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What is NOM?  Sources:
• Plant and animal decay products

– Terrestrial- woody and herbaceous plants

– Aquatic- algae and macrophytes

• Structures
– cellulose, lignins, tannins, cutin

– proteins, lipids, sugars
OOHOHOHOOHOHOOHOHOOOOHHOOHOHOHOOHOetc.

OOOHOHOHHOOHQuercetin



What is NOM?    Composition

45-55 Wt% Carbon

35-45 Wt% Oxygen

3-5 Wt%     Hydrogen

1-4 Wt%     Nitrogen

Traces P, S

MW 200-20,000 amu

Equiv. Wt. 200-400 amu

10-35% aromatic C

OOHOHOOHOOHOOHOOHOOHOOHOOOOHOOHOOOOHLeenheer, et al., 1998possible fu



What is NOM?

A mixture of degradation 
and repolymerization products
from aquatic and terrestrial organisms
which is heterogeneous with respect
to structure and reactivity.
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NOM Interactions with mineral surfaces
Hemi-micelle
formation
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Adsorbed NOM coatings impart 
negative charge and create a 
hydrophobic microenvironment



NOM Interactions with microbes

Ingestion:
Energy and
Nutrients
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NOM Interactions with pollutants
+

Binding to dissolved NOM increases pollutant mobility



NOM in water treatment

+  HOCl
CHCl3 + CHCl2Br + CCl3COOH
and other chlorinated by-products



Why study NOM?

Natural ecosystem functions
     Nutrition, buffering, light attenuation

Effects on pollutants
     Radionuclides, metals, organics

Water treatment
    DBP’s, membrane fouling, Fe solubility
Carbon cycling & climate change



NOM Questions:

• How is NOM
produced &
transformed in the
environment?

• What is its structure
and reactivity?

• Can we quantify NOM
effects on ecosystems
& pollutants?



Environmental Synthesis
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Simulating NOM Synthesis
Deterministic Reaction Kinetics

For a pseudo-first order reaction

R = dC/dt =k’ C
R = rate (change in molarity per unit time)

C = concentration (moles per liter)

k’ = pseudo-first order rate constant

(units of time-1)

Based on macroscopic concentrations



Deterministic Reaction  Kinetics:
Solve a system of ODE’s

• Begin with initial Ci for each of N
compounds, kj for each of M reactions

• Apply Runge-Kutta or predictor-corrector
methods to calculate )Ci for each time step
(use Stiff solvers as needed)

• Repeat for desired length of simulation,
obtaining results as Ci versus time



Problem w/ ODE approach:
Size and Computation Time

• Assuming N > 200 (different molecules)

• Assume M = 20 x N (20 reactions per
molecule)

• Total set of >4000 very stiff ODE’s is
impractical (transport eqns not included)



Problem w/ODE Approach:
Knowledge Base

• Structures of participating molecules
unknown

• Pertinent reactions unknown

• Rate constants kj unknown



Simulating NOM Synthesis
Probabilistic Reaction Kinetics

For a pseudo-first order reaction

P = k’ _t
P = probability that a molecule will react

with a short time interval _t

k’ = pseudo-first order rate constant

units of time-1

Based on individual molecules



Stochastic algorithm: Initialization

• Create initial pseudo-molecules (objects)
– Composition (protein, lignin, cellulose, tannin)

– Location (top of soil column, stream input)

– Input function (batch mode, continuous
addition, pulsed addition)

• Create environment
– specify pH, light, enzyme activity, bacterial
density, humidity, To, flow regime



Stochastic Algorithm:
Reaction Progress

• Chemical reaction: For each time-slice, each
pseudo-molecule
– determine which reaction (if any) occurs
– modify structure, reaction probabilities

• Transport: For each time-slice, each pseudo-
molecule
– Determine mobility
– Modify location, reaction probabilities

• Repeat, warehousing ‘snapshots’ of pseudo-
molecules and aggregate statistics



Stochastic Algorithm:
Advantages

• Computation time increases as # molecules,
not # possible molecules

• Flexible integration with transport

• Product structures, properties not pre-
determined



Stochastic synthesis: Data model
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Average Lignin Molecule:
Oligomer of 40 coniferyl alcohol subunits

Numbers of atoms Numbers of functional groups
400 Carbon 40      Total ring structures
322 Hydrogen 40      Phenyl rings
81 Oxygen 1        Alcohol

1        Phenol
118    Ether linkages

OHOOH3COH3COOCH3Oetc.



Model reactions transform structure

Ester Hydrolysis

Ester Condensation

Amide Hydrolysis

Dehydration

Microbial uptake

RCOORH  or OH ROOH HOR OHH
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Reaction Probabilities:
P calculated from

Molecular structure

Environment (pH, light intensity, etc.)

Proximity of near molecules

State (adsorbed, micellar, etc.)

Length of time step, _t



Example: Ester Hydrolysis

P = (# Esters) A e-Ea/RT (1 + b[H+] + c[OH-])

 Where A = Arrhenius constant

Ea = activation energy

R  = gas constant

T  =  temperature, Kelvins

b  =  acid catalyzed pathway

c  =  base catalyzed pathway



Property prediction

Environmental
Light absorbance
Molecular weight
Acid content & pKa 
Bioavailability
Kow

Metal binding K

Analytical
Elemental %
Titration curves
IR Spectra
NMR spectra



Property Calculation Methods

• Trivial-  MW, elemental composition,
Equivalent weight

• Simple QSAR- pKa, Kow

• Interesting
– Bioavailability

– Light absorption

– Metal binding



Presentation and Analysis

• Spatial mapping of molecules

• Results stored in Oracle database

• Remote query via WWW interface

• Standard graphs of reaction frequency,
molecular properties versus time



Trial: Can we convert lignin oligomer
(MW ~6000) in “NOM” ?

Atmospheric O2 No light

Neutral pH                                  No surfaces

Moderate enzyme activity          No transport

27 months reaction time

OHOOH3COH3COOCH3Oetc.



N
um

be
r 
of
 M
ol
ec
ul
es



% Carbon

% Oxygen



Mw

Mn







% Carbon

% Oxygen



Mw

Mn





Lignin -> NOM conversion

• Elemental composition similar to whole
water NOM

• Average MW within range for aquatic
NOM, soil NOM respectively

• Aromaticity lower than normal



Stochastic synthesis
Preliminary tests

•Chromatography-like NOM movement 
in soils and sub-surface

•Log-normal distribution of 
NOM molecular weights

•Rapid consumption of proteins 



Current development

• Expanding reaction set

• Determination of reaction probabilities

• Best method of spatial mapping
– Discrete grid vs Continuous space

• Remote query capability



Next Steps-

• Property prediction algorithms

• Data mining capabilities

• Comparison with lab and field results



Stochastic Synthesis of NOM
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Goal:   A widely available, testable, mechanistic model
 of  NOM evolution in the environment.
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