
Agent-based Scientific
Applications and Collaboration

Using Java

Xiaorong Xiang

Advisor: Dr. Kevin Bowyer

Department of Computer Science and Engineering

University of Notre Dame
Sponsored by NSF/ITR-DEB



Objectives

� New approach for NOM modeling
� Agent-based modeling

� E-Science on the Web

� Intelligent interface components

� Build the NOM Collaboratory

� Performance analysis for scientific
applications
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Introduction

� What is Natural Organic Matter (NOM)?
� Role of NOM in various science disciplines

� Mobility and transport of pollutants
� Availability of nutrients for microorganisms

and plant communities
� Affects quality of drinking water

� Need to understand the evolution and
heterogeneous structure of NOM
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Previous models

� Two examples:

� Daisy (S. Hansen, H. E. Jensen, and N. E. Nielsen
1990-present) : a soil plant atmosphere  system
model

� StochSim (C. J. Morton-Firth 1998-present):
Stochastic simulation of cell signaling
pathways
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Our model

� Agent-based modeling (Individual-based
modeling)
� Agent-based model

� Reynolds (1987):  Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics

� Each molecule as an individual object with spatial
properties

� Bottom-up approach

� Stochastic model

� Trace changes of the system � Database and data
mining technologies



Our model (cont.)
� Web-based scientific application

� Serve as an example for E-Science
� G. Fox (2002): E-science meets computational science and
information technology. Computing & Engineering

� R. M. Jakobovits, J. F. Brinkley, C. Rosse, and E.Weinberger
(1998): Enabling clinicians, researchers, and eductors to build
custom Web-based biomedical information system

� Support the collaborations, data and information
sharing between scientists

� No installation, expensive computation resources
needed by scientists
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Modeling

� A complex system
� Consists of a large number of objects

� Molecules, Microbes
� Heterogeneous properties
� Individual behaviors
� Interaction between objects
� Objects behavior and interaction are stochastically
determined by:
� Attributes
� Reactions rates
� Environment condition

� No central control
� Emergent properties



Modeling (cont)

� Agent Attributes
� Elemental composition (C, H, O, N, S, P)
� Functional groups (double bonds, ring

structure, alcohols …)
� The origin of objects (spatial position in the

system, parents of the objects)
� Probability table of physical and chemical

reactions
� Molecule weight



Modeling (cont.)

� Agent Behaviors:
� Transport through soil pores by water (spatial

mobility)
� Adsorb onto or desorbed from mineral surfaces
� Chemical reactions

� Total 10 types in current model
� First order
� Second order

� Stochastically determined

� Space:
� 2-D grid
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Core simulation engine

� Implementation
� Swarm toolkit

� Java programming language (JDK 1.4.1_01)

� GUI version
� View the animation of molecules

� Easy for debugging and modeling

� Web-based version, the NOM simulation model



Core simulation engine (cont.)
� Read simulation parameter from the database

(JDBC)
� Environmental parameters (pH, temperature, light

intensity, and so on)
� Molecule types and distributions

� User defined time has been separated to a large
number of equal size time steps

� Write relevant data into the database every time
step (JDBC)
� Trace the dynamic properties of individuals and the

system over time
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Web-based model

� Distributed, Web-based scientific application
model

� Based on Java 2 Enterprise Edition (J2EE)
� Standard HTML Forms / JSP
� Java Servlets, Java Beans
� JDBC - Oracle
� Oracle Forms and Reports

� Three parts:
� Intelligent Web-based interface
� Core simulation engine
� Data analysis, Data mining



Access NOM simulation from Web



Web-based interface
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Intelligent components
� Components:

� Email notification

� Running time prediction
� Static: number of molecules, number of time steps

� Dynamic: current time step, current wall clock
time



Intelligent components (cont.)

� Find similar simulations
� Environment parameters

� Molecule types and distributions

� Retrieve the data sets from database

� Points on a high dimension space

� Euclidean distance

� Ordered list

� Review the simulation results or restart



Intelligent components (cont.)
� Automatic restarter

� Save the state of each objects in the system to
database every check point

� Load the state to the core simulation engine



Intelligent interface design
� Model-View-Controller (MVC) design pattern

� Model � Application logic
� View � Presentation logic
� Controller �Session management

� Separate the design task, centralized control
� Code reuse
� Make the application more easily maintainable
� Well-suited for round-trips of requesting and

displaying data



Web interface implementation
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Previous work

� Combination of words “collaboration” and
“laboratory” first coined by William Wulf (1996):
Richard T. Kouzes, James D. Myers, and William A. Wulf. Collaboratories:
Doing science on the internet. IEEE Computer, 1996

� Diesel Collaboratory: C. M. Pancerella, L. A. Rahn,
and C. L. Yang: The diesel combustion collaboratory: combustion
researchers collaborating over the internet. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing

� BioCoRE: http://ks.uiuc.edu/Research/biocore

� EMSL Collaboratory: http://www.emsl.pnl.gov:2080/docs/collab



The NOM Collaboratory
� Interdisciplinary project

� Chemist
� Biologist
� Ecologist
� Computer Scientist

� Build and integrate software using J2EE
� NOM modeling & simulation software
� Standard data format definitions
� Data querying and manipulation tools
� Electronic communication tools





� NOML:
� Standard data format

� Environment.dtd, Molecules.dtd, Setup.dtd

� Facilitate communication
� User  ====  User

� Application  ====  Application

� Extension

XML-based NOM Markup Language
(NOML)



NOML uploader



Data input options 



Other tools

� Molecule editor
� Define new molecule type

� Molecule validator
� Authorized persons (Chemists) to validate data
� Share the molecule type

� Search engine
� Ad-hoc query
� View results of the completed simulations
� Restart some simulations
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Java for Scientific Applications

� Advantages
� Portability, automatic memory management
� Java built-in threads, Java RMI

� Disadvantage
� Performance

� M. Ashworth: The potential of Java for high performance
applications. In the International Conference on the Practical Application of
Java, 1999

� Java Grande benchmark suite
http://www.epcc.ed.ac.uk/javagrande



Previous work

� Runtime environment optimizations
� Just-In-Time compilers
� Bytecode Optimizer
� Adaptive compilers
� Native code compilers

� J. M. Bull et al.: Benchmarking Java against C and FORTRAN for
scientific applications. In proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande

� V. Getov et al.: Multiparadigm communications in Java for gird
computing. Communication of the ACM, 2001



� Profiling the program
� Identify the bottlenecks

� Determine the factors that affect performance

� Proper design
� Eliminate bottlenecks

� Improve scalability

Software engineering perspective



Motivation

� The NOM simulation model is a typical
large scale scientific application model
� Long running time

� Large amount of data output

� Computation and I/O intensive

� Expect that our experiences can help other
scientific applications developers using
Java
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Object reuse

� Object allocation 50% longer than in C++.
(Sosnoski, 1999)

� Excessive object creation:
� Increases the memory footprint
� Forces more CPU cycles to be used for garbage

collection
� Increases the possibility of a memory leak

� Object reuse
� Isolate the object
� Reinitialize the object
� Object pool management



JDBC

� Benchmark:
� Case 1: Statement

� Case 2:
PreparedStatement

� Case 3: Statement with
transaction management

� Case 4:
PreparedStatement with
transaction management

� Case 5: Batch updates



Parallel data output with Java threads



Choice of JVM
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Choice of JVM (cont.)
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Scalability

� Two approaches:
� Java built-in threads

� Single JVM, shared memory

� Java MPI (MPJ)
� Multiple JVMs, distributed memory

� Equally separate the grid to 2 or 4 subset grids

� Synchronize all the threads or processes at each
time step



Java thread model



Java thread model (cont.)
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Java thread model (cont.)



Message passing in Java (MPJ)

� MPJ specification
� B. Carpenter et al: MPJ: MPI-like message passing for Java.

Concurrency: Practice and Experience. 2000

� MPJ implementation
� MPI wrapper

� mpiJava (M. Baker et al: mpiJava: An object-oriented Java Interface to
MPI. 1999)

� Pure Java implementation
� JMPI (S. Morin et al: JMPI: implementing the message passing
standard in Java. 2002)

� Jmpi (K. Dincer: Ubiquitous message passing interface
implementation in Java: jmpi. 1999)

� MPIJ (G. Judd: Dogma: Distributed object group management
architecture. 1998)



Distributed memory model (MPJ)



Distributed memory model

� LAM MPI, mpiJava. 4 machine in a cluster
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Distributed memory model (cont.)
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Distributed memory model (cont.)

� No communication between processes
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Distributed memory model (cont.)



Other issue

� High performance compiler
� GCJ

� Depends on the applications

� IBM High-Performance compiler for RS6000
architecture

� Code clean up



Summary - potential 25x
CommentsSpeedupApproaches

Reduce the communication overhead1.5MPJ model with
communication

Evaluate different OS1.1Java threads model

IBM JVM is valuable to evaluate1.4Choice of JVM

Overlap the computation and I/O1.3Parallel data output

Use different JDBC technologies3JDBC

Performance gain is small-Object reuse

Evaluate overall performance2.8Choice of data structure
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Conclusion

� Agent-based stochastic model for
simulating the NOM evolution with
discrete temporal and spatial properties

� A Web-based interface

� The NOM collaboratory

� Java performance analysis for large scale
scientific applications
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Future work
� Model testing

� Testing on the sorption
� More features need to add into the core simulation

engine
� Discrete event vs. Time step

� Advanced algorithm for search similar simulations
� Delicate way to save the JVM state and restart the

simulation
� Collaboratory:

� More communication tools
� More simulation models for NOM study
� NOML extension



Contributions

� New approach for NOM modeling
� Agent-based modeling

� E-Science on the Web

� Intelligent interface components

� Built the NOM Collaboratory

� Performance analysis for scientific
applications



Publications to date
� Proceedings

� Xiang, X., and Madey, G., "Exploring Performance Improvement for Java-based Scientific
Simulations that use the Swarm Toolkit", 7th Swarm Researchers Conference (Swarm2003),
Notre Dame, IN April 2003.

� Huang, Y., Madey, G., Xiang, X., and Chanowich, E., "Web-based Molecular Modeling
Using Java/Swarm, J2EE and RDBMS Technologies",  7th Swarm Researchers Conference
(Swarm2003), Notre Dame, IN, April 2003.

� Abstracts
� Madey, G., Huang, Y., Xiang, X., "Complex System Simulation: Interactions of NOM

Molecules, Mineral Surfaces, and Microorganisms in Soils", USGS Workshop on Modeling
Complex Systems, Reno, NV, November 2002.

� Madey, G., Huang, Y., Xiang, X., and Chanowich, E., "Agent-Based Simulation of
Biocomplexity: NOM, Mineral Surfaces, and Micro-Organisms", ASLO 2003 Aquatic
Sciences Meeting, Salt Lake City, UT, February 2003

� Cabaniss, S., Madey, G., Maurice, P., Leff, L., Huang, Y., and Xiang,X., "Stochastic
synthesis model for the evolution of natural organic matter", 225th American Chemical
Society National Meeting, New Orleans, LA, March 2003.

� Posters
� Huang, Y., Xiang, X, Chanowich, E., Madey, G., "A Web-Based Stochastic Simulation of

Natural Organic Matter", Annual Environmental Education and Research (NDEER)
Symposium, Notre Dame, IN, November 2003.

� Xiang, X., and Madey, G., "Exploring Performance Improvement for Java-based Scientific
Simulations that use the Swarm Toolkit", Indiana Biocomplexity Symposium, Notre Dame,
IN, April 2003.



Publication planning
� NOM simulation

� World Conference on Natural Resource modeling
� Simulation Practice and Theory, International Journal of the Federation of

European Simulation Societies – EUROSIM
� SIAM Journal on Scientific Computing

� Performance analysis of Java for Scientific Applications
� Winter Simulation Conference
� Joint ACM Java Grande – ISCOPE Conference
� High performance computing and networking (HPCN)
� IBM Systems Journal – Java performance

� Scientific Collaboratory
� ACM Conference on Computer Supported Cooperative work (CSCW)
� Information Resources Management Association, IRMA international

conference
� ACM Collaborative Virtual Environments
� International Conference on Human Computer Interaction
� Communications of the ACM
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� A Java-based Direct Monte Carlo
Simulation of a NanoScale Pulse
Detonation Engine (2002)

� ESG ( Environment Scenario Generator )
http://msea.afccc.af.mil/html/projects.html
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Web-based interface

� Input the
simulation
parameters

� Invoke the
simulation

� Stop the
simulation

� View the real-
time simulation
results



Scalability

� Two aspects related to the scalability:
� Large grid size (large number of objects)

� Large number of time steps


