
Autonomic Web-based Simulation
Yingping Huang and Gregory Madey

Computer Science and Engineering

University of Notre Dame

Autonomic Web-based Simulation – p.1/38



Autonomic Web-based Simulation
√

Autonomic Web-based Simulation =

? Web-based Simulation +

? Autonomic Computing
√

Motivations

? Many scientific simulations are large programs which despite careful

debugging and testing will probably contain errors when deployed to

the Web for use

? Developers of large-scale web-based simulations have experienced

increased complexity in their software systems due to the complex

integration of different pieces of services.
√

Goal

? Self-manageable Web-based simulations

Autonomic Web-based Simulation – p.2/38



Human Nervous System

Autonomic Web-based Simulation – p.5/38



Autonomic Computing Vision

Autonomic Web-based Simulation – p.6/38



Autonomic Computing Vision

Autonomic Web-based Simulation – p.6/38



AWS Requirements

1. Simulation checkpointing and restarting

2. Simulation self-awareness and proactive failure detection

3. Self-manageable computing infrastructure to host simulations

Autonomic Web-based Simulation – p.7/38



Ckpt 4 Self-healing/optimizing
√

Checkpointing is used in simulations, databases, systems, and operations

research
√

Determining optimal checkpoint interval is not trivial

? Excessive checkpointing results in performance degradation =⇒

longer execution time

? Deficient checkpointing yields expensive redo =⇒ longer execution

time
√

An optimization problem is formed

Autonomic Web-based Simulation – p.8/38



Modeling Simulation Execution

Autonomic Web-based Simulation – p.9/38



Expected Execution Time
√

Ttotal: Expected total execution time is the sum of the following 4:

? Twork: Time to complete all computations with the assumption of no

checkpointing and no failure

? Tcheckpoint: Time to write checkpoint data to files or database

? Trestart: Time to detect failures and restore data from last checkpoints

? Tredo: Time to redo computations to the points of failures

Autonomic Web-based Simulation – p.10/38



Assumptions for Analytical Models
√

Assumptions:

? MTTF = M where M is a constant. Failures occur according to a

Poisson process with arrival rate 1
M

. =⇒

→ The probability to complete t time units without failure is

p(t) = e−
t

M

→ The probability distribution function is 1
M

e−
t

M

? For an execution segment, checkpoint time is c and restart time is r (if

it’s an rxc-segment ), where c and r are constants
√

Critical to determine

? Fraction of redo over an execution segment

? The expected number of failures

Autonomic Web-based Simulation – p.11/38



Requirement 2: J2SE 5.0
√

The information exposed by the monitoring and management APIs in J2SE 5.0 can be used

in:

? External monitoring and management using external monitoring software

? Internal monitoring and management by adding logic inside simulation

√

Managed Resource Interfaces in java.lang.management

Memory MemoryMXBean

MemoryPoolMXBean

MemoryManagementMXBean

RuntimeMXBean

GarbageCollectorMXBean

CPU OperatingSystemMXBean

ThreadMXBean

RuntimeMXBean

Autonomic Web-based Simulation – p.24/38



Req 3: Self-* Infrastructure

Autonomic Web-based Simulation – p.25/38



Data Model 4 Self-awareness

Autonomic Web-based Simulation – p.26/38



Self-configuring
√

Self-configuring involves autonomatic incorporation of new components

and autonomic component adjustments to new conditions
√

Self-configuring tasks

? Self-configuring web interface

? Self-configuring firewall/router

? Self-configuring simulation servers

? Self-configuring application server

Autonomic Web-based Simulation – p.27/38



Self-configuring Web Interface
√

Frequent database schema changing due to research uncertainty yields

corresponding of web interface.
√

Web interface can be changed automatically with multi-record format

Autonomic Web-based Simulation – p.28/38



√ Self-configuring Firewall/Router
√

IP is forwarded to

application server 1

√

Failure of application

server 1 is detected
√

Local autonomic agent

starts application server

2
√

IP is forwarded to appli-

cation server 2

Autonomic Web-based Simulation – p.29/38



Self-configuring Firewall/Router
√

IP is forwarded to

application server 1
√

Failure of application

server 1 is detected

√

Local autonomic agent

starts application server

2
√

IP is forwarded to appli-

cation server 2

Autonomic Web-based Simulation – p.29/38



Self-configuring Firewall/Router
√

IP is forwarded to

application server 1
√

Failure of application

server 1 is detected
√

Local autonomic agent

starts application server

2

√

IP is forwarded to appli-

cation server 2

Autonomic Web-based Simulation – p.29/38



Self-configuring Firewall/Router
√

IP is forwarded to

application server 1
√

Failure of application

server 1 is detected
√

Local autonomic agent

starts application server

2
√

IP is forwarded to appli-

cation server 2

Autonomic Web-based Simulation – p.29/38



Self-configuring Simulation Servers
√

Autonomic agents are running on simulation servers and new simulation

servers are discovered by inserting records into the Server table
√

Load metrics such as load average are updated every 5 seconds in the

Server table
√

Old records are inserted into Server_History by a database trigger, and

are used for load balancing and simulation migration

Autonomic Web-based Simulation – p.30/38



Self-healing
√

Self-healing can be accomplished by automatically detecting, diagnosing,

and repairing localized software or hardware problems. Some sort of

redundancy is necessary to achieve self-healing.

√

Self-healing application

servers

√

Self-healing simulation

servers
√

Self-healing running

simulations
√

Self-healing database

servers

1. Detect application server fail-

ure by probing it using wget

2. Local agent starts another ap-

plication server

3. Firewall/Router runs iptables

command for IP forwarding

Autonomic Web-based Simulation – p.31/38



Self-healing
√

Self-healing can be accomplished by automatically detecting, diagnosing,

and repairing localized software or hardware problems. Some sort of

redundancy is necessary to achieve self-healing.

√

Self-healing application

servers
√

Self-healing simulation

servers

√

Self-healing running

simulations
√

Self-healing database

servers

1. Detect simulation server fail-

ure by timing out of autonomic

agents

2. All simulations running on the

simulation server are crashed

3. All crashed simulations are re-

dispatched by the autonomic

manager inside the database

server

Autonomic Web-based Simulation – p.31/38



Self-healing
√

Self-healing can be accomplished by automatically detecting, diagnosing,

and repairing localized software or hardware problems. Some sort of

redundancy is necessary to achieve self-healing.

√

Self-healing application

servers
√

Self-healing simulation

servers
√

Self-healing running

simulations

√

Self-healing database

servers

1. Failures are detected either by

the Java Monitoring and Man-

agement APIs or timing out

2. Simulations are killed by local

agents

3. Crashed simulations are re-

dispatched by the autonomic

manager inside the database

server

Autonomic Web-based Simulation – p.31/38



Self-healing
√

Self-healing can be accomplished by automatically detecting, diagnosing,

and repairing localized software or hardware problems. Some sort of

redundancy is necessary to achieve self-healing.

√

Self-healing application

servers
√

Self-healing simulation

servers
√

Self-healing running

simulations
√

Self-healing database

servers

1. Database server and listener

are monitored by making peri-

odical connections

2. Alert log is monitored for num-

ber of significant errors, esp-

cially ORA-00600 errors.

3. Tablespace capacity is moni-

tored, so that it exceeds thresh-

old, new space is allocated

Autonomic Web-based Simulation – p.31/38



Self-optimizing
√

Self-optimizing involves automatic tuning of performance related

parameters. The idea of global optimization is useful for self-optimizing.

However, usually the performance related parameters cannot be changed

dynamically without rebooting the services.
√

Self-optimizing task

? Self-optimizing simulation servers by load balancing and simulation

migration

? Self-optimizing simulations by using optimal checkpoint interval

Autonomic Web-based Simulation – p.32/38



Self-protecting
√

Self-protecting means the system automatically defends against

malicious attacks or cascading failures. It use early warnings to anticipate

and prevent system wide failures.
√

Access to the computing infrastructure is controlled through user roles.
√

Self-protecting tasks

? Firewall is configured to allow only port 80 open to public

? Users must register and be verified by system administrators

? Users are assigned roles: admin, normal and not

? Early warning of OutOfMemoryError were used to anticipate failures

Autonomic Web-based Simulation – p.34/38



Conclusions
√

The following contributions are reported:

? Derivation of mathematical models to calculate the optimal

checkpoint interval and to predict expected total execution time

? Implementation of autonomic web-based simulation and its

application to the NOM simulation

Autonomic Web-based Simulation – p.37/38



Guess What...
√

This is not PowerPoint...
√

This is done by Latex + Prosper

Autonomic Web-based Simulation – p.38/38


	Autonomic Web-based Simulation
	What is Simulation ?
	Simulation Deployment Models
	Human Nervous System
	Autonomic Computing Vision
	AWS Requirements
	Ckpt 4 Self-healing/optimizing
	Modeling Simulation Execution
	Expected Execution Time
	Assumptions for Analytical Models
	Redo Fraction Over A Segment
	Redo Fraction Properties
	Expected Total Execution Time vs Checkpoint Interval
	Solving Model
	Validating Model via Simulation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Properties of the Model
	Requirement 2: J2SE 5.0
	Req 3: Self-* Infrastructure
	Data Model 4 Self-awareness
	Self-configuring
	Self-configuring Web Interface
	Self-configuring Firewall/Router
	Self-configuring Simulation Servers
	Self-healing
	Self-optimizing
	Self-optimizing Simulation Servers
	Self-protecting
	Application: NOM Simulation
	Checkpointing and Restarting in ReactionBatchModel
	Conclusions
	Guess What...



