Infrastructure, Data Cleansing and Mining for Scientific Simulations

Committee Members:

Dr. Bowyer Dr. Flynn Dr. Madey Dr. Uhran

Yingping Huang

11/26/03

Agenda

Overview Background Multi-tier infrastructure Data cleansing algorithms Data mining applications Summarize ♦ Timeframe

Overview

 Multi-tier infrastructure powers scientific simulations.

- Data cleansing algorithms result in better data quality.
- Data mining applications discover hidden knowledge in environmental and social science.

Motivation

Simulation Anytime and Anywhere

Agenda

Overview Background Multi-tier infrastructure Data cleansing algorithms Data mining applications Summarize ♦ Timeframe

Background

Projects under way

- NOM
 - Research on natural organic matter (NOM)
 - Study evolution of NOM over time
 - Joint work of scientists across disciplines including chemists, biochemists, environmental scientists
- OSS
 - Research on the open source software (OSS) development phenomenon
 - Study the behavior of OSS developers and their motivations
 - Joint work with social scientists

Simulation Models

Standalone or traditional client-server
 Software needs to be installed on clients
 Incompatibility makes installation difficult
 Web-based using applets
 Security – file permission, firewall
 Inconvenience – plug-ins download
 Network traffic – download before executing
 Incompatibility – Swarm
 What should be done?
 Web-based server-side simulation models

- Centralized simulation management
- Collaboration and personalization

Data Cleansing

Known approaches

- Sorted neighborhood (Stolfo 1995/1998)
 - Domain dependent keys for sorting

Record matching(Monge, 2000)

- Edit distance only
- String mapping (Li, 2003)
 - Potential high dimensional target space
- Our approaches
 - Sample database
 - Lipschitz mapping

Data Mining

a

Data mining in astronomy

- SKYCAT: star/galaxy classification (Fayyad, 1996)
- JARTool: detect volcanoes on Venus (Burl, 1998)
- Sapphire: find galaxies (Kamath, 2001)
- Data mining in biology
 - Bioinformatics
 - SARS diagnosis (ehealth.org)
- What should be done?
 - Data mining for social science (OSS)
 - Data mining for environmental science (NOM)
 - Add intelligence to simulation models by applying mining results

Agenda

Overview ♦ Background Multi-tier infrastructure Data cleansing algorithms Data mining applications Summarize ♦ Timeframe

10

Two Features

Load-balancing

- Scalability achieved
- Implementation using JMS, AQ & EJB
- Implementation using Shell scripts & PL/SQL
- Simulation-resuming
 - Reliability achieved
 - Checkpoint
 - Implementation using JTA/JTS

Shell Scripts & PL/SQL

Dispatcher (HTTP server)
 Dispatch simulations
 Send KEEPALIVE messages to running simulations
 Intelligent agent (application server)
 Upload load averages
 Check simulations

Send ACK to KEEPALIVE messages

Load-balancing Algorithm

Instance learning approach
 Based on completion time prediction

- Two step completion time prediction
 - Completion time estimation
 - Load average
 - Data amount
 - Completion time prediction
 - Nearest neighborhood

Completion Time Estimation

Completion time estimation formula

Checkpoint Issues

Checkpoint data All data for restarting the simulation Size depends on number of agents Checkpoint frequency Checkpoint-interval # of MB data Checkpoint-timeout # of minutes

Simulationresuming

- To restart a terminated simulation
 - A new simulation with same job_id inserted into the job queue
 - A terminated simulation has smaller job_id than new simulations, higher priority
- In case of application server failure
 - All simulations' job_ids inserted into the job que e
 - All simulations will be running on other application servers

Collaboration 🕙 Welcome - Microsoft Internet Explorer - 0 Favorites <u>T</u>ools File Edit View Help » 🔎 Search 🤺 Favorites Media 🧭 Q, 2 × S Back 💌 Address 🙆 http://tobit.cse.nd.edu NOM NOM CHAT ROOM NOM DISCUSSION BOARD **Your Hame** NOM BBS NOM researchers can discuss modeling, programming, Password reporting and so on. Hember O Not Hember O NOM SIMULATOR egister Visitor Simulator Simulator NOM researchers can start simulations and view information such as reports for their simulations. ど Done 🥝 Internet

11/26/03

Yingping Huang

21

XML Reports

NOM Adsorption Simulation - Microsoft Internet I	Explorer	
<u>F</u> ile <u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp		AV
🕝 Back 🝷 🕥 👻 📓 🏠 🔎 Search 🤤	🛧 Favorites 🔇 Media 🧭 🔗 🍓 🖸	· 🔁 🔭
Address 🚳 http://joy.cse.nd.edu:8888/reports/adsorption/ind	lex.jsp?sessionid=245	~
Please provide the following information. Current Time Step is:	Weight Distribution	
4799 <u>Refresh</u>	380 8 76 0.1053	
Time Step: 4799	732 21 76 0.2763	
Start Y:0	1464 25 76 0.3289	
End Y: 299	2928 13 76 0.1711 5856 9 76 0.1184	
Generate Reports Generate XML file		
NOM Adsorption		
Simulation	The second se	
e	Internet	
03 23 Yingping Huang		

Agenda

Overview
Background
Multi-tier information system
Data mining applications
Summarize
Timeframe

Methodology

Traditional approach

- Form hypotheses
- Verify hypotheses by finding patterns in data
- Data mining approach
 - Find patterns in data
 - Form hypotheses
 - Design simulation models
 - Verify hypotheses

U. Fayyad, J. Gray at Microsoft Research

Technology & Software

Data mining technology

- Clustering
 - K-means
 - Orthogonal cluster
- Classification
 - Decision tree
 - Naïve Bayes
- Association rules
 - Apriori

- Data mining software
 - Oracle Data Mining Suite
 - DM4J
 - JDeveloper

 Study behavior of open source software (OSS) developers

- Agent-based
- Stochastic
- Data mining involving
 - Clustering
 - Classification
 - Churn prediction
 - Acquisition prediction
 - Association rules

OSS Data Warehousing

- Data from sourceforge.com
 - Developers
 - Projects
- Data warehousing
 - Table partitioning
 - Aggregation
 - Star schema
 - Analysis SQL
 - **ETL** tools \rightarrow Warehouse Builder

Study behavior of natural organic matter (NOM)

- Agent-based
- Stochastic
- Data mining involving
 - Clustering
 - Micelle formation
 - Classification
 - Transportation prediction
 - Adsorption prediction
 - Association rules

Agenda

Overview
Background
Multi-tier information system
Data mining applications
Summarize
Timeframe

Summarize

Multi-tier information system integrates
Application servers & reports server
Database servers
Data warehousing & data mining
Swarm
Collaboration suite
Data mining guided model-design

Insights & Impacts

Server-side simulation models
Centralized simulation management
Centralized data repository
Collaboration suite
Simulation sharing
Knowledge sharing
Data mining applications
Find patterns in data
Model deployment for simulation-design

Agenda

Overview
Background
Multi-tier information system
Data mining applications
Summarize
Timeframe

Expected
 Publications

 Information system design for scientific simulations

By August 2003

- Data warehousing for scientific simulations
 - By November 2003
- Data mining for OSS
 - By February 2004
- Data mining for NOM
 - By March 2004

Demonstration

11/26/03

Thank you!

11/26/03

37 Yingping Huang

Features

Multi-tier information system
HTTP client tier → HTTP server tier → Application server tier → EIS tier
Scalability at the application server tier
Load-balancing
Reliability at the application server tier
Simulation-resuming
Reliability at the database tier
Standby databases

Features (cont.)

Data mining models
Stored in database
Stored Java procedures
PL/SQL procedure call using JDBC
Simulation models
Agent-based
Stochastic
Data mining guided