Verification and Validation of Scientific and Economic Simulations

Ryan Kennedy, Xiaorong Xiang, Gregory Madey Computer Science and Engineering University of Notre Dame

Thomas Cosimano

Department of Finance University of Notre Dame UNIVERSITY OF NOTRE DAME

Overview

Introduction

- Concepts of Verification and Validation
- Research Objectives and Methods

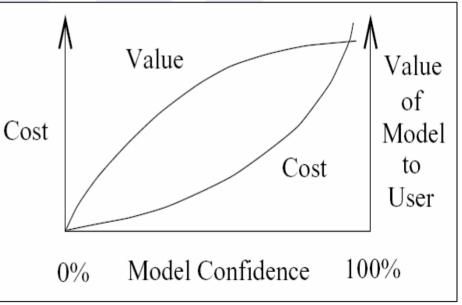
Case Studies

- An Agent-based Scientific Model
- An Equation-based Economic Model

Conclusion

□Future Work

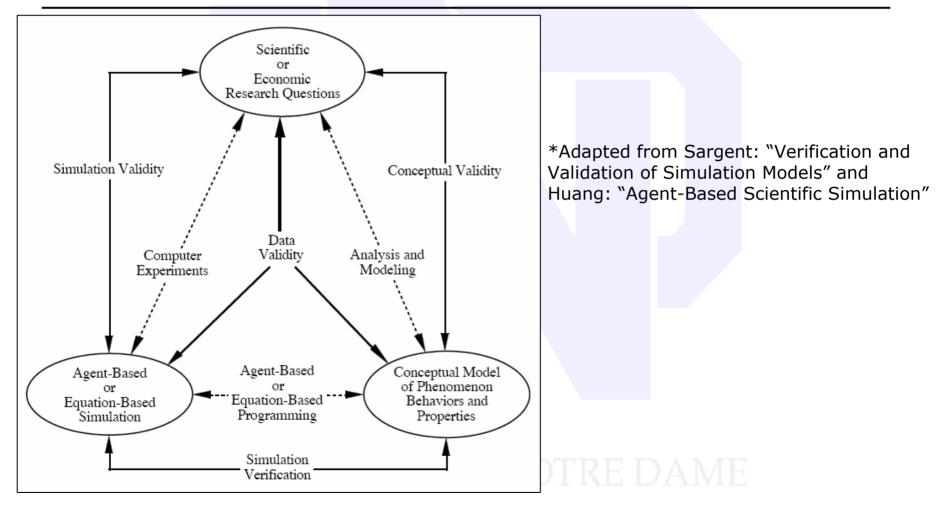
Model Verification & Validation (V & V)


U V & V

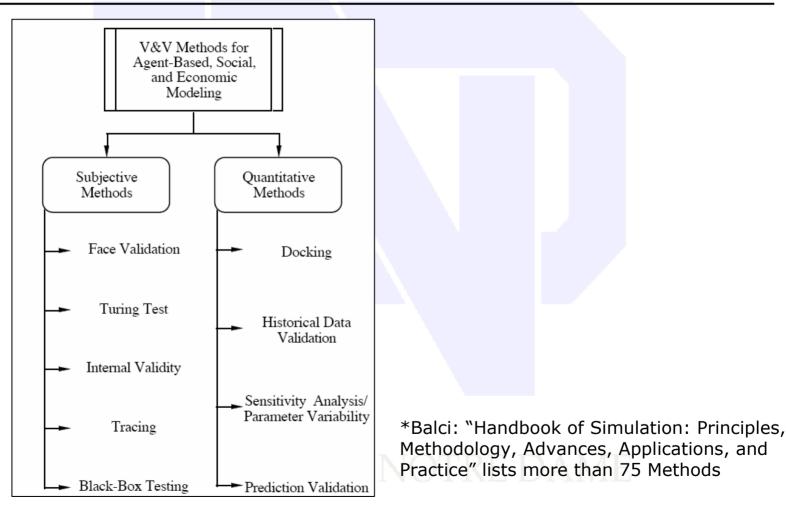
- Verification:

 get model right
 Validation:

 get right model


 The cost and value influence confidence of model
 - Want to utilize V & V for optimal costeffectiveness

*Adapted from Sargent: "Verification and Validation of Simulation Models"



Verification and Validation Process

Applicable Verification and Validation Methods

V & V: Subjective Analysis

Examples of V & V Techniques

- Face Validity
 - Animation
 - Graphical Representation
- Turing Test
- Internal Validity
- ■Tracing
- Black-Box Testing

V & V: Quantitative Analysis

- Examples of V & V Techniques
 - Model-to-Model Comparison (Docking)
 - Historical Data Validation
 - Sensitivity Analysis/Parameter Variability
 - Prediction Validation

What and How

Research objective

Perform V & V on distinct models and identify the more cost-effective techniques

How

- Two very different projects as case studies
- Evaluate and adapt the formalized V & V techniques in industrial and system engineering

Case Study 1: An Agent-based Scientific Model

NSF funded interdisciplinary project

- Understanding the evolution and heterogeneous structure of Natural Organic Matter (NOM)
- E-science example
- Chemists, biologists, ecologists, and computer scientists
- Agent-based stochastic model
- Web-based simulation model

Case Study 1: NOM

□What is NOM?

Heterogeneous mixture of molecules in terrestrial and aquatic ecosystems

□Why study NOM?

- Plays a crucial role in the evolution of soils, the transport of pollutants, and the global carbon cycle
- Understanding NOM helps us better understand natural ecosystems

Case Study 1: The Conceptual Model I

Agents

A large number of molecules

- Heterogeneous properties
 - Elemental composition
 - Molecular weight
 - Characteristic functional groups

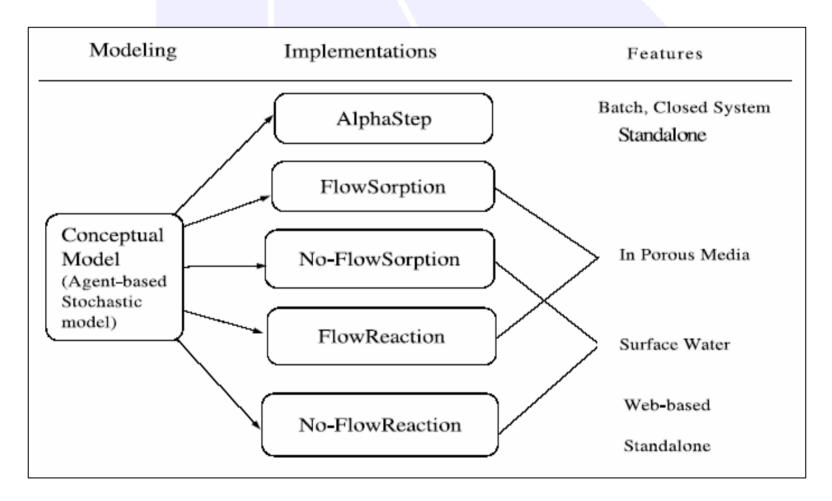
Behaviors

Transport through soil pores (spatial mobility)
 Chemical reactions: first order and second order
 Sorption

Case Study 1:

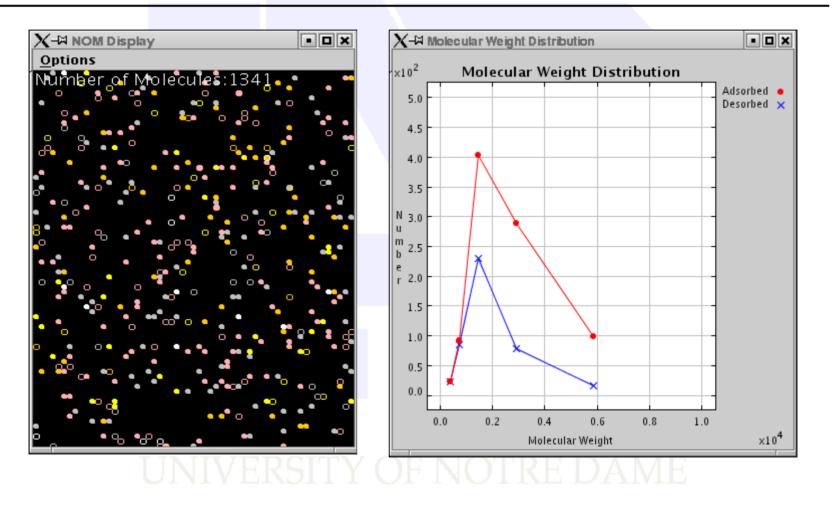
The Conceptual Model II

Stochastic Model

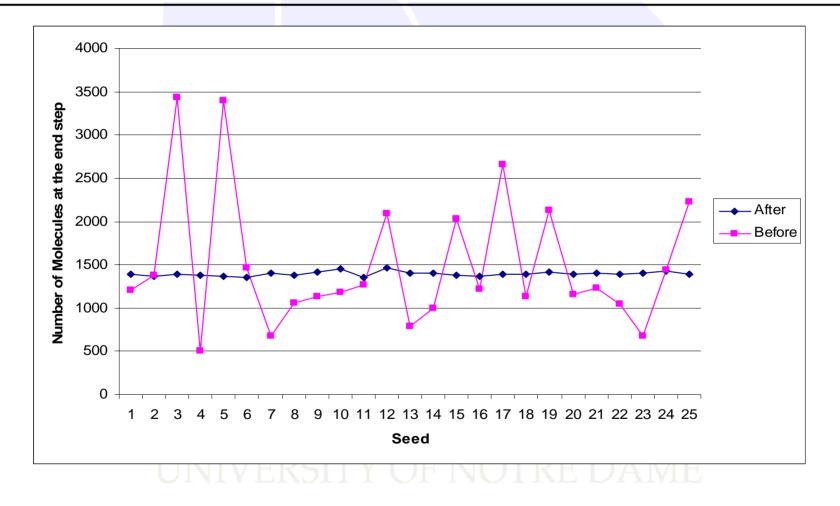

- Individual behaviors and interactions are stochastically determined by:
 - □ Internal attributes
 - Molecular structure
 - State (adsorbed, desorbed, reacted, etc.)
 - External conditions
 - Environment (pH, light intensity, etc.)
 - Proximity to other molecules
 - \Box Length of time step, Δ t

Space

- 2D Grid Structure
- Emergent properties
 - Distribution of molecular properties over time



Case Study 1: Implementations



Case Study 1: Face Validity

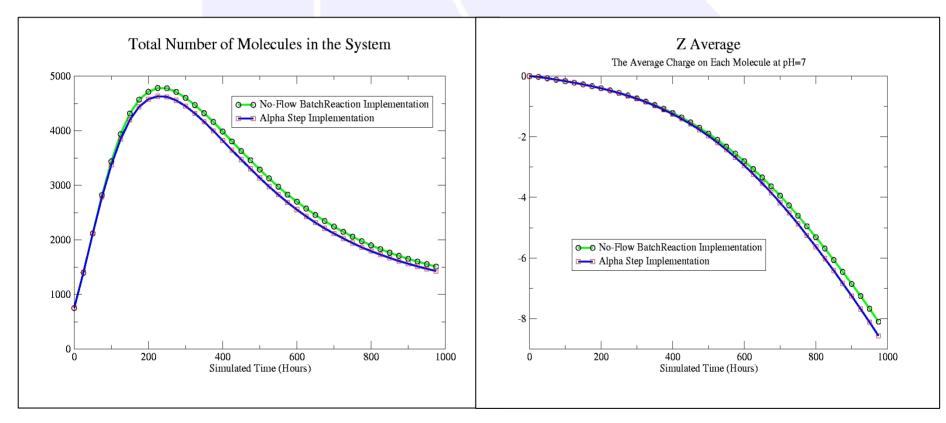


Case Study 1: Internal Validity I

Case Study 1: Internal Validity II

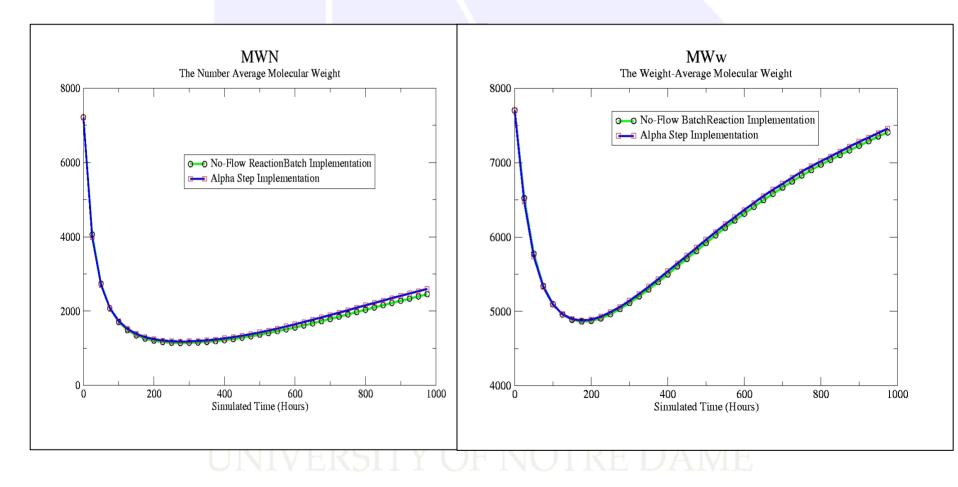
Case Study 1: Model-to-Model Comparison I

- Compare the model with validated one
- Compare the model with non-validated one
- Different implementations
 - Different programming languages
 - Different packages
- Different modeling approaches
 - Agent-based approach vs. Equation-based approach
- Powerful method for ABS

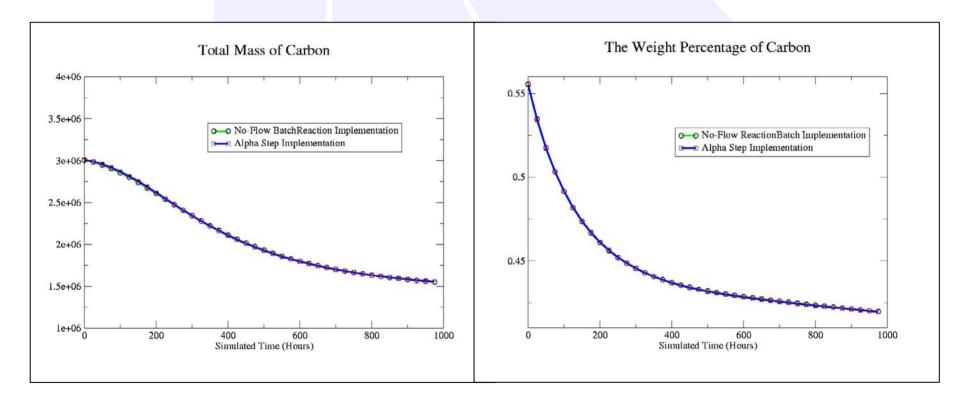


Case Study 1: Model-to-Model Comparison II

Features	Alpha Step	No-flow Reaction	
Developing Group	University of New Mexico, Department of Chemistry	University of Notre Dame, Computer Science and Engineering	
Programming language	Pascal	Java (Sun JDK 1.4.2)	
Platforms	Delphi 6, Windows	Red hat Linux cluster	
Running mode	Standalone	Web based, standalone	
Simulation package	None	Swarm, Repast libraries	
Animation	None	Yes	
Spatial representation	None	2D grid	
Second order reaction	Random pick one from list	Choose the nearest neighbor	
First order with split	Add to list	Find empty cell nearby	



Case Study 1: Model-to-Model Comparison III



Case Study 1: Model-to-Model Comparison IV

Case Study 1: Model-to-Model Comparison V

UNIVERSITY OF NOTRE DAME

11/16/2005

Case Study 2: An Economic Model

Interdisciplinary project

- Initially written in Matlab within Department of Finance
- Converted to C++ by Computer Scientists
- Equation-based system
- Concerned with identifying ideal economic variables, such as debt, money growth, and tax rate

Case Study 2: The Conceptual Model

- Equation-based system
- Nonlinear projection methods used to solve Ramsey problems in a stochastic money economy
- Goal is to generate the best social welfare for a given economy

$$\begin{split} \widehat{\mu}_{t+1}\left(\theta_{t},g_{t},b\right) &= \sum_{i=1}^{n_{\theta}} \sum_{j=1}^{n_{g}} b_{ij} \Psi_{ij}(\theta_{t},g_{t}), \\ \widehat{\tau}_{t}\left(\theta_{t},g_{t},d\right) &= \sum_{i=1}^{n_{\theta}} \sum_{j=1}^{n_{g}} d_{ij} \Omega_{ij}(\theta_{t},g_{t}), \\ \widehat{H}_{t}\left(\theta_{t},g_{t},q\right) &= \sum_{i=1}^{n_{\theta}} \sum_{j=1}^{n_{g}} q_{ij} \Phi_{ij}(\theta_{t},g_{t}), \\ \widehat{\lambda}_{gt}\left(\theta_{t},g_{t},v\right) &= \sum_{i=1}^{n_{\theta}} \sum_{j=1}^{n_{g}} v_{ij} \Gamma_{ij}(\theta_{t},g_{t}). \end{split}$$

Motivation IVERSITY OF NOTRE DAME

Case Study 2: Face Verification

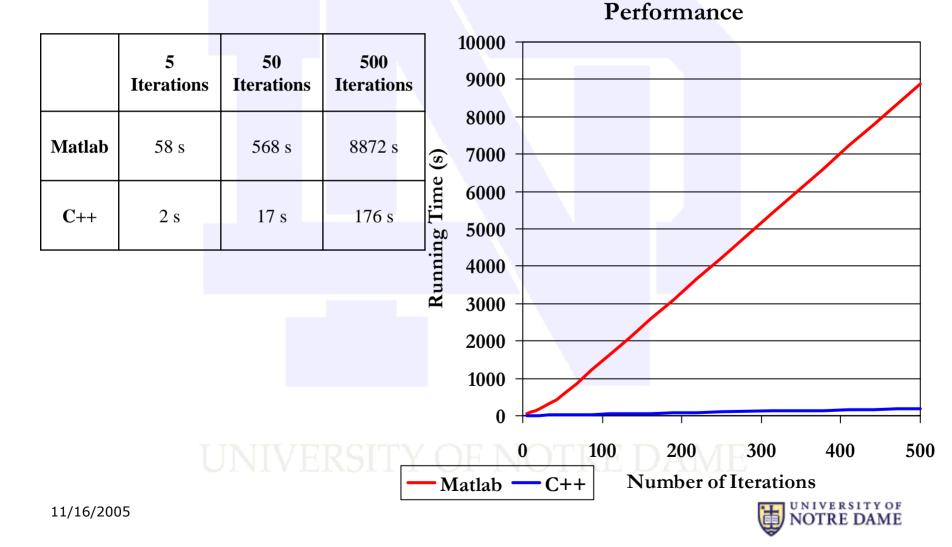
	LaGrange Multiplier	Labor	Money Growth	Tax Rate	Cash Good	Credit Good
Matlab	0.138	0.309	-0.009	0.188	0.486	0.621
C++	0.138	0.309	-0.009	0.188	0.486	0.621
Steady State	0.138	0.309	-0.009	0.188	0.485	0.620

□ Matlab:

it 44, af 3.7496e-08, rc 0, timer 11.1, I 0.1382704496, m -0.0092286139, t 0.1881024991, h 0.3093668925 cc1 0.4861695543, cc2 0.6212795130, rl 1.0092221442 it 45, af 2.64653e-08, rc 0, timer 11.0, I 0.1382704643, m -0.0092286175, t 0.1881024947, h 0.3093668931 cc1 0.4861695553, cc2 0.6212795120, rl 1.0092221442

□ C++:

it: 44 af: 0.00144839 rc: 0 l: 0.138359 m: -0.00936025 t: 0.188252 h: 0.309338 cc1: 0.486205 cc2: 0.621244 rl: -0.65888 it: 45 af: 0.00144784 rc: 0 l: 0.138401 m: -0.00937062 t: 0.188239 h: 0.30934 cc1: 0.486208 cc2: 0.621241 rl: -0.665511


Case Study 2:

Implementation Characteristics

Features		Matlab	C++
Developing Grou	qr	University of Notre Dame, Department of Finance	University of Notre Dame, Computer Science and Engineering
Language		High-Level	Lower-Level
Compiler		Interpreted	GNU Compiler
Good For		Prototyping	Speed
Platforms		Linux, Windows	Linux
Running mode		Standalone	Standalone .
Packages		LAPACK, etc	STL
Variables	INIVE	Implicit	Declared

Case Study 2: Performance

Summary & Conclusion

□ Applied V & V to distinct case studies to increase model confidence Some techniques are more costeffective

	Agent-based	Equation-based
Face Validation/Verification	Very Good	Very Good
Turing Test	Very Good	Good
Internal Validity	Very Good	n/a
Tracing	Fair	Excellent
Black-Box Testing	Good	Good
Model-to-Model Comparison	Very Good	Very Good
Historical Data Verification	Very Good	Very Good
Sensitivity Analysis	Good	Good
Prediction Validation	Good	Fair

For our models:

Future Work

Collect and evaluate more statistical data

- Compare simulation results against empirical data
- More stringent and formalized V & V
- Perform more statistical tests

Questions or Comments?

UNIVERSITY OF NOTRE DAME

11/16/2005