
Exploring performance
improvement of Java-based

scientific applications that use the
Swarm toolkit

Xiaorong Xiang Gregory Madey

University of Notre Dame

The NOM simulation model

_ NOM (Natural Organic Matter) , a mixture of
molecular compounds with heterogeneous
properties

_ NOM, micro-organisms, and their
environment form a complex system

_ Transformations: transport, adsorption,
desorption and other chemical reactions

_ A distributed stochastic model using agent-
based modeling approach

Data structure
_ Molecule object

management
_ LinkedList or ArrayList

?
_ Position access get() in

move & react methods
_ Shuffle algorithm
_ Add & remove

operations
_ ArrayList is choice

Move &
react

Remove &
add

All method
0

2

4

6

8

10

12

14

16

18

20

ArrayList
LinkedList
LinkList (with
iterator)

Execution methods

Ex
ec

ut
io

n
tim

e

Objects reuse
_ Reduce the overhead of object creation
_ Reduce the CPU cycle for garbage collection
_ Reduce the probability of the potential memory leak
_ Steps for objects reuse

– Isolating objects that need to be created and destroyed
frequently

– Optimizing objects size
– Objects reinitialize
– Object pool management (data structure, pool size)

JDBC with Data Insertion
_ Connection pooling
_ Prepared statement vs.

Statement
_ Batch updates
_ Explicit transaction

commit
_ PreparedStatement

with explicit transaction
commit has best
performance

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Statement Prepared-
Statement

Statement with
commit

PreparedStatem
with commit

Batch updates

Ex
ec

ut
io

n
tim

e
(s

ec
)

Data output using multi-threading

_ Overlap the
computation and I/O

_ Take advantage of
idle CPU time

_ About 30%-40%
speed up

0
10
20
30
40
50
60
70
80
90

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
West
North

Runtime environment
_ Sun HotSpot Client VM

with faster start up
_ Sun HotSpot Server VM

with advanced dynamic
optimizing compiler

_ As the problem size
increases, larger
performance gain over
client

_ IBM JVM is another choice
100 200 400 600 800 1000

0
10
20
30
40
50
60
70
80
90

100
110
120

Sun Client VM Sun Server VM

Grid size

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Scalability
_ Two aspects of scalability: large grid size and

time steps
_ Equally separate the grid to 2 or 4 parts
_ Exchange the molecules that cross the

boundary at each time step
_ Two Java threads are used to take

advantage of dual CPU
_ MPJ (mpiJava) with LAM MPI are used to

distribute the job between 2 or 4 nodes.

Experiment Results
_ Simulations were run on a Linux cluster, 4

PC with 650 MHz dual CPU, RedHat Linux
8.0

_ 500 time steps and 1500 time steps with
communication between nodes

100 200 400 800 1200 1600
0

10
20
30
40
50
60
70
80
90

100
110
120
130

Time step 1500 MPJ 4 nodes (1500) Time step 500 MPJ 4 nodes (500)

Grid size

Ex
ec

ut
io

n
tim

e
(s

ec
)

Experience Results (cont.)
_ Left figure: 500 time step, 2 nodes with

Server VM and Client VM, no communication
_ Right figure: two threads with

communication, Server VM

100 200 400 600 800
5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

t500cleint t500server mpj2client mpj2Server

Grid Size

Ex
ec

ut
io

n
tim

e
(s

ec
)

100 200 400 600 800 1000 1200 1400 1600
0

10
20
30
40
50
60
70
80
90

100
110
120
130

Single thread Two threads

Grid Size

Ex
ec

ut
io

n
tim

e
(s

ec
)

Conclusion
_ Multi-threading on the dual processor PC

with Linux OS does not speed up
_ MPJ, speed up offset by the communication

and the maintenance of the list and the grids
_ When the time step increase, the speed up

increase
_ GCJ compiler to native code
_ Code clean up, cache the result

