�Þ, k ¼ 0, 1, . . . , k, for all possible
d ½k� 2 D if and only if x½0� 2 PðkÞ. This implies that
PðkÞ ¼ Pðkþ1Þ. Otherwise, PðkÞ � Pðkþ1Þ, and there exists
x½0� 2 PðkÞ but x½0� =2Pðkþ1Þ, then for some �(k) and
d ½k� 2 D we have x½kþ 1� =2X0ð�Þ. This is a contradic-
tion. Therefore, PðkÞ ¼ Pðkþ1Þ, and this implies that
PðkÞ ¼ PðkþmÞ, for m� 0. Thus Pð1Þ ¼ PðkÞ. œ

Proof for Proposition 3: Suppose that there exists k
such that PðkÞ � intfX0ð�Þg and the switched system (5)
admits a positive disturbance invariant set in X0ð�Þ
under arbitrary switching, and hence Pð1Þ � intfX0ð�Þg.
Define � as � ¼ infx =2X0ð�Þ distðx,P

ð1ÞÞ. For every initial
condition x0 =2P

ð1Þ, there exist sequences ��� and �dd
such that the corresponding trajectory escapes from
X0ð�Þ, i.e. x½ �kk� =2X0ð�Þ for some �kk. Let �xx½t� and x½t�
denote two system trajectories, corresponding to the
same sequences ��� and �dd but with different initial condi-
tions. The updating equation for the difference e½t� ¼
�xx½t� 	 x½t� is

e½tþ 1� ¼ ��e½t� ð9Þ

which is stable. Thus for arbitrary 0 < " < � there
exists �>0 such that, for k �xx½0� 	 x½0�k < �, we have
ke½t�k ¼k �xx½t� 	 x½t�k < " for t� 0. On the other hand,
we may choose �xx½0� 2 Pð1Þ and x½0� =2Pð1Þ such that
k �xx½0� 	 x½0�k < �. Now we have �xx½ �kk� 2 Pð1Þ and x½ �kk� =2

X0ð�Þ. This implies that ke½ �kk�k � � and leads to a
contradiction. œ
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