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Abstract

There has been growing interest for using the Java
programming language in scientific and engineering
applications. This is because Java offers several fea-
tures, which other traditional languages (C, C++,
and FORTRAN) lack, including portability, garbage
collection mechanism, built-in threads, and the RMI
mechanism. However, the historic poor performance
of Java stops it from being widely used in scientific
applications. Although research and development on
Java resulting in JIT compilers, JVM improvement,
and high performance compilers, have been done
much for runtime environment optimization and sig-
nificantly speeded up the Java programs, we still be-
lieve that creating hand-optimized Java source code
and optimizing code for speed, reliability, scalability,
and maintainability are also crucial during program
development stage. In this paper, we demonstrate
an agent-based simulation model that is built using
Java programming language and the Swarm simu-
lation library. We analyze the performance of this
simulation model from several aspects: runtime opti-
mization, database access, objects usage, parallel and
distributed computing. This simulation model pos-
sesses most of characteristics which general scientific
simulations have. These techniques and analysis ap-
proaches can also be generally used in other scientific
simulations using Java.

1 Introduction

C, C++ and FORTRAN have traditionally been used
for modeling scientific applications. Since the Java
programming language was introduced by Sun Mi-
crosystem in the mid-1990s, there has been growing
interest for using it in scientific and engineering appli-
cations. The reason for this is that Java offers several
features, which other traditional languages lack. Sci-
entists use various platforms (such as Windows, Unix

and MacOS ) for their scientific studies. It is im-
possible to deploy an application written in C, C++,
or FORTRAN languages from one platform to the
other without rebuilding the application or changing
the code. One of the most attractive features of Java
is its portability, “write once, run anywhere.” Java
runtime environment (JVM) provides an automatic
garbage collection feature that reduces the burden of
explicitly managing memory for programmer. The
Java built-in threads implementation and Java’s Re-
mote Method Invocation (RMI) mechanism make it
easy for parallel computing and distributed comput-
ing.

Although there are many attractive features pro-
vided by the Java language and the J2EE architec-
ture makes Java a potential language for scientific ap-
plications, performance remains a prime concern for
program developers using Java. The portability and
memory management implementation in JVM impose
a penalty on the performance. Ashworth (1999) [1]
discussed several issues related to the use of Java for
high performance scientific applications.

However, much research has been done to reduce
the performance gap between Java and other pro-
gramming languages. This research includes Just-in-
Time (JIT) compilers that compile the byte code into
native code on-the-fly just before execution, adap-
tive compiler technology (Sun’s HotSpot VM), third-
party optimizing compilers that compile the Java
source code to the optimized bytecode, and high per-
formance compilers that compile the Java source to
native code for a particular architecture (IBM High-
Performance Compiler for Java for RS6000 architec-
ture). Bull (2001) [2] rewrote the Java Grande Bench-
marks in C and FORTRAN. Bull also compared
the performance between these languages in differ-
ent Java runtime environments on different hardware
platforms. The results demonstrate that the perfor-
mance gap is quite small on some platforms.

The runtime environment optimization is an im-
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portant aspect to study in order to achieve high per-
formance. Determining and understanding the fac-
tors that affect the performance of scientific appli-
cations from a software engineering perspective and
identifying and eliminating the bottlenecks that limit
scalability at the software development stage are also
necessary for high performance scientific applications.

In this paper, several approaches for analyzing and
improving the performance of a particular scientific
simulation, which is used to study Natural Organic
Matter (NOM), have been described. The NOM sim-
ulator was built using the Java programming lan-
guage and the Swarm library from Santa Fe Insti-
tute [3]. The NOM simulation model is a typical
distributed, stochastic scientific application that uses
an agent-based modeling approach. It generates a
substantial data set that must be stored in a remote
database and able to be manipulated for producing
useful information. The application simulates the be-
havior of a large number of molecules. An application
of the NOM simulation model needs to run for a long
time, often for days. Several aspects of the simulation
model have been analyzed, including runtime opti-
mization, database access, objects usage, and parallel
and distributed computing.

The NOM simulation model possesses the char-
acteristics which typical scientific applications have.
These techniques and analytical approaches can gen-
erally be used in other scientific applications. We
expect that our experiences can help other scientific
application developers to find a suitable way of tun-
ing and achieving higher performance for their appli-
cations.

2 Related works

More and more implementations of Java based sim-
ulation environment and toolkits [4][5][6][3]indicate
that Java language and Java-based technologies have
been widely and will be continue used in simulation
modeling and implementations.

Traditionally, a Java program is compiled into
bytecode using a compiler and a Java Virtual Ma-
chine (JVM) is needed to read in and interpret the
bytecode.

GCJ1, the GNU Compiler for the Java language,
can compile the Java source code into either the byte-
code or the native code. GCJ has been integrated into
GCC. Bothner (2003) [7] discussed the advantages,
features, and limitations of GCJ in detail. Ladd
(2003) [8] did several benchmarks using GCJ on the
Linux platform and showed a performance gain of

1http://gcc.gnu.org/java/

GCJ over other JVMs. The GCJ compiler is a project
under development and several limitations still exist.
For example, GCJ can not compile the Java program
with swing. Using GCJ, the Java application with
Swarm library can be compiled into native code, but
it does not improve the performance.

There are many other runtime environment opti-
mizers and high performance compilers. AlphaWorks
is a high performance compiler for Java from IBM
alphaWorks. It can be used on OS/2, AIX and Win-
dows NT platform. JOVE 2 also can only be used
on Windows machines. TowerJ environment 3, devel-
oped by Tower Technology Corporation, is another
example of high performance compilers. It is avail-
able for Solaris and Linux platforms.

For large scale scientific applications written in
Java, the scalability can be improved using the par-
allelism programming model. The parallelism model
can run with a single JVM in a shared memory mul-
tiprocessor system or with multiple JVMs in a dis-
tributed memory system. The Java built-in threads
mechanism is a convenient method for parallelism im-
plementation in shared memory environments. How-
ever, for large scale applications that require large
memory and CPU time, distributing the application
on multiple JVMs in a distributed memory system
with some message passing mechanisms for inter-VM
communication is a suitable way to address the re-
quirements.

The standard Java libraries, thread class, is appro-
priate for using in the parallel programming paradigm
in a single JVM environment. Since most scientific
applications are CPU bound, in order to avoid the
context switching to achieve best performance, the
number of threads should match the number of pro-
cessors in the hardware architecture. Additionally,
the thread creation and destroying should be avoided
by creating and managing a thread pool.

OpenMP [9], an open standard for shared mem-
ory directives, defines directives for FORTRAN, C,
and C++. OpenMP provides a portable and scal-
able model that offers a simple and flexible interface
for developing parallel applications in shared memory
systems. JOMP [10] provides a set of OpenMP-like
directives and library routines for supporting shared
memory parallel programming in Java. It uses Java
threads as the underlying parallel model and is most
useful for parallelizing scientific applications at the
loop level.

For distributed computing, Java provides a com-
munication mechanism using sockets and the RMI

2http://www.instantiations.com/jove/
3http://www.towerj.com
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(Remote Method Invocation). Java RMI [11] is a
message passing paradigm based on the RPC (Re-
mote Procedure Call) mechanism. RMI is primarily
intended for use in the client-server model instead of
the peer-to-peer communication model. On the other
hand, the explicit use of sockets is too low-level to be
used to develop a parallel application [12].

In C, C++, and FORTRAN, an explicit message
passing interface (MPI) [13] standard has been de-
fined for supporting communication of an application
in cluster environments. MPI is the most widely-
used standard for inter-process communication in
high-performance computing. MPICH [14] and LAM
MPI[15] are two successful examples of portable MPI
implementations in traditional languages. Program-
ming with MPI is relatively straightforward because
it supports the single program multiple data (SPMD)
model of parallel computing, wherein a group of pro-
cesses cooperate by executing identical program im-
ages on local data values.

In 1998, a group of researchers of the Java Grande
Forum worked on a specification MPI-like applica-
tion programming interface for message passing in
Java (MPJ) [16]. The current implementations of the
MPJ can be separated in two ways: as a wrapper to
existing native MPI libraries or written in pure Java.
NPAC’s mpiJava [17] is an example of the wrapper
approach using Java Native Interface (JNI) to exe-
cute a native call. The JMPI project [18] implements
message passing with Java RMI and object serializa-
tion. The jmpi [19] is built upon the JPVM system.
MPIJ [20] is a Java based implementation of MPI in-
tegrated with DOGMA (Distributed Object Group
Metacomputing Architecture). The MPJ implemen-
tation in pure Java is usually slower than wrapper
implementations for existing MPI libraries, but pure
Java implementations are more reliable, stable, and
secure [19]. Getov (2001) [12] did an experiment that
used the IBM High Performance Compiler for Java
(HPCJ), which generates native code for the RS6000
architecture, to evaluate the performance of MPJ on
an IBM SP2 distributed-memory parallel machines.
The results show that when using such a compiler,
the MPJ communication components are as fast as
those of the MPI.

OptimizeIt is a Java J2EE performance tuning tool
developed by Borland company. It is a commercial
tool and the trial version can be downloaded from
their Web site 4. OptimizeIt can display the infor-
mation about heap allocation, garbage collection, ac-
tive threads, and class load in the form of graphs.
The CPU sampling information is also displayed in a

4http://www.borland.com/optimizeit/

tree structure. These data can be exported to a for-
matted text file (HTML). Information about object
allocation and deallocation can be viewed in a user
selected order. OptimizeIt is a powerful tool that
detects memory leaks and CPU performance bottle-
necks in Java applications.

3 Simulation Model

Natural organic matter (NOM) is a mixture of hetero-
geneous molecules that come from animal and plant
material in the natural environment. It plays a crucial
role in ecological and bio-geochemical processes such
as the evolution of soils, the transport of pollutants,
and the global biochemical and geochemical cycling of
elements [21]. NOM, a prevalent constituent of nat-
ural waters, is highly reactive with mineral surfaces
[21]. While NOM is transported through soil pores
by water, it can be adsorbed onto or desorbed from
mineral surfaces. Sorption of NOM is an important
consideration in the treatment of drinking water. The
evolution of NOM over time from precursor molecules
to mineralization is an important research area in a
wide range of disciplines, including biology, geochem-
istry, ecology, and soil science and water resources.

NOM, micro-organisms, and their environment
form a complex system. The global phenomenon of a
complex system can often be observed by simulating
the dynamic behavior of individual components and
their interactions in the system. Complex systems of-
ten have emergent properties. The evolution of NOM
over time from precursor molecules to eventual miner-
alization involves various molecular transformations.
These transformations involve chemical reactions, ad-
sorption, aggregation and physical transport in soil,
ground, or surface waters. In order to provide sci-
entists a test bed for their theoretical analysis and
experimental results for NOM study, a Web-based
simulator was built. We expect that the system will
help scientists better understand the NOM complex
system by providing them with information for pre-
dicting the properties of the NOM system over time.

The NOM simulation model is built upon the J2EE
architecture running on a distributed cluster. This
cluster has multiple dual processor PCs running Red-
hat Linux 8.0 and Windows 2000 operating systems.
These machines in the cluster include a HTTP server,
simulation servers, database servers, a reports server,
and a data mining server.

The NOM simulation system is an agent-based
stochastic model that can model NOM, mineral sur-
faces, and microbial interactions near the surface
of the soil. In the stochastic model of the evolu-
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tion of NOM in discrete time and space, NOM is
presented as a large number of discrete molecules
with varying chemical and physical properties. In-
dividual molecules can be transported through the
soil medium via water flow, adsorb on the soil
particle surfaces, and react with other molecules,
micro-organisms, and the environment. Individual
molecules are represented as agents with their own
complex structures. These molecules move along with
the water flow and react with each other in a 2D dis-
crete grid, i.e. a rectangular lattice composed of mul-
tiple cells. Each molecule can occupy at most one cell
and each cell can host at most one molecule. During
the execution of the simulation, each molecule may
move to another location, experience adsorption to
or desorption from a particular site, and chemically
react with other molecules.

At the beginning of a simulation, simulation pa-
rameters are read from the database into the simu-
lation engine. The total number of molecules in the
simulation can be determined by specifying the dis-
crete grid size and the molecule density. The simula-
tion time, defined by the user, is divided into a very
large number of equal, discrete, and independent time
steps. In each time step, each molecule in the system
is chosen in random order and the behavior of this
individual is determined by a set of rules.

4 Performance Analysis

We analyzed the performance for this simulation
model using the Optimizeit tuning tool.

4.1 Data Structure

Selecting the appropriate data structure is important
in a scientific application. Different data structures
have significant impacts on the performance. No sin-
gle data structure is appropriate for all situations.
The best way to decide which type of data structure
to use in an application is to create some benchmarks
that reflect how the structure is used in the applica-
tion.

In the NOM simulation model, each molecule ob-
ject needs to be held in a collection. Individual
molecule objects are accessed randomly at each time
step. They can also be added or removed from this
collection. Java 2 platform provides two types of List
structures: ArrayList and LinkedList. The ArrayList
is a random access list, and the LinkedList is a se-
quential access list. The same operation has very dif-
ferent performance characteristics for different types
of List. Position access is an operation used to access

objects through its index in the List. Position access
is a linear-time operation in the sequential access list,
and it is a constant-time operation in a random access
list. However, the remove operation for the random
access list is more expensive than for sequential access
list [22].

An algorithm for manipulating random access lists
can produce quadratic behavior when it is applied
to sequential access lists. In the NOM simulation
model, in order to randomize the order of accessing
the molecules in a List, the List needs to be shuffled
at the beginning of each time step. The collections
class in Java 2 platform provides a shuffle method
to randomize the order of objects in the List. The
shuffle algorithm used in the implementation has a
linear time complexity for random access lists and
quadratic complexity for sequential access lists. In
order to avoid the expensive operation that would re-
sult from shuffling a sequential access list, the shuffle
method converts the list into an array before execut-
ing shuffling and converts the shuffled array back into
the list.

Three benchmarks have been created in order to
test the performance, using different List structures
and operations. These benchmarks reflect exactly
how the data structures have been used in the NOM
simulation model. In benchmark A, the MoleculeList
is implemented using ArrayList, objects are accessed
using get(), and MoleculeList is randomized using
shuffle(). In benchmark B, MoleculeList is imple-
mented using LinkedList, objects are accessed us-
ing get(), and shuffle() is used. In benchmark C,
MoleculeList is implemented using LinkedList, objects
are accessed using iterator, and shuffle() is used. In
each benchmark, the add and remove operations are
measured, and the overall performance is measured
to reflect the NOM application behavior.

Figure 1 shows the relationship between different
types of List with different operations. It also il-
lustrates the behavior of different operations when
the List size is doubled. In the NOM application,
molecules are uniformly distributed on the grid. Dou-
bling the grid size, therefore, will double the molecule
number and the List size.

The overall performance gain for ArrayList has been
offset by the add and remove operations. By dou-
bling the grid size, the time for randomly accessing
the LinkedList increases more than 6 times. For this
particular application, the ArrayList is the best choice
for implementing the MoleculeList. It can get a max-
imum 2.8 speedup in this benchmark with grid size
400 X 300. When the grid size becomes large, the
speedup increases.
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Figure 1: Performance comparison of different opera-
tions for ArrayList and LinkedList, the simulation runs
for 500 time steps. Top: grid size is 400 X 300. Bot-
tom: grid size is 800 X 300

4.2 Object reuse

Objects play a vital role in Object-Oriented pro-
gramming, C++, and Java. The Java Virtual Ma-
chine (JVM) can automatically manage memory us-
ing the “garbage collection” mechanism. Java devel-
opers can allocate objects as necessary without con-
sidering deallocation, while C++ programmers must
manually specify where an object in the heap is to
be reclaimed by coding a “delete” statement. Exces-
sively creating objects not only increases the memory
footprint and CPU time for garbage collection, it also
increases the possibility of memory leak.

Sosnoski (1999) [23] showed that the time for the
object allocation in a Java program running on the
JVM is 50 percent longer than one using the C++
code. This is caused by the overhead of adding in-
ternal information to help in the garbage collection
process when allocating objects in heap.

Different JVMs, different versions of Sun JVM and
IBM JVM, use various techniques to automatically
discover objects when they are no longer being re-
ferred to and to recycle the memory periodically. De-
spite the automatic nature of the garbage collection
process, a potential disadvantage is that it adds an
overhead that can affect program performance, even
in some JVMs such as Sun HotSpot JRE, where the

garbage collection job runs in a separate thread.
Although the JVM is responsible for reclaiming the

unused memory, Java programmers still need to put
effort into making it clear to the JVM what objects
are no longer being referenced [24]. For example, in
some situations, a programmer needs to set the object
into “null” manually in order to dereference the ob-
ject. Although the memory leaks that are common in
C++ are less likely to happen in Java, they can still
occur due to poor design or simple coding errors.

An elegant way of reducing the overhead of objects
created and destroyed and of improving the perfor-
mance is object reuse. It can also reduce the prob-
ability of potential memory leaks. In order to reuse
a certain type of object, several steps need to be fol-
lowed:

• Isolating object

Due to the overhead of object reuse, such as man-
aging the object pools, only objects that need to
be created and destroyed frequently are compat-
ible with this technology. For a large scale ap-
plication, using a powerful profiling tool is neces-
sary to help developers detect this kind of object.
OptimizeIt has been chosen in the development
process of the NOM simulation model.

In the NOM simulation model, at each time step,
a certain number of molecules can enter into the
system or leave the system. The molecule objects
need to be created and destroyed frequently and
they are candidates for potential reuse.

• Optimizing object size

The size of objects not only has an effect on the
memory footprint but also on the CPU time. It
is worthwhile to estimate the size of a partic-
ular object and the number of instances for a
given class in memory. A trade off can be made
by either reducing the object size or keeping the
precision.

• Reinitializing object

Although Sun’s HotSpot VMs radically improved
the performance of object allocation and garbage
collection, object allocation and instantiation
still has a significant cost, especially when the
object size is small.

A micro-benchmark is created for testing the
time of creation or re-initialization of the
Molecule objects in the NOM simulation model.
In this benchmark, 1000 Molcule objects are cre-
ated, then reinitialized to their original state.
The average creation time for these Molecule
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objects is 53.85 milliseconds, while the average
reinitializing time is 3.9 milliseconds.

• Creating object pool

In order to reuse certain types of objects, these
objects need to be kept in a collection in the
memory, the so-called object pool. An object
pool is used to store a free list of objects. Gen-
erally, an object pool can be implemented using
Vector, Linked List, ArrayList, or a raw array. Se-
lecting a suitable type of data structure depends
on the type of operations used for managing the
pool.

In the NOM simulation model, the object pool
has been implemented as a First-In-First-Out
(FIFO) queue. When a new molecule object
needs to be created, the method first needs to
check the object pool. If there is an available
object in the pool, the object is removed from
the queue and reinitialized. If there is no ob-
ject available, a new object is created. When a
molecule object leaves the system, it is added at
the end of the queue. The data structure chosen
for the object pool implementation is LinkedList.

Object reuse is a simple and elegant way to con-
serve memory and enhance speed. By sharing and
reusing objects, processes or threads are not slowed
down by the instantiation and loading time of new
objects, or the overhead of excessive garbage collec-
tion.

4.3 Database connection and database
query

For an application written in the Java programming
language, communication to a database can be ac-
complished through a Java Database Connectivity
(JDBC) driver, with all database Input/Output via
SQL (Structured Query Language). Database ven-
dors provide their own JDBC drivers that conform to
the common Java API defined by Sun Microsystems.
Using JDBC allows developers to change database
location, port, and database vendors with minimal
changes in code. JDBC offers several advanced tech-
niques that allow the programmer to write high per-
formance queries [25]. These techniques are presented
to show the significant impact on performance and
scalability.

• Prepared statements

Query processing is a process for resolving a SQL
query. It can be broken down into three ba-
sic phases: query parsing, query plan generation

and optimization, and plan execution [25]. The
query parsing phase is a syntax-checking process
for the string-based SQL query that ensures the
query statement is legal. If a SQL statement or
a set of similar SQL statements needs to be exe-
cuted repeatedly, the cost for the parsing process
can be reduced by caching the previously parsed
queries. JDBC provides this function with a Pre-
paredStatement object. Unlike the Statement ob-
ject, which needs to be sent to a database for
parsing each time, the PreparedStatement is com-
piled in advance and can be executed as many
times as needed. The speedup of a query varies
according to the type of query (SELECT, IN-
SERT, UPDATE, DELETE) or the complexity
of the query (more than one table involves).

• Batch updates

For a large scale scientific application, the appli-
cation and the database normally reside on phys-
ically distributed machines. Substantial network
latency can lead to very inefficient query execu-
tion. JDBC provides the batch update approach
that can decrease the network latency effect by
executing a number of queries in one network
round trip. The query processing, however, is
not necessarily faster when using the batch up-
date approach instead of the PreparedStatment.
The trade off comes in two forms, (1) batch up-
dates can only be combined with a Statement ob-
ject and (2) the size of the data needs to be sent
from the client to the server in one large round
trip. The batch updates approach offers more
benefits when the network connection is slow.

• Transaction management

In SQL terms, a transaction is a series of op-
erations that must be executed as a single log-
ical unit. When a connection is created using
JDBC, the database is set in autocommit mode
and each SQL statement is treated as a separate
transaction. In order to allow two or more state-
ments to be grouped into a transaction, the au-
tocommit mode needs to be disabled using Con-
nection.setAutoCommit(false). Treating a group
of operations as a transaction is a safe way to
guarantee the integrity of a database. For exam-
ple, if a bank customer wishes to transfer funds
from a savings account to a checking account,
the two update operations need to be sent. If
these two calls are treated as two separate trans-
actions, then one is successful and the other fails
due to the network or other factors. This results
in data that is not consistent in the database.
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Explicitly committing a group of SQL state-
ments is not only a safe approach, but also has
large performance impact because the overhead
of the commit operation is reduced. In the NOM
model, all the data and information pertaining to
the reacted molecules in the system are stored
in the database at the end of each time step.
The insertions for the data of all the reacted
molecules at each time step are treated as one
transaction to ensure data consistency in the sys-
tem.

The NOM core simulation engine connects to the
Oracle database using the JDBC thin driver. Figure 2
shows the performance comparison for data insertions
using five approaches. The simulation runs for 96
time steps, with a total of 1782 insertions.

The benchmark consists of five cases. In case 1,
each insertion for each reacted molecule was treated
as a single transaction with a Statement object. In
case 2, each insertion for each reacted molecule was
treated as a single transaction with a PreparedState-
ment object. In case 3, a group of insertions for every
reacted molecule in one time step is treated as a sin-
gle transaction with Statement object. In case 4, a
group of insertions for every reacted molecule in one
time step is treated as a single transaction with Pre-
paredStatement object. In case 5, a batch updates
approach is applied.

Figure 2: Comparison of data insertions using five
approaches in NOM simulation model

Case 4, the PreparedStatement object with trans-
action management has the best performance in the
NOM application. It offers 3.03 times speedup rela-
tive to case 1 in this benchmark.

4.4 Parallel data output with Java
threads

Large-scale scientific applications always involve large
data sets output. They are not only CPU bound pro-
cesses, but also I/O bound processes, especially when
the database sever and the application server are on
different machines. This is a common architecture
design in large-scale scientific applications.

If the simulation server has multiple processors,
multithreading can be used to overlap the compu-
tation and communication. More specifically, paral-
lelism can be achieved by overlapping the computa-
tion and the I/O. There are, however, trade offs be-
tween the simplicity of programming and the perfor-
mance. When an application not only involves the
data-read but also involves the data-write, several
programming issues need to be considered to prevent
the deadlock and the race conditions.

In the NOM simulation model, large amounts of
data need to be written in the database at each time
step. The average time for one record insertion us-
ing PreparedStatement object with transaction man-
agement is 4.7 milliseconds as shown in previous sec-
tion. In order to parallelize the data write to the
database, a buffer (FIFO queue) is allocated and an
extra thread is created. While the computational
thread adds the object to the queue, the I/O thread
removes the object from the queue and writes the
data to the database. If there are no objects in the
queue, the data-writing thread executes busy waiting.
If the number of objects in the queue is equal to the
queue size, the computation thread waits. In order
to safely add to and remove from the queue, all the
accesses to the queue are synchronized.

The NOM simulation model has been tested and
run for various time steps, from 96 time steps to 579
time steps. Refer to Figure 3.

By using a separate thread for data output, there
is average 1.3 speedup relative to the single threads
model for the NOM application.

4.5 Choosing JVM

Various Java Virtual Machines (JVM), such as IBM
JVM and Sun HotSpot JVM, have been implemented
in conforming to the Java Virtual Machine Specifica-
tion [26]. Sun MicroSystem implements two types
of HotSpot JVM, Client VM and Server VM, to
meet different requirements for different applications.
Compared with server side programs, client side pro-
grams often require a smaller RAM footprint and
have a faster start-up time. These two HotSpot JVM
share the same runtime portion, but the main differ-
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Figure 3: Overlap the computation and I/O using
Java threads. Left figure shows that the number of
data insertion over the time steps. Right figure shows
that the speedup of using a separate thread for data
output.

ence between them is found in their compiler tech-
nologies. The Server VM contains a highly advanced
adaptive compiler that includes many of the optimiza-
tion technologies which are used in C++ compilers
[22].

The application of the NOM simulation model has
been benchmarked using two different runtime modes
of Sun JVM 1.4.1 01 on Redhat Linux 8.0 for 500 time
steps and 1500 time steps. Figure 4 shows that as the
grid size and the time steps increase, Server VM of-
fers higher performance than Client VM. The results
shows that choosing different JVMs can produce sig-
nificant differences in the performance.

Ladd (2003) [8] showed benchmark results for both
Sun and IBM JVM with versions 1.3.1 and 1.4.1 01
on a Linux platform. According to Ladd, the JVM
version 1.3.1 has a higher performance level than ver-
sion 1.4.1 and the IBM JVM has a better performance
level than Sun JVM. Choosing the appropriate JVM
for a particular scientific application also involves the
consideration of the hardware architecture and the
operating system.

4.6 Scalability

The scalability of the NOM simulation model involves
two aspects, the required total number of simula-
tion time steps and the grid size. Two parallelism
programming models are implemented for the NOM
simulation model. The Java thread version is im-
plemented using built-in Java threads and runs on a
single JVM. The distributed memory model is imple-
mented by using mpiJava library with LAM MPI.

In the sequential implementation model for simu-
lating the NOM complex system, the behavior of indi-

Figure 4: Performance comparison for a NOM ap-
plication run in Sun Client VM and Sun Server VM
with different grid sizes.

vidual molecules is simulated using the agent-based
modeling approach. Molecules reside in cells on a
2D grid and individual molecules can be transported
through the soil medium via water flow. At each time
step, molecules can move from one cell to the other
when a random event occurs. The time for finishing
a simulation is largely determined by the number of
molecules in the system and the time steps.

4.6.1 Java threads version

In order to parallelize the programming model, the
original grid has been equally separated into two sub-
set grids (e.g., a 800X300 grid is separated into two
400X300 grids). Two threads are created, each thread
has its own grid object to place molecules and a col-
lection to hold molecules. In each time step, the com-
putation for individual molecules is executed on the
two threads concurrently.

When one molecule moves across the boundary, the
molecule is removed from the grid and placed into
a local buffer in the current thread. At the end of
the time step, a Barrier is used to synchronize these
two threads at this point. After all the threads reach
this state, one of the threads executes the exchange
operation by maintaining the state of two grids and
two MoleculeLists. Threads have been synchronized
before this thread finishes the setting of boundary

Page 8



condition. Figure 5 shows the design.
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Figure 5: The design for parallelism of NOM simula-
tion model using Java threads.

4.6.2 MPJ version

In the distributed memory model, each processor
runs its own copy of code. The ModelSwarm object
contains a subset of the original grid. These sub-
sets of the grid have equal size in order to ensure
the computational balance of each node in the clus-
ter. The basic design model is similar to the Java
thread model. Each node in the cluster machine pro-
cesses its own computation of the subset of the grid.
When a molecule crosses the boundary, it is added
into the local buffer. MPI.COMM WORLD.Barrier
is used to synchronize these processes at the each
time step. Molecule objects that cross the boundary
are sent to their neighbor grids using blocking send
and receive modes, MPI.COMM WORLD.Sendrecv,
MPI.COMM WORLD.Send, and
MPI.COMM WORLD.Recv. Figure 6 shows this de-
sign. The molecule list and grid on each machine are
updated after all the sending and receiving are fin-
ished.
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buffer
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Update
List&
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Update
List&
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Figure 6: The design for parallelism of NOM simula-
tion model using MPJ.

4.6.3 Performance results

In order to measure the performance of the parallel
implementations, a Linux cluster has been built. The
cluster consists of 4 PCs. Each PC has dual 650 MHz
Intel processor running the RedHat Linux 8.0 Oper-
ating System. The Java codes are implemented and
compiled using SUN’s 1.4.1 01 Java Development Kit
and executed on SUN’s Java Virtual Machine.

Figure 7 presents the results for the sequential ver-
sion and Java thread version for the NOM application
that runs for 1500 time steps with various grid size.
Both versions ran on a single dual Intel computer.

The experiments for parallelism of the NOM sim-
ulation model using the distributed memory model
are made on a cluster of four PCs. LAM MPI 6.5.9
and mpiJava have been used to build the execution
environment. The NOM application runs on 2 and 4
machines.

Figure 8 shows that the performance comparison
between the sequential programming model and the
MPJ model that ran on 4 nodes in the cluster. These
two models both ran for 500 and 1500 time steps.
This figure shows that the communication between
nodes and the grid and MoleculeList maintenances
offset the performance gained by distributing the job
to different computers when the problem size is small.
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Figure 7: Compare the performance between sequen-
tial programming model and Java thread model in
the NOM application (one thread vs. two threads on
a single dual CPU computer).

As the problem size grows (larger grid size or longer
time steps), however, a performance improvement ap-
pears by distributing the job to. Compared to the
ideal performance gain of a factor of 4, the efficiency
is low.

Figure 9 illustrates that the job has been dis-
tributed on four nodes in the cluster machines and ran
for 500 time steps. There is no synchronization be-
tween nodes. Instead of sending the molecules which
cross the boundary to other nodes, they are wrapped
to the other side of this subset grid. This figure shows
that as the grid size increases the speedup is closer to
the ideal linear speedup of 4.

5 Conclusion

In this paper, several approaches for exploring the
performance and scalability improvement of a typical
scientific application, the NOM simulation model, has
been presented. These approaches are summarized in
Table 1. The speedup varied by the problem size and
different situations. The speedup shown in the ta-
ble came from the benchmarks that were described
in the previous sections. All the numbers of speedup
listed in the table show the approximate highest per-
formance gain in each benchmark.

Figure 8: Comparison of the performance between
sequential programming model and MPJ model that
runs on 4 machines for 1500 time steps.

Figure 9: Comparison of the performance between
sequential programming model and MPJ model on 4
machines without synchronization and molecule ex-
change.
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Table 1: Summary of the performance improvements

Approaches Speedup Comments
Data struc-
ture

2.8 using ArrayList provides
higher overall performance
than using LinkedList in the
benchmark.

Object reuse - reduce the memory foot-
print, the garbage collection
cycle, and the overhead of
object allocation and deal-
location. The performance
gain is relatively small com-
pare to the overall computa-
tion time in the NOM simu-
lation model.

JDBC 3 JDBC tuning can effect the
performance of data I/O.

Parallel data
output

1.3 overlap the computation
and I/O using Java threads
can improve the perfor-
mance.

Java runtime 1.4 Sun Server VM has higher
performance than Sun
Client VM for large-scale
scientific applications.

Java threads
model

1.1 performance of Java threads
model largely depends on
the JVM implementation
and how efficient the op-
erating system handle the
threads.

MPJ model 1.5 distributing the job to 4
nodes in a cluster has
relative larger performance
gains when problem size is
big and the communication
between nodes is minimized.
However, it is still much
lower than the ideal perfor-
mance gain (4).

Besides the approaches that are listed in the Ta-
ble, using a native code compiler that can compile
the Java source code to native code can increase the
performance for some applications.

Program profiling is a crucial step for high perfor-
mance computation in Java-based applications. Two
major aspects, CPU time and memory usage, need to
be monitored.

Selecting the appropriate runtime environment for
a particular application is important. Besides the
JVMs that have been evaluated here, IBM JVM is
also valuable to be investigated.

Using Java built-in threads to parallelize the Java
applications is a convenient approach. How much per-
formance can be gained from this parallism depends
on the JVM implementation and the efficiency of the
operating system handling the Java threads. The ex-
periments that we did are on a dual CPU PC with
Linux operating system. It is valuable to extend these
experiments to Windows operating system or Solaris
operating systems.

Distributing jobs on multiple machines in a clus-
ter environment is an efficient approach for large size
problems. However, the communication among nodes
and the grid and list maintenances offset the perfor-
mance gain. In order to avoid this overhead, instead
of synchronizing all the processes at each time step,
they can be synchronized at every 5 time steps or
more. For this particular application, it is also possi-
ble to distribute the job on multiple machines using
MPJ and combine the results at the end of the sim-
ulation in the database. There is no communication
at all after the job is distributed. However, the vali-
dation is necessary for these two approaches.
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