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INFRASTRUCTURE, QUERY OPTIMIZATION, DATA WAREHOUSING AND

DATA MINING FOR SCIENTIFIC SIMULATION

Abstract

by

Yingping Huang

This thesis examines the application of infrastructure, query optimization, data

warehousing and data mining technologies to the area of scientific simulation. One

application of scientific simulation is on the behavior of natural organic matter

(NOM). NOM is a heterogeneous mixture of organic molecules found in terres-

trial and aquatic environment - from forest soils and streams to coastal rivers and

marshes to the open sea. NOM plays a vital role in ecological and biogeochemical

processes. In this thesis, we present an agent-based stochastic simulation of NOM

transformations, including biological and non-biological reactions, as well as adsorp-

tion and physical transport. It employs recent advances in web-based development

environments such as J2EE, and scalable web-based database management systems

such as Oracle to improve the reliability and scalability of the stochastic simulations

and to facilitate analysis of the resulting large datasets. A data warehouse is built

by extracting, transforming and loading data from the simulation databases. Fur-

thermore, data mining tools and techniques are applied to the data warehouse to

discover interesting knowledge. The NOM simulation system is useful in chemistry,

geology and environmental science.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to NOM

Natural Organic Matter (NOM) is a complex mixture of compounds formed as

a result of the breakdown of animal and plant material in the environment. The

composition of the mixture is strongly dependent on the environmental source. Gen-

eralizations regarding chemical character can be prone to misinterpretation as the

character of the compounds present in the mixture is extremely diverse. However,

if the complexity of the NOM is kept in mind, a broad understanding of its char-

acter is possible. NOM consists mainly of carbon, oxygen and hydrogen. Nitrogen,

phosphorus and sulphur can also be present; their prevalence will depend on the

source of the NOM. A range of compounds, from small hydrophilic acids, proteins

and amino acids to large humic and fulvic acids, are constituents of most NOM. The

organic compounds can range from largely aliphatic to highly aromatic, from molec-

ular weights around 10,000 down to 2000, and from highly charged to uncharged

compounds.

NOM is ubiquitous in terrestrial, aquatic, and marine ecosystems, playing a

crucial role in such important processes as the evolution and fertility of soils; the

mobility and transport of pollutants such as trace metals, radionuclides and hy-

drophobic organic compounds; the availability of nutrients to microorganisms and

plant communities; the growth and dissolution of minerals; and the global biogeo-
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chemical cycling of the elements [6].

NOM is very important to drinking water systems. It has a significant impact

on all aspects of drinking water treatment. NOM is responsible for the majority of

the coagulant demand. Therefore waters with high dissolved organic carbon levels

usually have a high coagulant requirement and consequent high treatment costs.

Where activated carbon is used for the removal of micro-contaminants, e.g., tastes

and odors, pesticides, NOM competes strongly for adsorption sites, and the amount

of activated carbon required is increased or the lifetime of the carbon is drastically

reduced. NOM exerts a high demand for chemicals, such as chlorine, cholramine

and ozone, thus increasing the costs associated with their application. In addition,

the reaction between oxidants and NOM can produce by-products, some of which

are known to be harmful to health at high concentrations. NOM is responsible

for fouling of membranes, reducing the flux, resulting in higher frequency of back-

washing and cleaning membrane systems. NOM serves as a substrate for bacterial

growth. This may lead to re-growth in the distribution system where a sufficient

disinfectant residual cannot be maintained.

The importance of NOM attracts numerous researchers, including chemists, ge-

ologists or even computer scientists. Despite decades of research, we still know

relatively little about the structure, chemical composition, and chemical properties

such as molecular weight, functional group concentrations, structure, composition,

and reactivity [32] [9] [23].

During the last 50 years, some researches have been done on the functional behav-

ior of NOMs, including pH buffering, metal complexation, pollutant solubilization,

adsorption onto mineral surfaces, alteration of mineral precipitation and dissolu-

tion, bioavailability to heterotrophs and promotion of photochemical reactions [35]

[21] [27]. Different models are proposed to handle NOM research, including ODE
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(Ordinal Differential Equation), PDE (Partial Differential Equation), etc. But the

diversity of the compounds present in NOM leads to the difficulty of describing the

mixture adequately and computationally expensive.

1.2 Introduction to Stochastic Simulation

Models of chemical reactions can be classified in three ways: the simulation time

can be continuous or discrete, the state-space can be continuous or discrete, the

evolution of the system can be deterministic or stochastic [13].

A deterministic model is one in which the state of the system at one moment in

time completely specifies the system for all times. In a stochastic model, the state of

the system is represented by a set of values with a certain probability distribution,

such that the evolution over time is dependent on a series of probabilistic events.

Deterministic models are easier to mathematical analysis than stochastic ones, due

to the difficulty in solving stochastic differential equations.

As the time is continuous, it is natural to represent temporal relationships of a

simulation model. However, because discrete time models are simpler than contin-

uous models and computers can perform calculations only at discrete points, it is

often preferable to model a system using discrete time steps, and the system state is

updated at the end of each time step. State-space refers to the n-dimensional space

containing all the possible states of a given system with n variables.

1.2.1 Deterministic Models

The mathematical basis for chemical reactions stems from work done by Michaelis

and Menten in 1913. They proposed a situation in which a chemical reaction is rep-

resented by a system of ordinary differential equations (ODEs). For example, a

chemical reaction: A + B −→ C would be described using dC
dt

= k[A][B] where k

is the reaction rate constant (M−1s−1). Here [A] denotes the concentration of A in
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moles per liter, so does [B].

The problem of this model is that the system of ODEs assume that the system is a

continuous predictable process. However, it turns out that in reality, some situations

are not continuous and predictable and the random fluctuations or external cases

drive many of the reactions.

1.2.2 Stochastic Models

Stochastic methods for modeling chemical reactions dates back to 1940 by H.A.

Kramers, but a real breakthrough came in 1976 when D.T. Gillespie published a

paper describing a new method for solving a system of ODEs [18]. In his paper,

Gillespie considers the time evolution of the system as a kind of random walk that

is governed by the “master equation”. The “master equation” is a differential dif-

ference equation which keeps track of all the molecules in the system. Even though

it may be impossible to solve a complicated chemical system exactly, Gillespie’s

method can be used to numerically simulate the time evolution of the system. With

his method, reactions are thought of as occurring with certain probabilities, and the

events which occur change the probabilities of subsequent events. The algorithm is

based on the quantity P(t, u) which is the probability that the reaction u occurs

in the time interval t. In reality, a chemical reaction is a stochastic event involving

a discrete number of molecules; therefore, it is more realistically described using a

stochastic model than a deterministic one.

1.3 Introduction to Agent-based Technology

Agent-based systems are of increasing importance. They are regarded as a new

paradigm enabling an important step forward in empirical sciences, technology and

theory. Agent-based technology has an enormous influence on model building and

simulation. Novel design patterns and models are opening up new possibilities.
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1.3.1 Intelligent Agents

Intelligent agents can be equipped with different attributes, although many may

not be necessary or useful in every application. The following are some important

features of intelligent agents:

• Autonomous Behavior

Every agent has autonomous behavior. This means that an intelligent agent

behaves autonomously without external control. In addition there is the in-

duced dynamism which describes how the intelligent agent reacts in response

to inputs from the environment. Strategies that guide the behavior of an agent

when it is pursuing its goals are of particular importance.

• Individual World View

Every agent has its own model of the external world that surrounds it. This

model describes how the intelligent agent sees the world. The manner in

which the intelligent agent builds up its model of the world on the basis of the

information it receives from its environment is of particular interest.

• Communicative and Cooperative Capacity

Intelligent agents can exchange information with their environment and with

other intelligent agents. By means of the possibility of communication an

intelligent agent must obtain information about its environment which enables

it to build up its own world model. Moreover, the possibility of communication

with other intelligent agents is the precondition of common action in pursuit

of a goal.

• Intelligent Behavior

As the term Intelligent Agent indicates, behavioral possibilities such as the ca-
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pability to learn, logical deduction or construction of an environmental model

are required.

• Spatial Mobility

Intelligent agents are sometimes required to display spatial mobility. Spatial

mobility is of particular interest to us in our simulation of molecular behavior.

Not all agents are intelligent. In the NOM simulation system, the molecules are not

intelligent. The modeling and simulation of real systems consisting of agents that

cooperate with each other has recently emerged as an important field of research.

Two areas are of particular interest:

• Strategies and Decentral Control

The object is to develop individual strategies that individual agents pursue

and that ensure that a common goal can be achieved even without central

regulation. Examples of this area are social insects and birds, in which there

is no lead or centralized control in a group.

• Emergent Behavior

Cooperation between agents can produce a stable system that displays new

global behavior on a higher level of abstraction. The task is to explain this

global behavior on the basis of the individual attributes of the intelligent agents

and of their interactions.

1.3.2 Swarm

Swarm is a software package for multi-agent simulation of complex systems,

originally developed at the Santa Fe Institute [4]. Swarm is intended to be a useful

tool for researchers in a variety of disciplines. The basic architecture of Swarm is the

simulation of collections of concurrently interacting agents. With this architecture,
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we can implement a large variety of agent based models. The swarm software is open

source and is available to the general public under GNU licensing terms. Swarm is

experimental software, which means that it is complete enough to be useful but will

always be under development.

1.4 The NOM Simulation System

We develop an agent-based stochastic model for time-dependent evolution of

NOM in the environment. The objective of this model is to produce both a new

methodology and a specific program for predicting the properties of NOM over time

as it evolves from precursor molecules to eventual mineralization. The methodology

developed is an agent-based stochastic simulation of NOM transforms, including bi-

ological and non-biological reactions, as well as adsorption and physical transport.

It employs recent advances in web-based interfaces, and scalable web-based database

management systems to improve the reliability of the stochastic simulation and to

facilitate analysis of the resulting large datasets. Furthermore, data-mining tech-

niques and models are developed to discover knowledge from the simulation data

warehouse.

1.5 Main contributions of the thesis

In this thesis, we present an agent-based stochastic model which has enormous

potential benefits in a wide range of disciplines, since literally all aspects of biogeo-

chemistry are related to NOM. It acts as a starting point of a powerful tool which

can be applied to aquatic ecosystem studies, soil and crop science, environmental

protection, remediation in the surface and sub-surface, and global climate change

prediction. Unlike current models, this model explicitly treat NOM as a heteroge-

neous mixture, so that distributions of physical, chemical and biological properties
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can be predicted. To summarize, this thesis:

• presented an agent-based stochastic simulation model;

• employed advanced IT technologies to scientific simulation;

• applied data mining techniques to simulation data.

1.6 Organization of the thesis

The rest of this thesis consists of seven chapters. Chapter 2 discuss the back-

ground of the problem we are studying, and the technologies which are used in the

simulation system. Chapter 3 presents the infrastructure which supports our NOM

simulation system. Chapter 4 gives an overview of our web-based interface and the

simulation program. Chapter 5 discusses the status reports pages of the simulation.

Chapter 6 describes our approaches to designing and building the data warehouse.

Chapter 7 presents the work of applying data mining techniques to the simulation

data warehouse. Chapter 8 gives some ideas for further work.
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CHAPTER 2

Background And Technologies

In this chapter, we list some previous work done by other researchers which is

closely related to our research on the NOM simulation system. Then we briefly

present the stochastic model with underlying algorithms. Finally, we discuss some

web-based interface and RDBMS technologies used in the next few chapters.

2.1 Previous Work

Over the recent years, many simulation models have been developed to simu-

late bio-chemical reactions. These models can be categorized as deterministic or

stochastic.

2.1.1 Deterministic Models

Several simulators are available which can be used to predict the behavior of a

network of chemical reactions. Among them, SCAMP [39] and METASIM [34], em-

ploy non-standard biochemical languages to specify a model in a series of command

files. The simulator then uses these files to construct differential equations which

then are solved using numerical integration. Other deterministic models are also

proposed with more specific programs to solve a single set of differential equations

using similar methods [8] [26].

Under some situations, deterministic models no longer represent the physical

system adequately and cannot be used to predict the concentrations of chemical
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species.

2.1.2 Stochastic Models

In 1976, Gillespie [18] developed a discrete, stochastic algorithm to simulate

chemical reactions. In his model, time is quantitized into small time steps with

variable lengths. At each time step, based on the rate constants and population size

of each chemical species, a random number is generated to choose which reaction will

occur, and another random number to determine how long the step will last. The

chemical populations are altered according to the stoichiometry of the reaction and

the process is repeated. To determine which chemical reaction will occur in a given

time step, the Gillespie algorithm calculates the probability of each reaction relative

to another by multiplying the rate constant of each reaction with the concentration

of its substrates. A random number is then used to determine which reaction will

occur according to this set of weighted probabilities.

In 1995, IBM Almaden Research Center developed a Chemical Kinetics Simu-

lator (CKS) [10]. This simulator has a stochastic simulation package which allows

you to calculate concentrations of reactants and products in a chemical system as a

function of time.

In 1997, Punch et al reported a software system called BESS which simulated the

action of biodegradation pathways on compounds. It did so by encoding biodegra-

dation pathways in a knowledge base and applying those pathways in sequence to

the compound, breaking it down into metabolites [43]. BESS used the expert system

approach. As its heart, BESS was a rule-based system. It was implemented using

VisualWorks Smalltalk. It was then re-implemented using C++ and Java.

Firth and Bray [15] [14] later developed a simulation algorithm called STOCHSIM

using stochastic model to predict cell signalling pathways. In their model, time is
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quantitized into discrete slices. At each time step, one or two molecules are selected

from the set of molecules depending on some pre-calculated probabilities. Then

first order or second order reactions could occur based on some generated random

numbers. Note that at each time step, only one chemical reaction is allowed.

Swarm has been used in chemical simulations. In [3], McMullin implemented an

artificial chemistry using Swarm.

2.2 The Stochastic Model of NOM

In this thesis, we develop a new stochastic simulation model using agent-based

technology. This stochastic model of NOM represents individual molecules as dis-

crete objects of specified elemental and functional group composition, size and re-

activity. Temporal evolution of NOM from biological precursor compounds such as

lignin, polysaccharides and proteins is simulated in which specific probabilities are

assigned to particular transformations. The reactivity of the resulting NOM assem-

blage over time can be predicted based on the distributions of molecular properties.

This stochastic approach has several advantages: it is much less computation-

ally intensive than molecular modeling or explicit kinetic simulation of hundreds of

compounds, it can be adapted to a variety of time scales and processes, and it intrin-

cically handles NOM structural and functional heterogeneity. This approach also

employ state-of-the-art information technology including web interface and scalable

relational database management systems (RDBMS).

2.2.1 The Simulation Algorithm

The NOM simulation is implemented in a discrete 2D space with discrete time.

The simulated space is a rectangular lattice. Each molecule can occupy at most

one cell, and each cell can host at most one molecule. During execution of the

simulation, each molecule may move to another lattice or stay in a fix position

11



according to predefined simple rules in physical processes. In chemical reactions,

one molecule could split and occupy two cells in the world; two or more molecules

could combine and occupy just one cell. In the situation of adsorption, two molecules

can be in the same cell if one of them is adsorbed.

There are 10 types of chemical reactions which could occur in the simulation

system, namely, ester condensation, ester hydrolysis, amine hydrolysis, microbe up-

take, dehydration, strong C=C oxidation, mild C=C oxidation, Alcohol (C-O-H)

oxidation, aldehyde C=O oxidation, decarboxylation. Each molecule has a proba-

bility for each type of chemical reaction. The calculation of the probability is based

on the structure of the molecule, and the environment in which the molecule re-

sides. These environmental variables include the length of the time step, microbe

density, fungal density, pH value, temperature, pKw (the equilibrium constant for

the autolysis of water, which is very close to 14.0), oxygen density, light density, etc.

After each chemical reaction, the probabilities of these reaction types of a molecule

is re-calculated. The reaction probabilities are stored in an array associated with

each molecule.

As illustrated in Figure 2.1, in each time step, for each molecule, a random

number is generated which is used to determine whether a chemical reaction will

occur, and if one occurs, which reaction type. In the simulation, the sum of all

the reaction probabilities is controlled to be less than 1 percent. The interval [0, 1],

is partitioned into 11 subintervals. The length of the first interval is equal to the

probability of the first reaction type; the length of the second interval is equal to the

probability of the second reaction type, etc. The length of the last interval is the

probability in which no reaction will occur. The generated random number from the

interval [0,1) will reside in one of these intervals, and it will decide which chemical

reaction will occur if any at all.
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If the chosen chemical reaction type is a second order reaction, i.e., there will

be two molecules involving in the reaction, the second molecule will be chosen from

one of its nearest neighbors who are not not involved in a chemical reaction yet.

Figure 2.1. Flow-chart representation of one molecule in a time step

After the reaction takes place, the probability tables for involved molecules are

updated at the end of the time step and the new probability tables are assigned to

newly produced molecules. Note that, at each time stamp, one or more chemical

reactions could occur.
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2.3 Technologies

The NOM simulation system includes a web interface which allows users to

provide input for the core simulation and view immediate status reports of their

simulation through their browsers. The web interface is written using JavaServer

pages (JSP), the core simulation is invoked by a Java servlet. To run JSP and

Java servlets, we use the Java 2 Enterprise Edition (J2EE) platform. Among many

J2EE platforms such as Apache Tomcat, Sun’s JavaServer Web Development Kit

(JSWDK), Java Web Server, Orion Server, and Oracle Application Server, we choose

the Oracle9iAS container for J2EE (OC4J, also known as Orion Server) which is

part of the Oracle Application Server Suite. The core simulation is written in

Java with the Swarm library. The simulation data is stored in Oracle RDBMS

using Java Database Connection (JDBC). Reports of the simulation results are

generated upon user request, using SQL and PL/SQL language with the help of

Oracle Reports. A data warehouse is built by extracting, transforming and loading

data from the simulation databases. Then data mining programs are developed

to make classifications, predictions, clustering, etc. to the data warehouse using

the Oracle Data Mining APIs. In the following section, we briefly introduce these

technologies.

2.3.1 Oracle RDBMS and Data Warehouse

An Oracle database is a collection of data treated as a unit. The purpose of a

database is to store and retrieve related information. A database server is the key

to solving the problems of information management. In general, a server reliably

manages a large amount of data in a multiuser environment so that many users can

concurrently access the same data. All this is accomplished while delivering high

performance.
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We use both Oracle8i and Oracle9i in the simulation system. For detailed in-

troduction of Oracle database, SQL and Oracle PL/SQL languages, see Loney and

Koch [28].

A common way of introducing data warehousing is to refer the characteristics

of a data warehouse as set forth by Inmon [22]: subject oriented, integrated, non-

volatile, time variant.

• Subject Oriented: Data warehouses are designed to help users analyze data.

For example, to learn more about a company’s sales data, we can build a

warehouse that concentrates on sales. Using this warehouse, we can answer

questions like ”Who was our best customer for this item last year?” This

ability to define a data warehouse by subject matter, sales in this case, makes

the data warehouse subject oriented.

• Integrated: Integration is closely related to subject orientation. Data ware-

houses must put data from disparate sources into a consistent format. They

must resolve such problems as naming conflicts and inconsistencies among

units of measure. When they achieve this, they are said to be integrated.

• Non-volatile: Non-volatile means that, once entered into the warehouse, data

should not change. This is logical because the purpose of a warehouse is to

enable you to analyze what has occurred.

• Time Variant: In order to discover trends in business, analysts need large

amounts of data, collected over time (i.e., with temporal attributes). A data

warehouse’s focus on change over time is what is meant by the term time

variant.

Dodge and Gorman elaborate in more detail on Oracle data warehousing [12].
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2.3.2 Oracle Reports

Oracle9i Reports is Oracle’s reporting tool. It consists of Oracle9i Reports Devel-

oper and Oracle9iAS Reports Services. Oracle9i Reports Developer uses a declara-

tive, document-centric development model to help the J2EE developer rapidly create

web and paper reports against the Oracle databases. While allowing developers to

leverage recent J2EE technologies such as JSP and XML, Oracle9iAS Reports Ser-

vices publishes these reports in any format including HTML, XML, JSP to any

destination including web browser and Oracle9iAS Portal. In this thesis, we use

Oracle Reports to publish reports in JSP format on the web so that users can view

the reports through their browsers. Additional information on Oracle Reports is

available in Muller [33].

2.3.3 Oracle Data Mining

Oracle9i Data Mining, an option to Oracle9i Enterprise Edition, allows compa-

nies to build applications that mine corporate databases to discover new insights,

and integrate those insights into business applications. Oracle9i Data Mining em-

beds data mining functionality into the Oracle9i database, for making classifications,

predictions, and associations. All model-building, scoring and metadata manage-

ment operations are initiated via a Java-based API and occur entirely within the

relational database. In this thesis, we apply Oracle Data Mining to the simulation

data warehouse. The Oracle Data Mining manual [5] contains an introduction of

the data mining algorithms, APIs and simple examples.

2.3.4 JDBC

JDBC (Java Database Connectivity) is a standard Java interface for connecting

from Java to relational databases such as Oracle. The JDBC standard was defined

by Sun Microsystems, allowing individual providers to implement and extend the
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standard with their own JDBC driver. JDBC is based on the X/Open SQL Call

Level Interface and complies with the SQL92 Entry Level standard. In addition

to supporting the standard JDBC API, Oracle drivers have extensions to support

Oracle-specific datatypes and to enhance performance. In this thesis, JDBC is used

by the core simulation to write simulation data to the Oracle databases. To learn

more about Oracle JDBC, refer to Price and Wald [36].

2.3.5 J2EE

The J2EE architecture is based on the Java programming language. An advan-

tage of Java is that it enables organizations to write their code once and deploy that

code onto any platform. The process is as follows: developers write source code in

Java, the Java code is compiled into bytecode, which is a cross-platform intermedi-

ary, halfway between source code and machine language. When the code is ready

to run, the Java Runtime Environment (JRE) interprets this bytecode and executes

it at run-time. J2EE is an application of Java. J2EE components are transformed

into bytecode and executed by a JRE at runtime.

J2EE has historically been an architecture for building server-side deployments

in the Java programming language. It can be used to build traditional web sites,

software components, or packaged applications. J2EE has been extended to include

support for building XML-based web services as well. These web services can in-

teroperate with other web services that may or may not have been written to the

J2EE standard. For an introduction of J2EE, see Deitel et al [1].

2.3.6 Java Servlet

A Java servlet is a program that extends the functionality of a Web server. A

servlet receives a request from a client, dynamically generates the response (pos-

sibly querying databases to fulfill the request), and sends the response containing
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an HTML or XML document to the client. Servlets are similar to CGI and its

alternatives such as PHP and ASP, but much easier to write, because servlets use

Java classes and streams. Servlets execute faster, because servlets are compiled to

Java Byte code. At run time, the servlet instance is kept in memory, and each client

request spawns a new thread.

Servlets make it easy to generate data to an HTTP response stream in a dynamic

fashion. The issue facing servlets is that HTTP is a stateless protocol. That is, each

request is performed as a new connection, so flow control does not come naturally

between requests. Session tracking or session management maintains the state of

specific clients between requests.

2.3.7 JSP

JavaServer Pages (JSP) are a text-based, presentation-centric way to develop

servlets. JSPs allow Web developers and designers to rapidly develop and easily

maintain information-rich, dynamic Web pages that leverage existing business sys-

tems. JSPs enable a clean separation and assembly of presentation and content

generation, enabling Web designers to change the overall page layout without alter-

ing the underlying dynamic content. JSPs use XML-like tags and scriptlets, written

in the Java programming language, to encapsulate the logic that generates the con-

tent for the page. Additionally, the application logic can reside in server-based

resources, such as JavaBeans, that the page accesses with these tags and scriptlets.

All formatting (HTML or XML) tags are passed directly back to the response page.

By separating the page logic from its design and display, and supporting a reusable

component-based design, JSP technology is faster and easier when building Web-

based applications. A JSP page looks like a standard HTML or XML page with

additional elements that the JSP engine processes and strips out. Typically, the
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JSP generates dynamic content, such as XML, HTML, and WML. Refer to Hall

[19], which elaborates the details of Java Servlet and JSP technologies.

2.3.8 OC4J/Orion Server

Oracle provides a complete set of the J2EE container written entirely in Java

that executes on the Java virtual machine (JVM) of the standard Java Develop-

ment Kit (JDK). You can run the Oracle9iAS containers for J2EE (OC4J) on the

standard JDK that exists on most operating systems. OC4J is J2EE complient and

provides all the containers that J2EE specifies. OC4J is based on technology licensed

from Ironflare Corporation, which develops the Orion Server - one of the leading

J2EE containers. OC4J supports the standard J2EE APIs including Java Servlets,

JavaServer Pages (JSP), Enterprise JavaBeans (EJB), Java Database Connectivity

Services (JDBC), Java Naming and Directory Interface (JNDI), Java Transaction

API (JTA), Java Message Service (JMS), etc.
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CHAPTER 3

The Infrastructure

The simulation model employs recent advances in web-based interfaces, and

scalable web-based database management systems to improve the reliability of the

stochastic simulations and to facilitate analysis of the resulting large datasets. In the

previous chapter, we briefly introduced the technologies we used in the simulation.

In this chapter, we will build the infrastructure of the simulation system using those

technologies. Here infrastructure means the group of database servers, web servers,

J2EE platform, reports servers and data mining servers, as well as the underlying

software which supports our simulation. In the following sections, sometimes we

may use architecture instead of infrastructure, but they are interchangeable.

3.1 Multi-tier Architecture

The multi-tier infrastructure of the simulation system is shown in Figure 3.1.

Before explaining the infrastructure in detail, let us show how users access the

simulation system.

3.1.1 How Do Users Access The System

The simulation system is web-based, so users will access the system through their

web browser, including Netscape and Internet Explorer, using the well-known Hy-

perText Transfer Protocol (HTTP). Let us list the main steps a user will encounter
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Figure 3.1. The infrastructure
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when using the system.

1. The user points his/her browser to the home page:

http://joy.cse.nd.edu:8000/nom/homepage.jsp.

2. If the user is a new user, he/she registers with the simulation system. Existing

users will skip this step.

3. He/she logs in the system, provides environment variables and molecule infor-

mation through the Molecule Editor Wizard.

4. He/she invokes the simulation after finishing the wizard.

5. His/her browser will be pointed to the reports page.

6. Data mining requests will be sent to the data mining server if the user requests.

3.1.2 How Does The Infrastructure Work

The core simulation program is written in Java, using the Swarm library. We

discuss the program in more detail in chapter 4. Data generated in the simulation

is stored in databases. The reports pages retrieve simulation results from these

databases. The large datasets are summarized, extracted, transformed and loaded

to a data warehouse which is another database enabling us to apply data mining

techniques.

Application Server

The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for devel-

oping multi-tier enterprise applications [1]. J2EE supports Enterprise Java Beans

(EJB), Java Servlets, Java Server Pages (JSP) and XML technology. In this section,

application server means a J2EE platform which enables us to publish JSP pages to
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the web and to invoke simulation using Java Servlet. Among all application servers,

we choose the OC4J (Oracle9iAS container for J2EE) or Orion Server. Orion Server

is embedded in OC4J Server. Either Orion Server or OC4J Server can help us build

our web interface using JSP and Java Servlet. You can download OC4J Server from

http://www.oracle.com and Orion Server from http://www.orionserver.com.

Currently, we have two Linux machines, joy.cse.nd.edu and tenor.cse.nd.edu,

serving as the application servers. The simulations are running either on joy or on

tenor, invoked by Java Servlets on joy and tenor respectively. A large dataset is

generated by the simulation and stored in Oracle databases.

Our simulation uses the Swarm library and this is installed on both joy and

tenor. Swarm can be freely downloaded from http://www.swarm.org.

Oracle Database Server and Data Mining Server

We use Oracle to store the dataset generated by the simulation. When the

simulation is running, data is inserted into the Oracle database using Java Database

Connection (JDBC).

To store the simulation data while the simulations are running, we need to cre-

ate Online Transactional Processing (OLTP) databases. Since our simulation will

generate a huge set of data, the database was designed for fast insertion and efficient

storage. We also created a data warehouse which stores summarized, transformed

and aggregated data from those OLTP databases. The main goal of the data ware-

house is for data mining, so fast query is our main concern. We will discuss in detail

how we created the OLTP databases and data warehouse in chapter 5 and 6.

Currently, we have three database servers: foyt.cse.nd.edu, symphony.cselab.nd.edu

and bigband.cselab.nd.edu, two of which, foyt and symphony, will also act as data

mining servers. The data mining server includes a library of Java APIs which help
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users design and develop data mining programs. We discuss more on data mining

servers in chapter 7.

Oracle Reports Server

To enable users to view simulation results such as statistics after they invoke their

simulations, we created reports pages to let them visualize results on their browser.

These reports pages are generated by the Oracle Reports tool in JSP format. The

reports pages query data from the Oracle databases using the Transparent Network

Substrate (TNS) protocol. Since these pages are JSP pages, a J2EE platform is

necessary. The reports server is embedded in an OC4J server as a Java Servlet. In

chapter 5, we present in detail how we created the reports pages.

3.2 Load Balance and Fail Over

As shown in Figure 3.1, we have 2 application servers on which simulation is

invoked and running. We also have 3 database servers which can store simulation

data. To effectively use these resources, we add code in our web interface to dis-

tribute the simulations evenly over the two application servers. We also add code

in the core simulation program such that simulation data can be stored evenly in

the three database servers.

3.2.1 Load Balance The Application Servers

The idea of load balancing application servers is straight forward: we don’t want

our users to run the simulation only on joy or tenor. So we use the round robin

method to load the simulation among the two application servers as in the following

JSP code:

<%! private static int access=0; %>

<%

if ((++access)%2==0){
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%>

<a href=’’http://joy.cse.nd.edu:8000/nom/runnom?user_id=10’’>

Invoke</a>

<%

}

else{

%>

<a href=’’http://tenor.cse.nd.edu:8000/nom/runnom?user_id=10’’>

Invoke</a>

<%

}

%>

In the above JSP code, we declare a static variable “access”. The reason we

declare it as static is that every load of the page will increment the variable access

by 1. If access is even, the simulation will run on joy, otherwise it will run on tenor.

In this way, if multiple simulations are invoked, half of them will run on joy and the

other half on tenor.

3.2.2 Load Balance The Database Servers

The idea of load balancing database servers are the same as balance the appli-

cation servers. The following piece of Java code in our simulation program shows

us how database servers are load balanced, where sessionid is the identifier for the

current simulation invoked by a user.

...

int sid=(sessionid)%3+1;

String url=null;

if(sid==1)

url=’’jdbc:oracle:thin:@foyt.cse.nd.edu:1521:simu2’’;

else if (sid==2)

url=’’jdbc:oracle:thin:@symphony.cselab.nd.edu:1521:etech’’;

else

url=’’jdbc:oracle:thin:@bigband.cselab.nd.edu:1521:mynom’’;

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Connection conn=DriverManager.

getConnection(url, ‘‘username’’, ‘‘password’’);

...
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But a problem arises here because the reports pages will be pointed after invok-

ing the simulation and the reports pages need to know which database should be

accessed to get the simulation results. To handle this, we create a table nom sessions

with attributes session id, user id, sid and status, where session id is the identifier

for the session of simulation invoked by a user, user id is the identifier of the user,

sid is the identifier for the database which stores the simulation data for this session,

status denotes the status of the session. There are three possible values for the sta-

tus attribute: executing, terminating, terminated. When the simulation is started,

it’s status is executing. When the user click the “terminate session” link in the

reports summary page, status changes to “terminating”. The core simulation will

check the status at the begining of each time step by querying status from database.

If status is “terminating”, the program will change the status to “terminated” and

terminates itself. This enables external processes to communicate a process invoked

by a Java servlet. It’s hard to kill a process explicitly using the “kill” command

in Java, because it’s not easy to get the process id (pid) of a process invoked by

Java, since Java is platform independent and there is no such concept of pid in some

platforms. This technique is similar to capability proficed by Java Message Services

(JMS).

After invoking the simulation, the reports page will accept two parameters:

user id and session sid. The users can view reports for each session they invoked.

The table nom sessions is in a centralized database which is different from the

databases storing the simulation data. The reports page needs to first retrieve

information from the nom sessions table to identify which database stores the sim-

ulation data, then query the identified database. Table 3.1 shows some records in

the nom sessions table.
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Table 3.1. The NOM SESSIONS Table

SESSION ID USER ID SID STATUS

53 1 3 terminated
54 1 1 terminated
55 1 2 terminated
56 1 3 terminating
57 1 1 executing

The following Java code shows the procedure to load balance the database

servers.

Connection conn=DriverManager.getConnection(url, user, passwd);

Statement stmt=conn.createStatement();

ResultSet rset=stmt.executeQuery("

select session_id.nextval from dual");

while(rset.next())

sessionid=rset.getInt(1);

int sid=(sessionid%3)+1;

stmt.executeUpdate("insert into nom_sessions values ("+

sessionid+","+StartMolecule.userId+","+sid+")");

String nom_url=null;

switch(sid){

case 1:

nom_url="jdbc:oracle:thin:@foyt.cse.nd.edu:1521:simu2";

break;

case 2:

nom_url="jdbc:oracle:thin:@bigband.cselab.nd.edu:1521:mynom";

break;

case 3:

nom_url="jdbc:oracle:thin:@symphony.cselab.nd.edu:1521:etech";

break;

default:

break;

}
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The three database servers are used in a round robin fashion. If sid is 1, data

will be stored on foyt; if sid is 2, data will be stored on bigband; if sid is 3, data will

be stored on symphony. It is easy to see that, if multiple simulations are running,

database servers will be load balanced.

3.2.3 Fail Over

Multiple application servers and database servers enable us reduce the down

time of the simulation system. The idea of fail over is that if the simulation detects

that some node involved in the simulation is down, it should be failed over to

another peer node. For example, if the simulation is intended to run on joy and

store data on foyt, but there is error connecting to the assigned database, then our

program will choose another database to connect to, until a connection is successful.

This greatly increases the availability of the whole simulation system. To have a

quantitative measure of the improvement, let’s simply assume that each machine

has a probability p of down time. If fail over is not utilized, the possibility that a

simulation can not run successfully is 1−(1−p)2=2p−p2. If fail over is utilized, the

probability that a simulation will not run is reduced to 1−(1−p2)(1−p3)=p2+p3−p5.

For example, let’s assume that p=0.01, then the down probability is reduced from

0.0199 to 0.0001. This is a 20 times improvement.

Fail over to another database can be implemented in the following way. When

a database connection can not be established, a runtime exception will be thrown

by the simulation program. We simply catch the simulation and try to connect to

another database, until we succeed.

Fail over to another application server can be implemented as follows. The Web

JSP page will provide links to a Java Servlet which will invoke a simulation. If a

simulation is invoked by the Servlet successfully, a “success” message will be sent by
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the Servlet to the JSP page. If the simulation is not successfully invoked, a “failure”

message will be sent to the JSP and JSP will redirect to the Java Servlet on another

application server. Since we have only two application servers, if the simulation fails

again, then we stop trying. The user will be notified that system is not available.
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CHAPTER 4

CORE SIMULATION ENGINE AND WEB INTERFACE

The NOM simulation is implemented using Java and the Swarm library. It can

be “compiled once, run everywhere”. The simulation can run either in batch mode

or in graphical user interface (GUI) mode. Since our main purpose is to let the user

invoke the simulation through web and obtain reports of the simulation, the GUI

mode will not be available for them, i.e., the user will not see how molecules move

and react, but the state of the simulation for each time step is completely stored in

the Oracle databases. The users can get the same information such as the trajectory

of a molecule from the simulation databases. Figure 4.1 and Figure 4.2 show the

two modes of the simulation respectively.

In the following sections, we discuss the simulation objects, reactions and pro-

cesses, simulation inputs and outputs, and finally, the web interface.

4.1 Objects, Reactions and Processes

The NOM simulation system involves various NOM molecules. These molecules

could be macromolecules or micro-molecules. The macromolecules could be polysac-

charides, protein, polynucleotide, tannin, lignin structure, polyterpene and cutin.

The micro-molecules may consist of phospholipids, sugars, amino acids, flavonoids

and quinnones.

To present each type of molecules, a Java class called Molecule is created. Each

molecule in the simulation is represented as numbers of different atoms and func-
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Figure 4.1. Simulation running in batch mode
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Figure 4.2. Simulation running in GUI mode
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tional groups, and its position in the simulated world. More precisely, each instance

of Molecule has the following attributes: number of C, N, O, H, S and P atoms;

number of such functional groups as phenyl groups, alcohols, phenols, ethers, es-

ters, ketones, aldehydes, acids, aryl acid, amines, ring N, amides, thioethers, thiols,

phosphoesters, H-phosphoesters, phosphates; x, y coordinates of the molecule in the

simulated world which is a 2-dimensional lattice; and some other attributes such as

probabilities of chemical reactions, etc.

The possible reactions and processes are very complicated since there are too

many complex movements of molecules and the interactions between them. Overall,

the reactions and processes could be:

• Physical reactions: adsorption to mineral phases, aggregation, formation of a

micelle, transport downstream, transport through porous media and volatiliza-

tion. Note that there could be chemical reactions within physical reactions.

• Chemical reactions: chemical reactions could consists of abiotic bulk reactions

and abiotic surface reactions, direct photochemical reactions, indirect pho-

tochemical reactions, extracellular enzyme reactions and microbial uptake of

small molecules. Note that these chemical reactions will definitely change the

attributes of the molecules.

The environment of the simulated world which the molecules reside will affect

the reactions and processes of the molecules. The molecules can also affect the

environment. In our simulation, the environmental variables include simulation

time step, microbe density, fungal density, pH value, temperature, pKw, oxygen

density, and light density, etc.

The simulation is implemented in a discrete 2D space with discrete time. The

space is a rectangular lattice. Each molecule can occupy at most one cell, and
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each cell can host at most one molecule. During execution of the simulation, each

molecule may move to another location according to simple rules predefined in

physical processes. In chemical reactions, one molecule could split and occupy two

cells in the simulated world; two or more molecules could combine and occupy only

one cell.

4.2 Program Structure

Figure 4.3 shows the Unified Model Language (UML) class diagram that defines

the program structure [2]. Only some of the core classes are listed in the class

diagram.

Figure 4.3. The class diagram
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A class diagram gives an overview of a system by showing its classes and the

relationship among them. Class diagrams are static - they display what interacts

but not what happens when they do interact.

The class diagram in Figure 4.3 models our simulation system. The central class

is StartMolecule. Associated with it are ObserverSwarm running the program

in GUI mode and ModelSwarm running the program in batch mode. If the pro-

gram is running in GUI mode, ModelSwarm is contained in ObserverSwarm.

The ModelSwarm contains a list of Molecules, each with its associated Proba-

bilityTable and Reaction. A Molecule could be one of the predefined Cellulose,

Lignin or Protein. (In the simulation, new molecule types can be constructed us-

ing the Molecule Editor.) A Backdrop is associated with the ModelSwarm when

a molecule is in adsorption state (one of the possible physical processes of a molecule

in its simulated world).

UML class notation is a rectangle divided into three parts: class name, attributes,

and operations. Relationships between classes are the connecting links. Our class

diagram has three kinds of relationships:

• association – a relationship between instances of the two classes. There is an

association between two classes if an instance of one class must know about

the other in order to perform its work. In a diagram, an association is a link

connecting two classes.

• aggregation – an association in which one class belongs to a collection. An

aggregation has a diamond end pointing to the part containing the whole. In

our diagram, ModelSwarm has a collection of Molecules.

• generalization – an inheritance link indicating one class is a superclass of the

other. A generalization has a triangle pointing to the superclass. Molecule
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is a superclass of Cellulose, Lignin, and Protein.

An association has two ends. A navigability arrow on an association show

which direction the association can be traversed or queried. Associations with no

navigability arrows are bi-directional. The multiplicity of an association end is

the number of possible instances of the class associated with a single instance of

the other end. In our class diagram, there can be only one ModelSwarm for each

Molecule, but a ModelSwarm can have any number of Molecules.

Figure 4.4 shows the UML use case diagram of the program. Use case diagrams

describe what a system does from the standpoint of an external observer. The

emphasis is on what a system does rather than how. Use case diagrams are closely

connected to scenarios. A scenario is an example of what happens when someone

interacts with the system. Here is a scenario that a user invoke the simulation

either in GUI mode or batch mode. The observerSwarm updates the GUI and probe

(which contains instance variables that describe the referent’s class and type), the

modelSwarm executes the scheduled simulation, updates each molecule, updates the

simulated world, writes simulation data to the database.

A use case is a summary of scenarios for a single task or goal. An actor

initiates the events involved in that task. Actors are simply roles that people or

objects play. For example, in Figure 4.4, an instance of modelSwarm is an actor,

execute simulation schedule is a use case. The connection between actor and

use case is a communication association (or communication for short). A use

case diagram is a collection of actors, use cases, and their communications.

Figure 4.4 shows how the simulation system works in one time step.
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Figure 4.4. The use case diagram
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4.3 Web Interface

The web interface allows users to access the simulation system through web

browsers such as Netscape and IE. It contains a Molecule Editor which receives user

input and stores the input in database. When the user registers with the simulation

system, he has a unique user id, a record of environment variables and a set of

molecule information. Figure 4.5 shows the UML diagram that defines the users

information database.

Figure 4.5. UML class diagram for the users information database

From the diagram, we see that there are three tables, namely, USERS, EN-

VIRON and MOLECULEATTRIBUTES. The table USERS is the owner of both
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ENVIRON and MOLECULEATTRIBUTES. The attribute ID is the primary key of

USERS. The foreign key USER ID in ENVIRON and MOLECULEATTRIBUTES

references the primary key of USERS. The table ENVIRON has USER ID as its

primary key, while the table MOLECULEATTRIBUTES has TYPEID as its pri-

mary key. Oracle provides the ability to declare a sequence, which is an object that

generates unique integers in sequence. The user information database uses two se-

quences USER ID and TYPE ID to generate the ID in USERS and the TYPEID

in MOLECULEATTRIBUTES when new records are inserted into the tables.

The web interface uses the three tables as the backend to store user information.

Next we will show the web interface pages which are written in JSP and use JDBC

to insert user input to the database.

Figure 4.6 shows the home page of the simulation system.

New users are asked to sign up. Existing users will fill in their userid and

password to login to the system. Figure 4.7 shows the sign up page for new users.

A new user needs to choose a unique USERID which is a string with length at

most 10. The USERID is different from the ID generated by the sequence, which

is a number. If the USERID exists, then the user will be asked to choose another

userid. The user needs to provide a password and some other information such

as first name, last name, email and phone. After signing up, the user can go to

the home page and login to use the Molecule Editor. The simulation configuration

wizard contains four steps. Step 1 is a short introduction of the wizard. Figure 4.8

shows the introduction step. Step 2 will ask user to provide environment variables.

If the user has already provided this information before, the information is retrieved

from the database, and the user can either edit the information or choose to skip

this step. Figure 4.9 shows the environment step of the wizard.

Step 3 is the step to edit molecule information, and is separated into step 3a and
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Figure 4.6. The home page of the simulation system
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Figure 4.7. The sign up page for new users
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Figure 4.8. The introduction step of the simulation configuration wizard
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Figure 4.9. The environment step of the simulation configuration wizard
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step 3b. In step 3a, the user will be asked to specify the percentage of the three

buit-in molecules: Cellulose, Lignin and Protein, in the whole set of the molecules.

The users can skip this step if they decide not to include the three kinds of the

molecules in their total molecule set. They can also specify percentage 0 to indicate

that they do not choose any of the three molecules. Figure 4.10 shows this step.

In step 3b, the users can edit new molecule types; they can also skip this step if

they provided this information before; they can also delete molecules they entered

before, by click the links at the bottom of the page. Figure 4.11 shows this step.

After the users provide all the information about environment and molecules,

step 4 will let them invoke the simulation. The simulation is invoked by a Java

servlet. The Java Servlet is on either joy or tenor and it will invoke simulation on

joy or tenor respectively. The user input is stored in an Oracle database, when the

user invokes the simulation, the core program will load all the user input and start

the simulation process. Figure 4.12 shows this step.

After the users invoke the simulation, they will be notified that their simulation is

invoked successfully and they can click a link to go to the reports pages. Figure 4.13

shows this step.

The users can invoke multiple sessions, and they can view reports for each ses-

sion. The reports summary page lists all the sessions invoked by the user, the most

recent session is listed on the top. The status of the sessions is also listed in the

page. The users can terminate their simulation by clicking the corresponding “ter-

minate session” link. After the user terminates the session, the status will become

“terminated”. Figure 4.14 shows this step.

If the users click one of the reports link, they will be able to see the simulation

results on line. Figure 4.15 shows the chemical reactions statistics of the simulation.
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Figure 4.10. Step 3a of the Molecule Editor
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Figure 4.11. Step 3b of the Molecule Editor
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Figure 4.12. Step 4 of the simulation configuration wizard
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Figure 4.13. Simulation invoked successfully
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Figure 4.14. Reports summary of the user
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Figure 4.15. Chemical reactions statistics
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4.4 Conclusion

In this chapter, we discussed the core simulation program using the Unified

Model Language (UML). We listed some of the core classes and their relationships

using class diagrams. We also presented a use case diagram which show what the

simulation system does when a user invoke the simulation. Finally, we showed the

web interface which allows the user to access the simulation system. In next chapter,

we will discuss in detail how we create reports page and how we “tune” the query

performance.
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CHAPTER 5

QUERY OPTIMIZATION

As mentioned in chapter 4, users will not be able to use the simulation system

in graphical user interface (GUI) mode, unless they connect to our system using an

X-terminal. All the activities of the system are recorded in the Oracle databases. It

is a critical task to both insert and retrieve information from the huge database effi-

ciently. According to our measurements, 100 records are inserted into the database

by each simulation every second. It is not a trivial task to query the database effi-

ciently while preserving the insertion performance. In this chapter, we define query

optimization to include both insertion optimization and query optimization.

5.1 Database Design to Optimize Insertion

We need to create multiple OLTP (Online Transaction Processing) databases

on the database servers. We want the simulation data to be inserted into the

databases fast, and information to be retrieved from the databases fast. We can not

meet both goals, since there two goals somewhat contradict to each other when the

databases are inserted and queried at the same time. For example, for better query

performance, we may create necessary indexes for some columns, but to maintain

and update the indexes will be an huge overhead for the insert operations, since

each insertion will update the index structures and storages.

Next we show how we create the database objects in the three database servers

to store the simulation data. Note that database schema objects structures are the
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same on all the databases to enable load balance and fail over as mentioned in the

previous chapters.

5.1.1 Information Stored in Databases

We try to store all information about the simulation system at any time step.

(Recall, we use discrete time to simulation the continuous time.) At any time step,

there are many molecules in the system. We need to record every movement and

reaction of these molecules. For example, the location of the molecule in the system,

whether the molecule is involved in chemical reactions, and what new molecules are

produced during a chemical reaction.

As we mentioned in previous chapters, the “real world” system is quite complex.

There could be many chemical reactions in the real world. But it is not possible

to allow all types of chemical reactions to occur in the simulation. To simplify

the simulation system, only 10 types of most likely chemical reaction types are

considered. The following Table 5.1 lists all the chemical reaction types used in the

simulation.

Table 5.1. The ReactionType Table

Reaction Type Reaction Name

0 Ester condensation
1 Ester hydrolysis
2 Amine hydrolysis
3 Microbial uptake
4 Dehydration
5 Strong C=C oxidation
6 Mild C=C oxidation
7 (C-O-H) oxidation
8 Aldehyde C=O oxidation
9 Decarboxylation

10 No reaction
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We create a table NOM to store the status of the simulation at any time step.

The following Table 5.2 defines the structure of the table NOM.

The attribute SESSIONID is the identifier for a session invoked by a user.

USER ID is the identifier for the user who invokes the session. TIMESTAMP records

the time stamp of the system. MOLECULEID is the identifier of the molecule in

the system. Each molecule has a different MOLECULEID. XPOS and YPOS de-

note the position of the molecule in the system. REACTED denotes whether the

molecule is involved in a chemical reaction. If it is, REACTIONTYPE denotes the

reaction type, otherwise REACTIONTYPE is NULL. REACTIONTYPE is a for-

eign key which references the table REACTTIONTYPE. If the reaction is a first

order reaction (only one molecule involved in the reaction), PARENT1 will denote

the moleculeid of a molecule which produced the molecule, and PARENT2 will be

NULL. If the reaction is a second order reaction (two molecules involved in the re-

action), PARENT1 and PARENT2 will denote the parents of the molecule, i.e., the

molecules which produce this molecule. We will not consider third order (or above)

reactions, since the probability of this kind of reactions is so small that they can be

ignored.

The attributes from C to PHOSPHATES define the physical structure of the

molecule. The attributes from PROB 0 to PROB 9 denote the probabilities for the

10 types of chemical reactions. In each time step, all the molecules currently in the

system will contribute one row to the table NOM. For best insertion performance,

we intentionally disabled all constraints which are used to ensure data integrity,

since these constraints will be enforced by the database for each insertion, thus a

huge impact for the insertion performance. This is one of the methods to tune

insertion performance. Other methods include disabling indexes, table creation

parameters, memory allocations, etc. In the next section, we discuss other table
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Table 5.2. The structure of the table NOM

Attribute Name Data Type

SESSIONID NUMBER(38)
MOLECULEID NUMBER(38)
PARENTID1 NUMBER(38)
PARENTID2 NUMBER(38)
XPOS NUMBER(38)
YPOS NUMBER(38)
REACTED VARCHAR2(3)
REACTIONTYPE NUMBER(38)
TIMESTAMP NUMBER(38)
USER ID NUMBER(4)
C NUMBER(38)
H NUMBER(38)
N NUMBER(38)
O NUMBER(38)
S NUMBER(38)
P NUMBER(38)
DOUBLEBOND NUMBER(38)
RINGS NUMBER(38)
PHENYL NUMBER(38)
ALCOHOLS NUMBER(38)
PHENOLS NUMBER(38)
ETHERS NUMBER(38)
ESTERS NUMBER(38)
KETONES NUMBER(38)
ALDEHYDES NUMBER(38)
ACIDS NUMBER(38)
ARYLACIDS NUMBER(38)
AMINES NUMBER(38)
RINGN NUMBER(38)
AMIDES NUMBER(38)
THIOETHERS NUMBER(38)
THIOLS NUMBER(38)
PHOSPHOESTERS NUMBER(38)
HPHOSPHOESTERS NUMBER(38)
PHOSPHATES NUMBER(38)
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Table 5.3. The structure of the table NOM (continued)

PROB 0 NUMBER(7,5)
PROB 1 NUMBER(7,5)
PROB 2 NUMBER(7,5)
PROB 3 NUMBER(7,5)
PROB 4 NUMBER(7,5)
PROB 5 NUMBER(7,5)
PROB 6 NUMBER(7,5)
PROB 7 NUMBER(7,5)
PROB 8 NUMBER(7,5)
PROB 9 NUMBER(7,5)

creation parameters which affect the performance of insertion.

5.1.2 Parameters While Creating Table NOM

In this section, we discuss some parameters in the SQL statement “create table

NOM”. These parameters describe aspects of managing space in data blocks. Our

goal is to adjust these parameters to efficiently utilize the disk space and meanwhile

to reduce the probability of “chaining” (one row of a table spans two data blocks)

which is a huge impact on query performance since it increases the number of I/Os.

The size of a data block is specified at database creation, it is a multiple of OS block

size which is normally 512 bytes. In this thesis, the data block size is chosen to be

8192 bytes.

The PCTFREE and PCTUSED parameters are physical attributes that can be

specified when a table is created or altered. These parameters allow you to control

the use of the free space within a data block. This free space is available for inserts

and updates of rows of data.

The PCTFREE and PCTUSED parameters allow you to:

• Improve performance when writing and retrieving data

56



• Decrease the amount of unused space in data blocks

• Decrease the amount of row chaining between data blocks

The INITRANS and MAXTRANS parameters are also physical attributes that

can be specified when tables are created or altered. These parameters control the

number of concurrent update transactions allocated for data blocks of a table, which

in turn affects space usage in data block headers and can have an impact upon data

block free space.

• PCTFREE: This parameter is used to set the percentage of a block to be

reserved for possible updates to rows that already are contained in that block.

For example a value 20 indicates that 20% of each data block used for this

table’s data segment will be kept free and available for possible updates to the

existing rows already within each block. Default value for this parameter is

10. Since our table is primary used for insertion, we will choose a low value

for this parameter which allows insert to fill the block more completely and

ensure that that the disk space is tightly used for the table. In particular we

choose a value 0.

• PCTUSED: After a data block becomes full as determined by PCTFREE,

Oracle does not consider the block for the insertion of new rows until the per-

centage of the block being used falls below the parameter PCTUSED. Before

this value is achieved, Oracle uses the free space of the data block only for up-

dates to rows already contained in the data block. For example, assume that

you specify the following parameter within a CREATE TABLE statement:

PCTUSED 40. In this case, a data block used for this table’s data segment

is not considered for the insertion of any new rows until the amount of used

space in the block falls to 39% or less (assuming that the block’s used space
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has previously reached PCTFREE). The default value for this parameter is 40,

here we accept the default, since this parameter is of no importance because

the NOM table is rarely deleted or updated.

• INITRANS and MAXTRANS: INITRANS specifies the number of DML (refers

to data manipulation language, including update, insert and delete) transac-

tion entries for which space is initially reserved in the data block header. Space

is reserved in the headers of all data blocks in the associated segment. As mul-

tiple transactions concurrently access the rows of the same data block, space

is allocated for each DML transaction’s entry in the block. Once the space

reserved by INITRANS is depleted, space for additional transaction entries is

allocated out of the free space in a block, if available. Once allocated, this space

effectively becomes a permanent part of the block header. The MAXTRANS

parameter limits the number of transaction entries that can concurrently use

data in a data block. Therefore, you can limit the amount of free space that

can be allocated for transaction entries in a data block using MAXTRANS.

The INITRANS and MAXTRANS parameters for the data blocks allocated to

a specific table should be set individually for each table based on the following

criteria: The space you would like to reserve for transaction entries compared

to the space you would reserve for database data; The number of concurrent

transactions that are likely to touch the same data blocks at any given time.

For example, if a table is very large and only a small number of users simul-

taneously access the table, the chances of multiple concurrent transactions

requiring access to the same data block is low. Therefore, INITRANS can be

set low, especially if space is at a premium in the database. Alternatively, as-

sume that a table is usually accessed by many users at the same time. In this

case, you might consider preallocating transaction entry space by using a high

58



INITRANS. This eliminates the overhead of having to allocate transaction

entry space, as required when the object is in use. Also, allow a higher MAX-

TRANS so that no user has to wait to access necessary data blocks. When

multiple simulations are running, the table NOM is inserted simultaneously

by these simulations; thus, we will specify these parameters to be 5 and 10

respectively.

5.1.3 Overhead of Constraints and Indexes On Insertion Performance

Referential integrity constraints are added to table to enforce application logic.

The constraints that affect insertion performance include check constraints (for ex-

ample, to check the functional group values are integers), primary key constraints

(a unique key to identify a row in the table), and foreign key constraints (for ex-

ample, USER ID must exist in the USERS table). When performing insertions, we

intentionally disable all these constraints to speed up insertion performance.

Whenever a row is inserted into a table, all indexes in which that the index

participates have to be updated in real time. The can dramatically slow down the

performance of the system. Figure 5.1 shows that when a record is inserted into

the target table, all constraints and indexes are enforced which are overhead for the

insertion performance. Therefore, for best insertion, these constraints and indexes

should be disabled.

5.2 Query Optimization

The NOM table records every action of all molecules at each time step. It’s

critical to retrieve information from the table and build reports in a efficient way.

One of the major interests of our users is the statistics of the simulation, such as

statistics for chemical reactions. We call these type of queries the aggregation

queries. For illustration purposes, we provide two simple examples here and show
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Figure 5.1. Constraints and indexes are overhead for insertion

60



how to generate fast reports for the two examples.

1. Show the number of chemical reactions for each of the ten reaction types

occurred so far in the simulation in bar chart.

2. Create a line graph which shows the trend of the total number of chemical

reactions vs time steps.

Figure 5.2 shows the graphs for the two reports, the graphs are generated using

Oracle Reports. Since it is a web based application, it is important to generate

this reports efficiently (in a few seconds), otherwise, our users will not wait for the

reports to show up.

The reports are generated when the simulation is running, i.e., when the tables

are growing. Each time you click the refresh or reload button, you will get a different

reports since the retrieved information is changed. The reports will receive two

parameters, user id and session id which denote the identifier of the user who invokes

the simulation and the session invoked by the user. The table NOM is shared by

all simulations either running or terminated. This table will get huge when lots

of simulations are executed. It is not a easy task to get the answers for the two

examples. In the following sections, we will discuss our solutions.

5.2.1 The Query Statements

In this subsection, we present the query statement for the two reports against

the table NOM and other joined tables. Figure 5.3 shows the query statement for

report 1 and the corresponding query results, as well as the time needed to run the

query statement. In this example, the query completed in just a little more than 10

seconds. Actually, the performance is not bad. But since the reports will be shown

in bar chart, it will take more time to generate the graph. Therefore, if we could

take some action to speed it up, it would be beneficial.
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Figure 5.2. Reports for the two examples
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Figure 5.3. Query statement for report 1 and result
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Before we discuss more about the query statement, let’s show how to build the

query statement for report 2. Figure 5.4 shows this query statement.

Figure 5.4. Query statement for report 2

This query statement is quite complicated, and it will take hours to execute.

For web reports, this is not acceptable, because it is slow and the reports does not

reflect the current statistics of the system. Therefore, it is very important that

we can speed up the query or rewrite the query statement. We can create regular

B*-tree index, bitmap join index for join operation, partitioned tables, aggregation

strategies, etc. to tune the query.
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Typically, you insert or load data into a table (using SQL*Loader, Import or

JDBC) before creating indexes. Otherwise, the overhead of updating the index

slows down the insert or load operations dramatically. Since we don’t want to slow

down insertion during the simulation, we did not create indexes. Partitioning is a

very useful feature in data warehouse applications; we will create partitioned tables

in the data warehouse. But partition tables also need indexes to enable partitions.

The choice left for us is to use temporary aggregation tables.

The idea of aggregation is pretty simple. We create temporary tables which store

the statistics of the system at the end of each time step. Therefore, we will have

the information available whenever a query needs it, and bypass computations in

the query. This approach will slow down insertion a little, but the gain of query

performance is huge.

5.2.2 Temporary Aggregation Tables

For the two queries, we create two tables, namely, REACTIONS BY TYPE and

REACTIONS BY TIME. Table 5.4 and Table 5.5 show the structures of the two

tables. In the REACTIONS BY TYPE table, REACTIONS denotes the number of

chemical reactions occurred so far in the system for the particular RTYPE (reaction

type). In the REACTIONS BY TIME table, TOTAL denotes the total number of

chemical reactions occurred so far at this TIMESTAMP (time step). As can be

seen, our reports will just query the two tables, instead of the hug NOM table.

Table 5.4. The REACTIONS BY TYPE Table

Name Null? Type

SESSION ID NOT NULL NUMBER(38)
RTYPE NUMBER(38)
REACTIONS NUMBER(38)
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Table 5.5. The REACTIONS BY TIME Table

Name Null? Type

SESSION ID NOT NULL NUMBER(38)
TIMESTAMP NUMBER(38)
TOTAL NUMBER(38)

Next we show how to populate the two tables. In the core simulation program,

we need to update or insert records into the tables at the end of each time step. In

the REACTIONS BY TYPE table, for a particular SESSION ID, which identifies

this session, at the end of the first time step, a new record is inserted into the

table. At the end of other time steps, this record is updated. This record stores

the number of chemical reactions occurred so far for each reaction type. In the

REACTIONS BY TIME table, for a particular SESSION ID, at the end of each

time step, a new record is inserted into the table, which stores the total number

of chemical reactions occurred so far in the system. As can be seen, the query

statements for the two reports is simplified to the following two statements:

• select rtype “Reaction Type”, reactions “Reactions”

from reactions by type where session id=:session id;

• select timestamp “Time Step”, total “Total Reactions”

from reactions by time where session id=:session id;

The time to execute the two queries is reduced to 0.01 second and 5.26 seconds

respectively. The two queries form the “Data Model” in Oracle Reports. To trans-

form the data model to bar chart and line graph as shown in Figure 5.2, a tool

called “Oracle Graphics” is used to generate the graphs. Since there are two many

records (over 24 thousands) in the second query, it is hard to plot so many points

(one point for one record) in the line graph (where stamp is the x-axis and total
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is the y-axis). To get around this, we only need to plot a small portion of sample

points from the query. For example, we may just want to plot around 50 points

uniformly selected from all the records. Since the table REACTIONS BY TIME

is growing all the time, we need to know how many records are in the table when

we uniformly choose sample points. The following simple method shows how to

generate the sample points.

1. To simplify the query, another table with same structure of the REACTIONS BY TIME

called REACTIONS BY TIME SHORT is created which is used to store the

sample records chosen from the big table.

2. The records in REACTIONS BY TIME SHORT with SESSION ID equal to

the current session identifier is deleted first if there are any.

3. The total number of records rows of REACTIONS BY TIME is obtained by

querying COUNT(timestamp).

4. An integer called steplength is calculated by the expression ceil(rows/50) where

ceil is the ceiling function.

5. The sample records are those records from REACTIONS BY TIME where

timestamp is a multiple of steplength and stored in the REACTIONS BY TIME SHORT

table.

6. The query statement is changed as follows:

select timestamp “Time Step”, total “Total Reactions”

from reactions by time where session id=:session id;

The total time of operations in the above steps is less than 1 second. The

generated line graph only needs to plot around 50 points, which greatly reduced the

time to generated the whole reports page as shown in Figure 5.2.
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5.3 Performance Comparison and Conclusion

We compare the insertion performance of the following three scenarios of inser-

tions. Scenario 1 is the situation in that no indexes are created and no aggregations

are generated. Obviously, this scenario will have the poorest query performance with

best insertion performance. Scenario 2 is the situation in that indexes for sessionid,

user id, moleculeid and timestamp are created for query purpose, but no aggrega-

tions are generated. Scenario 2 will have better query performance than Scenario 1

but with the overhead of maintaining index structures and storages. Scenario 3 is

the situation in that aggregations are generated without using any indexes. It will

have the best query performance with the overhead of maintain aggregation tables.

Figure 5.5 shows the number of seconds needed in the simulations to generate

the numbers of records and insert them into the tables for the above three scenarios.

The simulations are running on a Pentium 3 dual 800 mHz Red Hat 7.2 machine

with 1.5GB memory. The generated data is inserted into a database server, which

is a Pentium 3 dual 733 mHz Win2K machine with 2GB memory over a 10MBPS

Ethernet. In the figure, the x-axis is the number of records and the y-axis is the

number of seconds needed to insert these records into the database. From the

figure, we see that the insertion performance of Scenario 3 is almost as good as that

of Scenario 1, while Scenario 2 has the poorest insertion performance, which will

take at least 20% longer to insert the same number of records. Meanwhile, indexes

need quite an amount of disk space to store the index structures. It is necessary

that tables and indexes are on different disk drives, otherwise, IO contentions will

occur since both table data and index data will be read at the same time. In our

situation, indexes are not good choices for aggregation queries.

From the figure, we see that the insertion rate for the three scenarios are almost

constants. Table 5.6 shows the comparison of the three scenarios with insertion
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performance and query performance when retrieving the same information from a

table with 30 million rows. From the table, we see that aggregation tables only slow

down the insertion performance a little, but the query performance gain is dramatic.

Table 5.6. Insertion and query performance comparison

Scenario Insertion (seconds/row) Query Time

1) No index, no aggregation 0.0106 > 1 hour
2) With index 0.0122 > 0.5 hour
3) With aggregations 0.0107 5 seconds

To get instant results of the aggregation queries from a large table with over-

loaded insertions, we need to generate temporary aggregation tables, since we cannot

create indexes to speed up query due to the overhead of maintain the index struc-

tures. Often a database is normally queried after data is loaded or inserted using

SQL*Loader or Import. In our situation, we need instant query of the database to

view current statistics of the system, therefore, aggregation techniques are a good

solution, also it is a simple solution. In next chapter, we will build our data ware-

house both for query and data mining. Aggregation and transformation of data will

be used to build the data warehouse. More query optimization techniques will be

discussed.
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CHAPTER 6

DATA WAREHOUSING FOR THE NOM SIMULATION

The NOM simulation generates a lot of data which is stored across the three

database servers. The data is integrated, aggregated, transformed and then loaded

into a data warehouse for ad hoc query and data mining.

As noted earlier, according to Inmon [22], a data warehouse is a “subject ori-

ented, integrated, non-volatile and time-variant collection of data in support of

management’s decisions.”. In the following sections, we show how to design, build

and populate our data warehouse for both query and data mining.

6.1 Logical Design of The Data Warehouse

To make the data warehouse useful for the users, we need to load the raw data,

possibly preprocessing it to resolve name and formatting inconsistencies (for exam-

ple, the same molecule name with different structures). We then need to perform

various aggregations to produce summary data in a form useful for the users. The

design of the data warehouse will follow both of the following two approaches.

6.1.1 Detail And Summary Schema

Sometimes, it is possible that detailed data is not loaded to the data warehouse

because of the large volume of detailed data produced by the simulation. But

sometimes we may need to load detailed data in case we need to view specific

detailed transactional data of a molecule, for example, the trajectory of a molecule
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in the system. In the data warehouse built for this thesis, we loaded all the detailed

data. Another decision will have to be made about retention, archival or purging

of old detailed data. Because of limited storage, we need to purge some data as the

disk space comes close to full.

In most cases, users will find the summarized data is much easier to navigate.

In building a summarization, we can incorporate data from other related tables to

avoid having to do joins from the summary. For example, the first sample query of

last chapter will do joins against two tables NOM and REACTIONTYPE if we do

not use the summary table REACTIONS BY TYPE.

A difficulty arises when providing data through summarizations. The difficulty

is: what summarizations are anticipated? We don’t know what questions our users

will ask until they have worked with the data warehouse for a while. There is

nothing to prevent adding more summary tables later after the design of the data

warehouse. However, this approach will require that a sufficiently low level of detail

to be available on which to base new summary tables. The new summary tables

may need to be built based on detailed data which happens to be purged from the

data warehouse.

Figure 6.1 shows one potential set of summary tables that might be derived from

the detailed simulation data. The logical design of this type of schema can be imple-

mented using Oracle. Oracle provides efficient parallel operations for populating the

summary tables from the detailed data or from another lower level summarization.

Building a summary from detailed tables can be efficiently performed using parallel

CREATE TABLE AS SELECT.
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Figure 6.1. Examples of “Detail and Summary” Schema
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6.1.2 Star Schemas

The primary references work on star schemas are Kimball’s The Data Warehouse

Toolkit [24] and The Data Warehouse Life Cycle Toolkit [25].

The relational star schema is derived from multidimensional database design. A

star is designed as a central, large table of facts. When we think about a chemical

reaction (fact), we might note that it occurred on a particular molecule or two, at

a specific location, with a specific set of environments, in a specific session invoked

by a specific user. Each of these ways of identifying the chemical reaction is a

dimension.

Fact tables are commonly the largest collection of data in the data warehouse.

To handle this volume of data, it is efficient to partition the fact table. Typically, the

fact table is partitioned by user, or possibly by session. Each row in the fact tables

has a column or a set of columns corresponding to the primary key columns of each

of the dimension tables in the star. In addition to these foreign key columns, the

fact table consists of one or more columns that describe the summaries, aggregations

in a query.

Dimension tables are relatively small compared to the fact tables. Any de-

scriptive attributes about the dimension will be stored in the dimension tables rather

than the fact table.

The fact table has a foreign key relationship to each dimension table, i.e., each

row inserted into the fact table will have values in various foreign key columns

that correspond to primary key data in the dimension table. Rather than using

B*Tree indexes on the foreign key columns to join dimension tables, Oracle’s star

transformation optimization will work on a separate bitmap index on each foreign

key column. The allows the use of the very efficient bitmap merge operation to

precisely determine the correct rows from the fact table. Further, the large fact
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table may be partitioned on a frequently specified dimension. In many cases, a

star schema query can be executed in comparable time to a corresponding query

against a predefined summary table. The star schema design is much more flexible

and saves a lot of space and advance processing effort. But it is not necessary to

consider these two design alternatives as exclusive options. In our data warehouse,

we design the star schema, but we also create summary tables based on common

queries, such as statistics of chemical reactions.

More exotic variations of the star schema, known as snowflake schemas, extend

the star schema model further. The snowflake branches correspond to different pre-

defined levels of summarization in a traditional detail-summary warehouse schema.

In this thesis, we will not use the snowflake schema.

Figure 6.2 shows a star schema of our data warehouse. Instead of predetermining

which summary levels and GROUP BY columns are appropriate, the star schema

allows users to select the dimensions that interest them and display whatever ag-

gregate values are important.

6.2 Physical Design of The Data Warehouse

Physical data warehouse design requires translating the logical design of the

detail-summary schema and star schema into actual database structures. Because

we will use the Oracle database as the data warehouse, the physical design is specific

to Oracle.

An Oracle database is organized into several tablespaces. Each tablespace occu-

pies an amount of disk space through one or more operating system files. Each object

such as table and index that requires storage space is assigned to a tablespace. The

tablespace is the connection between the Oracle database structures and the phys-

ical disk files. The files associated with each tablespace are striped across multiple
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Figure 6.2. Star Schema
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disk drives whenever possible.

To predict the space requirement for the data warehouse is very difficult. To

predict the space requirement of tables, the method we use here is to load some

data, then run the ANALYZE command to compute statistics that will provide a

good estimate of the average length of a row and how many rows can be stored in

each individual data block. Index storage is even harder to predict. To extrapolate

the index’s final size from sample data, the initially loaded sample must be uniformly

distributed across the full range of data values.

Data warehouse tables have very different growth patterns. In many situations,

it is critical to ensure that there is sufficient space available to accommodate the

data to be loaded. Because the load jobs are scheduled nightly after new simulation

data is produced, it is essential that the jobs can be completed without manual

intervention in order to add datafiles to a tablespace. In Oracle, this can be im-

plemented using the AUTOEXTEND clause as part of the file specification in the

CREATE TABLESPACE and ALTER TABLESPACE ... ADD DATAFILE com-

mands. Allowing data files to automatically grow provides some insurance against

the midnight failure of a load or index job. In addition to the growth of the data

warehouse, we also need to consider removing older data from the data warehouse.

The large REACTIONS table is partitioned for better query performance and

easy administrative management. The table is partitioned based on SESSION ID.

In trying to find the data of interest to a particular query, Oracle always has the

option of reading all data in the table. For small tables, this is often the preferred

way. In many situations, an index is needed to allow more rapid query of a single

row or a small subset of the total table. Which columns need to be indexed is

determined by knowing the data and anticipating the types of queries that will be

issued by the users. The WHERE clause will determine which indexes can be used
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by the query in an SQL statement. In section 6.5, we will discuss query optimization

techniques specific to data warehouse.

Database constraints and triggers, commonly used in OLTP database design,

have very limited use in the data warehouse. Performance considerations for the

data warehouse are very different from those in the OLTP systems. Transactional

processing generally focuses on the performance of a single update. For data ware-

house, the data is initially entered into the database through large batch file loads

as opposed to single row inserts, it is easier to examine the data integrity of the

entire file as one batch step prior to loading.

6.3 Build The Data Warehouse

After planning and designing the data warehouse, the next step is to build the

data warehouse. First of all, we need to create an Oracle database for the data

warehouse. A number of parameters must be manipulated since they will have

a direct effect on performance. These parameters must be tuned so they provide

the best performance for our specific applications, for example, queries and data

mining. We have to do some analysis and planning before we create the database.

It is useful to have an estimate of the size of objects such as tables and indexes in the

data warehouse so that we can ensure that our hardware architecture is adequate

to support it.

We used the following methods to give us the rough estimate. First we de-

termined how much space we will have in Oracle data blocks for our data. For

our data warehouse, each Oracle data block has the size of 8KB. Oracle requires a

small portion of each data block for some internal information, which is the block

header. We can assume this portion is 200 bytes. Second we need to know how

much space will be reserved for future updates and how much will be available

78



for initial inserts. This parameter is PCTFREE as introduced before. We can as-

sume PCTFREE is the default value of 10. So the amount of space in each data

block available for our data is equal to DATA BLOCK SIZE - BLOCK HEADER -

PCTFREE/100*DATA BLOCK SIZE. In our example, which is 8192-200-819=7073

bytes. Next we determine how much space an average row in our table requires.

Most Oracle data types are stored in variable length format so the size will be deter-

mined by the actual data loaded. To get a relatively precise estimate of the average

length of a particular column’s data, we load a sample of the data and then query

the AVG(VSIZE(column name)) for each column. We have to add 1 byte for column

overhead if the length of the column is under 255 bytes and 3 bytes if the column

length is over 255 bytes. We also need to add 4 bytes for row overhead, which are

used by ROWID which denote the address of the row in disk. The length of a row

is the sum of the column lengths and column overhead plus the row overhead. This

calculation is not precise because Oracle stores different types of data differently,

but it provides a generally conservative estimate. We repeat this process for each

fact table created in the data warehouse.

Another big reason why we want to estimate the space utilization for each data

block is for query performance. Without careful estimation of the space utilization,

it is often possible that one row of a table will span two data blocks. This is called

chaining. To retrieve this row, 2 I/Os will be needed instead of one I/O, thus query

performance will suffer.

Oracle stores database objects such as tables and indexes in tablespaces. We

specify AUTOEXTEND in the CREATE TABLESPACE command, which helps us

avoid loading errors that may occur during batch jobs. Once we have some idea of

storage requirements, we can ensure that we have a sufficient number of disk drives

available to support our data warehouse. We create a tablespace named NOM.
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When creating this tablespace we try to spread tables across disk drives whenever

possible. This greatly improve the performance if we use parallel query.

After creating database and tablespaces, we want to create our large fact table,

for example, REACTIONS in the tablespace NOM so that we can take the advantage

of parallel query when doing full table scans. Because our fact table REACTIONS

is never updated, we don’t have to reserve space for future updates. We will use all

the available space in each data block. We use the following command to create the

fact table.

CREATE TABLE REACTIONS

(USER_ID INTEGER,

SESSION_ID INTEGER,

MOLECULE_ID INTEGER,

REACTION_TYPE INTEGER,

ENVIRONMENT_ID INTEGER,

XPOS INTEGER,

YPOS INTEGER,

TIMESTAMP INTEGER)

TABLESPACE NOM

STORAGE (INITIAL 512M NEXT 512M MINEXTENTS 4 PCTINCREASE 0)

NOLOGGING PCTFREE 0

PARTITION BY RANGE (SESSION_ID)

(PARTITION SESS_100 VALUES LESS THAN (’100’),

PARTITION SESS_200 VALUES LESS THAN (’200’),

PARTITION SESS_300 VALUES LESS THAN (’300’),

PARTITION SESS_REST VALUES LESS THAN (’1000’),

);

This command results in the REACTIONS table receiving 4 extents at the time

of table creation. The PCTINCREASE 0 clause tells Oracle that every data extent

allocated to the REACTIONS table should be 512M. The NOLOGGING attribute

informs Oracle to minimize the amount of redo information that is logged for this

table. Finally, PCTFREE 0 makes the best possible usage of disk space and mini-

mize the number of data blocks required. Rather than have to create and manage

individual tables and then use a view to make them appear to be a single object,
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Oracle allows a single table to be stored in multiple partitions. The order in which

partitions are created is important. Partitions with lower values for the partition

key must be declared before those for higher values.

After creating tables in the schema, we need to create indexes to speed up query

and constraints to ensure data integrity. These work are not trivial at all. We need

to know the data and potential queries before creating indexes. because the task

of creating indexes and constraints it pretty tedious, we would like to skip it in the

thesis. We may still mention some of the indexes and constraints when we discuss

query optimization techniques in later sections.

6.4 Populate The Data Warehouse

There are various ways to load data into the data warehouse. Possible methods

include using SQL*Loader, Export/Import, SQL*Plus copy command, the CRE-

ATE TABLE ... AS SELECT command, or other custom-written load programs

such as JDBC. Our data warehouse in nature is different from commercial data

warehouses, in which there is needed ways to deal with dirty data, missing data,

etc. The data in our data warehouse is generated by the core simulation. We don’t

have to worry about dirty data or missing data. All we need to do is to extract,

transform and load the data from the simulation databases to the data warehouse.

From all the methods of loading data, we use the CREATE TABLE ... AS

SELECT command to copy data from the simulation databases. The fact tables

and dimension tables are populated using the same method. Then we create some

detail-summary schemas for some popular queries such as the two queries shows in

last chapter.

After data is loaded it must be verified, indexed to make it available for query

and data mining.
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6.5 Query Optimization

One of the characteristics of data warehouse SQL queries is the presence of many

tables in the SQL select statements. In standard star schema design, a central fact

table is joined with numerous dimension tables.

We use the following techniques to improve the speed of data warehouse SQL

statements:

• The ordered hint: The ordered hint specifies the optimal way to join the

tables together. This bypasses the expensive parse phase of data warehouse

SQL and ensures that the tables are always joined in the same order. Oracle

must spend a great deal of time parsing n-way table joins (n tables are in

the SQL statements) to determine the optimal order to join the tables. Large

n-way table joins with seven or more tables can often take more the an hour to

parse the SQL statement. This is because Oracle must evaluate all possible join

orders. For example, with 9 tables, Oracle must evaluate 8!, or 40,320 possible

join combinations. The ordered hint can be used to reduce the SQL parse time

and Oracle joins the tables in the same order in which they appear in the from

clause. Hence, the first table after the from clause becomes the driving table,

and the driving table should be the table that returns the smallest number of

rows. The ordered hint is commonly used in conjunction with other hints to

ensure that multiple tables are joined in their proper order.

• The star hint: For queries of a fact table or a dimension table, the star hint

can greatly improve the join speed of data warehouse queries. A permutation

of the hash join, the star join techniques builds a hash index on the fact table

indexes. Bitmap indexes are required for all join columns on the fact table,

and Oracle will initially use these bitmap indexes as a path to the fact table.
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The SQL optimizer will then rewrite the original query, replacing the equi-join

criteria with sub-queries using the IN clause. These sub-queries are used as

sources of keys to drive the bitmap index accesses, using bitmap key iteration

to access the dimension tables. Once the resulting bitmap-ROWID lists are

retrieved, Oracle will use a hash join to merge the result sets. As illustrated

in Figure 6.3, the performance improvement of the approach is a result of

reducing the physical I/O. The indexes are read to gather the virtual table

in memory, and the fact table will not be accesses until the virtual table has

everything it requires to go directly to the requested rows via the composite

index on the fact table.

• Partitioning: The use of partitioned tables and indexes can improve the speed

of SQL statements. In a partition-wise join, join is divided into smaller joins

that occur between each of the partitions on which the table reside, completing

the overall join in less time. If you know the partition that contains your

data, you can explicitly reference it in your SQL query. Since the tables are

partitioned against the SESSION ID, all data for each session is in only one

partition, query against information for one session can be performed on one

partition of the large table.

6.6 Conclusion

In this chapter, we described the design and construction of a data warehouse,

which employs the star-schema and detail-summary schema data warehousing tech-

nologies. We also discussed query optimization methods in data warehouse envi-

ronment. These techniques include ordered hint, star hint and partitioning. In the

next chapter, data mining algorithms will be applied to the data warehouse.
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Figure 6.3. Star Join
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CHAPTER 7

DATA MINING FOR THE NOM SIMULATION

Data mining refers to extracting or mining knowledge from a large amount of

data. There are many other terms carrying a similar or slightly different meaning

to data mining, such as knowledge discovery in databases (KDD), knowledge ex-

traction, data/pattern analysis, data archaeology, data dredging and information

retrieval [20]. In the previous chapter, we described the design and construction of

our data warehouse. In this chapter, we apply data mining techniques to the data

warehouse.

7.1 Introduction to Oracle Data Mining

As illustrated in Figure 7.1, data mining is a step in the process of knowledge

discovery. In this thesis, we use data mining to find interesting patterns, then

evaluate apply these patterns to new data.

Oracle9i Data Mining (ODM) has two components: Data Mining API and Data

Mining Server (DMS). The data mining API is the component that allows users

to write Java programs to mine data. The ODM API provides an early look at

concepts and approaches being proposed for the emerging standard Java Data Min-

ing (JDM). JDM follows Sun’s Java Community Process as a Java Specification

Request (JSR-73). JDM is based on several evolving data mining standards, in-

cluding the Object Management Group’s Common Warehouse Metadata (CWM),
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Figure 7.1. Data mining as step of knowledge discovery
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the Data Mining Group’s Predictive Model Markup Language (PMML), and the

International Standards Organization’s SQL/MM for Data Mining. The data min-

ing server (DMS) is the server-side in-database component that performs the data

mining operations within the 9i database, and thus benefits from its availability and

scalability. The DMS also provides a metadata repository consisting of mining input

objects and result objects, along with the namespaces within which these objects

are stored and retrieved [5].

Data mining models are based on two kinds of learning: supervised and unsu-

pervised. Supervised learning functions are typically used to classify and predict a

value, unsupervised to typically used to find intrinsic structures or relationships in

data. Oracle supports the following data mining functions:

• Classification (supervised)

• Clustering (unsupervised)

• Association Rules (unsupervised)

• Attribute Importance (supervised)

In this thesis, we only apply clustering to the data warehouse. Clustering is

useful for exploring data. It is particularly useful when there are many attributes

and no natural groupings. Clustering analysis identifies clusters embedded in the

data. A cluster is a collection of data objects that are similar in some sense to one

another. A good clustering method produces high-quality clusters to ensure that

the inter-cluster similarity is low and the intra-cluster similarity is high; in other

words, members of a cluster are more like each other than they are like members of

a different cluster.

The process of data mining consists of the following steps: model building, model

testing, computing lift (not a necessary step) and model applying.
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As illustrated in Figure 7.2, the left side of the diagram shows the steps to

perform before data can be supplied to the core algorithm. The pre-processing result

is the build data table. The build data table and the mining function settings are

shown as boxes with arrows pointing to the algorithm, indicating they are supplied

as input for the algorithm. In the build data table processing step, the user may

bin the data manually and produce bin boundary tables. ODM can perform the

binning automatically. The algorithm then builds the model, using the pre-processed

data, the mining function settings, and internal bin boundary tables and the core

algorithm.

Classification models can be tested on new data with known target values to get

an estimate of the accuracy of the models. A classification model contains a confu-

sion matrix that allows a user to understand the type and number of classification

errors made by the model. Applying a clustering model to new data produces, for

each case, a predicted cluster identifier and the probability that the case belongs to

that cluster. The test data must be in the same format and state of preprocessing

as the data used to build the model.

In business world, the purpose of a simple targeting model is to identify a sub-

group (target) from a larger population. The target members selected are those

likely to respond positively to a marketing offer. A model is doing a good job if

the response within the target is much better than average for the population as a

whole. Lift is simply the ratio of these values: target response divided by average

response. Let’s assume that we want to predict whether a molecule will experience a

chemical reaction. We know that only 1 percent of molecules will experience chemi-

cal reactions in average. Suppose that there are 1,000,000 molecules, then there are

10,000 molecules will do chemical reactions. If we can find a subset of molecules, say

100,000 molecules, but of which 2,000 molecules will experience chemical reactions,
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Figure 7.2. Model-Build Process
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then there are 2 percent of molecules will experience chemical reactions among the

subset, thus a lift of 2.

Figure 7.3 depicts the model-apply process. The left side of the diagram shows

the steps to be performed before data can be supplied to the algorithm which scores

the data. The “apply output” specification is a set of objects that determine the

content of the result table. The algorithm then applies the model, using the pre-

processed data, the “apply output” settings, the internal bin boundary tables, and

the core algorithm. The result is a table with scores for each data element in the

apply data table.

In next sections, we apply clustering algorithms to the data warehouse.

7.2 Clustering

In this section, an object refers to a row in a table, which stores the data to

be clustered. There exists a large number of clustering algorithms in the literature.

The choice of clustering algorithms depends on the type of data available and on

the particular purpose and application [20]. A recent survey on clustering can be

found in Murty, John and Flynn [7]. In general, major clustering methods can be

classified into the following categories.

• Partitioning: Given n objects and a number k, where k < n, a partitioning

method constructs k partitions of the data, where each partition represents

a cluster. The partitioning methods classifies the n objects into k clusters,

with the following requirements: (1) each cluster must contain at least one

object, and (2) each object must belong to exactly one cluster. The goal of a

partitioning method is to ensure that objects in the same cluster are close to

each other, while objects of different clusters are far apart. To achieve global

optimality, this method would require exhaustive enumeration of all possible
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Figure 7.3. Model-Apply Process
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partitions, which is computationally impossible. Most applications adopt one

of the two following heuristic methods: (1) the k-means algorithm, where

each cluster is represented by the mean value of the objects in the cluster

[31], and (2) the k-medoids algorithm, where each cluster is represented by

one of the objects located near the center of the cluster [11]. These heuristic

methods work well for finding spherical shaped clusters in small or medium

sized databases.

• Hierarchical: The hierarchical methods create a hierarchical decomposition

of a given set of objects. Such a method can be classified as being either

agglomerative or divisive, based on how the hierarchical decomposition is

formed [11]. The agglomerative approach, which is also called the bottom-up

approach, starts with each object forming a separate cluster. It successively

merges the clusters close to one another, until all of the clusters are merged into

one cluster, or until a termination condition holds. The termination condition

could be the number of iterations or an error tolerant value. The divisive

approach, also called the top-down approach, starts with one cluster containing

all the objects. In each successive iteration, a cluster is split into smaller

clusters, until eventually each object forms a cluster, or until a termination

condition holds. Hierarchical methods suffer from the fact that no undo is

possible when one iteration (either merge or split) is done. So a major problem

of this method is that they cannot correct erroneous decisions. There are two

approaches to improving the quality of hierarchical clustering: (1) perform

careful analysis of object linkages at each hierarchical partitioning, such as in

CURE [38] and Chameleon [16], or (2) integrate hierarchical agglomeration

and iterative relocation by first using a hierarchical agglomerative algorithm

and then refining the result using iterative relocation, as in BIRCH [41].
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• Density-based: The idea of the density-based method is to continue growing

the given cluster as long as the density (number of objects) in the neighborhood

exceeds some threshold. That is, for each object within a given cluster, its

neighborhood (an open ball centered at this object with a certain radius ) has

to contain at least a minimum number of objects. Such a method can be used

to filter out noise and discover clusters of any shape. DBSCAN is a typical

density-based method that grows clusters according to a density threshold [30].

OPTICS is a density-based method that computes an augmented clustering

ordering for automatic and interactive cluster analysis [29].

• Grid-based: Grid-based methods quantize the object space into a finite num-

ber of cells that form a grid structure. The dimension of the space is equal to

the number of attributes for the objects. All of the clustering operations are

performed on the grid structure. The main advantage of this approach is its

fast processing time, which only depends on the number of cells, independent

of the number of objects. STING is a typical example of such method, which

collects statistical information in grid cells [42]. CLIQUE and WaveClus-

ter are two clustering methods that are both grid-based and density-based.

WaveCluster is a multiresolution clustering approach that transforms the orig-

inal feature space by wavelet transform [17]. CLIQUE is an integrated density-

based and grid-based clustering method for clustering high-dimensional data

[37]

• Model-based: Model-based methods attempt to optimize the fit between

the given data and some mathematical model. Such methods are often based

on the assumption that the data are generated by a mixture of underlying

probability distributions. Model-based clustering methods follow two major
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approaches: a statistical approach or a neural network approach [40].

To apply the clustering algorithms to our data warehouse, we create a table called

POINTS which contains the data of two attributes from the REACTIONS table,

xPOS and yPOS, which denote the position of a molecule in the simulation system.

We standardize the points by re-scaling the points into the [0, 1] × [0, 1] square.

Then we apply the Enhanced k-means algorithm and the O-Cluster algorithm to

the POINTS table. The enhanced k-means algorithm is a mixture of the partitioning

method and hierarchical method. The O-Cluster algorithm is a mixture of the grid-

based and hierarchical method.

7.2.1 Enhanced k-Means Algorithm

The k-means takes the input parameter k, and partitions a set of n objects into

k clusters so that the resulting intracluster similarity is high but the intercluster

similarity is low. Cluster similarity is measured in regard to the mean value of the

objects in a cluster, which can be viewed as the cluster’s center of gravity. The

similarity of two objects are based on their distance. In general, it is a nonnegative

number that is close to 0 when two objects are highly similar or near each other,

and becomes larger the more they differ.

The k-means algorithm proceeds as follows. First it randomly selects k of the

objects, each of which initially represents a cluster mean or cluster. For each of the

remaining objects, it is assigned to the cluster to which it is the most similar, based

on the distance between the object and the cluster mean. It then computes the new

mean for each cluster. This process iterates until the criterion function converges.

Typically, the squared-error criterion is used, defined as

E =

k∑

i=1

∑

p∈Ci

|p − mi|2, (7.1)

94



where E is the sum of square-error for all objects in the table, p is the point in space

representing a given object, and mi is the mean of cluster Ci. This criterion tries to

make the resulting k clusters as compact and as separate as possible.

A hierarchical clustering method works by grouping data objects into a tree of

clusters. Oracle implements a hierarchical version of the k-means algorithm and use

the top-down approach. The cluster with largest distortion (sum of distances to

the cluster’s centroid) is split to increase the number of clusters until the desired

number of clusters is reached.

Because the k-means algorithm requires multiple passes through the data, it can

be impractical for large data tables that don’t fit in memory. In this case multiple

expensive database scans would be required. ODM’s enhanced k-means requires at

most one database scan. For data tables that don’t fit in memory, the enhanced k-

means algorithm employs a smart summarization approach that creates a summary

of the data table that can be stored in memory. This approach allows the enhanced

k-means algorithm to handle data tables of any size. The summarization scheme

can be seen as an adaptive sampling approach that generates more points for regions

of the input space where it is harder to separate clusters.

7.2.2 O-Cluster Algorithm

The O-Cluster algorithm is used to cluster high-dimensional data in large databases.

It works based on the following:

• Given a large set of multidimensional data points, the data space is usually

not uniformly occupied by the data points. The algorithm identifies the sparse

and the crowded areas in the space, thereby discovering the overall distribution

patterns of the data set.

• A unit (which is a rectangular region in the object space) is dense if the faction
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of total data points contained in it exceeds an input model parameter, called

sensitivity. A cluster is defined as a maximal set of connected dense units.

In the first step, the algorithm partitions the n-dimensional data space into non-

overlapping rectangular units, where n is the number of attributes for the objects.

It then identifies the dense units among them. This is done in a dimension-by-

dimension phase, based on the following: If a k-dimensional unit is dense, then so

are its projections in (k-1)-dimensional subspaces. In the second step, the algorithm

generates a minimal description for each cluster as follows. For each cluster, it

determines the maximal region that covers the cluster of connected dense units. It

then determines a minimal cover for each cluster.

7.2.3 Description of The Clustering Programs

This section shows how we apply the clustering algorithms to the model build

data to build a clustering model and then use the model to score new data. Be-

cause the two algorithms, Enhanced k-means and O-Cluster, share some common

steps, we specify them in the parameter files, instead of writing separate files. The

program ClusteringBuild.java builds a clustering model, while the program Clus-

teringApply.java applies the model to score new data. We discuss the two programs

in detail. We start with the model build program.

The program ClusteringBuild accepts two parameter files, Global.property which

specifies the data mining server connection information such as data mining server

URL, username, password, etc, and ClusteringBuild.property which specifies the

inputs for the algorithms. More precisely, ClusteringBuild.property provides the

inputs for a PhysicalDataSpecification instance, a MiningFunctionSettings instance,

the model name, etc.

The following steps illustrate the details of building a clustering model:
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1. Connect to the data mining server.

We first need to create an instance of DataMiningServer. This instance is used

as a proxy to create connection to a Data Mining Server. It also maintains the

connection. The data mining server performs the data mining operations. It

also provides a metadata repository storing mining input objects and resulting

objects. The following code shows this step:

//Create an instance of the DataMiningServer

//where DB_URL is of the form:

//jdbc:oracle:thin:@hostname:port:sid

//DB_URL, user_name and password are

//specified in Global.property

oracle.dmt.odm.DataMiningServer dms=

new DataMiningServer(‘‘DB_URL’’,

‘‘user_name’’, ‘‘password’’);

//get the connection

oracle.dmt.odm.Connection dmsConnection=dms.login();

2. Create a PhysicalDataSpecification object for the model build data.

Before the data mining server can use the data to build a model, it must know

where the data is located and how the data is organized. This is done by

creating a PhysicalDataSpecification instance where you indicate the location

of the data and whether the data is in transactional format or nontransactional

format. Before creating a PhysicalDataSpecification instance, the location of

the table must be specified, which is done by creating a LocationAccessData

instance, as illustrated in the following code:

//Create a LocationAccessData instance using the table_name

//POINTS and schema_name nom_mine

oracle.dmt.odm.LocationAccessData lad=

new LocationAccessData(‘‘POINTS’’, ‘‘nom_mine’’);

If the model build data is in nontransactional format, all the information
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needed to create a PhysicalDataSpecification instance is in the LocationAc-

cessData instance, as illustrated here:

//Create a PhysicalDataSpecification instance

//for a NonTransactionalDataSpecification instance

oracle.dmt.odm.data.PhysicalDataSpecification my_pds=

new NonTransactionalDataSpecification(lad);

If the data is in transactional format, the role that the table columns play

must be specified, as illustrated here:

//Create a PhysicalDataSpecification instance

//for a TransactionalDataSpecification instance

oracle.dmt.odm.data.PhysicalDataSpecification my_pds=

new TransactionalDataSpecification(

‘‘CASE_ID’’, //column name for sequence id

‘‘ATTRIBUTES’’, //column name for attribute name

‘‘VALUES’’, //column name for value

lad);

3. Create a MiningFunctionSettings object which specifies the algorithm settings.

To build a clustering model, we can use either the Enhanced k-means algorithm

or the O-Cluster algorithm. For the k-means algorithm, we need to specify the

number of iterations, or the error tolerance, or both. The algorithm terminates

when either the number of iterations or the error tolerance is reached. For the

O-Cluster algorithm, we need to specify sensitivity, which is used to compute

a baseline density. Only regions exceeding the baseline density are considered

as clusters. The following code shows how to create a MiningFunctionSettings

object:

if ( my_AlgorithmType == 1 ) //k-means algorithm

{

if(my_StoppingCriterion.compareToIgnoreCase(

"errorAndIterations") == 0 )

algorithmSetting = new KMeansAlgorithmSettings(
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my_Iterations, //the maximum number of iterations

my_Error, //the error tolerant

DistanceFunction.euclidean //use Euclidean distance

);

else if(my_StoppingCriterion.compareToIgnoreCase(

"error") == 0 )

algorithmSetting = new KMeansAlgorithmSettings(

my_Error,

DistanceFunction.euclidean

);

else if(my_StoppingCriterion.compareToIgnoreCase(

"iterations") == 0 )

algorithmSetting = new KMeansAlgorithmSettings(

my_Iterations,

DistanceFunction.euclidean

);

}

else if ( my_AlgorithmType == 2 ) //O-Cluster algorithm

algorithmSetting =

new OClusterAlgorithmSettings(my_Sensitivity);

ClusteringFunctionSettings clMFS =

ClusteringFunctionSettings.create (

dmsConnection, // the connection to the DMS

algorithmSetting, // algorithm settings

my_PhysicalDataSpecification,

//the physical data specification

( my_AutoBinning == true ?

//whether using manual discretization

DataPreparationStatus.unprepared :

DataPreparationStatus.discretized),

my_Clusters,

//the maximum number of clusters for k-means

null, //array of categorical mining attributes

null, //array of numerical mining attributes

null //array of integral mining attributes

);

clMFS.validate(); // validate before store

clMFS.store(dmsConnection, my_MiningSettingsName);
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Because the MiningFunctionSettings objects are very complex objects, it is

good practice to validate before performing the model build task. If the objects

are validated, it should be stored in the data mining server for later use, for

example, when we apply the model to score new data later.

4. Build the model.

Now all information needed to build a clustering model is captured in an

instance of PhysicalDataSpecification and MiningFunctionSettings, the last

step is to build the model. To build the model, we create an instance of

MiningTask. A mining task can be stored in the DMS using the store method

and executed at any time. Once the task is executing, query the current

status information of a task by calling the getCurrentStatus method. This

call returns a MiningTaskStatus object, which provides more details about

the state. The following code shows this:

// Create mining task

MiningBuildTask miningbuildTast =

new MiningBuildTask(

my_PhysicalDataSpecification,

//the physical data specification

my_MiningSettingsName,

//the name of mining settings, clMFS

my_ModelName //name of the model

);

// Store mining task

miningbuildTast.store(

dmsConnection,

my_BuildTaskName //name of the model build task

);

// Execute mining task

miningbuildTast.execute(dmsConnection);

// Wait for completion

MiningTaskStatus miningTaskStatus =
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miningbuildTast.waitForCompletion(dataMiningServerHandle);

// Check status

MiningTaskState miningTaskState =

miningTaskStatus.getTaskState();

if(miningTaskState.isEqual( MiningTaskState.success ))

{

System.out.println("Build Task suceessfully completed");

System.out.println("Built (and stored) Clustering Model.

Name: " + my_ModelName);

}else if(miningTaskState.isEqual( MiningTaskState.error))

{

System.out.println( "Build failed due to: " +

miningTaskStatus.getStateDescription() );

} else

{

System.out.println( "Unexpected error occured: " +

miningTaskStatus.getStateDescription() );

}

After building a model, you can obtain the information of the model using the

ODM APIs. The program Clustering.java uses the ODM API to obtain information

about the model we just built. It lists the information about the number of clusters,

number of points in each cluster, the boundary of each cluster, the hierarchical

structure of these clusters, etc.

Next, we discuss the program ClusteringApply.java, which applies the model

built in ClusteringBuild.java to score new data. The new data is stored in a table

POINTS APPLY, which contains 4,000 records to be scored. The following steps

show how ODM scores data using a model.

1. Connect to the data mining server.

This step is the same as the first step in building a model.

2. Create a PhysicalDataSpecification object for input data which is the data to
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be scored.

This step is the same as the second step in building a model.

3. Create a LocationAccessData object for output data, which is a table to store

the scoring results for the input data.

The result table is called POINTS CL APPLY RESULT. The following code

specifies writing to the output table.

//a LocationAccessData object for output table

//to store the model apply results

oracle.dmt.odm.LocationAccessData ladOut =

new LocationAccessData(

‘‘points_cl_apply_result’’, ‘‘nom_mine’’);

4. Create a MiningApplyOutput object for output data.

A MiningApplyOutput object captures the format of the scoring output. An

instance of MiningApplyOutput specifies the data (columns) to be included

in the apply output table that is created as the result of an apply operation.

The columns in the apply output table are described by a combination of

ApplyContentItem objects. These columns can be either from the input table

or generated by the scoring task (for example, prediction and probability). In

the MiningApplyOutput object, for each record in the table to be scored, there

is a number of probabilities assigned to it which denote the probabilities for

all the clusters. Among these probabilities, we picked the highest one, which

means that for each record in the input table, it is assigned to the cluster

with the highest probability. Since the MiningApplyOutput object is quite

complex, we always validate it before performing the scoring task.

5. Score the data.

After gathering all the information for scoring the input table, which is con-
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tained in the PhysicalDataSpecification object, the MiningApplyOutput ob-

ject, the last step is to score the data. We create an MiningApplyTask object

which can be stored in the data mining server. The current status informa-

tion of a task can be queried by calling the getCurrentStatus(dmsConnection,

taskName) method. The following code shows this:

MiningApplyTask task = new MiningApplyTask(

// Physical Data Spec for input data

my_InputPhysicalDataSpecification,

my_ModelName, // Name of the model to be applied

my_MiningApplyOutput, // MiningApplyOutput

ladOutput, // Output table location

// Result name in odm_apply_result table on the DMS

my_ApplyOutputResultResultName);

task.store(dmsConnection, my_ApplyTaskName);

task.execute(dmsConnection);

MiningTaskStatus status =

task.waitForCompletion(dmsConnection);

System.out.println(" Apply Task Status: " +

status.getTaskState().getEnum());

Figure 7.4 shows 20 records in the POINTS CL APPLY RESULT table, which

has four columns, namely, MYPREDICTION, MYPROBABILITY, XPOS,

YPOS, where XPOS, YPOS are the two columns from the POINTS APPLY

table, MYPREDICTION and MYPROBABILITY denote that the record

should be assigned to the predicted cluster with the probability MYPROBA-

BILITY.

7.2.4 Comparison of Enhanced k-means and O-Cluster

The clustering methodologies for enhanced k-means and O-Cluster algorithms

are distance-based and grid-based respectively. The number of clusters created by
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Figure 7.4. Model-Apply Results Table
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the model building process is user-specified for enhanced k-means algorithm. The

number of clusters is automatically discovered by the O-Cluster algorithm. Both

algorithms use the hierarchical clustering method. They assign scoring data to

clusters probablistically. Table 7.1 compares the time needed to build a model and

the shapes of clusters. The model build table POINTS contains around 4 million

records. These records are taken from the REACTIONS table, so the records are

not necessary generated by one simulation. From the table, we see that O-Cluster

has the advantage of less model build time. The number of clusters is user-specified

for the enhanced k-means algorithm, while O-Cluster will discover the number of

clusters automatically.

Table 7.1. Comparison of Enhanced k-means and O-Cluster)

Algorithm Model Build Time Cluster Shape Number of Clusters
Enhanced k-means 34 minutes Spherical 8
O-Cluster 14 minutes Rectangular 15

7.3 Conclusion

In this chapter, we discussed the data mining programming using ODM. Espe-

cially, two clustering algorithms Enhanced k-means and O-Cluster are applied to

the NOM simulation data and some interesting clusters are discovered and applied

the models to new data. One way to explain these clusters is that “hot spots” exist

in the simulated world, the movements and reactions of these molecules enable the

molecules to form clusters. This discovery could be useful to determine the physical

distributions of molecules in the evolution of soil, etc. Another interesting problem

is to predict whether certain molecules will be adsorbed in a certain period of time.

This is a typical application of classification. We plan to apply some classification

methods such as Naive Bayes algorithm or decision tree algorithm to build a classifi-
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cation model, which then can be used to predict whether certain types of molecules

will be adsorbed or not in a certain time period. Other data mining algorithms are

not used yet, we hope we can apply them to the data warehouse to discover more

interesting patterns.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

In this thesis, we have presented an agent-based stochastic model to simulate

natural organic matter (NOM). It acts as a starting point of a powerful tool which

can be applied to aquatic ecosystem studies, soil and crop science, environmental

protection, remediation in the surface and sub-surface, and global climate change

prediction. Unlike current models, this model explicitly treats NOM as a heteroge-

neous mixture, so that distributions of physical, chemical and biological properties

can be predicted.

The simulation system employs recent advances in web-based interfaces such

as J2EE, and scalable web-based database management systems such as Oracle to

improve the reliability and scalability of the stochastic simulations and to facilitate

analysis of the resulting large datasets.

Currently, 6 computer systems are involved in the simulation system. To fully

facilitate these resources, we employed the idea of load balance and fail over. There-

fore, the simulation model is quite reliable and scalable. With the help of Oracle

Reports, users can view the reports of their simulations online. Various techniques

to improve query performance are discussed. These techniques include indexes, sum-

mary tables. To maintain index structures, the insertion performance is decreased

about by 20%. Meanwhile, additional storage is needed by the indexes, which is
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another overhead of indexes. We found that, in order to obtain the best query per-

formance while the same data set is in a heavy use of insertion, we need to build

necessary summary tables which are to be updated periodically.

A data warehouse is built to store aggregated and summarized data for the

simulation databases. Detailed data is also stored in the data warehouse. Both star-

schema and detail-summary data warehouse technologies are applied when building

the data warehouse. Other considerations such as indexes, constraints, are not

presented in the thesis, but they are carefully examined when building the data

warehouse. To populate the data warehouse, we employed various tools such as

SQL*Loader, Export/Import and Copy table data.

Finally, we applied some Oracle data mining algorithms to the data warehouse

to discover interesting patterns. For example, we wrote Java programs to apply the

Enhanced k-means and O-Cluster algorithms to the POINTS table. A clustering

model is built for each algorithm. After comparing the two algorithms, we found

that the O-Cluster algorithm has much better performance when building clustering

models.

8.2 Conclusions

Through this thesis, we have presented an agent-based stochastic model which

employed advanced web and RDBMS technologies typically used in e-business and

e-commerce. We can apply these technologies to the field of scientific simulation.

The simulation system we presented is quite reliable and scalable. It included the

features of load balance and fail over. We also learned that we can apply data mining

methods to the simulation data to discover interesting patterns which is useful for

other scientists such as chemists, geologists and environmental scientists.

108



8.3 Future Work

There are several possible extensions of our current project. First of all, more

features can be added into the core simulation. Currently, we only allowed ten most

popular types of chemical reactions in the model. Obviously, there are far more

reactions existing in the real world. We could add a feature to allow the users to

build new reaction types.

Secondly, we could apply more data mining algorithms to the data warehouse to

discover more interesting patterns. These patterns discovered could be useful in a

variety of scientific applications.
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