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A b s t r a c t  

In this paper, optimal control problems for switched 
autonomous systems are studied. In particular, we fo- 
cus on problems in which a prespecified sequence of ac- 
tive subsystems is given and propose an approach to 
finding the optimal switching instants. The approach 
derives the derivatives of the cost with respect to the 
switching instants and uses nonlinear optimization tech- 
niques to locate the optimal switching instants. The ap- 
proach is then applied to general quadratic problems for 
switched linear autonomous systems and to reachability 
problems. Examples illustrate the results. 

1 I n t r o d u c t i o n  

A switched system is a particular kind of hybrid sys- 
tern that  consists of several subsystems and a switching 
law specifying the active subsystem at each time instant. 
Examples of such systems can be found in chemical pro- 
cesses, automotive systems, and electrical circuit sys- 
terns, etc. 

Recently, many results for optimal control of 
switched systems have appeared in the literature (e.g., 
[2, 6, 7, 8, 10]). Most of them consider problems which 
seek for the solution of both the optimal continuous in- 
put and the optimal switching sequence. Approaches to 
such problems include ones based on discretization of the 
time and state space [6, 7] and ones that  are not based 
on discretization [8, 10]. Many of these approaches find 
approximations to local optimal solutions. 

In this paper, we focus on optimal control problems 
for switched autonomous systems where each subsys- 
tern is autonomous (i.e., with no continuous input). In 
particular, we focus on problems in which a prespeci- 
fled sequence of active subsystems is given. General au- 
tonomous subsystems and general performance costs are 
considered. For such problems the cost is a function of 
the switching instants. We propose to use constrained 
nonlinear optimization techniques to locate open-loop 
local optimal switching instants for such general prob- 
lems. To apply nonlinear optimization techniques, we 
need to first determine the values of the derivatives of 
the cost with respect to the switching instants. An ap- 
proach similar to that  in [10] is proposed in this paper 
for their derivations. One of the main results of the pa- 
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per is Theorem 3.1 which gives us the expressions of the 
derivatives. Note here the approach provides us with 
accurate values of the derivatives as opposed to the ap- 
proximate values in [10]. The approach is then applied 
to general quadratic problems for switched linear au- 
tonomous systems. The computation of the derivatives 
can be further simplified by utilizing the special struc- 
ture of such problems. Finally, we apply the optimal 
control approach to reachability problems. Using the 
approach, the reachability switching instants can be de- 
termined if a final state is reachable from an initial state. 

Similar problems have also been looked into by other 
researchers. Giua et al in [4, 5] present closed-loop global 
optimal solutions to a special class of problems, i.e., in- 
finite horizon problems for switched linear autonomous 
systems. However, we should indicate that  our approach 
has the following advantages. First, our approach can 
deal with finite horizon problems with general subsys- 
terns and costs as opposed to infinite horizon problems 
with linear subsystems and quadratic costs in [4, 5]. 
Moreover, our approach can be applied to reachability 
problems, while the approach in [4, 5] fits better for sta- 
bility problems. In view of these, we believe our results 
are new and contribute to the understanding and the so- 
lution of optimal control problems of switched systems. 

2 P r o b l e m  F o r m u l a t i o n  

We consider the following switched autonomous sys- 
terns, i.e., switched systems which consist of autonomous 
subsystems (i.e., without continuous input) 

i c - f i ( x , t ) ,  f i ' R  ~ xR- -+R ~, i C I - - { 1 , . . .  ,M}. (2.1) 

The state trajectory evolution of such a system 
can be controlled by choosing appropriate switching se- 
quences. A switching sequence in [t0,tf] is defined as 

- ( ( to ,  io ) ,  ( t l ,  il), (t~,  i~) ,  • • • ,  ( t ~ ,  i ~ ) ) ,  (2 .2 )  

with 0 <_ K < oo, to <_ t~ <_ t2 <_... <_ tH <_ t f  , and i~ c I, 
k -  O, 1 , . . . ,  K. a tells us that  subsystem i~ is active in 
[t~,t~+l). Note that  the continuous state of a switched 
system has no discontinuities at the switching instants. 

In the following, we assume without loss of general- 
ity that  a prespecified sequence of active subsystems is 
given as (1,2,. . .  , K , K  + 1), i.e., subsystem k is active 
in [t~_l,t~). We can always do this by relabeling the 
subsystem indices and even expanding the collection of 
subsystems (i.e., two subsystems may actually refer to 
the same actual subsystem). We consider the following 
optimal control problem. 



P r o b l e m  2.1 ( O p t i m a l  C o n t r o l  P r o b l e m )  
Consider a switched au tonomous  sys tem with sub- 
sys tems fi(x,t),  i E I. A s s u m e  that a prespecified 
sequence of active subsystems (1 ,2 , . . .  , K , K  + 1) is 
given. Find optimal switching instants  t 1,. . .  ,tK 
(to <_ tl <_ . . .  <_ tK <_ t f  ) such that the corresponding 
cont inuous state trajectory x departs f rom a given initial 
state x ( t o ) -  xo and the cost 

/,i' J( t l , .  . . , tK) -- ¢ ( x ( t f  )) + L(x , t )  dt (2.3) 

is minimized.  Here t o , t f  are given. [] 

We assume that  fi 's,  L, and ~ are smooth enough. 
Under these assumptions, we observe that  a small dis- 
turbance of t l , ' "  , tK will only cause a small distur- 
bance of J value. Furthermore,  it can be shown that  J 
is a continuously differentiable function of t l , ' "  , tK.  

2.1 A n  A l g o r i t h m  
Note that  Problem 2.1 is actually a constrained mul- 

tivariable optimization problem 

mint J(/~) (2.4) 
subject to/~ C T 

where T A_ {{_  ( t l , t~ , . . .  , tK) T to <_ tl <_ t~ <_'' '  <_ tK <_ 
t f} .  The following algorithm can be adopted to solve 
such a nonlinear optimization problem. 

A l g o r i t h m  2.1 

(1). Set the iteration index j -  0. Choose an initial P. 
(2) Find J ( t J )  OJ (~j) and °2J (P) • ,b-7- ~ • 
(3). Use the gradient projection method or the con- 
strained Newton's method [1] to update  P to be p+l  = 
tJ + aJ dt j. S e t j - j + l .  
(4). Repeat  steps (2), (3), (4) until a prespecified ter- 

oJ (p)[[~ < e where ruination condition is satisfied (e.g. 
e is a given small number).  [] 

3 D i f f e r e n t i a t i o n s  o f  t h e  C o s t  F u n c t i o n  

In order to apply Algorithm 2 1 the values of oa 
• ' 0 ~  

and °~a (step (2)) need to be found. Now we propose 
an approach to finding these values. 

Assume we have a nominal ~ -  ( t , , . . .  , tK) r and the 
corresponding nominal x(t) .  The corresponding cost J 
can be obtained using (2.3). Since x0 and to are fixed, 
J is not a function of them. Next we define the value 
function at the k-th switching instant as 

J~(x ( t~ ) , t~ , . . .  , tK) - - ~ ( x ( t f ) ) +  L(x , t )  dr. (3.1) 

Unlike J, J~'s for k _> 1 are functions of t~ and of the 
initial state x(t~) which depends on the t ra jectory before 
t~. In the sequel, we denote °o- @ for a function J~ as a 

02j k 
row vector J~, ~ as an n × n matr ix  J ~  and so on. 

3.1 S i n g l e  S w i t c h i n g  
Let us first consider the case of a single switching. 

Given a nominal tz and a corresponding nominal tra- 
jectory x(t), we denote by 2(t) the state t ra jectory af- 
ter a variation dtz has taken place. In the sequel, we 
adopt the following notational  convention. We write f, 
f~ and f~ with a superscript 1 -  (resp. 1+) whenever 

the corresponding active vector field at t l -  (resp. t l+)  
is used for evaluation at (x ( t l ) , t l ) .  Examples of this 

convention are f l -  A_ f l ( x ( t l ) , t l ) ,  f l+ A_ f 2 ( x ( t l ) , t l ) ,  

fl-- ~ 0fl (X(tl)tl) and fl+ ~ 0f2 (X(tl)tl) etc Also, 

we simply write j1 A_ j1 (x(tl),  t l ) ,  L 1 A_ L(x( t l ) ,  t l ) ,  j1 A_ 
A 

j1 (x(tl) ,  t l ) ,  L 1 - Lx (x(tl) ,  t l ) , . . .  (be careful to distin- 
guish the values j1, L 1, j1, and L1, . . .  from the functions 
j l ( x ( t l ) , t l ) ,  L(x , t ) ,  j l ( x ( t l ) , t l ) ,  and L x ( x , t ) , . . . ) .  

It is not difficult to see that  

~ i  1 j1  ( x ( t  ), t l ) .  (3.2) J(t l  ) -- L(x, t) d t +  1 

For a small variation dtl of t l, we have 

j f l  1-~-d~1 j1  (Yc(t + d t l ) , t l  + dtl) .  J( t l  + dr1) - L(2, t) d t +  1 

(3.3) 
There are two terms in (3.3). Let us consider the second 
order Taylor expansion of each term. In the following 
derivations we denote 

d x ( t l  ) a ~(tl  + dt l  ) - x ( t l  ) (3.4) 
-- 1 ( f ) - -  + f l  x -  f l - - )d t~  + o(dt~). : f l  d t l  + 

Note in (3.4), o(dt~) is a column vector with each ele- 
ment being o(dt~). Consider the first term in (3.3), for 
either dtl >_ 0 or dtl < 0, we have (see [9] for details) 

f~:-Fd~l L(~l~, t) d t -  f:: L(x, t) dt -Ju L l d t l  (3.5) 
1 1 1 L  ldt~ + (higher order terms) +Tdt lL~dx( t l )  + 

For the second term in (3.3), we have 

j1 (2(tl + dtl ), tl + dtl ) - j1 + j l  dx(tl  ) + j11dt1 
T 1  1 dt~ (3.6) -}--~l(dx(tl)) J~dx(tl)--I- ~- Jl1~ 1 

+dt1J11~dx(t1 ) + (higher order terms). 

Now we substi tute (3.4)into (3.5) and (3.6) and sum 
them to obtain the second order expansion of (3.3) with 
respect to dtl,  

J( t l  + dr1) - J( t l )  + (L 1 + J)l + Jlx f l - ) d t l  
1 ( E l f 1 -  1 - f l -  +7 + L ~ + J ~ ( f )  + f ~ -  ) 

+ ( f l -  T 1 1- 2Jll f l -  o(dt~) (3.7) ) J;~f +jl1~1+ ~ )dr1 ~+ 
J ( t l )  -Jr J~ld t l  -~- }J~ l t ld t~  -~- o(dt~).  

Note that  the following dynamic programming equa- 
tion holds for j1 (x(tl), tl) 

J11 -- - J l x f l +  - L1. (3.8) 

(3.8) can be derived similarly to the HJB equation. 
However, the difference between it and the HJB equa- 
tion is that  (3.8) holds for any t ra jectory that  is not 
necessarily optimal (for more details see [3]). 

By differentiating (3.8), we obtain 

j l l x  _ _ ( f l + ) T j ~  _ j~f~+ _ Llx, (3.9) 

j~_~ _j11xf1-~- _ j l  fl-~- _ Z 1 ( f l -~- )r j lx f l -~-  
j i l l +  + L1)fl+ _ j i l l +  _ L 1. (3.10) 

By substi tut ing (3.8), (3.9) and (3.10)into (3.7), we 
can write J~l and J~1~1 in the following form 

&l _ j l  ( f l -  _ f l + ) ,  (3.11) 

J~1~1 - J~( f~-  - f~+) - (J~f~+ + L~)(f 1- 
_ f l + )  + j ~ ( f ~ -  _ fx l+) f l -  + ( f l -  (3.12) 
__f l+)T_j lx( f l -  __ f l+ ) .  



3 .2  T w o  or  M o r e  S w i t c h i n g s  
Now consider the case of two switchings. Assume 

that a system switches from subsystem 1 to 2 at t l and 
from subsystem 2 to 3 at t9 (to < tl < t9 < t f  ). The cost 
then is 

J( t l , tg)  --  L ( x ,  t )  d t  + j1 (x(tl), tl, t2) (3.13) 

~ i  ~ j9 (x(tg) t9 - L ( x , t )  d t  + , ). (3.14) 

Using (3.13), by holding t9 fixed, Jr1, Jtltl can be 
derived similarly to that in subsection 3.1. In the same 
manner, Jt2, Jt2t~ can be derived using (3.14). However, 
we need additional information to derive Jtlt~. Argu- 
ments from the calculus of variations are used in the 
followings to derive Jtlt~. Let us first define the impor- 
tant notion of incremental change. 

D e f i n i t i o n  3.1 ( I n c r e m e n t a l  Change )  Given vari- 
ations dt, and dtg, we define the incremental change 
6x( t ) ,m in{ t , , t l  + dt ,}  <_ t <_ max{tg,t9 + dtg} as: 

y ~(t) 8 x!t ~+ dt ~) 8 x(t 2) 

~ d t  2) 
' a x(t ""z 1(0 

x(t) 
I I I I 

t ]  t ] + d t ]  t 2 t 2 + d t  2 

(a). dt ]g O, dt 2~ 0 

~. 8 x(t 1+ dt 1) . . . .  
~-Y2 (t) ~ A ~ . .  8x(t 2+ .(lt 2) 

8x(t 1 ) ~ z  2!t! ..$ 

x(t) 
I I I I 

t ]  t ] + d t ]  t 2 + d t  2 t 2 

(b). dt ]g O, dt 2 < 0 

,. y 3(t) 
8 x(t z 3(0 

d t 2 ) '  , " ' -  ~ , ,  

I I ~ (  t ) I I 
t ] + d t ]  t ]  t 2 t 2 + d t  2 

(c). dt ]< O, dt 2~ 0 

Y 4(0 
,, --_ x(t + dt ) ~ x(t 2-1- dt 2) x 

I I ~ ( t )  I I 

t ] + d t ]  t ]  t z + d t  2 t 2 

(d). dt ]< O, dt 2 < 0 

Figure  1" The incremental change 6x(t) .  

C a s e  1" dtz > O, dt9 > 0 (see figure l (a)). 
In this case, 3x(t) is defined to be 

{ ~(t)  - ~(t ) ,  t ~ It1 + dr1, t~] 
6x(t) -- ys (t) - x(t), t • [ts, tl +dts] 

~(t)  - Zl (t),  t • Its, t~ + dt~] 

where y,(t)  is the solution of 

(3.15) 

{ ) l ( t ) -  fg (y l ( t ) , t ) ,  t • [tl ,tl  +dtl] 
yl (t~ + dt~ ) = 2(t~ + dt~ ) 

and zl(t)  is the solution of 
i:s (t) = f9 (zl (t), t), t • [tg, t9 + dtg] 
Zl(t~) = ~(t~) .  

C a s e  2" dt,  ___ 0, dt~ < 0 ( ~  J ~ g ~  ~ (b ) . )  
In this case, ax(t) is defined to be 

{ ~(t)  - ~(t ) ,  t c It1 + dr1, t~ + dt~] 
6x(t) -- yg(t) - x(t), t • [ts, ts + dtl] 

z~(t) - ~(t) ,  t • [t~ + dt~, t~] 
where yg(t) is the solution of 

{ ~)9(t)- fg(yg(t) , t ) ,  t • [tl ,tl  + dtl] 
yg(t~ + dtl ) = 2(t~ + dt~ ) 

and zg(t) is the solution of 
{ ~ 9 ( t ) -  fg(zg(t) , t ) ,  t • It9 + dtg,tg] 

z~(t~ + dt~) = ~(t~ + dt~). 

C a s e  a .  dr1 < O, dr2 > 0 (see f iguve 1 (c ) . )  
In this case, 6x(t) is defined to be 

{~(t) 
- ~(t)  t c [tl ,t~] 

6x(t) -- 2(t) -- y3(ti, t • [tl + dtl,t~] 
:~(t) -- z3(t), t • [tg, t9 q- dtg] 

where y3(t) is the solution of 
{ ~)3(t)= fg(y3(t) , t ) ,  t • [t~ + dt~,t~] 

y 3 ( t l )  = x ( t ~ )  

and z3(t) is the solution of 
{ 3( t )  = f g ( z 3 ( t ) , t ) ,  t • [ tg , tg+dtg]  

z3 ( t g ) =  x ( t g ) .  

C a s e  4" ~tl  < 0, ~t~ < 0 ( ~  ~ y ~  ~ ( e ) . )  
In this case, 3x(t) is defined to be 

{ ~(t)  - ~(t ) ,  t ~ It1, t~ + dt~] 
6x( t )  -- ~(t)  -- y 4 ( t ) ,  t • [tl q- dr1, t l ]  

z4 ( t )  - x( t ) ,  t • [t9 q- dt2, t2] 
where y4(t) i8 the solution of 

{ y4(t)=fg(y4(t),t) ,  t • [t~ +dt~,t~] 
y4(tl ) = x(t~ ) 

and z4(t) i8 the solution of 
;}4(t)-fg(z4(t),t), t • [tg+dtg,tg] 
2;4 (t9 q- dtg) = ~(t9 q- dtg). 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
[] 

R e m a r k  3.1 ~x(t) defines the difference between 2(t) 
and x(t) in the interval where subsystem 2 is active. 
Moreover, by extending 2 and x under subsystem 2 dy- 
namics to min{tl,tl + dtl} <_ t <_ max{t2,t2 + dr2} where 
at least one of 2(t) and x(t) evolves along subsystem 2, 
we can also define ~x(t) in that interval. [] 
L e m m a  3.1 The expressions of 6x(t2), 6x(t2+dt2),  and 
dx(t2) (i.e., 2(t2 + dt2) - x(t2)) are 

6x(t2) - A( t2 , t~) ( f  ~- - f~+)dt~ + o(dtl), (3.27) 

6x(t2 + dt2) - A( t2 , t~) ( f  ~- - f~+)dt~ 
+ f ~ - A ( t 2 , t l ) ( f  ~- - f~+)dt~dt2 (3.28) 
+(terms in dt~, dt~ and higher order terms), 

dx(t2) - A( t2 , t~) ( f  ~- - f~+)dt~ 
+ f ~ - A ( t 2 , t ~ ) ( f  ~- - f~+)dt~dt2 + f2-dt2  (3.29) 
+(terms in dt~, dt~ and higher order terms), 

where A(tg, tl) is the state transit ion matr ix  for  the vari- 

ational t ime-varying equation ,)(t) - of(x(t),t) o~ y( t )  f o r  
y(t) f rom tl to tg; here f is the corresponding active 
subsys tem vector field (here it is f2) in [tl, t2] and x(t) is 
the current nominal  state trajectory. 



Proof." See [9]. [] 

R e m a r k  3.2 In the expression of dx(t~), we deliber- 
ately express the term f ~ - A ( t ~ , t ~ ) ( f  ~ - -  f~+)dtldt~ ex- 
plicitly because it will contribute to the coefficient of 
dt~dt~ as can be seen below. [] 

Equipped with Lemma 3.1, we are ready to derive 
the coefficient for dt~dt~ in the expansion of 

J ( t l  + dr1, t~, -r ¢t~,) --  Jr0 L(~c( t ) ,  t )  d t  
+J~ (2(t~ + dt~), t~ + dt~). (3.30) 

For the first term in (3.30), we have 

L e m m a  3.2 The contribution of ftt~ +dt~ L(2, t ) d t  to the 
coefficient of dt~dt~ is 

L~A(t~ , t~) ( f  ~- - f~+). (3.31) 

Proof." See [9]. [] 
For the second term in (3.30), similar to the single 

switching case, we can obtain its Taylor expansion as 

J~ (k(t~ + dt~), t~ + dt~) = J~ + J~dx(t~) 
+ )) + (3.32) 

+dt~J~e~dx(t~) + (higher order terms). 

In (3.32), the terms that  will possibly contribute to the 
coefficient of dt~dt~ are those containing dx(t~). They are 

T 2 ~(dx(t~)) J~xdx(t ), and d t~J~dx ( t~ ) .  Substi- J~dx(t~), ~ ~ 
tut ing the expression of dx(t~) into these terms and sum- 
ming them, we obtain the contribution of the second 
term to the coefficient of dt~dt~ as 

( j ~ f ~ -  + ( f ~ - ) T j ~  + j{2~)A(t~, t~)( f~-  _ f~+). (3.33) 

Summing (3.31) and (3.33) and also substituting into 
the sum the expression of J~2x which can be obtained 
similarly to the expression of J~l~ in (3.9), we conclude 
that  the coefficient of dtldt~ is 

j ~ l ~  2 _ ( j 2 x ( f 2  x - _ f2x--}- ) _+_ ( f 2 -  
- f 2 + ) T J ~ ) A ( t 2 ,  t~)( f~-  - f~+). (3.34) 

R e m a r k  3.3 The above result still holds even when 
t l  - -  t2 .  [ ]  

The above derivations can similarly be extended to 
the case of K switchings as follows. 

T h e o r e m  3.1 For a switched sys tem with K switch- 
ings, 

J(t~ + dt~, t~ + dt~, . . .  , tt~ + dtt~) 
K 1 K = J( t l ,  t ~ , . . . ,  tt~) + Ek=l Jt~ dt~ + -5 Ek=l Jt~t~ dt~ 

+ }--~,1<~<~</~ Jt~t~dt~dt~ + (higher order terms) 

where Jt~ - J)  ( f k -  - fk+), 

J ~  -- j ~ ( f ~ -  - f~+) - (J~f~+ + L~) ( f  a- 
- f a + )  + J~( f~ -  - f ~ + ) f a -  
+ ( f a -  _ f a + ) T j ~ ( f a -  _ fa+) 

- - + )  + ( f -  

- f ~ + ) T J ~ ) A ( h , t ~ ) ( f ~ -  - f~+). 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

3 . 3  C o m p u t a t i o n  of  A(h , t~ ) ,  J~, a n d  J ~  
In order to use Theorem 3.1 to compute the values 

of Jt~, Jt~t~ and Jt~t~, numerical methods need to be 
used to compute the values of A ( h ,  ta), Jkx and Jkxx. 

First note that  A ( h ,  tk) is the state transition ma- 
°f(x't)y(t) where f is the vector field trix for ~)(t) - o~ 

of the corresponding active subsystem at each time 
instant (i.e., f - fj for t c [tj_~,tj), j - k + 
1,. . .  ,1). To find its value, we can first find the so- 
lution y(1)(t), . . .  ,y(n)(t) corresponding to initial condi- 
tions y (~) ( t~ ) -  e~, . . . ,  y ( ~ ) ( t ~ ) -  e~ respectively, where 
ej is the unit column vector with all 0's except that  the 
j - th  element being 1, j - 1, 2 , . . . ,  n. From linear sys- 
tems theory, A(h,  t~) is equal to the square matrix whose 
j - th  column is y(J)(h), i.e. 

A ( h , t ~ ) -  [y(1)(h),'"", y(~)(h)]. (3.39) 

To obtain the value of J~, note that  

ft~ f J~(x(t~) , t~)  - ¢ ( x ( t f ) )  + L(x ( t ) , t )  dt. (3.40) 

If x(t~) has a variation 5x(t~), then it can be shown that  

J~ (x(t~ ) + 5x(t~ ), t~ ) -- J~ (x(t~ ), t~ ) 

+ (higher order terms in 5x(t~)). 
(3.41) 

Hence 

j~t~ f J)  - ¢~(x ( t f  ) )A( t f  ,t~) + L~(x , t )A( t , t~ )  dt. (3.42) 

Now if we apply the similar procedure by varying x(t~) 
as in (3.42) to J) (x ( t~) , t~ ) ,  we can obtain 

J)~ - AT( t f  , t~)~b~(x( t f  ) )A( t f  ,t~) 
+ f ~  A T (t, t~)Lx~(x, t)A(t ,  t~) dt. (3.43) 

From the above discussions, we find that  A ( h , t k )  
Of(x, t )  can be obtained by solving ODEs ~)(t) - o~ y(t) along 

with initial conditions y(J)(t~) - ej. A( t f ,  t~) can be ob- 
tained in the same fashion. Jx k and Jkxx are in integral 
forms (3.42) and (3.43) which can easily be rewritten as 

- ¢ ~ ( x ( t f ) ) A ( t f , t ~ )  + r/l(tf) , (3.44) 

= AT(tf,t~)¢~x(x(tf))A(tf,t~)+q2(tf).(3.45) 

with ?]1 and r/2 satisfying the following initial value 
ODEs 

~ 1  - Lx(x , t )A( t , t~ ) ,  rl~(t~) - 0~×~, (3.46) 

(12 - A T ( t , t ~ ) L ~ ( x , t ) A ( t , t ~ ) ,  rl2(t~) - 0~×~(3.47) 

R e m a r k  3.4 ( C o m p u t a t i o n a l  C os t )  The above 
method we propose reduces the computat ion of A(h, t~)  
to solving initial value ODEs for any k < 1 and the com- 
putat ion of J~ and J~x to solving initial value ODEs 
(3.46)-(3.47) for all k. Hence we altogether need to solve 

(K-1)K2 + K - -  K(K+I)2 sets of initial value ODEs. With 
today's  powerful ODE solvers (e.g., ode45 function in 
MATLAB), these equations can be solved efficiently and 
accurately. [] 



4 General Quadratic Problems for Switched 
Linear Autonomous  Systems 

In this section, we apply the approach in Section 3 
to a special class of problems, namely, general quadra t ic  
problems for switched au tonomous  linear systems. 

Problem 4.1 Consider  a switched sys tem with linear 
au tonomous  subsys tems  2 -  Aix,  i E I.  Given a prespec- 
ified sequence of active subsys tems  (1, 2, . . .  , K, K + 1), 
f ind optimal switching ins tants  t l , . . . ,  tK (to G tl G . . .  G 
tK G ty) such that the cost 

1 )T J -  7x(tf Ofx( t f  ) + Mfx( t f  ) + Wf 
+ S,'o s (½(x(t))  TQx(t)  + Mx( t )  + W )  dt (4.1) 

is minimized.  Here to, t] and x(to) - xo are given; 
Q], M], W], Q, M, W are matrices  of appropriate dimen-  
sions with Q f >_ O, Q >_ O. [] 

For Problem 4.1, we can observe tha t  for any k < 1 
d ( h , t ~ )  - e Al(~l-~l-1)'" "e Ale+l(~le+l-~k) (4.2) 

The computa t ion  of J~ and J~x is discussed next.  
Assume a nominal  { is given. If for any x c R ~ and 
any t c [to,tf] we denote by J (x , t )  the cost incurred 
if the sys tem s tar ts  from the s ta te  x at t ime ins tant  t 
and evolves according to the port ion of the switching 
sequence genera ted  by { in [t, tf], i.e., 

1 T J(x,t) - -  7(x(tf  )) Qfx( t f  ) + Mfx( t f  ) + Wf 
(4.3) 

where x(t) - x. Dynamic  p rogramming  approach similar 
to (3.8) can be applied to J(x, t) to obtain  

t) - -  2X TP( t ) x  + S( t )x  + T(t)  (4.4) 
" 1  

where P ( t ) -  pT  (t) and 

- P  -- P A  + A T p  + Q, P ( t f  ) - Qf  , (4.5) 

- S  - S A  + M ,  S ( t I )  - M I ,  (4.6) 
- T  -- W, T ( t f  ) - WI,  (4.7) 

where A - A(t) equals the Ai of the corresponding active 
subsys tem at each t ime ins tant  t. 

Note tha t  if { is fixed, we have 
J~ (x(t~),t~, . . . , t K )  --  J(x( t~) , t~) ,  (4.8) 

J)  - Jx(x( t~) , t~)  - (x( t~))Tp( t~)  + S(t~), (4.9) 

J)~ -- J ~  (x(t~), t~) -- P(t~). (4.10) 

Remark 4.1 (Computational  Cost) A(h , t~ ) ' s  can 
be computed  using (4.2) wi thout  solving ODEs.  The 
computa t ion  of J )  and J)~ using (4.9) and (4.10) relies 
on the values of P(t~) 's  and S(t~)'s which are easy to ob- 
tain by solving the initial value ODEs (4.5)-(4.7) once. 
Therefore,  due to the special s t ruc ture  of the problem, 
the computa t ion  of A(h , t~) ,  J)  and J)x is simplified. [] 

5 Reachability Problems 

The above opt imal  control approach can also be ap- 
plied to the following class of reachabil i ty problems. 

Problem 5.1 (Reachability Problem) Given a 
switched au tonomous  sys tem,  does there exist a switch- 
ing sequence such that the state trajectory x departs 
f rom x(to) - xo and meets  x f  at some t f  ? Here to, xo, x f  
are given; t f i8 not given. [] 

Note tha t  xf is reachable from x0, if and only if the 
1 opt imal  control problem with J - 51 x ( t f ) - x f  ~ achieves 

min imum at J = 0. Here to, x0, xf are given. In par- 
t icular,  if a prespecified sequence of active subsystems 
is given, we can minimize J with respect to the switch- 
ing instants  and the final t ime t f. For example,  assume 
subsys tem k being active in [t~-l, t~) (subsystem K + 1 
in [t~,tK+l] with tK+l = t f ) ,  the reachabil i ty problem 
can be formulated as an opt imal  control problem which 
seeks for opt imal  values of tl, i . .  , tK, tf such tha t  

J ( t l , "  " , t K , t f  ) -- 7 x ( t f  ) -- X f  ~ (5.1) 
is minimized. In this case, ideally the min imum cost 
should be 0 if xf is reachable from x0 by the given order 
of active subsystems.  In practice,  if the opt imal  value 
of J is found to be smaller than  a predefined small tol- 
erance e > 0, then we regard xf as reachable from x0 
and regard the corresponding opt imal  t l , . . . , t K , t f  as 
the reachabil i ty switching instants.  

To minimize J ( t l , . . .  , t K , t f )  with respect to 
( t l , . . .  , t K , t f ) ,  we can use Algor i thm 2.1. To apply the 
algori thm, the derivatives of J first need to be computed.  
&~, Jt~t~ and Jt~t~ can be obta ined using the expressions 
in Theorem 3.1. However, we note here since tK+l = t f  
is free, we also need to derive Jts, Jtsts and Jt~ts" These 
values can be obta ined following the idea of the deriva- 
tion in Section 3 (see [9] for details). It is not difficult 
to show tha t  

J~s - (x( t f )  - x f )  T s ( K + I ) _  (5.2) 

J ' s ' s  -- (x( t f )  -- x f ) T  (s(K+I)- (5.3) 
--I- ]a}' r (K+I) - -  f (K+I)--  ) n L (  f (K+I)--  ) T f ( K + l ) - -  , 

T .(K+I) - -  

(5.4) 
+(f(K+l)--)T)A(tf,tk)(fk-- -- fk+). 

6 Examples  

In this section, we present  two examples to i l lustrate 
the effectiveness of the approach developed in this paper.  

Example 6.1 Consider a switched au tonomous  system 
consisting of 

21 - xl + 0.5sinx2 (6.1) 
subsystem 1" 22 - -0 .5 cosxl - x2 

2: { 21 - 0.3 sinxl + 0.5x2 (6.2) subsystem 
22 - -  - -0 .5Xl  -J,- 0.3 cosx2 

21 -- -Xl  - 0.5cosx2 (6.3) 
subsystem 3" 22 - 0.5 sin Xl + x2 

Assume tha t  to - 0, t f  - 3 and the sys tem switches 
at t - tl from subsys tem 2 to 2 and at t - t2 from 
subsys tem 2 to 3 (0 < tl < t2 < 3). Find opti- 
real switching instants  tl ,  t2 such tha t  the cost J - 
lx2(3)-J1-1 22(3)-J1-1 7 7x 7 f~ x~(t) + x~(t) dt is minimized. Here 
Xl (0) -- 1 and x2(0) - 3. 

For this problem, choose initial nominal  tl - 1, 
t2 - 1.5. By using the Algor i thm 2.1 (using constra ined 
Newton 's  method)  along with Theorem 3.1, after 9 iter- 
ations we find the opt imal  tl - 0.5466, t2 - 2.0337 and 
the corresponding opt imal  cost 9.9933. The correspond- 
ing s ta te  t r a jec to ry  is shown in Figure 2. [] 



1 

F i g u r e  2" The state t ra jectory for Example 6.1. 

E x a m p l e  6.2 (A R e a c h a b i l i t y  P r o b l e m )  Consider 
a switched system consisting of [10 l subsystem 1" k - A l x -  0 2 x, (6.4) 

subsystem 2: k - A 2 x -  0 1 x. (6.5) 

Assume that  at to - 0, the system state departs from 
the initial condition Xl(0) - 1 and x2(0) - 1 and evolves 
following the dynamics of subsystem 1. Also assume 
that  the system switches once at t l from subsystem 1 to 
2. Find a tl and a t f  (0 <_ tl <_ t f )  such that  the system 
state arrives at [e 3, ¢3]T a t  t f .  

This problem can be posed as an optimal control 
1 ¢3 2 problem with unknown tf and cost J- g((xl(tf)- ) + 

( x 2 ( t f ) -  e3)2). Choose initial nominal tl - -0 .7 ,  t f  -- 1.7. 
&l, Jts, &it1, Jtsts and JtltS can be derived using the 
formulae (3.36)-(3.37) and (5.2)-(5.4). By using Algo- 
r i thm 2.1 with the constrained Newton's method, after 8 
iterations we find the optimal are tl - 1.0000, t f  - 2.0000 
and the corresponding optimal cost 6.3109 x 10 -29. The 
corresponding state t ra jectory is shown in Figure 3. 
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F i g u r e  3" The state t ra jectory for Example 6.2. 

For this example we can verify the correctness of 
(5.2)-(5.4). For example, the expression of Jtlt f  c a n  be 
derived from (5.4) as (here K -  1) 

Jt l  t f  -- ( ( x ( t f )  -- x f ) T A 2  
(6.6) 

+(A2x( t f  ) ) f ) A ( t f , t l ) ( A 1  - A2)x(t l) .  

We can substi tute x(t l )  - [e tl, e2tl] f ,  x( t f )  = 
[e 2 t f - t l  , e t f+ t l ]  T,  Xy  --[e 3, e3], A ( t f , t l )  -- e A 2 ( t f - t l ) ,  

and A1, A2 into (6.6) and obtain J t l t f  -- --4e4tf-2tl + 
2 e 2 t f - - t l +  3 _Jr_ 2 e 2 t f + 2 t l  _ e t f + t l +  3. 

The correctness of J t l t f  c a n  be verified by directly 
1 -- e 3 ) -Ji- differentiating the expression J - 5((e 2tf- t l  2 

(e t f+ t l  - - e 3 )  2) and obtain the same Jtst s. Similarly, we 

can also verify the correctness of the expressions of ~ 1 ,  

& f ,  &1~1, & f  ~f by direct differentiations of J. [] 

7 C o n c l u s i o n  

In this paper, we proposed an approach for solving 
optimal control problems for switched autonomous sys- 
terns with prespecified sequences of active subsystems. 
In particular,  we derived the derivatives of the cost with 
respect to the switching instants and use nonlinear opti- 
mization techniques to locate the optimal switching in- 
stants. It was also shown that  the computat ional  duty 
can be eased for general quadratic problems for switched 
linear autonomous systems. Finally reachability prob- 
lems were also studied using the optimal control tech- 
niques. A more detailed version of this paper can be 
found [9]. Further research topics include the search 
for optimal switching sequences when the active sub- 
systems are not prespecified, and the application of the 
approach to hybrid systems with state discontinuities at 
the switching instants. 
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