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Abstract—In  model-based networked control systems
(MB-NCSs), an explicit model of the plant is used to produce
an estimate of the plant state behavior between transmission
times. In this paper, the stability of MB-NCSs is studied when
the controller/actuator is updated with the sensor information
at nonconstant time intervals. Networked control systems with
transmission times that are varying either within a time interval or
are driven by a stochastic process with identically independently
distributed and Markov-chain driven transmission times are
studied. Sufficient conditions for Lyapunov stability are derived.
For stochastically modeled transmission times almost sure stability
and mean-square sufficient conditions for stability are introduced.

Index Terms—Model-based networked
(MB-NCSs), stochastic stability,
times.

control systems
time-varying transmission

1. INTRODUCTION

HE study of control systems in which sensor data are fed

back using a data network has recently received much
attention. The use of a data network in the feedback path has
several advantages such as reconfigurability, low installation
cost, and easy maintenance; it is also well suited for large
geographically distributed systems. There are, nevertheless,
some shortcomings to the use of digital networks in control
systems such as the fact that data networks operate in a discrete
fashion delivering information only at specific instants in time.
This means that the controller cannot have access to the plant
output at all times. Moreover, increasing the availability of
the output information to the controller means increasing the
bandwidth needed by the control system. Even for discrete
plants where the controller acts only at specific instants of
time, if the sensor data is sent through the network at each
sampling time and the sampling rate is low, the bandwidth
required might still be large.

There is a tradeoff between the stability and performance of
the control system and bandwidth usage. Good performance
and large stability margins can be obtained by having accurate
sensor measurements that are communicated to the controller in
a timely manner, and so good performance and stability can be
achieved at the expense of large network bandwidth usage.
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It is clear that the reduction of bandwidth necessitated by
the communication network in a networked control system
is a major concern. The available bandwidth restricts the
number of bits per second (bit rate). Note that the bit rate
is determined by two parameters: The transmission times or
how often the measured signal is sampled and transmitted
through the network; and the number of bits per measurement
or how accurately the transmitted value is represented in digital
form. Therefore, the networked control bandwidth reduction
can perhaps be addressed by two methods: The first method
is to minimize the transfer of information between the sensor
and the controller/actuator; the second method is to compress
or reduce the size of the data transferred at each transaction.

To answer this question it is perhaps useful to recall some
of the characteristics of popular industrial network protocols.
These are small transport time and large overhead (network con-
trol information included in the packet). This means that data
compression by reducing the size of the data transmitted has
negligible effects over the overall system performance in such
type of networks. So, reducing the number of packets trans-
mitted appears to bring more benefits than data compression.
The reduction of the number of packets transmitted through the
network can translate into larger minimal transfer times between
the components. It is also to be noted that any delay in an infor-
mation transaction is usually due to network access contention.
Thus, a sensor with a fast sampling rate can send through the
network the latest data available resulting in a negligible infor-
mation transfer delay. However, there will still be contention in
the network so that, even though the delay is small, the sensor
data would not be available at all times to the controller/actu-
ator. This brings us again to the idea of reducing the data transfer
rate as much as possible. In this manner, more bandwidth will
be available to allocate more resources without sacrificing sta-
bility and ultimately performance of the overall system.

The MB-NCS architecture of interest was introduced in [11].
The MB-NCS uses an explicit model of the plant to estimate
the plant state between transmission times and generate the ap-
propriate control signals; see Fig. 1. At each transmission time
the plant model is updated with the measured plant state. This
control architecture has as its main objective the reduction of
the data packets transmitted over the network. In this way, the
amount of bandwidth necessary for feedback control to maintain
certain stability and performance criteria is minimized. Note
that the fact that a model is included in the actuator side of the
plant to be controlled is reasonable and practical.

It is intuitively clear that stability margins, controller robust-
ness, and other performance indices will be improved when
knowledge about the plant dynamics is used to predict plant
behavior and appropriately modify the control input when the
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Fig. 1. State feedback model-based networked control system.

sensor information is not available and the plant is running open
loop.

The use of an explicit model of the plant dynamics in
the controller is not new. In the model predictive control
[1] approach, for example, an explicit model of the plant
to be controlled is used. The model is used to predict the
future output behavior. This prediction capability allows solving
optimal control problems online, where tracking error, namely
the difference between the predicted output and the desired
reference, is minimized over a time horizon, possibly subject
to constraints on the manipulated inputs and outputs. Another
control technique known as internal model control [15] uses a
plant model to subtract the effect of the manipulated variables
from the plant output. That is, assuming the plant is stable,
the model is used to obtain a measure of the disturbances
affecting the plant and of the inaccuracies of the model. This
signal is then used to feed the so-called IMC controller. We
use a plant model in MB-NCS to predict the output of the
plant so that more accurate information can be fed to the
controller when this information is not directly available via
measurements.

In this paper, we study the state feedback MB-NCS shown
in Fig. 1. We will assume that data for the whole state vector
are sent by the sensor every h(k) units of time and that the
transmission time delay is negligible. The present paper repre-
sents a significant extension of previous results that involved
constant update times. Specifically, in [14], MB-NCSs with
state feedback, output feedback, network delays, or discrete
plant are studied. In the output feedback MB-NCS, where a
state observer estimates the value of the plant state vector and
uses it to update the model, it is shown that the separation
principle does not always hold. The case where network de-
lays exist is also considered; it this case the delays and the
update times are assumed to be constant. A “propagation unit”
is introduced before the model update to estimate the actual
value of the plant state vector. Finally extensions to the case
of discrete plants are considered. The necessary and sufficient
stability results obtained for these constant update times are
similar: they require that the eigenvalues of a test matrix lie
inside the unit circle. These test matrices also have similar
structures.
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In Fig. 1, the packets transmitted by the sensor contain the
measured value of the plant state vector and are used to update
the plant model on the actuator/controller node. These packets
are transmitted at times ¢;. We define the update times as the
times between transmissions or model updates: h(k) = tx+1 —
tr. In [11], [12], and [14], we made the assumption that the
update times h(k) are constant. This might not always be the
case in real world applications. The transmission times of data
packets from the plant output to the controller/actuator might
not be periodic due to network contention or to the nondetermin-
istic nature of the transmitter task execution scheduler. Soft real-
time constraints provide a way to enforce the execution of tasks
in the transmitter microprocessor. This allows the task of period-
ically transmitting the plant information to the controller/actu-
ator to be executed at times ¢y, that can vary according to certain
predetermined stochastic process. Note that most work on net-
worked control systems assumes deterministic communication
rates [6], [7] or time-varying rates without considering the sto-
chastic behavior of these rates [10], [19]. Little work has been
done for the case where the update times have some stochastic
properties.

Yook et al. [18] also approach the problem of reducing the
bandwidth utilization by making use of a plant model; here the
update of the model is event driven as opposed to time driven.
The model is updated when any of the states differ from the
computed value for more than a certain threshold. Some sta-
bility and performance conditions are derived as functions of the
plant, threshold, and magnitude of the plant-model mismatch.

In [17], Ling and Lemmon study the performance of a net-
worked control system. The performance index considered is
the power spectral density of the plant output. The plant is as-
sumed to be discrete and the network may drop measurement
packets according to an independently identically distributed
process with a specified drop out rate. The networked control
system considered in [17] transmits measurement packets at
every clock tic and no plant model is placed at the controller/ac-
tuator side.

In [16] Nair et al. consider a fully observed scalar Markov
jump linear plant. The sensor encodes information about the
plant state and mode and transmits it to the controller/actuator.
The results obtained in [16] characterize the form of the en-
coder-decoder pair in order to achieve stability.

In this paper, we first obtain, in Section II, the response of
the state feedback MB-NCS shown in Fig. 1. Then we study its
stability properties assuming that the update times can take any
values in an interval [Ayin, hmax]- In this case, we will assume
that we do not have any statistical knowledge about the update
times. We analyze the stability properties of this system using
Lyapunov techniques. This is the strongest type of stability pre-
sented and will provide a first cut on the characterization of the
stability properties perhaps for comparison purposes. This type
of stability is addressed in Section III.

Next, two types of stochastic stability are discussed, namely
almost sure or probability-1 asymptotic stability in Section IV
and mean-square or quadratic asymptotic stability in Section V.
The first one is the one that mostly resembles deterministic sta-
bility [8]. Mean-square stability is attractive since it is related to
optimal control problems such as the linear quadratic regulator

(LQR).
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Two different types of time-varying transmission times are
considered for each case in Sections IV and V. The first as-
sumes that the transmission times are independent identically
distributed with probability distribution function that may have
support for infinite update times. The second type of stochastic
update time assumes that the transmission times are driven by
a finite Markov chain. Both models are common ways of rep-
resenting the behavior of network transmission and scheduler
execution times. Note that an early version of some of the re-
sults in this paper were presented in [13].

II. STATE FEEDBACK MODEL-BASED NETWORKED CONTROL
SYSTEM RESPONSE

The dynamics of the system shown in Fig. 1 are given by

)=l R[]
] =[] et
with tg 1 — tp = h(k) )

where e(t) = x(t) — & (t) represents the error between the plant
state and the plant model state, A and B are the matrices of the
actual plant state-space representation, A and B are the matrices
of plant model state-space representation, and A=A—Aand
B=B-B represent the modeling error matrices. Define
(1) = ()T ()T and A = |5 ! oK PR
that (1) can be rewritten as 2 = Az for t € [tg, tg+1).
Proposition 1: The system described by (1) with initial con-
ditions z(to) = [z(tg) 0]7 = 2o has the following response:

SO

Z(t _eA(t t)\

H M A
fort e [tk,tk+1), thy1 — tr = h(k),

where M (j) = {é 8} M) [é 8} . (2)

Proof: The proof is similar to the corresponding proof for
constant A in [11] and it is included here for completeness. On
the interval ¢ € [ty, tx+1), the system response is

(1) = [:v(t)] _ A=t [a:(ék)} = ML) (3)

Now, note that at times ¢y, z(t3,) = [””((t)"‘)] , that is, the error e(t)
is reset to zero. We can represent this by

Using (3) to calculate z(¢, ), we obtain

otr) = [é 8} A (1),
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In view of (3), we have that if at time ¢ = tg, 2(tg) =
is the initial condition then

2(t) = AT 5 (1)
= At—t) [é } eAh(k)Z(tk—l)

A=ty | L O Ay [ L O An@k—1)
=e [0 O}e [0 0l 2(tg—2)

o O

— 6A(t7tk)

E?r

J:

AR(5)

Now, we know that is of the form

I
0
[%’k%} and so ( [
[(HjT)l Sj)

the initial condition z(tg) = 2o =

0 e
0
} AhU) has the form

. Additionally, we note the special form of

[%¢] so that

k
H I 01 aniy | | %o
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Jj=1
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In view of (5), it is clear that we can represent the system re-
sponse as in (2). [ |
Note that in (2) the response is given by a product of matrices
that share similar structure but are in general different. All M (5)
are the same in the case where the update times h(k) are equal.
This constant h case was studied in [11], [12], and [14] where
necessary and sufficient conditions for stability were derived. In
the present case of varying h(k), stability cannot be guaranteed
even if all matrices in the product have their eigenvalues inside
the unit circle. To provide some insight into the stability for
the constant update case before we derive conditions for time
varying update times in the next section, we recall the results
obtained for constant /i [14]. The proof for Theorem 1 may be

found in [14].
Theorem 1: The system described by (1) with h(k) = h
a positive constant, is 7globally exponentially stable around the
T eT]" =10 0]7 if and only if the eigenvalues

solution z = [z! e
[T 0] [T 0
w=lo sl 3]

of
are strictly inside the unit circle.

It can be shown [14] that the upper left block of the test matrix
M, which may contain nonzero entries, is given by

N =e@FBE)"h L A(B)T
h
where A(h) = / AT (A 4 BK)e(A"'BK)TdT. (6)
0
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Note that the structure of N clearly reveals the dependency on
the update time h, the stable compensated model eigenvalues,
and the difference between the plant and the model. Here, A(h)
can be treated as a perturbation over the eigenvalues of the com-
pensated plant model. Note also that A(h) can be efficiently
computed using

[A A+ BK } X
Ay =[1 0l A+BEK m 7
Conservative versions of Theorem 1 can be obtained by
bounding (6) with an appropriate norm so to isolate the mod-
eling errors from the model description. Then, however, these
conditions will be sufficient only and typically more conser-
vative. The results obtained in Theorem 1 can be applied as
shown in the next example.

Example 1: We will use anominal model and a plant descrip-
tion where two entries in the A matrix can vary within a certain
interval.

- 0 1 A 0
model : A_[O 0] B_[J
o R
with 1o = [—0.5,0.5] 91 = [—0.0 0 5]
controller : K=[-1,-2].

Fig. 2 shows the contour levels representing the maximum
eigenvalue magnitude for the test matrix M as a function of
the values of the entries (1,2) and (2,1) of the plant matrix
A. The update time h was 2.5 s It is easy to isolate the stable
and unstable regions in the uncertainty parameter plane. The
stable region lies in between the two contours labeled one.
Note that in the case of more than two uncertain parameters a
search algorithm may be used to determine the stability region.
The necessary and sufficient results of Theorem 1 can be used
to determine the stability of the system for any point in the
parameter space.

III. LYAPUNOV STABILITY

Let us return now to the time varying case of update times
h(k). The stability criterion derived in this section is the
strongest and most conservative stability criterion of this paper.
It is based on the well-known Lyapunov second method for
determining the stability of a system. We will assume that the
properties of h(k) are unknown but h(k) is contained within
some interval. This criterion is not stochastic but provides a first
approach to stability for time-varying transmission times NCS.

Definition 1: The equilibrium z = 0 of a system described
by z = f(t, z) with initial condition z(t9) = z¢ is Lyapunov
asymptotically stable at large (or globally) if for any € > 0 there
exists 3 > 0 such that the solution 2 = f(¢, z) satisfies

|2(t, z0,t0)|| < € Yt > to, and tlim |2(t, 20, t0)|| = O
—o00

®)

whenever ||zo]| < S.
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Fig. 2. Maximum eigenvalue magnitude versus model error.

Theorem 2: The system described by (2) is Lyapunov
asymptotically stable for & € [Amin, Amax]| if there exists a sym-

metric positive—definite matrix X such that X — MXM7T = Q
is positive definite for all & € [Amin, Amax], Wwhere
L O] anfl O
w=lo ol o o)
Proof: Note that the output norm can be bounded by
At—ti) H M 20
k
< |l TTMG)| - lzol
j=1
k
< e (Mhmax H |zo]|- 9)

That is, since e*(*~**) has finite growth rate, it will grow for at
most until hy,.x. Then, convergence of the product of matrices
M (j) to zero ensures the stability of the system. Such conver-
gence to zero is guaranteed by the existence of a symmetric pos-
itive—definite matrix X in the Lyapunov equation. [ |

Theorem 2 may be used to derive an interval [Ayin, Pmax] for
h for which stability is guaranteed. It is clear that the range for
h, that is the interval [hin, hmax], Will vary with the choice of
X. Another observation is that the interval obtained this way
will always be contained in the set of constant update times for
which the system is stable (as derived using Theorem 1). That
is, an update time contained in the interval [Ayin, Amax] Will
always be a stable constant update time.

Several ways of obtaining the values for h;, and by .y can
be used. One is to first fix the value of (), obtain the solution X
of the Lyapunov equation in Theorem 2 for a value of h known
to be stable. Then, using this value of X, the expression X —
MXMT can be evaluated for positive definiteness. This can be
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repeated for all the values of h known to stabilize the system to
obtain the widest interval [Amin, Amax]-
Example: We use an unstable plant, the double integrator

where
0 1 1
=[5 o] 7=}

For our plant model, we chose

b ol

which behaves as a zero order hold device, since it maintains
the value of the state vector and control signal constant until
the next update time. Our feedback law is given by u = Kz
with K = [—1 — 2]. When the update times are constant, sta-
bility can be guaranteed if and only if the eigenvalues of the test
matrix M are inside of the unit circle [11], [12]. It can be ver-
ified that, for stability, the set of constant update times for our
example is [0,1) s. We now use Theorem 2 to find an interval
of time varying update times for which the NCS will remain
stable. Note that the update times can vary along this interval.
We will set a nominal update time of 0.5 s and set () to be the
identity matrix; then by solving the Lyapunov equation given
in Theorem 2 we can find a positive definite nominal X. We
then obtain the stability interval by searching for update times
around 0.5 seconds, for which the () in the Lyapunov equation
obtained with the nominal X is positive definite. Fig. 3 shows
the plot of the minimum eigenvalue of () as a function of the
update time, from which it can be seen that the stability interval
is NOW [Amin, Pmax] = [0,0.85]. Note that it has been shown
[11] that for constant h that the system remains stable for any
h < 1. Of course, by using different nominal update times and
nominal )’s less conservative results may be obtained.

&= Az + Bu

IV. ALMOST SURE OR PROBABILITY-1 ASYMPTOTIC STABILITY

We will use the definition of almost sure asymptotic stability
[8] that provides a stability criterion based on the sample path.
This stability definition resembles more the deterministic sta-
bility definition [9], and is of practical importance. Since the
stability condition has been relaxed, we expect to see less con-
servative results than those obtained using the Lyapunov sta-
bility considered in the previous section. We now define almost
sure or probability-1 asymptotic stability.

Definition 2: The equilibrium z = 0 of a system described
by 2 = f(t, z) with initial condition z(tg) = zo is almost sure
(or with probability-1) asymptotically stable at large (or glob-
ally) if for any 8 > 0 and € > O the solution of 2 = f(¢,2)
satisfies

(10)

lim P {sup |2(t, z0,t0)|| > 6} =0
b—00 t>6
whenever ||zo|| < 3.

This definition is similar to the one presented for determin-
istic systems in Definition 1. We will examine the conditions
under which the full-state feedback continuous networked
system in Fig. 1 is stable.
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Fig. 3. Minimum eigenvalue of () as a function of the update time h.
A. MB-NCS With Independent Identically Distributed
Transmission Times

Here, we will assume that the update times h(k) are indepen-
dent identically distributed (iid) with probability distribution
function F'(h). We now present the conditions under which
the system described by (2) with iid update times is asymp-
totically stable with probability-1. We will use a technique
similar to lifting [2] to obtain a discrete linear time-invariant
representation of the system. It can be observed that the system
will be described by

Ekp1 =&k, Wwith & € Lo, and & ZZ(t—I-tk), te [0, hk).
(11

Here, Lo, stands for the extended L. It is easy to obtain from
(2) the operator €2, as

h(k)

(Qu)(t) = eM {é 8] '/6(T—h(k))1/(7)d7. (12)

Now, we can restate the definition on almost sure stability or
probability-1 stability given in Definition 2 to better fit the
equivalent system representation (11).

Definition 3: The system represented by (11) is almost sure
stable or stable with probability-1 if for any 5 > O and e > 0
the solution of ;41 = Q& satisfies

lim P {SUP||£k(t0730)”2,[0,tk] > 5} =0 (13)
b—o0 kZS

whenever ||zo|| < 3. Where the norm || - [|2,[0,1(x)] is given by
16klla 0.0y = (o NlEw()][2dr) /2.

This definition allows us to study almost sure stability of sys-
tems such as (11) when the probability distribution function for
update times has infinite support. Based on this definition the
following result can now be shown.

Theorem 3: The system described by (2), with update times
h(j) independent identically distributed random variable with
probability distribution F'(h) is globally almost sure (or with



MONTESTRUQUE AND ANTSAKLIS: STABILITY OF MODEL-BASED NETWORKED CONTROL SYSTEMS

probability-1) asymptotically stable around the solution z =
T IT =0 0T it N = E[(e2®Wh —1)"?] < o0 and
the expected value of the maximum singular value of the test
matrix M, E[||M||]] = E[o], is strictly less than one, where
Ah

M=1o o[ |0 of
Proof: Assume that the supremum of the norm bracketed
is achieved at k* > 6, that is sup [|{x|| = [|€k+|- So, now we

k>é
can use Chebyshev bound for positive random variables [20] to
bound the probability in our definition

2 [l 1l]

&g

(14)
k>6

r {SUI}ka“ > 6} = P{l[gk-[| > e} <

Using (2) and basic norm properties, we proceed to bound the
expectation on the right-hand side of

1

h(k*) 2

E / e (I dr
0

I h(k™) o1 2 3
) .
<E eI TT M@ Nlzoll*dr
0 i=1
[ [ ne) o\ e
<E (@) ar | | TT MG)| Izl
0 j=1
- 1
h(k®) 2
_ 2
—F / (m ™) ar
0

k-1

< £ || TI MG)||| ol (15)
j=1

The last equation follows from the independence of the update
times h(j). Analyzing the first term on the last equality we see
that is bounded for the trivial case where A = 0. When A # 0,
the integral can be solved, and can be showed to be equal to

1/(20(A))E[(e27MM(E") _ 1)1/2] which by assumption is
bounded. The second term can also be bounded by using the
independence property of the update times A(j)

k*—1 .
<E| [T IMOI| = @Enmm* .
Jj=1

k-1

E r_[1 M(j)
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We can now evaluate the limit over the expression obtained, as
shown in (17) at the bottom of the page. It is obvious that the
right-hand side of the expression will be identically zero (note
that k* > 6) if the average maximum singular value E[oa;] =
E[|M]] < 1. u

Note that the condition may give conservative results if ap-
plied directly to the test matrix. To avoid this problem and make
the condition tighter we may apply a similarity transformation
over the test matrix M. The condition on the matrix N ensures
that the probability distribution function for the update times
F(h) assigns smaller occurrence probabilities to increasingly
long update times, that is F'(h) decays rapidly. In particular, we
observe that N can always be bounded if there exists h,,, such
that F'(h) = 0 for h larger than h,,,. We can also bound the ex-
pression inside the expectation to obtain E[(e2? (M) —1)1/2] <
E[e?™"] and formulate the following corollary.

Corollary 1: The system described by (2), with update times
h(j) that are independent identically distributed random vari-
able with probability distribution F'(h) is globally almost sure
(or with probability-1) asymptotically stable around the solution
z=[z" Tl =10 0]Tif T = E[e”™"] < 0o and the ex-
pected value of the maximum singular value of the test matrix
M, E[||M]|] = E[o], is strictly less than one, where

w=lo ol foo)

Note that Corollary 1 condition 7 = E[e?™"] < oo is
automatically satisfied if the probability distribution function
F(h) does not has infinite support. It otherwise indicates that
F(h) should roll off fast enough as to counteract the growth of
M’s maximum singular value as h increases.

Example 3: We use the same unstable double integrator
plant used in Example 2. We now assume that h(k) is a random
variable with a uniform probability distribution function
U(0.5, hmax ). The plot of the expected maximum singular
value of a similarity transformation of the original test matrix
M is shown in Fig. 4. The similarity transformation used here
was one that diagonalizes the matrix M for h = 1. We see
that the maximum value for A, is around 1.3 s (maximum
constant update time for stability is h = 1 s.) So we see that,
the double integrator with uniformly distributed update time
between 0.5 and 1.3 s is stable, while the same system but
with a constant update time of 1 s is unstable [11]. This also
represents an improvement over the result that we may have

obtained by using the previously discussed Lyapunov Stability
condition in which the maximum update time obtainable would

(16) have been less than 1 s. We can use the expected value of the
E .
lim P {SuprkH > 5} < lim Elll&x- 11
5—o00 kzs 55— o0 €
o (k™ l E*—1
aory B [ (220 1) 2 [ (B [IMID)Y ||z
< lim . 17)

9
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Fig. 4. Average maximum singular value for 6, = E[||M]|] for
h ~ U(0.5, hmax) as a function of fiyax, zero dynamics plant model.

spectral radius of the test matrix as a measure of the system
performance: This measure is related to the contraction rate of
the system. On a hyper-parallelogram with axis defined by the
eigenvectors of M, the spectral radius will indicate the contrac-
tion rate of the hyper-parallelogram axis with the slowest con-
traction rate. Our performance measure is defined in (18), here
p(M) denotes the spectral radius of M. Since the plant is con-
tinuous, the update interval A is also included in the expectation
to give consistency to the performance measure

Pr=-E {L(”(M))} . (18)

h

InFig. 5, we plot the performance measure as a function of the
maximum update time for the system described in the example.
Note that the performance measure is almost the same for update
times with uniform probability distribution U (0.5, Apay) with,
hmax up to 0.8 s. The performance measure for a fixed update
time of 0.5 s is 0.727 while the measure for update times with
uniform probability distribution U (0.5, 0.8) is about 0.713. It is
clear that having an update time that can vary among an interval
is better that a fixed update time in terms of implementation:
Soft real time constraints are easier to enforce than hard real-
time constraints.

The advantage of using a model-based approach resides in
its ability to reduce the amount of bandwidth required. The pre-
vious example shows stability conditions for a model that repre-
sents a zero order hold, that is, the control value is kept constant
until the next update time. We will now show the same plots for
a model that better resembles the plant, this was done by ran-
domly perturbing the plant matrices. The plant model matrices
are

. [0.0844
~ 1 0.0476

0.9353} B [0.0871] (19)

—0.0189 ~ | 1.0834

Fig. 6 shows that stability is maintained for update times that
have uniform distribution with a max update time of 5.5 s. Fig. 7
shows that the performance measure is higher than in the case
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Fig. 5. Performance measure for o ~ U(0.5, hpax) as a function of Ayyax,
zero dynamics plant model.
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Fig. 6. Average maximum singular value for 5, = E[||M]|] for
h ~ U(0.5, hmax) as a function of i ax, improved plant model.

of the zero-order hold model. This shows that improved knowl-
edge over the plant dynamics can translate into a significant im-
provement in terms of stability and performance measure.

B. MB-NCS With Markov Chain-Driven Transmission Times

In certain cases, it is appropriate to represent the dynamics of
the update times as driven by a Markov chain. A good example
of this is when the network experiences traffic congestion or
has queues for message forwarding. We now present a stability
criterion for the model-based control system in which the update
times h(k) are driven by a finite state Markov chain. Assume
that the update times can take a value from a finite set

h(k) € {h1,ha,...,An} and h; # o

Vi € [1, N].

Let us represent the Markov chain process by {wy} with
state—space {1,2,..., N} and transition probability matrix T’
and IV x N matrix with elements p; ; and initial state probability
distribution ITy = [r; 7 ... mn]T. The transition probability
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Fig. 7. Performance measure for o ~ U(0.5, hyax) as a function of Ay,ax,
improved plant model.

matrix entries are defined as p; ; = P{wiy1 = jlwr = i}.
We can now represent the update times more appropriately as
h(k) = h, . sufficient condition for the almost sure stability
of the system under Markovian jumps is given in the following
theorem.

Theorem 4: The system described by (2), with update times
h(k) = h,, # oo driven by a finite state Markov chain {wy,}
with state-space {1,2,..., N} and transition probability ma-
trix I" with elements p; ; and initial state probability distribution
g = [m 7o ... w7 is globally almost sure asymptotically
stable around the solution z = [z7 ¢T]"[0 0]7 if the matrix T
has all its eigenvalues inside of the unit circle, where

_||M|h=h1|| 0 0
- (.) ||M|h.,=h2|| (.)
L 0 0 ||M|h:h1v”
x T
[T o] an IO
and M|h:hi = _0 0:|6 |:0 0:| . (20)

Proof: 1Tt is clear that since the Markov chain has a finite
number of states, the update times are bounded. Then, using the
same argument in Theorem 2 we can bound the output by

k
=0 (L 16) |
j=1

< ‘ NS

k
ATT 20| - o
7j=1
k
Sea(A)hmax. HM(J) ||ZO|| 2n
7j=1

Therefore, we can ensure stability by studying the convergence
of the term || H?:l M (j)||- We can now use a similar procedure
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as the one used for Theorem 3. For almost sure stability, we will
require that

k

sup | [ M)

k>6 ||i=1

lim P

b—00

>e b =0. (22)

We will assume that the supremum of the norm bracketed is
achieved at £* > ¢. Using the Chevyshev inequality, we obtain

>e€
k>6 ||5=1
k.
=P [[MG)| >«
Jj=1
E M(j) 1
=1
< L
€
E T IMQG)I
7j=1
< — (23)

Evaluating the expectation yields
k.

ETTIMG)
=1

k.
[TIM ) Pilwo=t0,w1 =01, ...

- ¥

Vlioyitymsin, 1] =1
Wk, 1 =10k, 1]}}
k.
= > T G)llpi, - iy | IV,
Y[io,i1, ik, —1] \G=1
=[1,1,...,1]
k
1M |h=n, || | |0 | 0
0 Mlp—n,|| --- 0
X . . , . rr
0 0 ||M|h:h1v”
(M| p=h, || 1
% ||M|h=h2||7r1 (24)
LM [h=h || 1

where each i,, € {1,2,..., N}. Therefore, the right-hand side
of (23) will converge to zero if 7" has all its eigenvalues inside
the unit circle where

| M | p=n || 0 0
0 ||M|h:h2|| 0
T = , , , . rt,
0 0 ||M|h:hN||
(25)
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If T is irreducible, it follows that, since ||M]| is nonneg-
ative, T' is also irreducible. Then it can be shown using the
Perron—Frobenius theorem as in [4], that 7”s maximum mag-
nitude eigenvalue is real and sometimes referred to as the
Perron—Frobenius eigenvalue.

V. MEAN-SQUARE OR QUADRATIC ASYMPTOTIC STABILITY

We now define a different type of stability, namely mean-
square asymptotic stability.

Definition 4: The equilibrium z = 0 of a system described
by 2 = f(t, z) with initial condition z(¢y) = z¢ is mean-square
stable asymptotically stable at large (or globally) if the solution
of 2 = f(t,z) satisfies

lim E [||z(t,z07to)||2} —0. (26)
t—oo

A system that is mean-square stable will have the expectation
of system states converging to zero with time in the mean-square
sense. This definition of stability is attractive since many op-
timal control problems use the squared norm in their formula-
tions. We will study the two cases studied in the previous section
under this new stability criterion.

A. MB-NCS With Independent Identically Distributed
Transmission Times

We present the conditions under which the networked con-
trol system described in (2) is mean-square stable, we also dis-
cuss how these conditions relate to the ones for probability-1
stability.

Theorem 5: The system described by (2), with update
times h(j) independent identically distributed random variable
with probability distribution F(h) is globally mean-square
asymptotically stable around the solution z = [0 0]T if
K = E[(e?™")’] < oo and the maximum singular value of
the expected value of M™M, ||[EIMTM]|| = a(E[MTM]),
is strictly less than one, where

Proof: Let us start by evaluating the expectation of the
squared norm of the output of the system described by (2)

E [ et
i T
=B |44 (@)" (=) e“(t_t“)G(k)zo}

<E <( A(t— tk))
( (A h(k+1) ) ey

=TT

J=1

<t—“>G(k)zom

A= m) 2L (G G(k)ZO}

Famﬂ

where G(k 27)
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Now that the expectation is all in terms of the update times, we
can use the independently identically distributed property of the
update times and the assumption that K is bounded

E [(65(A)h(k+1))2zo (a( zo]

— KT Rlen M (k)" M(k)G(k=1)) 0
:KzOTE[(G(k W) EMT M|G(k— 1)}
gK&(E[MTM])Z(?E[(G(k—l))TG(k—l)}zo. (28)

We can repeat the last three steps recursively to finally obtain

|
So, now it is easy to see that if || E[MT M]|| = a(E[MT M]) <
1 then the limit of the expectation as time approaches infinity is
zero, which concludes the proof. [ |

Note the similarity between the conditions given by Theo-
rems 3 and 5. In Theorem 3, we require the expectation of the
maximum singular value of the test matrix to be less than one.

For the stability in Theorem 5, the maximum singular value of
the expectation of MT M should be less than one.

A G (k) 2

2] < K (7 (B]MTM]))" 2T 2. (29)

B. MB-NCS With MarkovChain-Driven Transmission Times

We now present a sufficient condition for the mean-square
stability of the MB-NCS with Markov chain-driven update
times.

Theorem 6: The system described by (2), with update times
h(k) = hy, # oo driven by a finite state Markov chain {w}
with state-space {1,2,..., N} and transition probability ma-
trix I" with elements p; ; is globally mean-square asymptotically
stable around the solution z = [z7 eT]" = [0 0] if there ex-
ists positive—definite matrices P(1), P(2),..., P(N) such that
(S pig (H(TPG)H() - P(i) < 0Vij = 1,....N

. N oan |1 O
with H(i) = e [0 ol

Proof: Using the same argument used in Theorem 4, since
the update times are bounded, we can analyze the system’s sta-
bility by sampling it at a certain time between each update time.
For this, we evaluate the response of the system described by
(2) at times t,

_ Ah, I 0 _
2 () = e [0 0 (te) - (30)
- Ah I o
Lets define ¢(k) = z(t;_,) and H(wg) = e*"<x 0 ol

Now, we can represent the sampled networked control system
as

(k+1) = H(wg)s (k). (€29)
To ensure mean-square stability we will make use of a Lyapunov
function of quadratic form and analyze the expected value of its



MONTESTRUQUE AND ANTSAKLIS: STABILITY OF MODEL-BASED NETWORKED CONTROL SYSTEMS

difference between two consecutive samples. We will use the
following Lyapunov function:

V (s(k), wr) = (k)" P(wi)s (k). (32)

The expected value of the difference is

E[AV]q, 1]
=BV (c(k+1),wrs1) =V (s(k), w) o (k) =5, w =]
=E [¢(k+1)" P(wrs1)s(k+1)[c(k) =5, wp, =1]
—<"P(i)c
=F [¢" H(wi)" P(wp1) H (wi)s|wi =3] =T P(i)s

N
=> i (TH(@)"P(G)H(i)s) =" P(i)s
i=1

N
=<\ Dopig (HGTPGIH() = PG) | <. (33)

From this last equality, is it obvious that to ensure mean-square
stability we need to have

>_pii (HOTPEGHE) = PG) | <0.

|

This type of stability criteria depend on our ability to find

appropriate P (i) matrices. Several other results in jump system

stability [3], [5] can be extended to obtain other conditions on

stability of networked control systems. Note though, that most

of the results available in the literature deal with similar but not
identical type of systems.

VI. CONCLUSION

In this paper, three feedback network communication models
were presented. The first one assumed unknown statistical
properties of the update times and was analyzed using Lya-
punov techniques rendering conservative deterministic stability
conditions. The other two assumed known stochastic charac-
teristics of the update time process: Independent identically
distributed random process and finite-state Markov chain. Each
stochastic model was analyzed using almost sure stability, and
mean-square stability criteria.

It is clear from the examples presented that both types of
stochastic stability studied enables larger update times range
compared to the Lyapunov type of stability. The extended sta-
bility regions found using the stochastic stability criteria here
described are possible thanks to the added information on the
statistics of the update times. The stability results presented here
address only some of the different stochastic stability criteria
available in the literature. We consider that the insight provided
can be used to determine conditions for other stability types as
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well. Note also that other techniques such as Lyapunov expo-
nents can be used to analyze the problem.

The results presented here for state feedback MB-NCSs can
be easily extended to other model-based control architectures
such as output feedback, communication with delays, and dis-
crete plants such as the ones studied in [14]. Other extensions
such as the effect of quantizers, external disturbances, and the
case of nonlinear plants are currently under investigation.
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