
Agent-based Scientific
Applications and Collaboration

Using Java

Xiaorong Xiang

Advisor: Dr. Kevin Bowyer

Department of Computer Science and Engineering

University of Notre Dame
Sponsored by NSF/ITR-DEB

Objectives

� New approach for NOM modeling
� Agent-based modeling

� E-Science on the Web

� Intelligent interface components

� Build the NOM Collaboratory

� Performance analysis for scientific
applications

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Introduction

� What is Natural Organic Matter (NOM)?
� Role of NOM in various science disciplines

� Mobility and transport of pollutants
� Availability of nutrients for microorganisms

and plant communities
� Affects quality of drinking water

� Need to understand the evolution and
heterogeneous structure of NOM

Twomile Creek [DOC] 17 MW 1500Forest Service Bog [DOC] 7 MW 2200

Nelson Creek [DOC] 79 MW 900

Previous models

� Two examples:

� Daisy (S. Hansen, H. E. Jensen, and N. E. Nielsen
1990-present) : a soil plant atmosphere system
model

� StochSim (C. J. Morton-Firth 1998-present):
Stochastic simulation of cell signaling
pathways

low high

small

large

(Atoms number
Percentage)

(Forces between atoms
Electron density)

Detail
 (structure)

Scale
(size, temporal)

(One molecule)
(nanoseconds)

(Large
ecosystem)
(Years)

Copyright 1998, Thomas M. Terry,TheUniversity of Conn

Elemental Cycling

Connectivity Maps

NOM1.0
Daisy

StochSim

Our model

� Agent-based modeling (Individual-based
modeling)
� Agent-based model

� Reynolds (1987): Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics

� Each molecule as an individual object with spatial
properties

� Bottom-up approach

� Stochastic model

� Trace changes of the system � Database and data
mining technologies

Our model (cont.)
� Web-based scientific application

� Serve as an example for E-Science
� G. Fox (2002): E-science meets computational science and
information technology. Computing & Engineering

� R. M. Jakobovits, J. F. Brinkley, C. Rosse, and E.Weinberger
(1998): Enabling clinicians, researchers, and eductors to build
custom Web-based biomedical information system

� Support the collaborations, data and information
sharing between scientists

� No installation, expensive computation resources
needed by scientists

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Modeling

� A complex system
� Consists of a large number of objects

� Molecules, Microbes
� Heterogeneous properties
� Individual behaviors
� Interaction between objects
� Objects behavior and interaction are stochastically
determined by:
� Attributes
� Reactions rates
� Environment condition

� No central control
� Emergent properties

Modeling (cont)

� Agent Attributes
� Elemental composition (C, H, O, N, S, P)
� Functional groups (double bonds, ring

structure, alcohols …)
� The origin of objects (spatial position in the

system, parents of the objects)
� Probability table of physical and chemical

reactions
� Molecule weight

Modeling (cont.)

� Agent Behaviors:
� Transport through soil pores by water (spatial

mobility)
� Adsorb onto or desorbed from mineral surfaces
� Chemical reactions

� Total 10 types in current model
� First order
� Second order

� Stochastically determined

� Space:
� 2-D grid

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Core simulation engine

� Implementation
� Swarm toolkit

� Java programming language (JDK 1.4.1_01)

� GUI version
� View the animation of molecules

� Easy for debugging and modeling

� Web-based version, the NOM simulation model

Core simulation engine (cont.)
� Read simulation parameter from the database

(JDBC)
� Environmental parameters (pH, temperature, light

intensity, and so on)
� Molecule types and distributions

� User defined time has been separated to a large
number of equal size time steps

� Write relevant data into the database every time
step (JDBC)
� Trace the dynamic properties of individuals and the

system over time

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Web-based model

� Distributed, Web-based scientific application
model

� Based on Java 2 Enterprise Edition (J2EE)
� Standard HTML Forms / JSP
� Java Servlets, Java Beans
� JDBC - Oracle
� Oracle Forms and Reports

� Three parts:
� Intelligent Web-based interface
� Core simulation engine
� Data analysis, Data mining

Access NOM simulation from Web

Web-based interface

Login

Sign up

New user

Submitted simulations Start a new one

Real time reports Terminate

Dynamic running
time prediction

Parameter input

Invoke simulationFind similar simulations

Static running
time predictionrestart

Database
Simulation
engines

Email notification

Intelligent components
� Components:

� Email notification

� Running time prediction
� Static: number of molecules, number of time steps

� Dynamic: current time step, current wall clock
time

Intelligent components (cont.)

� Find similar simulations
� Environment parameters

� Molecule types and distributions

� Retrieve the data sets from database

� Points on a high dimension space

� Euclidean distance

� Ordered list

� Review the simulation results or restart

Intelligent components (cont.)
� Automatic restarter

� Save the state of each objects in the system to
database every check point

� Load the state to the core simulation engine

Intelligent interface design
� Model-View-Controller (MVC) design pattern

� Model � Application logic
� View � Presentation logic
� Controller �Session management

� Separate the design task, centralized control
� Code reuse
� Make the application more easily maintainable
� Well-suited for round-trips of requesting and

displaying data

Web interface implementation

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Previous work

� Combination of words “collaboration” and
“laboratory” first coined by William Wulf (1996):
Richard T. Kouzes, James D. Myers, and William A. Wulf. Collaboratories:
Doing science on the internet. IEEE Computer, 1996

� Diesel Collaboratory: C. M. Pancerella, L. A. Rahn,
and C. L. Yang: The diesel combustion collaboratory: combustion
researchers collaborating over the internet. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing

� BioCoRE: http://ks.uiuc.edu/Research/biocore

� EMSL Collaboratory: http://www.emsl.pnl.gov:2080/docs/collab

The NOM Collaboratory
� Interdisciplinary project

� Chemist
� Biologist
� Ecologist
� Computer Scientist

� Build and integrate software using J2EE
� NOM modeling & simulation software
� Standard data format definitions
� Data querying and manipulation tools
� Electronic communication tools

� NOML:
� Standard data format

� Environment.dtd, Molecules.dtd, Setup.dtd

� Facilitate communication
� User ==== User

� Application ==== Application

� Extension

XML-based NOM Markup Language
(NOML)

NOML uploader

Data input options

Other tools

� Molecule editor
� Define new molecule type

� Molecule validator
� Authorized persons (Chemists) to validate data
� Share the molecule type

� Search engine
� Ad-hoc query
� View results of the completed simulations
� Restart some simulations

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Java for Scientific Applications

� Advantages
� Portability, automatic memory management
� Java built-in threads, Java RMI

� Disadvantage
� Performance

� M. Ashworth: The potential of Java for high performance
applications. In the International Conference on the Practical Application of
Java, 1999

� Java Grande benchmark suite
http://www.epcc.ed.ac.uk/javagrande

Previous work

� Runtime environment optimizations
� Just-In-Time compilers
� Bytecode Optimizer
� Adaptive compilers
� Native code compilers

� J. M. Bull et al.: Benchmarking Java against C and FORTRAN for
scientific applications. In proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande

� V. Getov et al.: Multiparadigm communications in Java for gird
computing. Communication of the ACM, 2001

� Profiling the program
� Identify the bottlenecks

� Determine the factors that affect performance

� Proper design
� Eliminate bottlenecks

� Improve scalability

Software engineering perspective

Motivation

� The NOM simulation model is a typical
large scale scientific application model
� Long running time

� Large amount of data output

� Computation and I/O intensive

� Expect that our experiences can help other
scientific applications developers using
Java

Choice of data structure

0

5

10

15

20

25

Get() & shuffle() Add() & remove() Overall

Ex
ec
ut
io
n

tim
e

(s
ec
on
ds
)

ArrayList LinkedList LinkList (with iterator)

Object reuse

� Object allocation 50% longer than in C++.
(Sosnoski, 1999)

� Excessive object creation:
� Increases the memory footprint
� Forces more CPU cycles to be used for garbage

collection
� Increases the possibility of a memory leak

� Object reuse
� Isolate the object
� Reinitialize the object
� Object pool management

JDBC

� Benchmark:
� Case 1: Statement

� Case 2:
PreparedStatement

� Case 3: Statement with
transaction management

� Case 4:
PreparedStatement with
transaction management

� Case 5: Batch updates

Parallel data output with Java threads

Choice of JVM

0

10

20

30

40

50

60

70

80

90

100

100 200 400 600 800

Grid size

E
xe
cu
tio
n
tim

e
(s
ec
)

0

10

20

30

40

50

60

70

80

90

100

Sun Client VM 1500 time step Sun Client VM 500 time step

Sun Server VM 500 time step Sun Server VM 1500 time step

Choice of JVM (cont.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 200 400 600 800

Grid size

Sp
ee
du
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time step 500 Time step 1500

Scalability

� Two approaches:
� Java built-in threads

� Single JVM, shared memory

� Java MPI (MPJ)
� Multiple JVMs, distributed memory

� Equally separate the grid to 2 or 4 subset grids

� Synchronize all the threads or processes at each
time step

Java thread model

Java thread model (cont.)

0

20

40

60

80

100

120

140

100 400 800 1200 1600

Grid Size

Ex
ec
ut
io
n
tim

e
(s
ec
)

0

20

40

60

80

100

120

140

Sequential model Java threads model

Java thread model (cont.)

Message passing in Java (MPJ)

� MPJ specification
� B. Carpenter et al: MPJ: MPI-like message passing for Java.

Concurrency: Practice and Experience. 2000

� MPJ implementation
� MPI wrapper

� mpiJava (M. Baker et al: mpiJava: An object-oriented Java Interface to
MPI. 1999)

� Pure Java implementation
� JMPI (S. Morin et al: JMPI: implementing the message passing
standard in Java. 2002)

� Jmpi (K. Dincer: Ubiquitous message passing interface
implementation in Java: jmpi. 1999)

� MPIJ (G. Judd: Dogma: Distributed object group management
architecture. 1998)

Distributed memory model (MPJ)

Distributed memory model

� LAM MPI, mpiJava. 4 machine in a cluster

0

20

40

60

80

100

120

140

200 400 800 1200 1600

Grid size

Ex
ec

ut
io

n
tim

e
(s

ec
)

0

20

40

60

80

100

120

140

Time step 1500 MPJ 4 nodes (1500)

MPJ 4 nodes (500) Time step 500

Distributed memory model (cont.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 800 1200 1600
Grid size

Sp
ee
du
p

0

0.2
0.4

0.6
0.8

1

1.2
1.4

1.6

Time step 1500 Time step 500

Distributed memory model (cont.)

� No communication between processes

0
5

10
15
20
25

30
35
40

45
50

200 400 800 1200 1600

Grid size

Ex
ec
ut
io
n
tim

e
(s
ec
)

0
5

10
15
20
25

30
35
40

45
50

Time step 500 MPJ 4 nodes

Distributed memory model (cont.)

Other issue

� High performance compiler
� GCJ

� Depends on the applications

� IBM High-Performance compiler for RS6000
architecture

� Code clean up

Summary - potential 25x
CommentsSpeedupApproaches

Reduce the communication overhead1.5MPJ model with
communication

Evaluate different OS1.1Java threads model

IBM JVM is valuable to evaluate1.4Choice of JVM

Overlap the computation and I/O1.3Parallel data output

Use different JDBC technologies3JDBC

Performance gain is small-Object reuse

Evaluate overall performance2.8Choice of data structure

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Conclusion

� Agent-based stochastic model for
simulating the NOM evolution with
discrete temporal and spatial properties

� A Web-based interface

� The NOM collaboratory

� Java performance analysis for large scale
scientific applications

Outline

� Introduction
� Modeling
� Core simulation engine
� Intelligent Web-based interface
� The NOM collaboratory
� Java performance analysis
� Conclusion
� Future work

Future work
� Model testing

� Testing on the sorption
� More features need to add into the core simulation

engine
� Discrete event vs. Time step

� Advanced algorithm for search similar simulations
� Delicate way to save the JVM state and restart the

simulation
� Collaboratory:

� More communication tools
� More simulation models for NOM study
� NOML extension

Contributions

� New approach for NOM modeling
� Agent-based modeling

� E-Science on the Web

� Intelligent interface components

� Built the NOM Collaboratory

� Performance analysis for scientific
applications

Publications to date
� Proceedings

� Xiang, X., and Madey, G., "Exploring Performance Improvement for Java-based Scientific
Simulations that use the Swarm Toolkit", 7th Swarm Researchers Conference (Swarm2003),
Notre Dame, IN April 2003.

� Huang, Y., Madey, G., Xiang, X., and Chanowich, E., "Web-based Molecular Modeling
Using Java/Swarm, J2EE and RDBMS Technologies", 7th Swarm Researchers Conference
(Swarm2003), Notre Dame, IN, April 2003.

� Abstracts
� Madey, G., Huang, Y., Xiang, X., "Complex System Simulation: Interactions of NOM

Molecules, Mineral Surfaces, and Microorganisms in Soils", USGS Workshop on Modeling
Complex Systems, Reno, NV, November 2002.

� Madey, G., Huang, Y., Xiang, X., and Chanowich, E., "Agent-Based Simulation of
Biocomplexity: NOM, Mineral Surfaces, and Micro-Organisms", ASLO 2003 Aquatic
Sciences Meeting, Salt Lake City, UT, February 2003

� Cabaniss, S., Madey, G., Maurice, P., Leff, L., Huang, Y., and Xiang,X., "Stochastic
synthesis model for the evolution of natural organic matter", 225th American Chemical
Society National Meeting, New Orleans, LA, March 2003.

� Posters
� Huang, Y., Xiang, X, Chanowich, E., Madey, G., "A Web-Based Stochastic Simulation of

Natural Organic Matter", Annual Environmental Education and Research (NDEER)
Symposium, Notre Dame, IN, November 2003.

� Xiang, X., and Madey, G., "Exploring Performance Improvement for Java-based Scientific
Simulations that use the Swarm Toolkit", Indiana Biocomplexity Symposium, Notre Dame,
IN, April 2003.

Publication planning
� NOM simulation

� World Conference on Natural Resource modeling
� Simulation Practice and Theory, International Journal of the Federation of

European Simulation Societies – EUROSIM
� SIAM Journal on Scientific Computing

� Performance analysis of Java for Scientific Applications
� Winter Simulation Conference
� Joint ACM Java Grande – ISCOPE Conference
� High performance computing and networking (HPCN)
� IBM Systems Journal – Java performance

� Scientific Collaboratory
� ACM Conference on Computer Supported Cooperative work (CSCW)
� Information Resources Management Association, IRMA international

conference
� ACM Collaborative Virtual Environments
� International Conference on Human Computer Interaction
� Communications of the ACM

Acknowledgement

Thank you

Questions?

� A Java-based Direct Monte Carlo
Simulation of a NanoScale Pulse
Detonation Engine (2002)

� ESG (Environment Scenario Generator)
http://msea.afccc.af.mil/html/projects.html

Algorithm
Init

Add molecule

Randomly pick one

move

Leave
yes

no
All checked

Sorption

no

yes
Randomly pick one

Get reaction probabilities

Random number

First order

Find nearest one

noyes

Without split With split disappear

Find nearest empty cell

Update the probability table &
Molecule structure

All checkedno

yes

Completed
no

Terminateyes

Web-based interface

� Input the
simulation
parameters

� Invoke the
simulation

� Stop the
simulation

� View the real-
time simulation
results

Scalability

� Two aspects related to the scalability:
� Large grid size (large number of objects)

� Large number of time steps

