
VERIFICATION AND VALIDATION OF AGENT-BASED AND

EQUATION-BASED SIMULATIONS

AND

BIOINFORMATICS COMPUTING: IDENTIFYING TRANSPOSABLE

ELEMENTS IN THE Aedes aegypti GENOME

A Thesis

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

Ryan C. Kennedy, B.S.

Gregory R. Madey, Director

Graduate Program in Department of Computer Science and Engineering

Notre Dame, Indiana

April 2006

VERIFICATION AND VALIDATION OF AGENT-BASED AND

EQUATION-BASED SIMULATIONS

AND

BIOINFORMATICS COMPUTING: IDENTIFYING TRANSPOSABLE

ELEMENTS IN THE Aedes aegypti GENOME

Abstract

by

Ryan C. Kennedy

This work centers around two subjects: 1) verification and validation of simu-

lation models and 2) identifying transposable elements through novel approaches.

Performing verification and validation on simulations has become increasingly

important as they are used in more and more applications. Agent-based simula-

tions are becoming very popular and the verification and validation work previ-

ously performed on them is minimal. Here, we perform verification and valida-

tion techniques, including docking and visualization, on an agent-based and an

equation-based model and contrast the effectiveness of the techniques used.

Identifying transposable elements in a genome is important for many reasons,

such as when performing evolutionary studies or when annotating genomes. Here,

we identify transposable elements in the newly released Aedes aegypti genome

using innovative approaches, while utilizing some standard bioinformatics tools.

DEDICATION

To my Family

ii

CONTENTS

FIGURES . vi

TABLES . viii

ACKNOWLEDGMENTS . ix

CHAPTER 1: INTRODUCTION . 1
1.1 Overview . 1
1.2 Verification and Validation of Agent-based and Equation-based Sim-

ulations . 1
1.3 Bioinformatics Computing: Identifying Transposable Elements in

the Aedes aegypti Genome . 2
1.4 Organization . 3

CHAPTER 2: VERIFICATION AND VALIDATION OF AGENT-BASED
AND EQUATION-BASED SIMULATIONS 4
2.1 Introduction . 4
2.2 Simulations . 5

2.2.1 Advantages and Disadvantages 7
2.2.2 Building a Simulation Model 8

2.2.2.1 Simulation Model Types 9
2.2.3 Agent-based Simulations 10
2.2.4 Equation-based Simulations 11

2.3 Verification and Validation Process 12
2.3.1 Verification and Validation Techniques 16

2.3.1.1 Subjective Techniques 17
2.3.1.2 Quantitative Techniques 18

2.4 Case Study I: An Agent-based Scientific Model 20
2.4.1 Conceptual Model . 21
2.4.2 Implementations . 25
2.4.3 Validation . 25

iii

2.4.3.1 Subjective Analysis 25
2.4.3.2 Quantitative Analysis 27

2.4.4 Discussion . 31
2.5 Case Study II: An Equation-based Economic Model 33

2.5.1 Conceptual Model . 33
2.5.2 Implementations . 34

2.5.2.1 Performance . 35
2.5.3 Validation . 35

2.5.3.1 Subjective Analysis 37
2.5.3.2 Quantitative Analysis 38

2.5.4 Discussion . 38
2.6 Conclusion . 38

CHAPTER 3: BIOINFORMATICS COMPUTING: IDENTIFYING TRANS-
POSABLE ELEMENTS IN THE Aedes aegypti GENOME 41
3.1 Introduction . 41
3.2 Biological Foundations . 42
3.3 Bioinformatics . 45

3.3.1 Research Areas . 45
3.3.2 Tools and Technologies . 46

3.4 Aedes aegypti . 48
3.4.1 Transposable elements . 50

3.5 Approach to Identifying Transposable Elements 52
3.5.1 Typical Approach . 52
3.5.2 First Approach . 53
3.5.3 Second Approach . 58
3.5.4 Hybrid Approach: A Transposable Element Discovery Method-

ology . 59
3.6 Discussion . 61
3.7 Conclusion . 61

CHAPTER 4: CONCLUSION . 65
4.1 Overview . 65
4.2 Verification and Validation of Agent-based and Equation-based Sim-

ulations . 65
4.2.1 Future Work . 66

4.3 Bioinformatics Computing: Identifying and Analyzing Transpos-
able Elements in the Aedes aegypti Genome 67
4.3.1 Future Work . 68

iv

APPENDIX A: CHAPTER 2 SUPPLEMENTARY MATERIAL 69
A.1 Case Study I . 69
A.2 Case Study II . 76

A.2.1 Matlab Implementation Sample Code 77
A.2.2 C++ Implementation Sample Code 79

APPENDIX B: CHAPTER 3 SUPPLEMENTARY MATERIAL 81
B.1 Annotated mariner Transposon 81
B.2 Hidden Markov Model . 84
B.3 GeneWise . 84

B.3.1 GeneWise Sample Output 86
B.4 extract Perl Script . 91

B.4.1 extract Perl Script Implementation 92
B.4.2 Sample extract Submission 94
B.4.3 Sample extract Output File 94

REFERENCES . 95

v

FIGURES

2.1 Model Confidence and Cost Trade-offs 13

2.2 Typical Steps in a Simulation Process 14

2.3 A Verification and Validation Process for Scientific and Economic
Simulations . 15

2.4 Verification and Validation Techniques 20

2.5 NOM Flow Sorption Model Visualization 28

2.6 Ensemble averages comparison between AlphaStep and the NOM
No-flow Reaction Model . 30

2.7 Random Number Generator Problem 31

2.8 Histogram representing the total number of molecules in the system
after 1000 simulated hours . 32

2.9 Performance Comparison . 36

3.1 Central Dogma of Molecular Biology 44

3.2 Genetic Code . 44

3.3 Aedes aegypti mosquito . 49

3.4 Typical Class II Transposon Structure 51

3.5 Typical Approach used to Identify Transposable Elements 53

3.6 First Approach . 54

3.7 Clustal X Alignment for P element 56

3.8 Second Approach . 60

3.9 Hybrid Approach: A Transposable Element Discovery Methodology 62

3.10 Phylogenetic tree for the mariner family 63

A.1 NOM Cluster of Machines . 70

A.2 Abstract Layout of the NOM Cluster 71

A.3 Interface to the NOM Simulator 72

vi

A.4 Real-time Graphs of the Simulation 73

A.5 Column Experiment . 74

A.6 AlphaStep Interface . 75

B.1 pogo Hidden Markov Model . 85

vii

TABLES

2.1 CHEMICAL REACTIONS . 23

2.2 IMPLEMENTATION DIFFERENCES 26

2.3 RUNNING TIME FOR MATLAB AND C++ IMPLEMENTATIONS 35

2.4 FACE VERIFICATION . 37

2.5 GENERAL RATINGS FOR OUR CASE STUDIES 40

3.1 NUMBER OF TRANSPOSABLE ELEMENTS FOUND 64

viii

ACKNOWLEDGMENTS

I would especially like to thank Dr. Gregory R. Madey for providing me with

the opportunity to pursue advanced study and for guiding me along the way.

I would also like to thank Xiaorong Xiang and Dr. Yingping Huang for their

help in getting me started and also for developing the core of the NOM Model and

its interface. Thank you to Dr. Patricia A. Maurice, Dr. Stephen E. Cabaniss,

Dr. Benjamin F. Turner, and Leilani A. Arthurs for their contributions to the

NOM project.

Further thanks go to Scott E. Christley and Tim Schoenharl for general guid-

ance and for helping me format this document.

I would like to thank my committee, Dr. Frank H. Collins, Dr. Amitabh

Chaudhary, and Dr. Thomas F. Cosimano, for their valuable contributions.

The bioinformatics aspect of this thesis would not have been possible without

the help of Dr. Frank H. Collins and James R. Hogan. Their help in providing

me with a solid base in the area made this work possible. Further, Trevor M.

Cickovski played an integral role in a portion of the bioinformatics aspect.

It is also important to thank the National Science Foundation, Information

Technology Research/(ITR/AP-DEB), grant number 0112820, the Center for En-

vironmental Science and Technology (CEST) at Notre Dame, and the University

of Notre Dame Office of Research. They each provided funding for my work.

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

The work presented here consists of two distinct parts. Part one regards ver-

ification and validation of agent-based and equation-based simulations. Part two

concerns identifying transposable elements through the use of some novel ap-

proaches and is in the area of bioinformatics computing. We next provide a brief

introduction to these chapters, including our motivations as well as some of our

conclusions.

1.2 Verification and Validation of Agent-based and Equation-based Simulations

As the use of simulations, specifically agent-based simulations, by researchers

grows [71], there is more and more need for the verification and validation of such

simulations [62]. While there has been extensive research regarding the verification

and validation of simulations using traditional engineering methods [6, 47, 76],

such as equation-based modeling, there has been little work performed regarding

the verification and validation of agent-based simulations. Part one of this thesis

explores verification and validation techniques through two very different case

studies - an agent-based scientific model and an equation-based economic model.

1

The issue of verification and validation for simulation models is very impor-

tant. Because the typical goal of a simulation model is to mimic a real-world

phenomenon, no real value can be gained from the simulation unless it is suf-

ficiently accurate. Determining when this is the case is not trivial. To attack

this problem, we evaluate some typical verification and validation techniques and

apply them to both an agent-based and an equation-based model. Specifically,

we look at docking and visualization as effective verification and validation tools.

This approach allows us to contrast some documented verification and validation

techniques on the two case studies. This is especially valuable because the case

studies are inherently very different internally, but have similar external objec-

tives. We offer a brief survey of how valuable we found the techniques for each

simulation case study and offer some insight about our results. The results of this

part of the thesis have been presented and published (in part) in the proceedings

of three peer-reviewed, national conferences [44, 46, 87].

1.3 Bioinformatics Computing: Identifying Transposable Elements in the Aedes

aegypti Genome

The bioinformatics field is growing at a sharp rate [12, 13], as evidenced by

the exponential growth in the amount of data stored in bioinformatics databases

[30, 60]. It is bringing with it many opportunities for computer scientists, as com-

puter scientists have the skills necessary for major advancement in the field. In

short, bioinformatics is the study of solving biological problems with the collec-

tive expertise of many fields, most notably computer science and mathematics.

Typically, bioinformatics is concerned with the study of DNA and its complex

properties.

2

Genomes are generally very large in size. For example, the human genome is

made up of about three billion base pairs. Even less “complex” organisms, such as

the mosquito Aedes aegypti have over one billion base pairs [17]. Transposable el-

ements are found within many genomes and typically have the ability to replicate

and insert themselves anywhere in the genome. This makes them useful as gene

vectors to biologists. The Aedes aegypti genome is specifically important to study

because it carries the yellow fever and dengue viruses. Its genome was recently

released [60], so there has been little work done to date regarding locating trans-

posable elements within it. In this thesis, we design and utilize novel approaches

to locate transposable elements within the Aedes aegypti genome. Our goal is not

only to identify transposable elements, but to do so using techniques not normally

employed by biologists, thus advancing the state-of-the-art in this field.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 describes verifi-

cation and validation of simulations through two case studies. Chapter 3 involves

bioinformatics computing and our search for transposable elements through inno-

vative methods. A conclusion for both chapters is presented in Chapter 4. We

conclude this thesis with supplementary material in the appendices.

3

CHAPTER 2

VERIFICATION AND VALIDATION OF AGENT-BASED AND

EQUATION-BASED SIMULATIONS1,2

2.1 Introduction

Agent-based simulations are quickly becoming a choice tool for many re-

searchers [71]. They can offer numerous benefits over some traditional simulation

methods and tend to be more adept at modeling natural phenomena. To build

a typical simulation model, a researcher first creates a conceptual model. A con-

ceptual model is how the model will be abstractly represented in the computer.

From here, the model is coded. Unfortunately, the process stops here for many

researchers, as extensive verification and validation on simulations, specifically

agent-based, is often overlooked. This is partially due to the fact that new the-

ory and techniques are needed for such stochastic models [62]. However, existing

verification and validation techniques can be used on or adapted for agent-based

simulations. In this chapter, we explore verification and validation techniques for

both an agent-based and an equation-based model, offering insight regarding the

techniques. We specifically examine docking and visualization as effective verifi-

cation and validation techniques. This is accomplished through two case studies.

1The NOM Model was developed by a number of researchers in a variety of fields [2, 37, 39,
85, 86]. A further discussion of the NOM project can be found in Appendix A.1.

2Portions of this chapter have been published in the proceedings of several conferences [44,
46, 87]

4

In the first case study, we look at verification and validation of an agent-based

model. Specifically, we look at docking the simulation model against an indepen-

dently developed simulation model. We also use the visualization method. The

second case study looks at an equation-based model. We compare this model’s

results and performance through two different programming languages. We also

utilize numerous other verification and validation techniques for both case studies

and offer some insight as to which have been the most valuable.

2.2 Simulations

A simulation is an imitation of a real-world process [10]. This imitation is

usually done with a computer through the use of a conceptual model. A conceptual

model generally refers to the computer representation of the system that the

researcher has chosen to model. The goal of every simulation is to accurately

represent the behavior of the real-world system while providing feedback and

insight in a manner that would otherwise be infeasible. For example, a chemical

experiment that takes months to complete in the laboratory may take only hours

or days to complete with a computer simulation. It is appropriate to think of

simulations as parts of the scientific method - we use them to help us check our

assumptions or hypotheses as well as to possibly predict future behavior. As is

also the goal with the scientific method, we utilize simulations to help us acquire

new knowledge.

The literature lists many reasons why computer simulations are valuable [10,

58, 78], a collection of which are presented below:

1. Simulations allow for the timely study of phenomena that would otherwise be

impractical to study. For example, the evolution of natural organic matter

5

over long periods of time can be simulated in far less time than the actual

experiments would take to perform.

2. Simulations can model theoretical behavior that cannot be replicated in the

laboratory. An example of this would be a simulation model that tracked

the historical migration patterns of icebergs or continental drift.

3. Simulation inputs can be tweaked to determine the outcome or effect on a

real-world system without harming the real-world system. This would be

applicable if a researcher wanted to simulate the spread of a disease across

a population without harming the population.

4. Experimentation with simulations can confirm understanding. For example,

a simulation model that mimics the population dynamics of a group of ani-

mals could allow researchers to examine particular entities of the model and

follow them over time. This would further the understanding of the system.

5. Simulations can be used as prototypes for new experiments before real-world

implementation. For example, a disaster recovery team could simulate any

sort of disaster and their response tactics, allowing them to choose the best

approach.

6. Modern systems are sometimes so complex that their internal workings can

only be studied through simulations. The best example here is nature’s

vast complexity. We cannot possible mimic every aspect of an environment

through a simulation model. Our simulation models take our best approxi-

mations of this behavior and replicate it.

As evidenced above, simulations can be a very valuable tool to researchers. It

is also important to note that there are cases where a simulation would not be

6

appropriate. Banks and Gibson [8] list ten rules for when simulations should not

be used. A collection of the more meaningful ones for our purposes are summarized

below:

1. Simulations should not be used when common sense can solve the problem

or when the problem can be solved analytically in reasonable time.

2. Simulations should not be used when the cost of developing the simulation

model is more than the cost of experimentation.

3. Simulations are not useful when system behavior is too complex or unknown.

2.2.1 Advantages and Disadvantages

There are many advantages to using simulations for scientific study [10]. Aside

from the fact that simulations allow one to model the behavior of a real-world

system without harming or altering the real-world system, simulations typically

run and produce results faster than the real-world system being studied, if such

a system exists. Additionally, simulations are useful in testing the influence of

different variables both on the system as a whole and in regard to one another.

Further, a simulation is helpful when performing hypothesis tests or when testing

situations that would be unrealistic or impractical in the real-world.

Simulation studies also have some inherent disadvantages. Banks, et al. [10]

list four specific disadvantages. Namely, they list that simulation models are

difficult both to build and to interpret. This is true to an extent, but experienced

programmers will find model building straightforward. In addition, interpreting

and analyzing the results of a simulation may take some time, but, in many cases,

this amount of time will be less than if the scientist had done the actual real-world

7

experiment. Although there are some valid disadvantages to using a simulation, as

long as the simulation is used to model a system that simulations are advantageous

for (some requirements of which we have listed above), building a simulation can

be very useful to scientists.

2.2.2 Building a Simulation Model

We have already described simulations as being built upon a model. In most

cases, scientists start out with a conceptual model, or a model with which they

intend to accurately represent the system they are studying. This conceptual

model typically goes through many phases and revisions as the simulation is being

built. Oftentimes, scientists will recognize a problem with their conceptual model

or a way to improve it and then implement the change. This technique is part of

the aforementioned scientific method. Once the scientist has sufficient confidence

in the conceptual model, it is often referred to as simply the model. At this

point, the model is the representation of the system the scientists are studying.

This representation is simply for the study of the system through simulation.

Accurately representing a model that exactly matches a real-world phenomenon

is extremely difficult, if not impossible.

There is often an inherent randomness present in simulation models. There are

many reasons for this randomness, the main one of which is that real-world sys-

tems are far too complex to accurately represent through a computer simulation

model. First, we include randomness to cover our ignorance or uncertainty. In

many of the systems we model, we have little idea about the underlying mechanics.

We build simulation models to try to help us to understand these characteristics

and to experiment with them. If done properly, we will learn about real-world sys-

8

tems through our simulation models. Second, randomness is included for decision

making. If we have a simulation that models ants foraging for food, we have to

give the ants the ability to make decisions. If the simulation had them do the same

thing every time, nothing would be learned from the simulation after the first run,

as it would behave the same each time. Randomness is included so that we can

mimic the real-world in the best way we know how. Lastly, measurement error

or quantum effects are accounted for by randomness. Simulations cannot have

the precision of real-world systems because of both the limitations of computers

and of our own knowledge. They also cannot represent entities as accurately as

a real-world system, so we include an inherent randomness. These examples are

not meant to be looked at as limitations of simulation models, but as reasons why

simulation models are created the way they are. In fact, this randomness is part

of what makes simulations unique and powerful.

2.2.2.1 Simulation Model Types

The literature [10, 50] has divided simulation models into the following over-

lapping subcategories:

Static vs. Dynamic Static simulation models are representative of a system at

a specific time. An example of a static system is one that solves complex

analytical problems that are infeasible with other methods. Dynamic simu-

lation models are representative of a system over time, such as population

dynamics.

Deterministic vs. Stochastic Deterministic simulation models produce results

determined by the provided inputs. In such simulation models, probability

does not play a role. An example would be a simulation that models a

9

student going to class at a specified time every day. Stochastic simulation

models involve random variables and produce different results with each

random seed. Our model with the student would be stochastic if we add a

certain probability as to when and whether the student will arrive to class.

Continuous vs. Discrete Continuous simulation models characterize systems

continuously over time. An example would be the population dynamics in

a predator-prey simulation model. Discrete simulation models characterize

systems at specific points in time. An example would be people paying tolls

at a toll booth.

For the purposes of this study, we further classify simulation models into the

following subcategory:

Agent-based vs. Equation-based Agent-based simulation models have indi-

vidual entities, called agents that drive the simulation. They are good

at modeling systems with emergent properties. Equation-based simulation

models are equation driven and are adept at modeling mathematically based

phenomena. We next elaborate on these subcategories.

2.2.3 Agent-based Simulations

Agent-based simulations, also known as individual-based simulations, are built

in a bottom-up approach. They have recently gained popularity [71] and are

proving to be very powerful. In an agent-based simulation, an agent can be

thought of as any acting component in the system. Each agent is treated as an

entity, having its own properties and behaviors. These can be influenced by the

environment and by other agents, among others. The interactions between agents

and their environment over time often lead to emergent properties within the

10

system. Time is typically represented in the form of time steps; namely, each agent

usually has a chance to change its properties and interact with other agents and

the environment once every time step. An advantage of agent-based simulations

is that they are easily extensible. Adding agents to the model with different

inherent properties is straightforward. Additionally, agent-based simulations are

rather intuitive to code, as they are modeled in the same manner that we tend to

think about systems.

2.2.4 Equation-based Simulations

Equation-based simulations are built in a top-down approach. They have been

around considerably longer than agent-based simulations and are therefore much

more mature. A difference between equation-based simulations and agent-based

simulations is that equation-based simulations do not tend to lead to emergent sys-

tem properties as often as agent-based simulations. For example, equation-based

simulations are good at modeling systems governed by underlying mathematical

properties or formulas. This is somewhat of a limitation, as more complex sys-

tems that cannot be approximated by equations are tough to build. Also, chang-

ing overall properties of an equation-based simulation is often difficult, as it may

require a new mathematical model; however, tweaking parameters in an equation-

based simulation is relatively simple. In this respect, equation-based simulations

are rather simple and straightforward. In general, equation-based simulations are

very good at modeling known systems with aggregate behaviors or systems simply

governed by mathematical rules.

11

2.3 Verification and Validation Process

Simulations are most useful when they realistically estimate or emulate a phe-

nomenon; deciding when this is the case is not trivial. To get the most meaningful

information from a simulation, a simulation must first be verified and validated.

This means that the data produced by the simulation is to some degree indis-

cernible from real-world data. More specifically, verification of a simulation model

refers to solving the model right, as in the abstract model correctly matching the

chosen phenomenon. This is typically achieved through comparison studies. Val-

idation is solving the problem right, meaning getting the right model by choosing

an abstract model that accurately represents the phenomenon [10]. This is typ-

ically achieved through iterative calibration of the model. The extent to which

verification and validation techniques are performed is dependent on several fac-

tors, as noted by Sargent and shown in Figure 2.1 [75]. The most important factor

is usually the cost, which is very high if the intended model confidence is high.

Typically, developers choose the most cost-effective way to achieve the highest

model confidence.

The verification and validation process is a critical part of the model devel-

opment process - the best simulation results are achieved when verification and

validation techniques are performed as the model is being built. Banks, et al.

[10] have verification and validation as integral members of their overall process

to performing a simulation study, as shown in Figure 2.2. Applying verification

and validation techniques in tandem to a model will help develop a more valuable

model. Sargent [75] mentions that the typical verification and validation process

begins when the simulation model development begins. As is usually the case, the

general process starts with identification of the research question at issue. From

12

Sargent

100%0% Model Confidence

Value

Model
of

to
User

Cost

Value

Cost

Figure 1: Model Confidence

of cost (a similar relationship holds for the amount of
time) of performing model validation and the value of the
model to the user as a function of model confidence are
illustrated in Figure 1. The cost of model validation is
usually quite significant, particularly when extremely high
model confidence is required.

The remainder of this paper is organized as follows:
Section 2 discusses the basic approaches used in deciding
model validity; Section 3 defines validation techniques;
Sections 4, 5, 6, and 7 contain descriptions of data
validity, conceptual model validity, model verification, and
operational validity, respectively; Section 8 describes ways
of presenting results; Section 9 contains a recommended
validation procedure; and Section 10 gives the conclusions.

2 VALIDATION PROCESS

Three basic approaches are used in deciding whether a
simulation model is valid or invalid. Each of the approaches
requires the model development team to conduct verification
and validation as part of the model development process,
which is discussed below. The most common approach
is for the development team to make the decision as to
whether the model is valid. This is a subjective decision
based on the results of the various tests and evaluations
conducted as part of the model development process.

Another approach, often called “independent verifica-
tion and validation” (IV&V), uses a third (independent)
party to decide whether the model is valid. The third party
is independent of both the model development team and
the model sponsor/user(s). After the model is developed,
the third party conducts an evaluation to determine its
validity. Based upon this validation, the third party makes
a subjective decision on the validity of the model. This
approach is usually used when a large cost is associated
with the problem the simulation model is being used for
and/or to help in model credibility. (A third party is also
usually used for model accreditation.)

The evaluation performed in the IV&V approach
ranges from simply reviewing the verification and validation
conducted by the model development team to a complete
verification and validation effort. Wood (1986) describes
experiences over this range of evaluation by a third party
on energy models. One conclusion that Wood makes is

that a complete IV&V evaluation is extremely costly and
time consuming for what is obtained. This author’s view
is that if a third party is used, it should beduring the
model development process. If the model has already been
developed, this author believes that usually a third party
should evaluate only the verification and validation that
has already been performed.

The last approach for determining whether a model is
valid is to use a scoring model (see, e.g., Balci 1989, Gass
1979, and Gass and Joel 1987). Scores (or weights) are
determined subjectively when conducting various aspects
of the validation process and then combined to determine
category scores and an overall score for the simulation
model. A simulation model is considered valid if its
overall and category scores are greater than some passing
score(s). This approach is infrequently used in practice.

This author does not believe in the use of a scoring
model for determining validity, because (1) the subjective-
ness of this approach tends to be hidden and thus appears
to be objective, (2) the passing scores must be decided in
some (usually subjective) way, (3) a model may receive a
passing score and yet have a defect that needs correction,
and (4) the score(s) may cause overconfidence in a model
or be used to argue that one model is better than another.

We now discuss how model verification and validation
relate to the model development process. There are two
common ways to view this relationship. One uses a
detailed model development process, and the other uses a
simple model development process. Banks et al. (1988)
reviewed work using both of these ways and concluded that
the simple way more clearly illuminates model verification
and validation. This author recommends the use of a
simple way (see, e.g., Sargent 1982), which is presented
next.

Consider the simplified version of the modeling pro-
cess in Figure 2. Theproblem entity is the system
(real or proposed), idea, situation, policy, or phenomena
to be modeled; theconceptual modelis the mathemat-
ical/logical/verbal representation (mimic) of the problem
entity developed for a particular study; and thecomput-
erized modelis the conceptual model implemented on a
computer. The conceptual model is developed through an
analysis and modeling phase, the computerized model is
developed through acomputer programming and imple-
mentation phase, and inferences about the problem entity
are obtained by conducting computer experiments on the
computerized model in theexperimentation phase.

We now relate model validation and verification to this
simplified version of the modeling process (see Figure 2).
Conceptual model validityis defined as determining that the
theories and assumptions underlying the conceptual model
are correct and that the model representation of the problem
entity is “reasonable” for the intended purpose of the model.

122

Figure 2.1. Model Confidence and Cost Trade-offs (adapted from [75]).
An approach to determine the amount of verification and validation to
perform on a simulation. The trade-off between cost and value must be

examined. Typically, researchers choose the most cost-effective
technique.

there, an initial conceptual model can be developed, which, through programming,

eventually leads to the computerized simulation model. If the process is successful,

the simulation will appropriately answer the initial research question. Verification

and validation should be performed at each of these steps. For example, the devel-

oper should not move from the conceptual model to the computerized simulation

unless the conceptual model has been properly validated. As the process pro-

gresses, additional verification and validation takes place. An adapted version of

Sargent’s [75] and Huang’s [39] verification and validation process model is shown

in Figure 2.3. We have adapted it to fit agent-based scientific and equation-based

economic simulations. It is important to note that the relationships shown in

Figure 2.3 are all two-way, showing the importance of feedback among stages.

We mentioned before that simulation is part of the scientific method. Along

the same lines, the validation of a simulation is analogous to the validation of

a scientific theory [59]. Much work has been performed regarding verification

13

No

No

No No

Yes

Yes

Yes

Validated?

Data collection

Model translation

Experimental design

Production runs and
analysis

Documentation and
reporting

Implementation

Verified?

More runs?

Setting of objectives and
overall project plan

Problem formulation

Model conceptualization

Yes

Figure 2.2. Typical Steps in a Simulation Process (adapted from [10]).
Notice how verification and validation play integral roles in the process
and that the process does not enter the final stages until it has been

validated.

14

Scientific or
Economic
Research
Questions

Agent-based
or Equation-

based
Simulation

Conceptual
Model of

Phenomenon

Simulation
Validity

Conceptual
Validity

Simulation
Validity

Simulation
Verification

Agent-based
or Equation-

based
Programming

Computer
Experiments

Analysis and
Modeling

Figure 2.3. A Verification and Validation Process for Scientific and

Economic Simulations (adapted from [39, 75]). Notice how the stages
are all interconnected and that the process is cyclical.

15

and validation of simulation models [4, 6, 47, 48, 63]. However, most of these

simulations have been for equation-based or discrete-event simulations [27, 34, 67].

Because verification and validation is newer to the agent-based and social science

simulation fields, the work done in this area is less mature. For example, a recent

National Science Foundation Blue Ribbon Panel had the following to say regarding

verification and validation:

New theory and methods are needed for handling stochastic models
and for developing meaningful and efficient approaches to the quan-
tification of uncertainties. As they stand now, verification, validation,
and uncertainty quantification are challenging and necessary research
areas that must be actively pursued [62].

While verification and validation is very important, some researchers, such as Box,

go as far as saying that all models are wrong, with only some being useful [16].

Fortunately, there are many techniques historically used in mature disciplines that

can be adapted to fit the needs of these new modeling techniques, bringing more

confidence to their results and making them more useful. Most notably, Balci [5, 7]

and Sargent [74–76] have outlined techniques to use to perform verification and

validation. We next describe some general techniques and their applications. It

is important to note that no single approach can be applied to all models because

the purposes of simulations are so varied. Instead, combinations of techniques are

used to increase model confidence.

2.3.1 Verification and Validation Techniques

We next outline a general verification and validation process, based on the use

of subjective and quantitative techniques. This process is one we developed; it

utilizes many techniques found in the literature [6, 9, 76].

16

2.3.1.1 Subjective Techniques

Although subjective validation techniques can be formalized, they are typi-

cally used for initial quick-and-dirty validation. Because they largely rely on the

judgment of domain experts, they often require less rigorous effort than quanti-

tative validation techniques. They are most useful in detecting early flaws in the

simulation model and are most often used with exploratory simulation studies.

Subjective validation techniques have only recently been applied to economic and

agent-based scientific simulations, even though they have been applied to typical

industrial engineering purposes for many years. Balci [5] describes many such

techniques; we next describe several subjective techniques, adapted from Xiang et

al. [87] and Kennedy et al. [44, 46].

Black-Box Testing This technique treats the simulation model as a black-box,

such that it is fed a set of inputs and produces a set of outputs. Here, we

are concerned with how accurately the input is transformed to the system

output.

Face Validation Face validation is a preliminary technique that is performed by

asking domain experts whether the simulation model looks to be behaving in

a sufficiently accurate manner. This is usually a rather informal technique,

as the domain expert usually only analyzes the output to the simulation

model and determines whether it is reasonable. If a visualization [32] is

available, the domain expert will observe it as the simulation is running.

Internal Validity This technique is primarily concerned with the variability of

the simulation model across different simulation runs. In most cases, there

should not be a large amount of variability across different simulation runs.

17

Improper use of random number generators are a common cause for vari-

ability. Ideally, the chosen random seed for the simulation model should not

introduce a bias. If it does, the validity of some aspect of the model, likely

how the random number generator is used, is questionable.

Tracing Tracing involves following an entity of the system as the simulation runs.

It is useful because the behavior of the entity can be traced as the simulation

runs, helping to identify any anomalies in its behavior or possibly in the logic

of the model.

Turing Test A Turing test involves providing domain experts with outputs from

the simulation model and outputs from a real-world (or a validated) system.

The domain experts are then asked if they can discriminate between the

outputs.

2.3.1.2 Quantitative Techniques

Quantitative validation techniques are usually more formalized than subjec-

tive validation techniques. These statistical techniques help to increase the con-

fidence of a model through comparisons of the simulation model output with the

real-world system, with expected output, and possibly with output data of other

experiments or simulation models that model the same phenomenon. Apply-

ing quantitative validation techniques to a simulation model starts by identifying

the appropriate output measures [87]. Once these have been collected, they can

be used for subjective validation techniques, such as face validation. They can

also be analyzed through statistical tests, such as the Chi-Squared test or the

Kolmorgorov-Smirnov test. All of these techniques help the simulation model

developers determine if their simulation model is sufficiently accurate. Balci [5]

18

describes many quantitative techniques, a subset of which that are relevant to our

work are next described.

Docking Docking, also referred to as model-to-model comparison or alignment,

is a technique that can be used when another simulation model exists that

models the same phenomenon or when one can be easily created [3]. The idea

here is that the confidence in the simulation model is greatly increased when

independent simulation models produce the same effective results. This tech-

nique helps to determine whether two or more models can produce the same

results and is particularly valuable when the simulation models were written

independently and in different programming languages. A simulation model

can also be validated against real-world data to increase confidence.

Historical Data Validation This technique is used when historical data exists

for a given model. This data can then be used to both build the simulation

model and to determine if it behaves like the historical data.

Predictive Validation Predictive validation involves taking data from an oper-

ational system or from field or laboratory experiments and then comparing

it with the behavior predicted by the simulation model.

Sensitivity Analysis and Parameter Variability Sensitivity analysis and pa-

rameter variability involve changing both the input variables and internal

parameters and then evaluating the simulation model’s behavior and out-

put. If certain parameters are too sensitive and result in major changes in

the simulation across different values, the accuracy of the simulation model

should be examined. As always, the simulation model should adequately

represent the real-world system. In this case, the results of changing specific

19

Verification and
Validation Methods
for Agent-based and

Equation-based
Modeling

Quantitative
Methods

Subjective
Methods

Sensitivity Analysis and
Parameter Variability

Predictive Validation

Historical Data Validation

Docking

Turing Test

Tracing

Internal Validity

Face Validation

Black-Box Testing

Verification and
Validation

Techniques for
Agent-based and
Equation-based

Modeling

Quantitative
Techniques

Subjective
Techniques

Figure 2.4. Verification and Validation Techniques. Here, we have
shown a selection of the techniques we employed for our case studies.

Some techniques can be categorized as both subjective and
quantitative, depending on the context.

input variables or internal parameters should be the same as if they were

changed in the real-world model.

A hierarchy of the techniques we have described is shown schematically in

Figure 2.4.

2.4 Case Study I: An Agent-based Scientific Model

Natural organic matter, or NOM, is a heterogeneous mixture of molecules.

The evolution of NOM is an important research topic in many disciplines due to

its role in the evolution of soils, the transport of pollutants, and its role in the

general carbon cycle [19, 20, 46, 86]. NOM is typically made up of molecules

with varying properties, such as molecular weight or reactivity level. This makes

NOM rather complex, making it difficult to both study in the field and to simulate.

20

Specifically, studying NOM in the field is difficult because of its inherent properties

and location, but also because we are still relatively unfamiliar with its inner-

workings. One of the main limitations when studying NOM is that it is very

time-consuming. A simulation model for NOM would be very valuable to scientists

and also significant in terms of the simulation discipline. We next describe our

conceptual model for NOM.

2.4.1 Conceptual Model

Our conceptual model is based on the research of chemist Stephen E. Cabaniss

of the University of New Mexico [19, 20]. He based his model on extensive labora-

tory work and observation, as well as detailed knowledge from the literature. His

work resulted in a program, called AlphaStep [1], that simulates NOM, the details

of which will be discussed later. The basic model includes the use of precursor

molecules such as cellulose, lignin, and protein in a controlled environment. This

environment is largely controllable; variables such as temperature, pH, light inten-

sity, and bacterial density are all modifiable. We next describe the components of

our NOM Model in more detail, as adapted from Xiang et al. [87] and Kennedy

et al. [44, 46].

Agents The agents in the model are molecules. Each molecule has its own prop-

erties, such as location, reaction probability, and elemental formula. The

elemental formula is based on the number of C, H, O, N, S, and P atoms

present and this gives rise to the molecule’s molecular weight. The number

of functional groups within a molecule is also included.

Behavior Agents in the model move about on a 2D grid. Depending on the

simulation type, agents have have the ability to adsorp to the surface or

21

to react with other agents. Further discussion of the simulation types can

be found in Appendix A.1. Each molecule has its own reaction probability,

giving rise to chemical reactions. These reactions can change the structure of

the molecule, result in new molecules, or result in the molecule disappearing

from the system. In all, there are twelve types of chemical reactions that the

molecules can undergo. These first- and second-order reactions are described

in Table 2.1. We next describe the type of reactions that the molecules can

undergo.

First-order reactions with a split– The reaction of predecessor molecule

A results in two successor molecules B and C. Molecule B replaces

molecule A in the system, while molecule C is created in the empty cell

closest to molecule B.

First-order reactions without a split– The reaction of predecessor molecule

A changes its structure.

First-order reactions with the disappearance of a molecule– Predecessor

molecule A undergoes a reaction and is removed from the system.

Second-order reactions– Two molecules A and B react to form a new

molecule C. Molecule C replaces molecule A in the system, while molecule

B is removed.

Space The agents move about on a 2D geometrical space, represented as a grid.

Each grid cell can hold multiple molecules, up to a specified threshold. De-

pending on the simulation type, the space may be open, meaning molecules

enter through the top and leave through the bottom, or closed, meaning the

space is bounded.

22

TABLE 2.1

CHEMICAL REACTIONS

Name Type

Alcohol C-O-H Oxidation First-order without a Split

Aldehyde C=O Oxidation First-order without a Split

Aldol Condensation Second-order

Amide Hydrolysis First-order with a Split

Decarboxylation First-order without a Split

Dehydration First-order with a Split

Ester Condensation Second-order

Ester Hydrolysis First-order with a Split

Hydration First-order without a Split

Microbial Uptake First-order with the disappearance of a Molecule

Mild C=C Oxidation First-order without a Split

Strong C=C Oxidation First-order with a Split 50% of the time

23

Reaction Probabilities Each molecule has an associated reaction probability.

This probability is continually changing and is based on both intrinsic and

extrinsic factors. The intrinsic factors are related to molecular structure,

such as the number of a specific functional group present. The extrinsic

factors are more related to the environment and rely on factors such as light

intensity, concentration of inorganic chemical species, availability of surfaces,

presence of extracellular enzymes and microorganisms, and the presence

and reactivity of other NOM molecules. We use probabilistic functions to

combine these factors and to generate individual probabilities.

Molecular Properties Molecular properties are calculated from the elemental

composition of a given molecule. They also give rise to functional group

counts and reactivity levels. These properties were useful in helping us

calibrate the conceptual model.

Simulation Process The simulation models the evolution of NOM over time.

Specifically, it is a stochastic synthesis model. This means that the system is

represented by a set of values with a certain probability distribution, making

the evolution of the system dependent on a series of probabilistic discrete

events. The system uses a uniformly distributed random number generator

that generates a number for each molecule that influences the behavior of

the molecule, such as whether it will undergo a reaction. This process takes

place at each time step. If new molecules are created, they are added to the

process.

24

2.4.2 Implementations

Stephen E. Cabaniss implemented his model in Pascal and released it as a

Windows program called AlphaStep [1]. We coded our model, the NOM Model,

with Java [41], J2EE[40], and the Repast toolkit [69]. Java was chosen because

of its compatibility both with Repast and with our online deployment of a web-

based interface for the NOM Model. Repast is a toolkit that facilitates agent-based

modeling and provides rich visualization capabilities. The four different simulation

types for the NOM Model that we implemented are discussed in Appendix A.1.

AlphaStep is a close match to our NOM No-flow Reaction Model.

There are a few differences between AlphaStep and the NOM No-flow Reaction

Model. The biggest difference is that there is no concept of space in the AlphaStep

model. Instead, the molecules are represented as members of a list. If there were

space in AlphaStep, the representation would be that all the molecules are on the

same cell, each equally likely to react with any other molecule. A summary of this

and all relevant differences are listed in Table 2.2.

2.4.3 Validation

The validation techniques presented previously were followed when performing

verification and validation on the NOM Model and are presented next.

2.4.3.1 Subjective Analysis

We started our verification and validation study with the help of domain ex-

perts. The first goal was to obtain face validation of the model. This was accom-

plished by having the domain experts analyze the underlying mechanisms of our

conceptual model. Once we passed this test, we coded the agent-based simulation

25

TABLE 2.2

IMPLEMENTATION DIFFERENCES

Feature AlphaStep
NOM No-flow

Reaction Model

Animation No Yes

First Order Reaction
Add to Molecule List

Choose Nearest

with a Split Neighbor

Initial Population
Actual Number of Percentage Distribution

Molecules of Molecules

Platform Windows Linux

Programming
Pascal Java

Language

Running Mode Standalone
Web-based or

Standalone

Second Order Randomly choose from Choose nearest

Reaction the Molecule List Neighbor

Simulation Toolkit None Repast

Spatial
None 2D Grid

Representation

26

model. As we were coding the model, we performed numerous subjective anal-

ysis techniques, most notably tracing, code walk-through, boundary testing, and

input-output testing. These all helped us verify the accuracy of our simulation

model.

The most useful technique we used was visualization. We displayed a visualiza-

tion of the molecules and their interactions as they moved through the system, as

shown in Figure 2.5. The left portion of the image shows the molecules, which are

color-coded according to molecular weight. Adsorbed molecules (molecules stuck

to the surface) are shown as solid circles and desorbed molecules (free-moving)

are hollow circles. This screen shot is from the NOM Flow Sorption Model, in

which the molecules can adsorp or desorp as they flow through the system from

the top to the bottom. Domain experts were able to look at this part of the

visualization and determine whether system dynamics looked appropriate as the

simulation ran. The right portion of the image shows a real-time graph for the

molecular weight distribution of the system. This is shown for both adsorbed and

desorbed molecules. The peaks in the graphs have been observed in laboratory [2]

to gradually move from right to left as the simulation progresses. By observing our

NOM Flow Sorption Model, the domain experts were able to verify this expected

behavior in the model, greatly increasing confidence.

2.4.3.2 Quantitative Analysis

The most effective quantitative method we used for this case study was dock-

ing. The process began with us taking a good look at the AlphaStep simulation

model and its underlying mechanisms. We then compared output of the two simu-

lations for similar starting states. Initially, the simulations produced very different

27

Figure 2.5. NOM Flow Sorption Model Visualization. These shots are
for the NOM Flow Sorption Model. Solid circles on the left portion

indicate adsorbed molecules and hollow ones indicate desorbed
molecules. In this system, molecules enter at the top and flow through
and out the bottom. The colors of the molecules are dependent on their

molecular weight. The graph on the right portion tracks molecular
weight distribution for adsorbed and desorbed molecules in real-time.

This visualization helps obtain face validity.

28

results. This caused us to further examine our model, as the AlphaStep model

had been calibrated with some laboratory data. We discovered an error with our

random number generator and several problems with our probability calculations.

Additionally, some of our molecules were being represented incorrectly. Along the

way, we continued to run experiments to see if the results had been docked. This

proved to be a difficult task, but we soon identified all problems and were very

pleased with the results.

To do the formal docking of the NOM Model against AlphaStep, we per-

formed fifty replications of the same effective experiment in each model, with the

only difference being the random seed. We traced many of the variables through

each of the replications and then took ensemble averages and plotted the results.

Figure 2.6 shows this for Mn (number-average molecular weight), Mw (weight-

average molecular weight), weight percentage of Carbon, total mass of Carbon,

and the total number of the molecules in the system. These graphs increased the

confidence in both models, particularly because the underlying mechanisms are so

different.

We also wanted to make sure that the NOM Model had sufficient internal

validity. Our initial efforts helped us determine a problem in our use of random

number generators. Figure 2.7 shows the total number of molecules in the system

at the end of twenty-five independent runs before and after fixing the problem.

The only difference between the runs is the random seed used. Another way we

tested for internal validity was to look at the total number of molecules in the

system after 1000 simulated hours. We replicated this experiment 450 times, with

the only difference being the random seed. Figure 2.8 shows the distribution we

obtained. The Chi-Squared test shows that, when the data is compared to the

29

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700 800 900 1000

Simulated Time (hours)

N
um

be
r-

A
ve

ra
ge

 M
ol

ec
ul

ar
 W

ei
gh

t (
D

a)

AlphaStep NOM ''No-flow Reaction'' Model

(a) Number-Average Molecular Weight

4000

4500

5000

5500

6000

6500

7000

7500

8000

0 100 200 300 400 500 600 700 800 900 1000

Simulated Time (hours)

W
ei

gh
t-A

ve
ra

ge
 M

ol
ec

ul
ar

 W
ei

gh
t (

D
a)

AlphaStep NOM ''No-flow Reaction'' Model

(b) Weight-Average Molecular Weight

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 100 200 300 400 500 600 700 800 900 1000

Simulated Time (hours)

W
ei

gh
t P

er
ce

nt
ag

e
of

 C
ar

bo
n

AlphaStep NOM ''No-flow Reaction'' Model

(c) Weight Percentage of Carbon

1000000

1500000

2000000

2500000

3000000

3500000

0 100 200 300 400 500 600 700 800 900 1000

Simulated Time (hours)

To
ta

l M
as

s
of

 C
ar

bo
n

AlphaStep NOM ''No-flow Reaction'' Model

(d) Total Mass of Carbon

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000

Simulated Time (hours)

To
ta

l N
um

be
r o

f M
ol

ec
ul

es

AlphaStep NOM ''No-flow Reaction'' Model

(e) Total Number of Molecules

Figure 2.6. Ensemble averages compassion between AlphaStep and the
NOM No-flow Reaction Model. Each graph represents ensemble

averages at forty points across fifty different simulation runs.
Panels (a) - (e) show different variables across the same data set.

30

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Seed

To
ta

l N
um

be
r o

f M
ol

ec
ul

es

Before After

Figure 2.7. Random Number Generator Problem. Face validity tests
helped us determine a problem with our use of random number

generators. As shown here, we initially had a very scattered
distribution. After correction of our problem, the distribution is much

more stable.

hypothesis of normality, the variation observed in the data is not statistically

significant.

2.4.4 Discussion

This case study has demonstrated the usefulness of performing verification

and validation techniques on an agent-based model, specifically the use of docking

and visualization. When feasible, docking two very different simulation models

31

Number of Molecules

F
re

qu
en

cy

1200 1300 1400 1500 1600 1700 1800

0
10

20
30

40
50

Figure 2.8. Histogram representing the total number of molecules in the
system after 1000 simulated hours. The distribution is a normal

distribution, as supported by the Chi-Squared test. The data is over
450 simulation runs, each with a different random seed.

32

and showing that they produce the same effective results greatly adds to the

confidence of both models. Visualization can also aid this effort. This case study

has emphasized some of the techniques we used and outlined how verification and

validation can be applied to agent-based simulations.

2.5 Case Study II: An Equation-based Economic Model

Our economic model simulates Ramsey problems. Ramsey problems are con-

cerned with setting specific economic variables, money growth and tax rate, to

obtain the best social welfare for an economy [68].

2.5.1 Conceptual Model

Cosimano and Gapen have created a simulation model that uses nonlinear

projection methods to solve Ramsey problems by calculating the real or nominal

interest rate under optimal money growth and tax rates [25]. This is accomplished

through residual equations that utilize bivariate Chebyshev polynomials. At the

core of the model, are four equations, shown in Equations 2.1 - 2.4, representing

money growth, tax rate, labor, and the LaGrange multiplier. These policy func-

tion equations are later transformed with Chebyshev polynomials for use in our

simulation model. Additionally, we utilize Gauss-Hermite quadratures to evaluate

the conditional expectations. We adapted and modified this model for our second

case study.

µ̂t+1(θt, gt, b) =

nθ∑
i=1

ng∑
j=1

bijΨij(θt, gt) (2.1)

33

τ̂t(θt, gt, d) =

nθ∑
i=1

ng∑
j=1

dijΩij(θt, gt) (2.2)

Ĥt(θt, gt, q) =

nθ∑
i=1

ng∑
j=1

qijΦij(θt, gt) (2.3)

λ̂gt(θt, gt, v) =

nθ∑
i=1

ng∑
j=1

vijΓij(θt, gt) (2.4)

2.5.2 Implementations

The model was initially written in Matlab [53], but we ported it to C++

[18]. The model was verified and validated in Matlab before it was converted to

C++. Both implementations rely on the same core equations and use the same

methods, but the mechanisms for doing so are very different. The main reason

for this is that Matlab is a much higher-level language than C++ and that with

the desired added complexity of a fifth equation, representing capital, execution

in Matlab would be infeasible. This, along with the opportunity for an additional

verification and validation study, motivated our decision to port the code.

The internal mechanisms used in Matlab and in the C++ versions are very

difficult. Matlab has many built in helper functions, most notably the LAPACK

[49], or linear algebra package, that are easy to use for our purposes. C++ does

not have many of these functions inherently built in, so we utilized the standard

template library as well as the GNU Scientific Library, GSL [33]. Additionally,

these helper functions had to be heavily modified for use in the C++ version

because the Matlab versions are all overloaded in the sense that you can pass

them different data types, such as a vector or a matrix. This correlates to the

34

fact that variables are not declared in Matlab like they are in C++, meaning

where you can call or use a variable in Matlab without specifically noting the data

type, C++ requires you to explicitly handle the data type, be it by overloading or

explicitly noting it. These differences strengthened the results of our verification

and validation study. Sample code for both the C++ and Matlab implementations

can be found in Appendix A.2.

2.5.2.1 Performance

It is important to note the significant speedup obtained by converting the

model from Matlab to C++. Table 2.3 and Figure 2.9 show the running time for

the simulation over five, fifty, and five-hundred iterations.

2.5.3 Validation

The same validation techniques we utilized for the first case study were applied

to this case study. In this case, the techniques helped us identify initial problems

with the porting of our code.

TABLE 2.3

RUNNING TIME FOR MATLAB AND C++ IMPLEMENTATIONS

5 Iterations 50 Iterations 500 Iterations

Matlab 58 seconds 568 seconds 8872 seconds

C++ 2 seconds 17 seconds 176 seconds

35

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350 400 450 500

Number of Iterations

R
un

ni
ng

 T
im

e
(s

)

Matlab C++

Figure 2.9. Performance Comparison. Here, we show the vast speedup
(about thirty times faster) for the model with the C++ implementation.

36

TABLE 2.4

FACE VERIFICATION

Matlab C++ Steady State

LaGrange Multiplier 0.138 0.138 0.138

Labor 0.309 0.309 0.309

Money Growth -0.009 -0.009 -0.009

Tax Rate 0.188 0.188 0.188

Cash Good 0.486 0.486 0.485

Credit Good 0.621 0.621 0.620

Real Interest Rate 0.009 0.009 0.009

2.5.3.1 Subjective Analysis

Subjective validation techniques were performed throughout the code porting

process. These techniques were especially helpful in porting the code, as we used

techniques such as tracing to make sure entities, such as the LaGrange multiplier,

behaved the same in both models. The checking of the control flow helped us val-

idate the new C++ model against the Matlab model. It also helped us determine

where our code was going wrong. Cosimano and Gapen [24] present steady state

data for the model that we used to validate our model against. This data, as well

as output data for both implementations is shown in Table 2.4. We presented this

model to domain experts, helping us to achieve face validity for the models. Since

the core of the simulation is equation-based, meaning the output values should be

consistent across implementations, we describe our technique as more of a “face

verification” technique in discerning the accuracy of our models.

37

2.5.3.2 Quantitative Analysis

This study is unique in that the output values are given according to known

equations. This lead to us performing output checks and tracing entities as they

progressed through the simulation model. Essentially, we validated the C++ ver-

sion of the code against the Matlab version, which had previously been validated

itself. Additionally, we validated both the C++ and the Matlab versions against

the steady state data from Cosimano and Gapen [24]. These techniques allowed

us to gain more confidence in our simulation model, while also initially helping us

identify some bugs.

2.5.4 Discussion

This case study allowed us to demonstrate the feasibility and usefulness of

docking as a verification and validation technique. Typically, rewriting another

simulation in another language is only done if the model is relatively simple or if

something else is gained in the process. Here, we were motivated by the signifi-

cant speed advantage of C++, as well as the ability to perform a more rigorous

verification and validation effort.

2.6 Conclusion

Through two very different case studies, this chapter has shown how verifica-

tion and validation techniques can be applied to simulation models. We specifi-

cally looked at docking and visualization and showed their effectiveness. We have

shown that similar verification and validation techniques can be applied to models,

regardless of the underlying model structure.

In general, it is important to have a concise abstract representation of the

38

model in mind when designing a simulation. This representation will lead to

effective implementation decisions. As decisions are made, the entire lifetime of the

model should be considered. Additionally, verification and validation techniques

should be considered. Some general ratings for the techniques we used in our case

studies are shown in Table 2.5. Possible ratings are Fair, Good, Very Good, and

Excellent. It is important to note that the ratings shown here are specific to our

case studies and may vary in other instances. To conclude, the techniques we

used in our case studies were the ones that gave us the most model confidence

and value for the lowest cost, the relationship of which was shown in Figure 2.1.

39

TABLE 2.5

GENERAL RATINGS FOR OUR CASE STUDIES

Agent-based Equation-based

(Stochastic) (Deterministic)

Cost Effectiveness Cost Effectiveness

Face Validation

and Face Low Very Good Low Very Good

Verification

Turing Test Low Very Good Low Good

Internal
Moderate Very Good n/a n/a

Validity

Tracing Moderate Fair Moderate Excellent

Black-Box
Low Good Low Very Good

Testing

Docking Moderate Very Good Moderate Good

Historical Data
Moderate Very Good Moderate Very Good

Verification

Sensitivity

Moderate Good Moderate Good
Analysis and

Parameter

Variability

Prediction
Moderate Good Moderate Fair

Validation

40

CHAPTER 3

BIOINFORMATICS COMPUTING: IDENTIFYING TRANSPOSABLE

ELEMENTS IN THE Aedes aegypti GENOME1,2

3.1 Introduction

We begin this chapter with a brief introduction to the biological concepts

that are necessary to understand as we start discussing the field of bioinformatics

and the goals of this chapter. After a short discussion of some of the research

areas, tools, and technologies often used in bioinformatics, we introduce the Aedes

aegypti mosquito and transposable elements. We then proceed to explain the

relevance of finding transposable elements and how they help as tools in biological

research, namely evolutionary biology. We explain a basic approach to finding

transposable elements and then offer two approaches we developed when searching

for transposable elements in the Aedes aegypti genome. We explain the advantages

and disadvantages of all approaches and offer a proposed hybrid method. We

conclude the chapter with a discussion of our results.

1The primary focus for this study was the computational process aspect. Frank H. Collins,
PhD, and James R. Hogan served as the primary biological investigators.

2Portions of this chapter have appeared in technical reports [22][45].

41

3.2 Biological Foundations

All life revolves around tiny entities called cells. These cells serve varying

purposes, but they each have the ability to replicate; within each cell, there is

enough information for the cell to make a complete copy of itself. Moreover, each

cell also contains the mechanisms necessary to perform the replication [42]. Jones

and Pevzner liken this to a car factory that gathers the raw materials, prepares

the materials, and assembles a copy of itself, all while making cars at the same

time [42]. Because cells are the basic reaction vesicles in the body, understanding

their inner-workings would lead to a greater overall understanding as to how the

body functions, which would be very valuable to scientists.

Although cells come in many shapes and sizes and with varying functions,

each has three common components: DNA, RNA, and protein molecules. DNA,

or deoxyribonucleic acid, is often described as the building block of life, as it

contains the genetic material governing how the cell works. DNA is composed of

the nucleotides adenine, guanine, cytosine, and thymine and is a double-stranded,

helical molecule. RNA, or ribonucleic acid, is composed of a single strand of the

nucleotides adenine, guanine, cytosine, and uracil. It is produced to transfer pieces

of the DNA strand to other locations in the cell. Proteins are molecules made up

of amino acids that produce enzymes that can be thought of as the laborers of

the cell. This is because they perform functions varying from assembling strands

of nucleotides to signaling other cells.

The double-stranded helical structure of DNA lends itself to replication. To

replicate, a chromosome in the DNA “unzips” and then an enzyme called DNA

polymerase, which is prevalent throughout the cell, attaches itself to one of the

strands. It then moves along the strand of DNA, attracting nucleotides that com-

42

plement the one it is currently working on. These nucleotides hydrogen bond to

one another and the process continues until the chromosome is copied. This pro-

cess concurrently happens on the other original strand, completing the replication.

It is also important to understand the central dogma of molecular biology. This

outlines the general process by which proteins are generated from DNA. Figure 3.1

denotes this process. We start with DNA, which is made up of four nucleotides.

RNA is produced through a process called transcription. First, DNA “unzips”

and then an enzyme called RNA polymerase binds complimentary nucleotides

to one strand of DNA, starting at the promoter region. This process continues

until the RNA polymerase reaches the terminator region, at which point the RNA

strand breaks off and the DNA strands “zip” back together. This completes

the transcription part of the process. Next, the RNA undergoes translation to

produce a polypeptide chain. Here, a molecular machine called a ribosome does

most of the work. The RNA strand produced by the transcription process is more

specifically called messenger RNA, or mRNA. Another type of RNA, transfer

RNA, or tRNA, continually floats around within the nucleus. Ribosomes move

along the mRNA strand, reading groups of three nucleotides, or codons at a time.

Each codon encodes for an amino acid. There are sixty-four possible combinations

of nucleotides, but only twenty different amino acids. Figure 3.2 shows which

codons refer to which amino acids. As the ribosomes move along the mRNA, they

decipher the codons and the tRNA molecules bring the correlating anticodons.

These amino acids are assembled into a chain, called a polypeptide chain, which

is folded to make up the protein. This process continues until the stop codon is

encountered.

43

translation
proteinDNA

transcription
RNA

Figure 3.1. Central Dogma of Molecular Biology. DNA undergoes
transcription to produce RNA, which in turn undergoes translation to

produce protein.

 U C A G

Phenylalanine Tyrosine Cysteine
U

UUU
UUC
UUA
UUG Leucine

UCU
UCC
UCA
UCG

Serine

UAU
UAC
UAA
UAG Stop

UGU
UGC
UGA
UGG

Stop
Tryptophan

Histidine
C

CUU
CUC
CUA
CUG

Leucine

CCU
CCC
CCA
CCG

Proline

CAU
CAC
CAA
CAG Glutamine

CGU
CGC
CGA
CGG

Arginine

Asparagine Serine
A

AUU
AUC
AUA
AUG

Isoleucine

Methionine

ACU
ACC
ACA
ACG

Threonine

AAU
AAC
AAA
AAG Lysine

AGU
AGC
AGA
AGG Arginine

Aspartic acid
G

GUU
GUC
GUA
GUG

Valine

GCU
GCC
GCA
GCG

Alanine

GAU
GAC
GAA
GAG Glutamic acid

GGU
GGC
GGA
GGG

Glycine

Figure 3.2. Genetic Code. A codon is represented by a set of three
nucleotides. Each codon codes for an amino acid.

44

3.3 Bioinformatics

Bioinformatics is the collective study of numerous fields and techniques used

to solve biological problems. Specifically, researchers in the fields of biology, com-

puter science, mathematics, and statistics are generally involved. Bioinformatics

is mainly involved with the study of DNA and its underlying properties. Com-

puter science is playing an ever-increasing role in bioinformatics, as the study

and analysis of large sequences of data lend itself to the computer science disci-

pline. Bioinformatics aims to develop a better understanding of the function of

genes through the use of advanced, yet easy to use, (web) interfaces. We next

describe most of the major bioinformatics research areas and then the tools and

technologies currently used.

3.3.1 Research Areas

The following are several of the main research areas in bioinformatics.

Genome Annotation Genome annotation refers to locating genes in a sequence

and then giving biological meaning to those regions. Genome annotation is

often classified into functional and structural annotation.

Sequence Alignment Sequence alignment is the comparison of two or more

sequences to one another. The goal of sequencing is to find similarities

among the sequences. Sequencing is usually used in evolutionary studies.

The two main types of sequence alignment are global and local alignment.

Global alignment involves finding the best alignment of two sequences over

the entire sequence, while local alignment concentrates on aligning shorter

fragments in higher conserved regions. There is also a technique called

45

multiple sequence alignment. Here, many different sequences are all aligned

against one another to help study evolutionary relationships.

Sequencing Sequencing is the study of finding the structure of a given sequence.

For example, sequencing would be finding and listing the nucleotides from a

short sequence of DNA. This is typically performed using a method known as

Sanger sequencing [73]. Sanger sequencing uses a chain termination method

to sequence. Another common technique is to perform shotgun sequencing

on the Sanger sequencing results [57, 73]. Here, a sequence is divided into

many small, random fragments and then sequenced using the chain termina-

tion method. Shotgun sequencing was used in the sequencing of the human

genome [83].

Genome Assembly Genome assembly refers to the process of assembling many

short DNA sequences together to form the original chromosome they once

composed. The short sequences are often generated through shotgun se-

quencing.

3.3.2 Tools and Technologies

We next describe some of the prevalent tools and technologies used in bioin-

formatics, most of which we have utilized in our work.

Perl Perl [64], or practical extraction report language, is a scripting language

that lends itself to the bioinformatics field largely because of its rich parsing

capabilities. Perl is an interpreted language, but is rather fast in its appli-

cations. It is often used to write scripts for web site development and is

finding an increasingly larger niche in the bioinformatics field.

46

BioPerl BioPerl [14] is an extension of Perl that has many of the common tasks

of bioinformatics research built-in. It offers a large number of Perl bioin-

formatics modules, such as modules to manipulate sequences or to search

for specific genes. BioPerl is an ever-growing, popular tool, but we found it

easier to code our own scripts for our specific needs.

BLAST BLAST [15, 57], or basic local alignment search tool, is a very popular

algorithm used to compare sequences. It allows researchers to quickly com-

pare a given sequence with sequences in a large database, yielding results

with the best hits according to an expectation value.

Hidden Markov Model A hidden Markov model (HMM) is a probabilistic model

used for statistical analysis of problems [28, 29, 57]. HMMs were first used

for speech recognition, but work very well for bioinformatics problems, such

as sequence analysis. Typically, a training set of known parameters is used

to build the HMM, which will contain varying states and probabilities for

transitions between them. HMMs are powerful because they consider all

possible combinations and help to understand or to determine the hidden

parameters in the model.

Phylogenetic Tree A phylogenetic tree [57, 65] shows evolutionary relationships

among a collection of entities. Here, we use it to determine possible rela-

tionships between groups of sequences, either nucleic acids or amino acids.

Branch length within the tree denotes how close two entities are related.

Similar sequences will be closer together and connect to a common node,

while dissimilar sequences will be farther apart.

Bioinformatics Collaboratories The collection of bioinformatics research sites

47

on the web is perhaps the most important tool in the bioinformatics. These

sites allow researchers to easily utilize many of the tools described above.

They also allow researchers to quickly share results and progress, enabling

the rapid growth in the field. Specifically of note is NCBI [60], the National

Center for Biotechnology Information, which contains a large collection of

literature in the field as well as one of the largest collections of genome

sequencing data in the world. Ensembl [30] is another important resource.

Their main focus is on the annotation of eukaryotic genomes. VectorBase

[82] is another important bioinformatics resource that focuses mainly on the

Anopheles gambiae and Aedes aegypti genomes, but also other vectors.

Bioinformatics Algorithms Because of the immense size of most genomes, it

is imperative that the tools biologists use to work with them are optimized.

Much work has been done to optimize varying bioinformatics algorithms

[42]. A good example is BLAST. It is probably the most widely used tool

in bioinformatics. It has been optimized for speed, but lacks some of the

capabilities other tools have. Some other well-known algorithms are the

Needleman-Wunsch [61] and the Smith-Waterman algorithms [80]. A back-

ground in computer science or a related field is important when using or

refining any of the algorithms.

3.4 Aedes aegypti

Aedes aegypti, shown in Figure 3.3 [82], is a mosquito native to the tropics

that is capable of carrying the yellow fever and dengue viruses - yellow fever alone

is estimated to kill 30,000 people each year [84]. Its unannotated genome was

very recently released [60], so there has been little work done on it to date. More

48

Figure 3.3. Aedes aegypti mosquito. From VectorBase [82].

extensive study [36, 56] has been performed on the malaria carrying mosquito,

Anopheles gambiae, as well as other species. Studying the Aedes aegypti genome

is important for a number of reasons. First, its genome is roughly ten times

larger than the Anopheles gambiae mosquito. Understanding why there is such

a large difference would be a major accomplishment in the field. Second, as

a vector for two deadly diseases, advanced study on the Aedes aegypti genome,

specifically how it has evolved, has the potential to help us understand how it

carries the diseases, likely helping us to stop such transfers to humans. Lastly, the

transposable elements found in the Anopheles gambiae genome have motivated

the study of finding them in Aedes aegypti and then further understanding their

significance. We next describe what transposable elements are as well as the

transposable elements we targeted.

49

3.4.1 Transposable elements

Transposable elements are sequences of DNA that are found throughout the

genome. They were first found and analyzed by McClintock [54]. Transposable

elements have the ability to move about the genome and there are typically mul-

tiple copies of the same transposable elements found throughout the genome.

Transposable elements often make up large portions of a particular genome, as

evidenced by them representing approximately 35% of the Homo sapiens genome

[57]. They have been evidenced to be a cause of chromosomal breakage, to have

the ability to transfer genetic material, to be resistant to antibiotics, and to be

able to regulate gene expression [79]. These are all motivators for the study of

transposable elements.

Transposable elements found in eukaryotic genomes are typically divided into

Class I, Class II, and Class III elements. Class I elements are commonly referred

to as retrotransposons and follow RNA transcription techniques. They use reverse

transcriptase to transcribe RNA to DNA. Class I elements are also characterized

by their long terminal repeat (LTR) sequences. Class II elements are generally

referred to as transposons. Transposons move about a genome with the use of

the transposase enzyme. These transposons carry the capability of moving and

inserting themselves pretty much anywhere in the genome. Also, Class II elements

have inverted repeats at either end of the transposase enzyme. The transposase

is made up of introns and exons, which mean non-coding and coding regions of

the DNA. Class II elements are particularly useful to study because genes can be

inserted into the transposon, allowing transgenic researchers to observe the results.

In this way, transposons are used as gene vectors [43]. Class III transposable

elements are very similar to Class II transposons, but are much shorter and don’t

50

 exon intron exon intron exon

AGTC ACGCAGTAA GTATCACGCCATATGGAAATCG AATGACGCA AGTC
Target Site
Duplication

Inverted
Repeat Transposase Inverted

Repeat
Target Site
Duplication

4-8 bp 30-200 bp 1200-5000 bp 30-200 bp 4-8 bp

Figure 3.4. Typical Class II Transposon Structure. Class II transposons
are characterized by a single transposase flanked by inverted repeats.

The transposase is made up of exons and introns.

seem to contain coding sequences. This study focuses on identifying Class II

transposons. Figure 3.4 shows a typical Class II transposon. Appendix B.1 shows

an annotated mariner transposon. Descriptions of the families of the Class II

transposons we study follow.

piggyBac The piggyBac family of transposons were first discovered in the cab-

bage looper moth Trichoplusia ni [21]. This transposon has since been found

in a number of organisms and has proven to be effective as a gene vector for

a variety of organisms, including Aedes aegypti [51].

Tc1 Like all transposons, Tc1 transposons are flanked by inverted repeat se-

quences. They are good gene vectors, extensively used in the analysis of

Caenorhabditis elegans [66]. Tc1 transposons are typically recognized be-

cause of their DDE motif. The DDE motif refers to a sequence of amino

acids. In this case they are Aspartic acid, Aspartic acid, and Glutamic acid.

pogo These transposable elements are members of the Tc1 superfamily. They

are very similar to Tc1 transposons, but lack the DDE catalytic motif.

mariner The mariner transposons are characterized by a DDD motif and gen-

51

erally contain one exon transposase. They are widespread in invertebrates

and are well characterized.

P element P elements were first discovered in the fruit fly Drosophila melanogaster

genome and were the first transposons to be used as a gene vector [43, 72].

Since the initial discovery of P elements, they have been found in sev-

eral other species, most notably the malaria mosquito Anopheles gambiae

[77]. This has motivated the search for P elements within the Aedes aegypti

genome.

3.5 Approach to Identifying Transposable Elements

The goal of this study was to identify transposable elements within the newly

released Aedes aegypti genome through the use of computer based tools and meth-

ods. Identifying transposable elements is important for a number of reasons. For

example, transposable elements help with gene annotation. Also, identifying them

will help lead to a better understanding of their use as a genetic manipulation tool.

We next describe a basic approach to identifying transposable elements and then

two approaches we used to identify transposable elements within the Aedes ae-

gypti genome. This section concludes with our description of a proposed hybrid

method. All of our approaches utilize common characteristics of Class II trans-

posable elements for our searches.

3.5.1 Typical Approach

A typical bioinformatics technique to finding transposable elements within

genomes is to BLAST [26] for them. This involves taking known transposable

elements from other genomes and searching for them in a given genome. This

52

Locate known
Transposons

BLAST
Genome

Figure 3.5. Typical Approach used to Identify Transposable Elements.
Researchers often BLAST genomes using known transposons. This is an

efficient technique, but improvements can be made.

approach is shown in Figure 3.5. Some limitations of this approach include not

being able to search for every variation or for the entire length of a sequence.

This is a good approach to identifying known transposable elements in similar

genomes, but does not account for frame shifts or poor matches in the genome.

This approach also does not help researchers find new transposable elements.

However, BLAST is a very popular technique to finding transposable elements

[26].

3.5.2 First Approach

Because we wanted to perform a more thorough search for transposable ele-

ments, we developed a new approach that utilized multiple tools. This approach

was loosely based on our previous work [22] and focused on identifying P elements.

We improved on the typical approach by utilizing the HMMER suite of tools [35],

most notably incorporating and using a HMM to help us in our search. Figure 3.6

shows the process we used for this approach. We next give a brief description of

each step.

53

Locate known
Transposons

Clustal X
Alignment

Clustal X Neighbor
Joining Tree

Subdivide Alignment and
Realign with Clustal X

Build and Calibrate
Hidden Markov Model

Search Genome
with hmmsearch

Extract
Flanking Region

Search for
Inverted Repeats

Identify
Transposons

 Figure 3.6. First Approach. We started by locating known transposons
and then aligning them. We then built a neighbor joining tree and
realigned the sequences. Next, we built and calibrated the hidden

Markov model and then searched the genome with hmmsearch. Finally,
we extracted the flanking regions so we could search for inverted

repeats and identify transposons.

54

1. Identify Transposons For this step, we identified transposons from other

species. This was accomplished through either a text-based search for par-

ticular elements or through a database search. This step was necessary as it

identified the transposons we were searching for in the Aedes aegypti genome.

2. Clustal X Alignment Once the sequences had been visually subdivided by

a graduate biology student, James R. Hogan, we proceeded to align the pro-

tein coding transposase with known sequences using Clustal X [23]. Clustal

X is a general multiple sequence alignment program that produces the best

matches and lines up the sequences. It works by performing pairwise align-

ments on the sequences, and then producing a phylogenetic tree based on

alignment scores. It then utilizes dynamic programming techniques to uti-

lize the results from the phylogenetic tree to align the sequences. Figure 3.7

shows the output from some of our work here.

3. Clustal X Neighbor Joining Tree We utilized Clustal X’s ability to

produce a neighbor joining tree. This enabled us to see how closely different

sequences were related and helped with the subdividing in the next step.

4. Subdivide Alignment and Realign with Clustal X James R. Hogan

again visually subdivided the sequences and realigned them. This time,

the sequences were aligned by subgroup, meaning by the best alignment of

smaller conserved regions.

5. Build and Calibrate HMM We used the sequences from the previous

step to build and calibrate our model. For this step we used hmmbuild and

hmmcalibrate, both from the HMMER suite of tools. The suite will generate

a functional HMM that can be used to run against any set of sequences.

55

C
L

U
ST

A
L

 X
 (

1.
81

)
M

U
L

T
IP

L
E

 S
E

Q
U

E
N

C
E

 A
L

IG
N

M
E

N
T

F
ile

:
C

:o
cu

m
en

ts
 a

nd
 S

et
ti

ng
sm

al
ar

ia
M

y
D

oc
um

en
ts

JI
m

pA
A

P
aa

.p
s

D
at

e:
 M

on
 M

ar
 1

3
11

:4
2:

39
 2

00
6

P
ag

e
2

of
 3

g
i
|
1
3
3
4
6
9
2
1
|
g
b
|
A
A
K
0
8
1
8
9
.
2
|

H
A
P
K
C
E
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
P
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
Q
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
M
E
I
K
T
L
R
Q

1
1
1

g
i
|
1
3
3
4
6
9
1
6
|
g
b
|
A
A
K
0
8
1
8
4
.
2
|

H
A
P
K
C
E
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
P
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
Q
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
M
E
I
K
T
L
R
Q

1
1
1

g
i
|
1
3
3
4
6
9
1
7
|
g
b
|
A
A
K
0
8
1
8
5
.
2
|

H
A
P
K
C
E
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
P
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
Q
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
M
E
I
K
T
L
R
Q

1
1
1

g
i
|
1
2
8
3
0
6
8
3
|
g
b
|
A
A
K
0
8
1
8
2
.
1
|

H
A
P
K
C
D
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
P
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
L
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
I
E
I
K
T
L
R
Q

1
1
1

g
i
|
1
3
3
4
6
9
1
8
|
g
b
|
A
A
K
0
8
1
8
6
.
2
|

H
A
P
K
C
E
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
P
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
Q
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
M
E
I
K
T
L
R
Q

1
1
1

g
i
|
1
0
8
5
1
3
3
|
p
i
r
|
|
S
4
6
2
8
1

H
A
P
K
C
E
M
K
R
K
L
W
E
E
S
L
G
C
S
L
S
K
N
S
Q
I
C
D
T
H
F
N
A
S
Q
W
R
T
A
L
-
K
G
K
I
Y
K
K
R
R
L
N
N
D
A
V
P
Q
R
-
-
-
E
K
E
D
E
-
-
-
S
V
K
E
G
Y
A
N
A
S
T
E
T
E
D
T
V
I
N
H
S
T
S
M
E
I
K
T
L
R
Q

1
1
1

g
i
|
2
1
2
8
4
3
8
0
|
g
b
|
A
A
M
4
5
3
8
6
.
1
|

K
A
P
K
C
F
V
R
R
S
L
W
E
K
I
L
G
C
S
L
G
E
Y
S
K
L
C
E
T
H
F
D
A
S
Q
W
K
P
T
E
R
K
G
H
V
V
K
R
R
R
L
N
N
D
A
V
P
Q
K
E
S
-
G
P
E
P
K
-
-
-
L
A
K
L
N
Y
A
H
C
S
T
Q
T
E
E
K
V
I
N
R
T
T
L
M
G
N
E
I
M
R
K

1
1
4

g
i
|
2
8
6
3
0
1
5
5
|
g
b
|
A
A
M
9
4
9
4
9
.
1
|

K
A
P
K
C
F
V
R
R
S
L
W
E
K
I
L
G
C
S
L
G
E
Y
S
K
L
C
E
T
H
F
D
A
S
Q
W
K
P
Q
E
R
K
G
H
V
V
K
R
R
R
L
N
N
D
A
V
P
Q
K
E
S
-
G
P
E
P
K
-
-
-
I
A
K
L
G
Y
A
H
C
S
T
Q
T
E
E
K
V
I
N
R
T
T
L
M
G
N
E
I
M
R
K

1
1
4

g
i
|
5
7
2
9
6
8
2
|
g
b
|
A
A
D
4
8
5
1
0
.
1
|

K
A
P
K
C
F
V
R
R
S
L
W
E
K
I
L
G
C
S
L
G
E
Y
S
K
I
C
E
T
H
F
D
A
S
Q
W
K
P
T
E
R
K
G
H
V
V
K
R
R
R
L
I
I
D
A
V
P
Q
K
E
S
-
E
P
E
P
K
-
-
-
I
A
K
L
G
Y
A
N
C
S
T
Q
T
E
D
K
V
I
N
R
T
T
L
M
G
N
E
V
M
K
N

1
1
4

g
i
|
2
6
0
5
6
7
0
|
g
b
|
A
A
B
8
4
1
7
5
.
1
|

K
A
P
K
C
F
V
R
R
S
L
W
E
K
I
L
G
C
N
L
G
E
Y
S
K
I
C
E
T
H
F
D
A
S
Q
W
K
S
T
E
S
K
G
N
V
V
K
R
R
R
L
N
N
D
A
I
P
R
K
E
S
-
E
P
E
P
K
-
-
-
L
A
K
L
S
Y
A
H
S
S
T
Q
T
E
E
K
I
I
N
R
A
T
L
M
G
N
E
I
M
K
K

1
1
4

g
i
|
2
8
6
3
0
1
5
2
|
g
b
|
A
A
M
9
4
9
4
7
.
1
|

K
A
P
K
C
F
V
R
R
S
L
W
E
K
I
L
G
C
S
L
G
E
Y
S
K
I
C
E
T
H
F
D
A
S
Q
W
K
P
A
D
R
K
G
H
A
A
K
R
R
R
L
N
N
D
A
V
P
Q
K
-
-
-
E
P
E
R
V
-
-
-
L
A
G
L
G
Y
A
N
C
S
T
Q
T
E
E
K
D
I
N
R
T
T
H
M
G
S
V
I
M
K
N

1
1
2

g
i
|
2
8
6
3
0
1
5
3
|
g
b
|
A
A
M
9
4
9
4
8
.
1
|

R
V
P
K
E
D
R
K
R
K
L
W
E
E
S
L
G
C
S
L
V
P
G
A
R
I
C
D
T
H
F
K
E
S
D
F
Y
G
E
T
K
S
K
K
K
R
Q
R
R
R
L
L
P
N
A
L
P
R
Q
P
T
P
E
P
E
I
I
P
-
-
I
F
K
P
G
Y
S
N
A
N
T
Q
P
E
E
K
D
I
N
R
T
T
H
M
G
S
V
I
M
K
N

1
1
8

g
i
|
2
1
2
8
4
3
8
1
|
g
b
|
A
A
M
4
5
3
8
7
.
1
|

C
V
P
K
E
D
G
K
R
K
L
W
E
K
S
L
E
C
S
L
A
P
N
G
R
I
C
D
T
H
F
K
A
S
D
F
Y
G
E
T
K
T
K
T
E
R
K
R
R
R
L
L
P
N
A
L
P
R
Q
P
-
-
-
-
-
-
-
-
-
-
N
L
K
P
G
Y
S
N
A
N
T
Q
T
E
E
K
V
I
N
R
T
T
L
M
G
N
E
I
M
R
K

1
1
0

g
i
|
2
8
6
3
0
1
5
6
|
g
b
|
A
A
M
9
4
9
5
0
.
1
|

R
V
P
K
E
D
G
K
R
K
L
W
E
K
S
L
A
C
S
L
A
P
N
G
R
I
C
D
T
H
F
R
A
S
D
F
Y
G
E
T
K
S
K
N
E
R
K
R
R
R
L
L
P
N
A
L
P
R
Q
P
-
-
-
-
-
-
-
-
-
-
F
L
K
P
G
Y
S
N
A
N
T
Q
T
E
E
K
V
I
N
R
T
T
L
M
G
N
E
I
M
R
K

1
1
0

g
i
|
2
6
0
5
6
7
2
|
g
b
|
A
A
B
8
4
1
7
6
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
i
|
2
0
3
8
4
7
0
6
|
g
b
|
A
A
K
5
4
3
7
8
.
1
|

N
A
P
K
C
L
V
R
R
S
L
W
E
Q
T
L
G
C
S
L
G
D
N
S
K
I
C
D
T
H
F
N
A
S
Q
W
K
S
A
P
K
R
G
K
V
F
K
R
R
R
L
N
D
D
A
V
P
H
R
D
P
-
E
P
E
P
K
-
-
-
I
F
K
L
G
Y
A
D
S
S
T
Q
T
E
D
K
V
I
N
R
N
T
L
L
E
K
E
S
L
R
K

1
1
4

g
i
|
1
0
3
4
8
3
|
p
i
r
|
|
S
2
2
5
9
6

H
V
P
K
C
L
E
K
R
K
L
W
E
Q
S
L
D
C
S
L
T
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
K
S
S
T
I
K
G
Q
I
F
K
K
R
R
L
N
A
D
A
V
P
Q
-
-
-
-
K
P
Q
Q
E
-
-
-
I
V
R
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
L
R
V
E
N
E
S
L
R
K

1
1
1

g
i
|
1
1
0
2
1
|
e
m
b
|
C
A
A
4
2
9
6
5
.
1
|

H
V
P
K
C
L
E
K
R
K
L
W
E
Q
S
L
D
C
S
L
T
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
K
S
S
T
I
K
G
Q
I
F
K
K
R
R
L
N
A
D
A
V
P
Q
-
-
-
-
K
P
Q
Q
E
-
-
-
I
V
R
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
L
R
V
E
N
E
S
L
R
K

1
1
1

g
i
|
1
0
3
4
8
4
|
p
i
r
|
|
S
2
2
5
9
4

H
V
P
V
C
S
E
K
R
K
M
W
E
Q
I
L
N
C
S
L
S
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
R
S
A
P
K
E
G
Q
T
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
C
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
1
1
0
1
8
|
e
m
b
|
C
A
A
4
2
9
6
3
.
1
|

H
V
P
V
C
S
E
K
R
K
M
W
E
Q
I
L
N
C
S
L
S
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
R
S
A
P
K
E
G
Q
T
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
C
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
1
0
3
4
8
5
|
p
i
r
|
|
S
2
2
5
9
5

H
V
P
K
C
L
E
R
R
K
M
W
E
Q
I
L
N
C
S
F
T
V
N
S
T
I
C
D
S
H
F
D
A
S
Q
W
R
S
A
T
K
K
G
Q
T
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
C
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
1
1
0
1
9
|
e
m
b
|
C
A
A
4
2
9
6
4
.
1
|

H
V
P
K
C
L
E
R
R
K
M
W
E
Q
I
L
N
C
S
F
T
V
N
S
T
I
C
D
S
H
F
D
A
S
Q
W
R
S
A
T
K
K
G
Q
T
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
C
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
K
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
1
0
9
6
2
1
4
|
p
r
f
|
|
2
1
1
1
2
9
0
A

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
i
|
6
9
5
3
2
4
|
g
b
|
A
A
A
6
2
7
6
7
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
i
|
5
4
3
6
4
8
|
p
i
r
|
|
A
4
4
0
8
5

H
V
P
V
C
L
E
K
R
K
L
W
E
Q
I
L
D
C
S
F
A
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
R
S
P
P
K
E
G
Q
I
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
F
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
N
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
1
5
8
6
5
6
|
g
b
|
A
A
A
7
3
1
6
5
.
1
|

H
V
P
V
C
L
E
K
R
K
L
W
E
Q
I
L
D
C
S
F
A
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
R
S
P
P
K
E
G
Q
I
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
F
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
N
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
5
0
8
1
6
9
|
e
m
b
|
C
A
A
4
3
8
8
6
.
1
|

H
V
P
V
C
L
E
K
R
K
L
W
E
Q
I
L
D
C
S
F
A
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
R
S
P
P
K
E
G
Q
I
Y
K
R
R
R
L
K
A
D
A
V
P
H
G
-
-
-
E
P
E
P
K
-
-
-
F
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
N
V
I
N
H
A
I
R
V
E
N
E
S
L
R
K

1
1
2

g
i
|
6
0
8
7
0
4
|
e
m
b
|
C
A
A
5
6
1
9
9
.
1
|

H
V
P
K
G
L
E
K
R
K
L
W
E
Q
C
L
D
C
S
L
T
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
K
S
S
T
I
K
G
Q
I
F
K
K
R
R
L
X
A
D
A
V
P
Q
G
-
-
-
D
P
A
A
K
-
-
-
L
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
A
F
I
N
H
S
A
R
V
E
H
E
S
L
T
G

1
1
2

g
i
|
1
0
8
5
8
7
2
|
p
i
r
|
|
S
5
2
1
5
9

H
V
P
K
G
L
E
K
R
K
L
W
E
Q
C
L
D
C
S
L
T
V
N
S
K
I
C
D
S
H
F
D
A
S
Q
W
K
S
S
T
I
K
G
Q
I
F
K
K
R
R
L
X
A
D
A
V
P
Q
G
-
-
-
D
P
A
A
K
-
-
-
L
V
K
L
G
F
A
N
S
S
T
Q
T
E
D
A
F
I
N
H
S
A
R
V
E
H
E
S
L
T
G

1
1
2

g
i
|
1
6
1
1
6
2
|
g
b
|
A
A
A
2
9
9
6
0
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
i
|
1
6
1
1
5
7
|
g
b
|
A
A
A
2
9
9
5
6
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

g
i
|
7
1
5
5
|
e
m
b
|
C
A
A
4
3
3
0
5
.
1
|

H
V
P
K
C
S
V
K
R
K
L
W
E
E
S
L
G
C
S
L
G
G
N
S
Q
I
C
A
T
H
F
N
D
S
Q
W
K
S
T
E
N
K
G
Q
A
N
K
R
R
R
L
N
K
D
A
I
P
T
K
E
I
-
E
P
E
P
E
-
-
-
N
V
K
E
G
Y
T
S
S
S
T
Q
T
E
-
-
-
-
C
C
S
L
S
K
E
N
K
S
L
R
Q

1
1
1

g
i
|
2
1
3
3
6
2
9
|
p
i
r
|
|
S
2
2
8
0
2

H
V
P
K
C
S
V
K
R
K
L
W
E
E
S
L
G
C
S
L
G
G
N
S
Q
I
C
A
T
H
F
N
D
S
Q
W
K
S
T
E
N
K
G
Q
A
N
K
R
R
R
L
N
K
D
A
I
P
T
K
E
I
-
E
P
E
P
E
-
-
-
N
V
K
E
G
Y
T
S
S
S
T
Q
T
E
-
-
-
-
C
C
S
L
S
K
E
N
K
S
L
R
Q

1
1
1

g
i
|
1
6
1
1
5
6
|
g
b
|
A
A
A
2
9
9
5
5
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
C
S
L
S
T
E
N
K
S
L
R
Q

1
9

g
i
|
1
6
1
1
6
1
|
g
b
|
A
A
A
2
9
9
5
9
.
1
|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
C
S
L
S
T
E
N
K
S
L
T
E

1
9

g
i
|
1
2
8
3
0
6
7
9
|
g
b
|
A
A
K
0
8
1
8
1
.
1
|

H
V
P
K
C
N
M
K
R
K
L
W
E
Q
S
L
G
C
H
L
G
E
N
S
Q
I
C
A
T
H
F
N
D
S
Q
W
K
S
T
P
N
K
G
E
T
N
K
R
R
R
L
N
K
D
A
I
P
T
I
E
I
-
E
P
E
P
E
-
-
-
N
V
K
E
G
Y
A
S
S
S
T
Q
T
E
-
-
-
-
C
C
S
L
S
N
E
N
K
S
L
R
Q

1
1
0

g
i
|
5
1
1
0
2
8
5
5
|
g
b
|
A
A
T
9
6
0
2
2
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
5
3
|
g
b
|
A
A
T
9
6
0
2
1
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
2
5
|
g
b
|
A
A
T
9
6
0
0
7
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
8
5
0
9
2
|
p
i
r
|
|
A
2
4
7
8
6

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
5
7
|
g
b
|
A
A
T
9
6
0
2
3
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
3
1
|
g
b
|
A
A
T
9
6
0
1
0
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
R
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
4
3
|
g
b
|
A
A
T
9
6
0
1
6
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
4
1
|
g
b
|
A
A
T
9
6
0
1
5
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
A
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
E
G
Y
T
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
1
0

g
i
|
5
1
1
0
2
8
6
9
|
g
b
|
A
A
T
9
6
0
2
9
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
S
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
D
G
Y
A
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
0
9

g
i
|
5
1
1
0
2
8
7
1
|
g
b
|
A
A
T
9
6
0
3
0
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
S
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
D
G
Y
A
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
S
N
E
N
M
S
L
R
E

1
0
9

g
i
|
5
1
1
0
2
8
6
5
|
g
b
|
A
A
T
9
6
0
2
7
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
S
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
D
G
Y
A
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
0
9

g
i
|
5
1
1
0
2
8
6
7
|
g
b
|
A
A
T
9
6
0
2
8
.
1
|

H
V
P
K
C
A
I
K
R
K
L
W
E
Q
S
L
G
C
S
L
G
E
N
S
Q
I
C
D
T
H
F
N
D
S
Q
W
K
S
A
P
A
K
G
Q
T
F
K
R
R
R
L
N
A
D
A
V
P
S
K
V
I
-
E
P
E
P
E
-
-
-
K
I
K
D
G
Y
A
S
G
S
T
Q
T
E
S
-
-
-
-
C
S
L
F
N
E
N
K
S
L
R
E

1
0
9

g
i
|
1
6
1
1
6
0
|
g
b
|
A
A
A
2
9
9
5
8
.
1
|

H
V
P
K
C
N
I
K
R
K
L
W
E
Q
S
L
G
C
T
L
G
E
N
S
Q
I
C
A
T
H
F
N
D
S
Q
W
K
T
T
P
N
K
G
Q
A
N
K
R
R
R
L
N
T
D
A
I
P
T
K
E
K
-
E
P
E
P
E
-
-
-
H
V
K
E
G
Y
T
S
S
S
T
Q
T
E
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3
1

r
u
l
e
r

0
.
.
.
.
.
.
.
4
6
0
.
.
.
.
.
.
.
4
7
0
.
.
.
.
.
.
.
4
8
0
.
.
.
.
.
.
.
4
9
0
.
.
.
.
.
.
.
5
0
0
.
.
.
.
.
.
.
5
1
0
.
.
.
.
.
.
.
5
2
0
.
.
.
.
.
.
.
5
3
0
.
.
.
.
.
.
.
5
4
0
.
.
.
.
.
.
.
5
5
0

Figure 3.7. Clustal X Alignment for P elements. This shows a
subsection of the multiple sequence alignment we performed. Much of

the regions shown are highly conserved.

56

Appendix B.2 shows a sample portion of our HMM for pogo transposons.

6. Search Genome (hmmsearch) The HMMER suite of tools also includes

hmmsearch, which utilizes the HMM to search the genome. This step pro-

duced ranked output for the sequences.

7. Extract Flanking Region We utilized various scripts to extract the se-

quences and their flanking regions. We took the results from hmmsearch

and extracted the best hits from the NCBI Aedes aegypti genome. These

scripts added flanking regions to either end of the hit sequences so we could

search for inverted repeats. The scripts took the start and end frame as ar-

guments and then searched the large (1 GB) genome file for the correlating

supercontig and then for the region of the sequence within that supercon-

tig. Appendix B.4 describes and shows one of the scripts we used for the

extraction.

8. Search for Inverted Repeats We used a tool called BLAST 2 Sequences

[81] to search for inverted repeats within the flanking regions. This pro-

gram simply blasts a sequence against itself, allowing us to find and identify

inverted repeats. Again, we wrote various Perl scripts to extract relevant

data from the results. The scripts took into account the orientation of the

sequence and were run multiple times through a shell script for efficiency.

9. Identify Transposable Elements Transposable elements were identified

by careful examination of the highest scoring sequences by the aforemen-

tioned James R. Hogan. We submitted these sequences to BLAST and were

given expectation values. He then did further inspection and we utilized

various tools, such as phylogenetic trees to help us with our efforts.

57

There are a couple advantages to using this approach. One advantage is that

we are able to identify previously unknown transposable elements. This was per-

formed by utilizing some basic known characteristics of Class II transposons, such

as their inverted repeats, when searching new genomes. Additionally, the use of

tools such as Clustal X and the HMMER suite allowed us to perform a more

thorough search. Clustal X helped us to identify closely related sequences and the

HMMER suite allowed us to construct a HMM that gave us scored results of the

hits.

There are also a couple disadvantages to this approach. The main disadvantage

is that our search does not account for frame shifts. Frame shifts are common

occurrences in genomes, so the fact that we do not allow for them in our searching

means that we could be missing hits. Also, this technique will not help us find

stop codons, introns, or exons, each of which can help to identify transposons.

While this approach can be used for all the families in question, we only utilized

it for the P element family. Lastly, this technique is much more time consuming

than the first approach; however, it is also a much more thorough approach to

locating transposons.

3.5.3 Second Approach

Our first approach, Figure 3.6, had a couple main drawbacks, the largest of

which was that it did not account for frame shifts in the sequences. We expected we

would find more transposable elements if we allowed for frame shifts. To do this,

we slightly modified our approach. We began like in the previous approach, but

instead of using the HMMER suite to perform the search with the HMM, we used

GeneWise [31]. We still used the HMMER suite to build and calibrate the HMM,

58

we simply had GeneWise utilize the model. GeneWise is useful when comparing

sequences and has good gene prediction capabilities. Among the algorithms it uses

is the Smith-Waterman algorithm. GeneWise is more powerful than hmmsearch

because it can account for frame shifts, gaps, and handles introns and exons.

Using GeneWise was much more computationally expensive (we distributed it on

an advanced cluster of machines), but gave us more confidence that we were doing

all we could to identify transposable elements. GeneWise produced the highest

scoring sequences, which we proceeded to extract from the genome. A diagram

showing our entire process for this approach can be found in Figure 3.8. This time,

we were able to utilize the approach for the five families of transposons previously

described. More about GeneWise and portions of the GeneWise output can be

found in Appendix B.3.

The main advantages to using this approach include the ability to handle frame

shifts when searching the genome, as well as being able to identify stop codons,

introns, and exons. Also, the fact that we were able to search for all families

in question made for more meaningful results. A drawback to this approach is

that GeneWise is computationally expensive. Additionally, we did not utilize the

common characteristics of Class II transposons when performing this approach.

3.5.4 Hybrid Approach: A Transposable Element Discovery Methodology

We propose a methodology that combines the best elements from both our

approaches. Most notably, we follow the general method of the first approach,

but use GeneWise to search the genome. We conclude the search similar to how

we conclude the first approach. This approach can be used for all the families

in question in this study. While we did not explicitly use this approach, it is an

59

Locate known
Transposons

Clustal X
Alignment

Clustal X Neighbor
Joining Tree

Subdivide Alignment and
Realign with Clustal X

Build and Calibrate
Hidden Markov Model

Search Genome
with GeneWise

Extract
Sequences

 Figure 3.8. Second Approach. This approach is very similar to the first
approach, except that we used GeneWise to search the genome and

then only extracted the sequences.

60

extension of the approaches we used that would likely produce more meaningful

results. A schematic for this process is shown in Figure 3.9.

3.6 Discussion

We found a reasonable number of transposable elements for each of the families.

Table 3.1 shows the total counts for each family. It is important to note that these

counts are only for the most likely transposable elements. We had many more hits

than listed here, but these are the ones that had the highest probability of being

transposable elements. Each hit refers to a transposase protein coding sequence.

We also present the phylogenetic tree for the mariner family in Figure 3.10.

There appears to be two or three clades that are clustered rather closely together,

indicating close relationships.

Our proposed hybrid approach would likely be more useful than our first and

second approaches, as it combines the better parts of the two. The methods

we both used and proposed make the use of some scripting techniques and the

combination of tools we used is novel.

3.7 Conclusion

Through our work, we have identified some new transposable elements and

found some known ones in the newly released Aedes aegypti genome through a

unique computational process. Locating transposable elements in new genomes

is important because it allows us to compare them to those in similar genomes

and then gain understanding regarding differences. Identifying new transposable

elements has the potential to help with genetic evolution studies because new

transposable elements may be good gene vectors. Additionally, to our knowl-

61

Locate known
Transposons

Clustal X
Alignment

Clustal X Neighbor
Joining Tree

Subdivide Alignment and
Realign with Clustal X

Build and Calibrate
Hidden Markov Model

Search Genome
with GeneWise

Extract
Flanking Region

Search for
Inverted Repeats

Identify
Transposons

 Figure 3.9. Hybrid Approach: A Transposable Element Discovery
Methodology. This approach combines the better elements of the first

and second approaches, making for a more complete search.

62

mar_1|mariner|[transposase_1-7

mar_21|mariner|[transposase_1-

mar_19|mariner|[transposase_1-

mar_4|mariner|[transposase_431

mar_9|mariner|[transposase_1-7

mar_13|mariner|[transposase_26

mar_2|mariner|[transposase_1-3

mar_11|mariner|[transposase_51

mar_10|mariner|[transposase_50

mar_7|mariner|[transposase_1-8

mar_24|mariner|[transposase_20

mar_23|mariner|[transposase_12

mar_8|mariner|[transposase_1-8

mar_5|mariner|[transposase_1-1

mar_6|mariner|[transposase_148

mar_18|mariner|[transposase_42

mar_3|mariner|[transposase_183

mar_17|mariner|[transposase_39

mar_16|mariner|[transposase_18

mar_22|mariner|[transposase_18

mar_12|mariner|[transposase_18

mar_14|mariner|[transposase_18

mar_20|mariner|[transposase_13

mar_15|mariner|[transpoase_79-

mar_29|mariner|[transposase_17

mar_27|mariner|[transposase_1-

mar_28|mariner|[transposase_16

mar_31|mariner|[transposase_56

mar_26|mariner|[transposase_77

mar_30|mariner|[transposase_35

mar_25|mariner|[transposase_1-

0.1

Figure 3.10. Phylogenetic tree for the mariner family. Clades that are
clustered together indicate close relationships.

63

TABLE 3.1

NUMBER OF TRANSPOSABLE ELEMENTS FOUND

TE Count

piggyBac 12

Tc1 72

pogo 50

mariner 25

P element 9

edge, this is the first such study using an approach like ours on the Aedes aegypti

genome. Approaches similar to this, namely the use of HMMs, have been per-

formed on other genomes [11, 55]. However, we have utilized and proposed unique

approaches that combine typical biological methods with computer science tech-

niques to perform a more thorough and efficient search.

We have utilized two main approaches when searching for transposable ele-

ments, one mainly through the use of the HMMER suite of tools and one that

extends that toolkit and uses GeneWise to search the genome with the HMM. We

finally proposed a hybrid approach that offers the best aspects of both techniques.

64

CHAPTER 4

CONCLUSION

4.1 Overview

In this thesis, we have shown that verification and validation of simulation

models is both meaningful and vital to the confidence in a simulation. This has

been shown through the two case studies presented. We have also shown and

utilized novel and efficient approaches to locate transposable elements within a

genome. We elaborate on our conclusions in the following sections.

4.2 Verification and Validation of Agent-based and Equation-based Simulations

Part one of this work centered around the verification and validation of agent-

based and equation-based simulation models. We performed an in-depth study of

an agent-based model, namely utilizing techniques such as docking and visualiza-

tion to increase confidence in the model in a cost-effective manner. We applied

multiple subjective and quantitative verification and validation techniques to the

model and summarized our results. We did the same for an equation-based model,

which we also ported to another language for dramatic performance gains. The

study concludes with some generalized recommendations when performing ver-

ification and validation on simulation models, specifically how to use venerable

techniques on the recently popularized agent-based simulation models.

65

This work is limited in that we focused on a specific set of verification and val-

idation techniques. Increasing the number of techniques used would help increase

confidence. Further, the amount of quantitative techniques that we used is rather

small. Performing tests that add more statistical significance to our models would

be valuable. Finally, the first case study is limited in that the simulation data has

not been fully docked with real-world data. As such, docking the NOM Model

against the AlphaStep model is only as valuable as the AlphaStep model is accu-

rate. To this point, various iterations of this work have been presented and pub-

lished in the proceedings of three peer-reviewed, national conferences [44, 46, 87].

4.2.1 Future Work

Although we have performed a good deal of work, there is still a lot of relevant

work to be performed. First, a more in-depth survey of verification and validation

techniques, similar to Balci’s [6] work should be performed with an agent-based

modeling flair. This would further increase the confidence of the results produced

by such techniques. It would also offer insight as to which techniques would be

valuable that we have overlooked. Second, more rigorous quantitative techniques

need to be used. Difficulties in porting the second case study to C++ took longer

than expected, so we were not able to perform as many statistical tests as we

had hoped. In general, more statistical testing for both case studies would help

increase confidence. Third, it has been suggested by Macal [52], among others,

that “invalidating” simulation models can be valuable to researchers. They men-

tion that this could eliminate some of the “validation bias.” Finally, developing a

more general and formalized process model to perform verification and validation

on simulation models would be important. Techniques such as this would help

66

researchers tremendously.

4.3 Bioinformatics Computing: Identifying and Analyzing Transposable Ele-

ments in the Aedes aegypti Genome

Part two of this thesis relied on some of the well-known and active research

areas in bioinformatics. We focused on identifying transposable elements within

the newly released Aedes aegypti genome through the use and design of some

innovative approaches. Our work utilized some of the popular tools in the field,

most namely BLAST, but also made good use of lesser used tools and techniques,

such as GeneWise and HMMs. We created a novel process model to discovering

transposable elements and helped biologists automate steps in the process through

the use of scripts. Our efforts have helped us to discover over one-hundred and

fifty possible transposable elements within several of the families. We have done

so in a timely manner and have aided the research in this area through our novel

approaches.

The limitations of this work are largely limited to simply proposing the hy-

brid approach to finding transposable elements. While we did complete the first

approach for the P elements and the second for five families of transposons, we

did not tie the two together and perform the hybrid approach. Additionally, this

study was rather limited in the amount of time available for our testing. We chose

to use GeneWise for the core of our second and more thorough approach, which

sacrificed performance, but produced more intelligible results.

67

4.3.1 Future Work

In the future, it would be valuable to fully follow the hybrid approach for the

families of transposable elements presented. We could use this to compare with

the results obtained from the other two approaches. Automating more portions

of all the approaches presented would also be useful. Additionally, a comparison

study between transposable elements that have been found in the Anopheles gam-

biae mosquito and those identified in the Aedes aegypti mosquito would help us

understand the inherent differences between the two genomes, as well as some of

the evolutionary characteristics.

68

APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIAL

A.1 Case Study I

The NOM cluster is made up of eight simulation machines, a firewall, and an

Oracle database. Figure A.1 shows the setup of the machines, while Figure A.2

shows the abstract view. The main interface to the cluster and the simulations is

through the web. Figure A.3 shows the web page where users can enter data for

the simulation. Additionally, users can view simulation results and reports online.

Figure A.4 shows a sample report that is dynamically updated as the simulation

runs. Further information on the NOM project is available [2, 37, 39, 85, 86].

69

Figure A.1. NOM Cluster of Machines. We have eight simulation
machines, a web server, a firewall, and two database machines.

70

Figure A.2. Abstract Layout of the NOM Cluster (from Huang [38]).

Users have the ability to run one of four different simulation types, all of which

are based on the same general conceptual model. There simulation types can be

grouped into No-flow and Flow divisions or Sorption and Reaction divisions. Flow

refers to the molecules having the ability to flow into and out of the system as it

runs, while No-flow refers to a batch space model, meaning one where molecules

cannot enter or leave the system as it runs. Flow experiments are sometimes

called column experiments, as the molecules are present on a cylinder, with liquid

flowing “down a column.” Figure A.5 shows a column experiment being performed

in the laboratory at the Environmental Molecular Science Institute at Notre Dame.

The Sorption implementation refers to molecules having the ability to adsorp or

desorp to the surface or to one another. This implementation is more interested on

the physical characteristics and reactions of NOM. The Reaction implementation

gives molecules the ability to undergo one of twelve chemical reactions, as shown

in Table 2.1. These implementations are contrasted with AlphaStep, which is

more of a No-flow Reaction implementation. The AlphaStep interface is shown in

Figure A.6.

71

Figure A.3. Interface to the NOM Simulator. Here, the user can enter
parameters for the chosen simulation. The entire simulator has a

web-based front-end, allowing users to submit and view simulations.

72

(a) Simulation after 1000 time steps

(b) Simulation after 2500 time steps

(c) Completed Simulation

Figure A.4. Real-time Graphs of the Simulation. Here, web-based
graphs (accessible through the NOM interface) are shown for a

particular simulation at three points during the same simulation run.
Panels (a) - (c) show the progression of the total number of molecules

in the system over the duration of the simulation run.

73

Figure A.5. Column Experiment. This image shows a Flow column
experiment being performed in the laboratory. We attempted to mimic

this in our models.

74

Figure A.6. AlphaStep Interface. Users can specify parameters for the
simulation and then view results in a tabular as well as graphical form.

75

A.2 Case Study II

This section shows some sample code from both the Matlab and C++ imple-

mentations of the second case study. The excerpt shown is the else statement for

a loop that does most of the heavy calculations in one of the functions. We first

show the Matlab implementation that we were provided with in Section A.2.1 and

then the C++ implementation we developed in Section A.2.2. In total, the Matlab

implementation is around two-thousand lines long and the C++ implementation

is around three-thousand lines long.

76

A.2.1 Matlab Implementation Sample Code

Below is a small section of code from the Matlab implementation that does a

lot of the core calculations for the simulation.

else

if ~analyticg

if isempty(varargin)

j = 0;

for e = eye(nv),

% When the ’for’ statement is used with an expression,

% the columns of the expression are stored one at a time

% in the variable and then the following statements, up

% to the END, are executed. Thus, the next line takes

% the first column of the identity matrix. Then the

%second, third... until n is reached.

xd = x + delta*e;

[Fd] = feval(FUN,xd,points);

j = j + 1;

% The matrix below stores the differenced jacobian. The

% matrix will be updated below.

grad(:,j) = Fd - f0;

end;

%Uncover the commands below to check the performance

%of the gradient matrix.

rcond1=rcond(grad);

else

grad = (feval(FUN,x*ones(1,nv)+tvec,points,varargin{:})-

f0*ones(1,nv))/delta;

end

else % use analytic gradient

grad=feval(gradfun,x,points,varargin{:});

77

end

if isreal(grad)

if rcond(grad)<1e-8;

grad=grad+tvec;

end

dx0=-grad\f0;

randomize=0;

else

if(verbose) ,disp(’gradient imaginary’),end

randomize=1;

end

end

78

A.2.2 C++ Implementation Sample Code

Below is a small section of code from the C++ implementation that performs

the same calculations as the Matlab implementation that was shown previously

in Section A.2.1.

else {

if(!analyticg) {

j=0;

for(int i=0; i<nv; i++) {

for(int l=0; l<nv; l++)

xd[l]=x[l]+delta_csim*e[l][i];

Fd=projectioncommitedits(xd,points);

j++;

for(int m=0;m<nv;m++) {

grad[m][j-1]=Fd[m]-f0[m];

}

} //end for

rcond1=1.0 / (norm1(grad) * norm1(inv(grad)));

} //end if

else { //not used

proj=projectioncommitedits(x,points);

for(int d=0;d<proj.size();d++)

grad[d][0]=proj[d];

}

if(isreal) { //not used

if((1.0/(norm1(grad)*norm1(inv(grad)))).real()<(pow(10.0,-8.0))) {

for(int v=0;v<nv;v++)

for(int w=0;w<nv;w++)

grad[v][w]+=tvec[v][w];

}

79

grad=inv(grad);

for(int aww=0;aww<nv;aww++)

dx0[aww]=0;

for(int u=0;u<nv;u++) //multiply grad*f0

for(int y=0;y<nv;y++)

dx0[u]+=grad[u][y]*f0[y];

for(int u=0;u<nv;u++) { //multiply d0*-1

dx0[u]*=-1;

}

randomize=0;

} //end if(isreal(grad))

else {

if(verbose)

fileOut << "gradient imaginary" << endl;

randomize=1;

}

} //end else

80

APPENDIX B

CHAPTER 3 SUPPLEMENTARY MATERIAL

B.1 Annotated mariner Transposon

This section shows an annotated mariner transposon, as submitted by Robert-

son [70].

DEFINITION Anopheles gambiae clone Ag8 mariner transposase pseudogene,

complete cds.

FEATURES Location/Qualifiers

source 1..1492

/organism="Anopheles gambiae"

/mol_type="genomic DNA"

/db_xref="taxon:7165"

/clone="Ag8"

source 70..1365

/organism="Anopheles gambiae"

/mol_type="genomic DNA"

/db_xref="taxon:7165"

/transposon="mariner transposon"

misc_feature <1..69

/note="flanking DNA"

misc_feature 70..71

/note="possible induced direct repeat"

repeat_region 72..98

81

/note="left inverted terminal repeat"

CDS 251..1293

/note="submitter-supplied

translation=ME-KEFRVLIKYCFLKRKNTVEAKTWLDNEFPD-PGKS-IIDW

YAKFKRGEMSTEDGERSGRPKEVVTDENIKKIHKM-LNREMKLIEIAEALKISKERV

GHIIHQYLDMQKLCAKWVPRELTFDQKHQRVDDSERCLPLLTRNTPEFLRRNVTMDE

TWLHHYTPESNRQSAQWTANGEP-PKRGKTQKSAGKVMTSVFWDANGIIFIDYLEKG

KTITSDYYMALLERLKVEIAAKRPHMKKKKVLFDQDNAPCHKSLRTMAKIHELGFEL

LPHPPYSPDLASSDFFLFSDLKRMLAGTKFD&NEEVVAETEAYFEAKPKEYYQKGIK

KLEGRYNRCIALEGNYVE; Conceptual translation requires

introduction of frameshifts (-) and stop codons (&)"

/pseudo

/codon_start=1

/product="mariner transposase"

repeat_region 1337..1363

/note="right inverted terminal repeat"

misc_feature 1364..1365

/note="possible induced direct repeat"

misc_feature 1366..>1492

/note="flanking DNA"

ORIGIN

1 cagtgacagc gtttaatcac cacacagccg agagatcaac acagctaacg aacgctccaa

61 agtgaagcct aacaggttgg ctgataagtc cccggtctga cacatagatg gcgctgctag

121 tattaaatgc atattatttt tatatagtac caaccttcaa atgattcgtg tcaaaatttg

181 acgtctgtat gtcaattagt ttgtgagaca gagcgtcttc tgtcaagcaa cttttgttat

241 tgtgaaaaaa atggaaaaaa aaggaatttc gtgttttgat aaaatactgt tttctgaaga

301 gaaaaaatac agtggaagca aaaacttggc ttgataatga gtttccggac tcccagggaa

361 atcaaataat tgattggtat gcaaaattca agcgtggtga aatgagcacg gaggacggtg

421 aacgcagtgg acgcccgaaa gaggtggtta ccgacgaaaa cataaaaaaa atccacaaaa

481 tgtcaaaatc attgaaccgt gaaatgaagt tgatcgagat agcagaggcc ttaaagatat

82

541 caaaggaacg tgttggtcat atcattcatc aatatttgga tatgcagaag ctctgtgcaa

601 aatgggtgcc gcgcgagctc acatttgacc aaaaacacca acgtgttgat gattctgagc

661 ggtgtttgcc gctgttaact cgtaatacac ccgagttttt gcgtcgaaat gtgacaatgg

721 atgaaacatg gctccatcac tacactcctg agtccaatcg acagtcggct cagtggacag

781 cgaacggtga accaggttcc gaagcgtgga aagactcaaa agtccgctgg caaagtaatg

841 acctctgttt tttgggatgc gaatggaata atttttatcg attatcttga gaagggaaaa

901 accatcacca gtgactatta tatggcgtta ttggagcgtt tgaaggtcga aatcgcggca

961 aaacggcccc atatgaagaa gaaaaaagtg ttgttcgacc aagacaacgc accgtgccac

1021 aagtcattga gaacgatggc aaaaattcat gaattgggct tcgaattgct tccccaccca

1081 ccgtattctc cagatctggc ttccagcgac tttttcttgt tctcagacct caaaaggatg

1141 ctcgcaggga caaaatttga ctgaaatgaa gaggtggtcg ccgaaactga ggcctatttt

1201 gaggcaaaac cgaaggagta ctaccaaaaa ggtatcaaaa aattggaagg tcgttataat

1261 cgctgtatcg ctcttgaagg gaactatgtt gaataataaa aacgaatttc gacaaaaaaa

1321 tgtgtttttc tttgttagac cggggactta tcagccaacc tgttataacc aacacattaa

1381 taaccgcctg gccttacacc atgggctgtg gcaaagtaaa gtcaaaacag cggagtgtga

1441 agacccgtta tctaccttcc attgcctcga acaactcagt tcagagcagg tc

83

B.2 Hidden Markov Model

A major portion of the approaches we used and proposed utilized HMMs. We

described them in Chapter 3, but have provided an excerpt of the HMM we used

for pogo transposons in Figure B.1.

B.3 GeneWise

To submit a job to GeneWise, we provided the program with the HMM and

the FASTA format of the genome. GeneWise was installed on a high-performance

computing cluster at the University of Notre Dame, called Bunch-of-Boxes, or

BoB. This cluster consists of 256 Xeon computers and 128 64-bit Opteron com-

puters. The entire cluster has over 5 TB of storage. Even with this massive

computing power, GeneWise still took a few days to run because of the thorough-

ness in its search. It eventually gave us a lot of output data. A portion of this

output has been heavily modified to fit in this thesis and is shown in Section B.3.1.

84

H
M
M
E
R
2
.
0

N
A
M
E

p
o
g
o
a
a
b
i
g
1

L
E
N
G

6
4
4

A
L
P
H

A
m
i
n
o

R
F

n
o

C
S

n
o

M
A
P

y
e
s

C
O
M

g
c
g
_
h
m
m
b
u
i
l
d

-
q

-
F

-
n

p
o
g
o
a
a
b
i
g
1

/
a
f
s
/
n
d
.
e
d
u
/
u
s
e
r
1
8
/
j
h
o
g
a
n
1
/
p
o
g
o
a
a
/
h
m
m
e
r
b
u
i
l
d
_
4
6
.
h
m
m

/
a
f
s
/
n
d
.
e
d
u
/
u
s
e
r
1
8
/
j
h
o
g
a
n
1
/
p
o
g
o
a
a
/
p
o
g
o
a
a
b
i
g
1
.
m
s
f
{
*
}

C
O
M

g
c
g
_
h
m
m
c
a
l
i
b
r
a
t
e

-
q

/
a
f
s
/
n
d
.
e
d
u
/
u
s
e
r
1
8
/
j
h
o
g
a
n
1
/
p
o
g
o
a
a
/
h
m
m
e
r
b
u
i
l
d
_
4
6
.
h
m
m

N
S
E
Q

8

D
A
T
E

T
u
e

S
e
p

7

1
0
:
4
0
:
1
7

2
0
0
4

C
K
S
U
M

6
0
4
0

X
T

-
8
4
5
5

-
4

-
1
0
0
0

-
1
0
0
0

-
8
4
5
5

-
4

-
8
4
5
5

-
4

N
U
L
T

-
4

-
8
4
5
5

N
U
L
E

5
9
5

-
1
5
5
8

8
5

3
3
8

-
2
9
4

4
5
3

-
1
1
5
8

1
9
7

2
4
9

9
0
2

-
1
0
8
5

-
1
4
2

-
2
1

-
3
1
3

4
5

5
3
1

2
0
1

3
8
4

-
1
9
9
8

-
6
4
4

E
V
D

-
3
9
3
.
7
0
9
9
6
1

0
.
0
9
0
1
5
8

H
M
M

A

C

D

E

F

G

H

I

K

L

M

N

P

Q

R

S

T

V

W

Y

m
-
>
m

m
-
>
i

m
-
>
d

i
-
>
m

i
-
>
i

d
-
>
m

d
-
>
d

b
-
>
m

m
-
>
e

-
4
1
8

*

-
1
9
9
1

1

1
8
9
2

-
6
7
9

-
1
9
2
8

-
1
5
5
4

-
9
3
5

-
1
5
1
8

-
1
1
6
3

-
1
3
0

-
1
2
7
9

-
3
8
7

3
3
3
8

-
1
2
9
3

-
1
9
0
6

-
1
1
5
3

-
1
4
0
1

-
7
4
5

-
5
4
2

-
7
4

-
1
5
8
6

-
1
2
2
2

1
4
5

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
2
1

-
6
6
5
9

-
7
7
0
1

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

-
4
1
8

*

2

1
7
8
0

-
1
6
7
1

9
8

2
1
7
3

-
2
3
0
2

-
1
2
5
0

-
4
7
6

-
1
9
0
7

-
2
7
0

-
2
0
7
1

-
1
3
0
8

-
1
5
8

-
1
6
3
0

-
1
2
2

-
7
4
7

-
5
6
1

-
6
8
7

-
1
5
1
2

-
2
3
6
3

-
1
7
3
8

1
4
6

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
2
1

-
6
6
5
9

-
7
7
0
1

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

3

2
2
5
0

-
6
0
3

-
1
7
5
0

-
1
6
5
9

-
2
4
7
0

-
8
6
2

-
1
5
6
3

-
2
1
2
5

-
1
6
2
7

-
2
4
1
7

-
1
5
9
2

-
1
0
9
9

-
1
5
5
4

-
1
4
1
3

-
1
7
7
4

2
2
1
9

-
3
4
8

-
1
3
4
8

-
2
7
0
8

-
2
3
8
5

1
4
7

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
2
1

-
6
6
5
9

-
7
7
0
1

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

4

-
6
0
3

-
1
5
8
4

-
5
4
1

-
1
9
1

-
2
2
9
5

-
1
3
9
4

-
3
2
3

-
1
9
7
6

2
2
1
6

-
1
9
8
9

-
1
1
9
4

-
3
6
0

-
1
6
6
7

6
2

1
2
9

1
8
1
7

-
6
3
5

-
1
5
6
0

-
2
1
2
5

-
1
6
3
0

1
4
8

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
2
1

-
6
6
5
9

-
7
7
0
1

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

5

-
6
3
9

-
1
0
6
0

-
1
0
9
5

-
7
3
9

-
1
1
5
4

-
1
6
9
2

-
6
8
4

-
1
9
8

-
3
4
4

-
7
5
9

-
3
1
3

-
8
2
7

-
1
9
1
3

2
4
8
4

-
5
6
6

-
8
6
7

-
6
5
9

2
0
1
1

-
1
6
2
3

-
1
1
3
6

1
4
9

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
2
1

-
6
6
5
9

-
7
7
0
1

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

6

1
3
4
9

-
1
3
8
9

1
8
0
0

-
2
3
6

-
1
6
8
4

-
1
5
2
0

-
5
4
4

-
1
2
0
1

-
3
6
5

-
1
4
4
4

2
7
7
8

-
4
5
8

-
1
7
6
9

-
2
3
5

-
8
0
8

-
6
4
5

-
6
1
0

-
9
6
6

-
1
9
4
0

-
1
4
0
3

1
5
0

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
1
6

-
7
1
0
1

-
8
1
4
3

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

7

3
4
3
6

-
1
4
6
4

-
2
8
3
5

-
3
0
2
7

-
3
2
7
6

-
1
7
1
8

-
2
7
2
4

-
2
8
2
6

-
3
0
1
5

-
3
2
4
5

-
2
6
5
0

-
2
2
2
6

-
2
4
3
9

-
2
7
8
6

-
2
9
3
2

-
1
2
0
8

-
1
3
7
8

-
2
1
7
2

-
3
3
9
6

-
3
3
0
8

1
5
1

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
1
6

-
7
1
0
1

-
8
1
4
3

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

8

1
8
9
9

-
9
3
6

-
2
3
8
7

-
2
4
0
1

-
3
0
7
5

-
1
1
9
3

-
2
1
9
9

-
2
7
8
3

-
2
3
7
6

-
3
0
6
6

-
2
2
0
7

-
1
6
0
5

-
1
9
3
2

-
2
0
9
9

-
2
4
2
9

2
8
1
1

-
7
2
6

-
1
8
5
0

-
3
3
0
5

-
3
0
4
7

1
5
2

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
1
6

-
7
1
0
1

-
8
1
4
3

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

9

-
1
2
6
1

-
1
8
9
4

-
1
7
3
3

-
1
1
1
3

-
2
1
6
7

-
2
2
5
4

-
9
2
1

-
1
6
5
3

2
2
7
0

-
1
8
0
2

3
4
0
1

-
1
2
0
9

-
2
3
8
8

-
6
0
1

-
3
5
2

-
1
3
5
6

1
3
2
3

-
1
4
7
2

-
2
2
6
6

-
1
8
6
6

1
5
3

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
1
0

-
7
7
1
2

-
8
7
5
4

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

1
0

9
7
3

2
7
0
2

-
1
4
0
7

1
1
1
9

-
1
3
5
9

7
8
1

-
8
3
0

-
9
2
7

-
7
6
3

6
1
5

-
4
9
4

-
9
9
8

-
2
0
6
5

-
6
5
0

-
1
1
0
0

-
9
3
4

-
7
2
2

-
7
4
9

-
1
7
0
4

-
1
2
6
1

1
5
4

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
1
0

-
7
7
1
2

-
8
7
5
4

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

1
1

-
9
3
3

-
1
8
5
9

-
1
0
5
9

-
5
0
9

-
2
0
0
8

-
2
0
0
5

-
6
9
5

-
1
6
4
2

1
0
2
1

1
6
2

2
7
8
6

1
1
9
9

8
5
1

-
3
3
5

-
8
1
4

6
7
2

-
8
7
3

-
1
3
8
8

-
2
1
6
4

-
1
6
1
7

1
5
5

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
8

-
8
1
3
0

-
9
1
7
2

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

1
2

-
9
2
5

-
1
9
0
6

-
1
0
1
7

-
4
7
4

-
2
0
8
7

4
3
0

-
6
8
7

-
1
7
3
0

1
0
5
7

1
0
4

-
1
0
6
7

1
1
9
0

-
2
0
7
9

-
3
1
3

-
8
1
6

1
4
2
2

-
8
7
0

6
3
3

-
2
2
2
0

-
1
6
5
8

1
5
6

-

-
1
4
9

-
5
0
0

2
3
3

4
3

-
3
8
1

3
9
9

1
0
6

-
6
2
6

2
1
0

-
4
6
6

-
7
2
0

2
7
5

3
9
4

4
5

9
6

3
5
9

1
1
7

-
3
6
9

-
2
9
4

-
2
4
9

-

-
8

-
8
1
3
0

-
9
1
7
2

-
8
9
4

-
1
1
1
5

-
7
0
1

-
1
3
7
8

*

*

Figure B.1. pogo Hidden Markov Model. This figure shows a portion of
the HMM that was generated by the HMMER suite of tools. Each

letter in the top row of the matrix refers to an amino acid.

85

B.3.1 GeneWise Sample Output

Wise2 - database searching mode

Program: genewisedb version: \$Name: wise2-2-0 \$ released: unreleased

This program is freely distributed under a Gnu Public License.

See -version for more info on copyright

Bugs and credits to Ewan Birney <birney@sanger.ac.uk>

Algorithm type: GeneWise

Search algorithm used: 623

Implementation: Single Threaded processor (serial)

Search mode: Single protein vs genomic db

Protein info from: /home/biol/collins/jhogan1/hmms13106/paa.hmm

Dna info from: /home/biol/collins/jhogan1/ncbi_ae_aegypti_genome.fasta

Start/End (protein) default

Gene Paras: human.gf

Codon Table: codon.table

Subs error: 1e-05

Indel error: 1e-05

Model splice? model

Model codon bias? flat

Model intron bias? tied

Null model syn

Alignment Alg 623L

#

#WARNING!

#

Your alignment algorithm is different from your search algorithm.

This is probably quite sensible but will lead to differing scores.

86

Use the search score as an indicator of the significance of the match

Read the docs for more information

#

#High Score list

#Protein ID DNA Str ID Bits Evalue

--

Protein paa DNA [-] gi|78157278|gb|AAGE02008433.1| 508.63 5.3e-13

Protein paa DNA [+] gi|78152614|gb|AAGE02012918.1| 469.58 3.8e-12

Protein paa DNA [-] gi|78152125|gb|AAGE02013407.1| 426.44 3.4e-11

Protein paa DNA [-] gi|78153301|gb|AAGE02012231.1| 410.12 7.8e-11

Protein paa DNA [-] gi|78162597|gb|AAGE02003196.1| 373.06 5.1e-10

Protein paa DNA [-] gi|78144592|gb|AAGE02020830.1| 371.84 5.4e-10

...continued...

Protein paa DNA [-] gi|78150404|gb|AAGE02015117.1| 30.13 0.018

Protein paa DNA [+] gi|78132436|gb|AAGE02032986.1| 25.09 0.023

Protein paa DNA [-] gi|78156124|gb|AAGE02009496.1| 21.85 0.028

#Histogram

score obs exp (one = represents 128 sequences)

----- --- ---

-285 1 931|= *

-284 3 983|= *

-283 16 1032|= *

-282 49 1079|= *

-281 129 1123|== *

-280 503 1163|==== *

-279 1863 1199|=========*=====

-278 3633 1232|=========*===================

-277 5968 1261|=========*=====================================

87

-276 7548 1285|==========*==

-275 7363 1306|==========*===

-274 5222 1322|==========*==============================

-273 3441 1335|==========*================

-272 2144 1344|==========*======

-271 1442 1349|==========*=

-270 827 1350|======= *

-269 762 1348|====== *

-268 721 1342|====== *

-267 496 1334|==== *

-266 405 1323|==== *

-265 462 1309|==== *

-264 413 1292|==== *

-263 426 1274|==== *

-262 422 1253|==== *

-261 401 1231|==== *

-260 412 1207|==== *

-259 430 1182|==== *

-258 405 1156|==== *

-257 464 1128|==== *

-256 430 1100|==== *

-255 428 1071|==== *

-254 403 1042|==== *

-253 434 1012|==== *

-252 435 982|==== *

-251 433 952|==== *

-250 411 922|==== *

-249 415 893|==== *

-248 404 863|==== *

...continued...

-153 0 9|*

88

-152 1 9|*

-151 0 8|*

>-150 104 -|=

% Statistical details of theoretical EVD fit:

mu = -269.6246

lambda = 0.0507

chi-sq statistic = 89823.1562

P(chi-square) = 0

#Alignments

>Results for paa vs gi|78157278|gb|AAGE02008433.1| (reverse) [0]

genewisedb output

Score 494.73 bits over entire alignment.

This will be different from per-alignment scores. See manual for details

For computer parsable output, try genewisedb -help or read the manual

Scores as bits over a synchronous coding model

Alignment 1 Score 494.73 (Bits)

paa 1 MKYCKF-CRKVVA----------VKLIHVPKCAIKRKLWEQSLGCSLGE

++CK+ + VV VK+ P +++ W G+S E

CNWCKMVKCAVVSCSNYEGNKLKVKFFWFPNDEHRKSAWLRACGRSPLE

gi|78157278|gb-54936 tattaagatgggataatggaacagattttcaggccatgtcagtgaaccg

gaggattagcttgggaaagaatatattgtcaaaagaccgtgcggggcta

ctgtaggatggttcctcagtggaagccgtcttgtaaagggagtcgctag

paa 39 NSK--ICDTHFKASQWKSAE--KGQILKRRRLN-DAVPSKESEPEPEIV

89

++ IC HF + +++ + + + ++RL A+PS

SQHFKICSEHFCDEDYRLKDILLNTEWSKKRLKPGASPSL---------

gi|78157278|gb-54789 tcctaattgcttgggtatagactaagttaaccacggtctt

caatatgcaatgaaaagtaatttacagcaagtacgcccct

ggtcaatcatttcgccaaatttattggaaaggaacttaga

...continued...

paa 541 FSQLRQKAHGGVYDHPSPLQFKYRIRKYILGKSPEILKNKS

F+++R+K GG++DHP+ L F YR+R+ ILG + + +

FGTIRSK--GGLHDHPTALEFTYRLRNSILGNIIDYFILIK

gi|78157278|gb-49904 tgaacta ggtcgccagtgtatatcaaatgaaagttacaa

tgctgca ggtaaaccctatcagtgagttgattaatttta

tgttgaa aagcctccagactcagaccaatttatctatta

//

Gene 1

Gene 54936 49788

Exon 54936 54647 phase 0

Exon 51231 49788 phase 2

//

>Results for paa vs gi|78152614|gb|AAGE02012918.1| (forward) [1]

genewisedb output

Score 452.70 bits over entire alignment.

This will be different from per-alignment scores. See manual for details

For computer parsable output, try genewisedb -help or read the manual

Scores as bits over a synchronous coding model

Alignment 1 Score 452.70 (Bits)

90

paa 1 MKYCKFCRKVVAVKLIHVPKCAIKRKLWEQSLGCSLGENSKICDTHFK-

+ + + K V+ + I+++ K++ ++ +++L++ +I++T ++

SLRPETSTKTVNICNINSDVSELKKENIGYITTDQLAQFLEIFKTNYSC

gi|78152614|gb150530 atacgaaaaagaataaatggtgtaagaagtaaagctgcttgataaattt

gtgcacgcactatgatacatcataaaatgatccaatcattattacaacg

cgatatctagattttcttttcaaagacattaactggaataatcaattat

paa 49 ---------ASQWKSAE-KGQIL--KRRRLN-DAVPSKESEPEPE-IVK

+++ + KG+++ K RRL D +++ E + +

YKKPLIPETKYEMEIVLKKGESFHFKPRRLSLDQKQKV--ELKIKELLE

gi|78152614|gb150677 taactacgaatgagagtaaggttctaccatttgcacag gcaaagctg

aaacttcacaaatatttaagactatacggtctaaaaat atataatta

tgacattatatagaatggataatttattaatataaaat atataatga

...continued...

paa 538 ENFFSQLRQKAHGGVYDHPSPLQFKYRIRKYILGKSPEILKNKS

E+FF+++R+K GG++DHP+ L F YR+R+ ILG + + +

ERFFGTIRSK--GGLHDHPTALEFTYRLRNSILGNIIDYFILFK

gi|78152614|gb162600 gcttgaacta ggtcgccagtgtatatcaaatgaaagttacta

agttgctgca ggtaaaccctatcagtgagttgattaatttta

gcctgttgaa aagcctccagactcagactaatttatctatta

B.4 extract Perl Script

We utilized many Perl and shell scripts to facilitate our search for transposable

elements. A specifically useful script was our extract script. We wrote it to quickly

extract pertinent information from the very large NCBI Aedes aegypti genome file.

We provided it with the accession number, the start and end of the sequence, the

91

orientation, and the desired name and it pulled out the sequence from the NCBI

file. If the orientation of the sequence was reverse (-1), it put the sequence in the

forward orientation. Section B.4.1 shows the extract Perl script code. Section B.4.2

shows how we ran the extract script. The user is able to specify arguments and

can also run the script repeatedly through shell scripts. Section B.4.3 shows an

output file produced by the extract script. It first gives the label specified by the

user and then the sequence itself, in the forward direction.

B.4.1 extract Perl Script Implementation

##read from command line

my $accession=$ARGV[0];

my $start=$ARGV[1];

my $end=$ARGV[2];

my $orientation=$ARGV[3];

my $name=$ARGV[4];

my $seq="";

my $temp="";

open(INPUT,"</Network/Servers/bio8.bio.nd.edu/Volumes/class_data/bios60579/

data/genome/aaegypti/ncbi_aedes_aegypti_genome.fasta");

flock(INPUT,$LOCK);

while($line=<INPUT>) {

if($line =~ />gi\|[0-9]*\|gb\|([A-Za-z0-9\.]*)\|./) {

if($1 eq $accession) {

$info=$line;

while($line=<INPUT>) {

if($line =~ /[ATGCatgc]+/) { $seq=$seq.$line; }

else { cleanup(); exit; }

92

}

}

}

}

flock(INPUT,$UNLOCK);

close(INPUT);

sub cleanup() {

if($start>$end) { $temp=$start; $start=$end; $end=$temp; }

$var=substr($seq,$start-1,$end-$start+1);

if($orientation=="-1") { invrep(); }

open(OUTDAT, ">$accession_$name.txt");

flock(OUTDAT,$LOCK);

print OUTDAT "\>$name\n\n";

print OUTDAT "$var\n";

flock(OUTDAT,$UNLOCK);

close(OUTDAT);

}

sub invrep() {

$rev=reverse $var;

$rev=~tr/GTACgtac/CATGcatg/;

$var=$rev;

}

93

B.4.2 Sample extract Submission

perl extract.pl AAGE02001079.1 33524 34466 1 Mariner_Ele2

B.4.3 Sample extract Output File

>Mariner_Ele27

GATGATTGACGAAGCTTCGGTCAACTCGCTTGATCAACAAGCGAATCGCATCTTCTATT

CATTCACCCAGCTGTATGTGAAAGTCCCAAAAGCTTGAATAACACATTTGTAAATCGTAAAATGAGAAGG

AAAGGAAATTTATGATTTATGATATTTTTTTTGCAATGAATGACTACTACAAATGTAATACACAACAAGA

AAGAAATATGTACAAGAAATGCAAATTGCAATAGAATTAAAATAAAATAAATGATTATATCAGTCTTCAC

CATCATGTGGTAAAAATCTATACTGTTATTTATTCTGTGTTGTTTGTCCTTCATTTAGAATTGGAACAAA

CTTTTGCTCATATTGTGGCGCTCCTTGTGGACGGATTTGGAAGTTCTTGGCGCCCACGTGTCGGGAATTT

TGTCAGCTTCACGTATGTATTTTTGACATTCCGCAAATCGACTGTACTTTGTAAACAATCAACATGGAAG

CCGAAAGAAGGGGAAAAATTGTGCACAGTTTTTTGGAAAATCCATTGTGGTCTGCATCTAGGCTGAACTT

TCCCAGAAATACCGTATGGCGCGTTATCAAACGGTATAAGGAAACATTGACGACGATTCGGAAGCCTCAA

GCCAATCGTCGGAGTGGAACTGTCGACCGGAAACTGCGTGGTAGGATTTTGAAGACGATTAAGAGGAAAC

CCAACCGTGATTTCGCCAAAAAATTCGGTGCTGCCCATAGTACCGTGAGGAGAACTCGACTCCGGGAAGG

AATCAAGTCGTATCGAGCTAGCCAACAGCCAAATCGGACCATAAAACAGAATAGTGTGGCCAAAATCCGT

GCTCGAAAGCTATACGACCAGGTGCTGACCAAGTTCGACGGGTGGCTTCTGATGGACGATGAAACCTATG

TCAAGGCTGACTTCGGGCAAATCCCAGGTCA

94

REFERENCES

1. AlphaStep. http://www.nd.edu/˜nom/software/software.html.

2. L. Arthurs, P. Maurice, X. Xiang, R. Kennedy, and G. Madey. Agent-based
stochastic simulation of natural organic matter adsorption and mobility in
soils. In Eleventh International Symposium on Water Rock Interaction, June-
July 2004.

3. R. Axtell, R. Axelrod, J. M. Epstein, and M. D. Cohen. Aligning simulation
models: A case study and results. Computational and Mathematical Organi-
zation Theory, 1:123–141, 1996.

4. O. Balci. Validation, verification, and testing techniques throughout the life
cycle of a simulation study. In Proceedings of the 1994 Winter Simulation
Conference, pages 215–220, 1994.

5. O. Balci. Handbook of Simulation: Principles, Methodology, Advances, Ap-
plications, and Practice, chapter Verification, Validation, and Testing. John
Wiley & Sons, New York, NY, 1998.

6. O. Balci. Verification, validation, and accreditation. In Proceedings of the
1998 Winter Simulation Conference, pages 41–48, 1998.

7. O. Balci. A methodology for certification of modeling and simulation applica-
tions. ACM Transactions on Modeling and Computer Simulation, 11(4):352–
377, October 2001.

8. J. Banks and R. R. Gibson. Don’t simulate when... 10 rules for determining
when simulation is not appropriate. IEE Solutions, September 1997.

9. J. Banks and J. S. C. II. Introduction to discrete-event simulation. In Pro-
ceedings of the 1986 Winter Simulation Conference, pages 17–23, 1986.

10. J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol. Discrete-Event System
Simulation. Pearson Education, Inc., Upper Saddle River, NJ, fourth edition,
2005.

95

11. Z. Bao and S. Eddy. Automated de novo identification of repeat sequence
families in sequenced genomes. Genome Research, 12(8):1269–1276, August
2002.

12. Bioinformatics. http://en.wikipedia.org/wiki/bioinformatics.

13. B. Bioinformatics. http://biotech.icmb.utexas.edu/pages/bioinfo.html.

14. BioPerl. http://www.bioperl.org/wiki/main page.

15. BLAST. http://www.ncbi.nlm.nih.gov/blast.

16. G. E. Box. Robustness in the strategy of scientific model building. In
R. Launer and G. Wilkinson, editors, Robustness in Statistics: Proceedings
of a Workshop, New York, NY, 1979. Academic Press.

17. Broad Institute Aedes aegypti FAQ.
http://www.broad.mit.edu/annotation/disease vector/aedes aegypti/faq.html.

18. C++. http://www.cplusplus.com/.

19. S. Cabaniss. Modeling and stochastic simulation of nom reactions. available
at http://www.nd.edu/˜nom/Papers/WorkingPapers.pdf, 2002.

20. S. E. Cabaniss, G. Madey, L. Leff, P. A. Maurice, and R. Wetzel. A stochastic
model for the synthesis and degradation of natural organic matter. part i.
data structures and reaction kinetics. Biogeochemistry, 76:319–347, 2005.

21. L. Cary, M. Goebel, B. Corsaro, H. Wang, E. Rosen, and M. Fraser. Trans-
poson mutagenesis of baculoviruses: analysis of trichoplusia ni transposon
ifp2 insertions within the fp-locus of nuclear polyhedrosis viruses. Virology,
172(1):156–169, September 1989.

22. T. Cickovski, J. Hogan, and R. C. Kennedy. Analysis of P
element transposon sequences in Aedes aegypti. available at
http://www.nd.edu/ gmadey/bio05/Student Papers/CickovskiHoganKennedy2.pdf,
December 2005.

23. Clustal X. http://bips.u-strasbg.fr/en/documentation/clustalx/.

24. T. F. Cosimano and M. T. Gapen. Optimal fiscal and mon-
etary policy with nominal and indexed debt. available at
http://www.nd.edu/˜tcosiman/Optimapolicy.pdf, September 2004.

25. T. F. Cosimano and M. T. Gapen. Solving ramsey problems with nonlinear
projection methods. Studies in Nonlinear Dynamics & Econometrics, 9, 2005.

96

26. M. Coy and Z. Tu. Gambol and tc1 are two distinct families of dd34e trans-
posons: analysis of the Anopheles gambiae genome expands the diversity of
the is630-tc1-mariner superfamily. Insect Molecular Biology, 14(5):537–546,
2005.

27. D. A. Diener, H. R. Hicks, and L. L. Long. Comparison of models: Ex post
facto validation/acceptance? In Proceedings of the 1992 Winter Simulation
Conference, pages 1095–1103, 1992.

28. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analy-
sis: Probabilistic models of proteins and nucleic acids. Cambridge University
Press, Cambridge, United Kingdom, 2003.

29. S. R. Eddy. Profile hidden markov models. Bioinformatics Review, 14(9):755–
763, 1998.

30. Ensembl. http://www.ensembl.org.

31. GeneWise. http://www.ebi.ac.uk/wise2/documentation.html.

32. V. Grimm. Visual debugging: A way of analyzing, understanding, and com-
municating bottom-up simulation models in ecology. Natural Resource Mod-
eling, 15(1):23–38, 2002.

33. GSL - GNU Scientific Library. http://www.gnu.org/software/gsl/.

34. I. Halachmi, A. Dzidic, J. Metz, L. Speelman, A. Dijkhuizen, and J. Kleijnen.
Validation of simulation model for robotic milking barn design. European
Journal of Operational Research, 134:677–688, 2001.

35. HMMER. http://hmmer.wustl.edu.

36. R. A. Holt, et al. The genome sequence of the malaria mosquito Anopheles
gambiae. Science, 298(5591), October 2002.

37. Y. Huang. Infrastructure, query optimization, data warehousing and data
mining for scientific simulation. Master’s thesis, University of Notre Dame,
September 2002.

38. Y. Huang and G. Madey. Autonomic web-based simulation. In Proceedings
of the 38th Annual Simulation Symposium, April 2005.

39. Y. Huang, X. Xiang, G. Madey, and S. E. Cabaniss. Agent-based scien-
tific simulation. IEEE Computing in Science and Engineering, pages 22–29,
January-February 2005.

40. J2EE. http://java.sun.com/j2ee/1.4.

97

41. Java. http://java.sun.com.

42. N. C. Jones and P. A. Pevzner. An Introduction to Bioinformatics Algorithms.
The MIT Press, Cambridge, MA, 2004.

43. K. Kaiser, J. W. Sentry, and D. J. Finnegan. Eukaryotic transposable elements
as tools to study gene structure and function. In D. J. Sherratt, editor, Mobile
Genetic Elements. Oxford University Press, 1995.

44. R. Kennedy, X. Xiang, G. Madey, and T. Cosimano. Verification and val-
idation of scientific and economic models. In The Agent 2005 Conference
on Generative Social Processes, Models, and Mechanisms. Argonne National
Laboratory and The University of Chicago, October 2005.

45. R. C. Kennedy and J. Hogan. Using perl scripts to help iden-
tify P element transposon sequences in Aedes aegypti. available at
http://www.nd.edu/ gmadey/bio05/Student Papers/Report.pdf, December
2005.

46. R. C. Kennedy, X. Xiang, T. F. Cosimano, L. A. Arthurs, P. A. Maurice,
and S. E. Cabaniss. Verification and validation of agent-based and equation-
based simulations: A comparison. In L. Yilmaz, editor, Proceedings of the
2006 Agent-Directed Simulation Symposium. The Society for Modeling and
Simulation International, April 2006.

47. J. P. Kleijnen. Statistical validation of simulation models. European Journal
of Operational Research, 87:21–34, 1995.

48. J. P. Kleijnen. Verification and validation of simulation models. European
Journal of Operational Research, 82:145–162, 1995.

49. LAPACK – Linear Algebra PACKage. http://www.netlib.org/lapack/.

50. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-
Hill, Boston, MA, third edition, 2000.

51. N. Lobo, A. Hua-Van, X. Li, B. Nolen, and J. M.J. Fraser. Germ line trans-
formation of the yellow fever mosquito, Aedes aegypti, mediated by transposi-
tional insertion of a piggyBac vector. Insect Molecular Biology, 11(2):133–139,
April 2002.

52. C. Macal and M. North. Validation of an agent-based model of deregulated
electric power markets. In Proceedings of the North American Computational
Social and Organization Science 2005 Conference, Notre Dame, IN, June 2005.

53. Matlab. http://www.mathworks.com/products/matlab/.

98

54. B. McClintock. The discovery and characterization of transposable elements:
The collected papers of Barbara McClintock. Garland Publishing, Inc., New
York, NY, 1987.

55. M. McClure. The complexities of genome analysis, the retroid agent perspec-
tive. Bioinformatics, 16(2):79–95, February 2000.

56. E. Mongin, C. Louis, R. A. Holt, E. Birney, and F. H. Collins. The anopheles
gambiae genome: an update. Trends in Parasitology, pages 49–52, February
2004.

57. D. M. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY, second edition, 2004.

58. T. Naylor, J. Balintfy, D. Burdick, and K. Chu. Computer Simulation Tech-
niques. John Wiley, New York, NY, 1966.

59. T. Naylor and J. Finger. Verification of computer simulation models. Man-
agement Science, 14:B92–B101, 1967.

60. NCBI: National Center for Biotechnology Information.
http://www.ncbi.nih.gov.

61. S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48:443–453, March 1970.

62. J. T. Oden, T. Belytschko, J. Fish, T. J. Hughes, C. Johnson, D. Keyes,
A. Laub, L. Petzold, D. Srolovitz, S. Yip, and J. Bass. Simulation-based
engineering science: Revolutionizing engineering science through simula-
tion. http://www.ticam.utexas.edu/events/SBES Final Report.pdf, February
2006. National Science Foundation Blue Ribbon Panel.

63. T. I. Ören. Concepts and criteria to assess acceptability of simulation studies:
A frame of reference. Communications of the ACM, 24(4):180–189, April 1981.

64. Perl. http://www.perl.org.

65. Phylogenetic tree. http://en.wikipedia.org/wiki/phylogenetic tree.

66. R. H. Plasterk, Z. Izsvàk, and Z. Ivics. Resident aliens: the tc1/mariner
superfamily of transposable elements. Trends in Genetics, 15(8), August 1999.

67. V. Pope and T. Davies. Testing and evaulating atmospheric climate models.
Computing in Science and Engineering, pages 64–69, 2002.

68. Ramsey problem. http://en.wikipedia.org/wiki/ramsey problem.

99

69. Repast. http://sourceforge.repast.net.

70. H. Robertson and D. Lampe. Recent horizontal transfer of a mariner trans-
posable element along between diptera and neuroptera. Molecular Biology and
Evolution, 12(5):850–862, 1995.

71. L. M. Rocha. From artificial life to semiotic agent
models: Review and research directions. available at
http://informatics.indiana.edu/rocha/ps/agent review.pdf, Los Alamos
National Laboratory Complex Systems Modeling Team, 1999.

72. G. Rubin and A. Spradling. Genetic transformation of drosophila with trans-
posable element vectors. Science, 218(4570):348–353, October 1982.

73. F. Sanger, S. Nicklen, and A. Coulson. Dna sequencing with chain-terminating
inhibitors. In Proceedings of the National Academy of Sciences of the United
States of America, volume 74, pages 5463–5467, December 1977.

74. R. G. Sargent. Some subjective validation methods using graphical displays
of data. In Proceedings of the 1996 Winter Simulation Conference, pages
345–351, 1996.

75. R. G. Sargent. Verification and validation of simulation models. In Proceedings
of the 1998 Winter Simulation Conference, pages 121–130, 1998.

76. R. G. Sargent. Some approaches and paradigms for verifying and validating
simulation models. In Proceedings of the 2001 Winter Simulation Conference,
pages 106–114, 2001.

77. A. Sarkar, R. Sengupta, J. Krzywinski, X. Wang, C. Roth, and F. Collins.
P elements are found in the genomes of nematoceran insects of the genus
Anopheles. Insect Biochemistry and Molecular Biology, 33(4):381–387, April
2003.

78. R. E. Shannon. Introduction to the art and science of simulation. In Proceed-
ings of the 1998 Winter Simulation Conference, pages 7–14, 1998.

79. J. A. Shapiro. The discovery and significance of mobile genetic elements.
In D. J. Sherratt, editor, Mobile Genetic Elements. Oxford University Press,
1995.

80. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

81. T. Tatusova and T. Madden. Blast 2 sequences, a new tool for comparing
protein nucleotide sequences. FEMS Microbiology Letters, 174(2):247–250,
May 1999.

100

82. VectorBase. http://www.vectorbase.org.

83. J. L. Weber and E. W. Myers. Human whole-genome shotgun sequencing.
Genome Research, 7:401–409, 1997.

84. World Health Organization. http://www.who.int/mediacentre/factsheets/fs100/en/.

85. X. Xiang. Agent-based scientific applications and collaboration using java.
Master’s thesis, University of Notre Dame, May 2003.

86. X. Xiang, Y. Huang, G. Madey, S. Cabaniss, L. Arthurs, and P. Maurice.
Modeling the evolution of natural organic matter in the environment with an
agent-based stochastic approach. Natural Resource Modeling, 19(1), 2006.

87. X. Xiang, R. Kennedy, G. Madey, and S. Cabaniss. Verification and validation
of agent-based scientific simulation models. In L. Yilmaz, editor, Proceedings
of the 2005 Agent-Directed Simulation Symposium, volume 37, pages 47–55.
The Society for Modeling and Simulation International, April 2005.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v1.0[2004/06/15]) provided by Sameer Vijay.

101

	Abstract
	DEDICATION
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	1.1 Overview
	1.2 Verification and Validation of Agent-based and Equation-based Simulations
	1.3 Bioinformatics Computing: Identifying Transposable Elements in the Aedes aegypti Genome
	1.4 Organization

	CHAPTER 2: VERIFICATION AND VALIDATION OF AGENT-BASED AND EQUATION-BASED SIMULATIONS
	2.1 Introduction
	2.2 Simulations
	2.2.1 Advantages and Disadvantages
	2.2.2 Building a Simulation Model
	2.2.2.1 Simulation Model Types

	2.2.3 Agent-based Simulations
	2.2.4 Equation-based Simulations

	2.3 Verification and Validation Process
	2.3.1 Verification and Validation Techniques
	2.3.1.1 Subjective Techniques
	2.3.1.2 Quantitative Techniques

	2.4 Case Study I: An Agent-based Scientific Model
	2.4.1 Conceptual Model
	2.4.2 Implementations
	2.4.3 Validation
	2.4.3.1 Subjective Analysis
	2.4.3.2 Quantitative Analysis

	2.4.4 Discussion

	2.5 Case Study II: An Equation-based Economic Model
	2.5.1 Conceptual Model
	2.5.2 Implementations
	2.5.2.1 Performance

	2.5.3 Validation
	2.5.3.1 Subjective Analysis
	2.5.3.2 Quantitative Analysis

	2.5.4 Discussion

	2.6 Conclusion

	CHAPTER 3: BIOINFORMATICS COMPUTING: IDENTIFYING TRANSPOSABLE ELEMENTS IN THE Aedes aegypti GENOME
	3.1 Introduction
	3.2 Biological Foundations
	3.3 Bioinformatics
	3.3.1 Research Areas
	3.3.2 Tools and Technologies

	3.4 Aedes aegypti
	3.4.1 Transposable elements

	3.5 Approach to Identifying Transposable Elements
	3.5.1 Typical Approach
	3.5.2 First Approach
	3.5.3 Second Approach
	3.5.4 Hybrid Approach: A Transposable Element Discovery Methodology

	3.6 Discussion
	3.7 Conclusion

	CHAPTER 4: CONCLUSION
	4.1 Overview
	4.2 Verification and Validation of Agent-based and Equation-based Simulations
	4.2.1 Future Work

	4.3 Bioinformatics Computing: Identifying and Analyzing Transposable Elements in the Aedes aegypti Genome
	4.3.1 Future Work

	APPENDIX A: CHAPTER 2 SUPPLEMENTARY MATERIAL
	A.1 Case Study I
	A.2 Case Study II
	A.2.1 Matlab Implementation Sample Code
	A.2.2 C++ Implementation Sample Code

	APPENDIX B: CHAPTER 3 SUPPLEMENTARY MATERIAL
	B.1 Annotated mariner Transposon
	B.2 Hidden Markov Model
	B.3 GeneWise
	B.3.1 GeneWise Sample Output

	B.4 extract Perl Script
	B.4.1 extract Perl Script Implementation
	B.4.2 Sample extract Submission
	B.4.3 Sample extract Output File

	REFERENCES

