A Stochastic Simulation of Natural Organic Matter and Microbes in the Environment

Xiaorong Xiang

Yingping Huang

Gregory Madey

Steve Cabaniss

(University of New Mexico)

Department of Computer Science and Engineering

University of Notre Dame

Sponsored by NSF/ITR-DEB

Objectives

- New approach for NOM modeling
 - Agent-based modeling
- E-Science on the Web
- Intelligent interface
- The NOM Collaboratory

Outline

- **■** Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **■** Future work

Introduction

- What is Natural Organic Matter (NOM)?
- Role of NOM in various science disciplines
 - Mobility and transport of pollutants
 - Availability of nutrients for microorganisms and plant communities
 - Affects quality of drinking water
- Need to understand the evolution and heterogeneous structure of NOM

Forest Service Bog [DOC] 7 MW 2200

Nelson Creek [DOC] 79 MW 900

Twomile Creek [DOC] 17 MW 1500

Previous models

- Two examples:
 - Daisy (S. Hansen, H. E. Jensen, and N. E. Nielsen
 1990-present): a soil plant atmosphere system
 model
 - StochSim (C. J. Morton-Firth 1998-present):
 Stochastic simulation of cell signaling pathways

Our model

- Agent-based modeling (Individual-based modeling)
 - Agent-based model
 - Reynolds (1987): Flocks, herds, and schools: A distributed behavioral model. *Computer Graphics*
 - Each molecule as an individual object with spatial properties
 - Bottom-up approach
 - Stochastic model
 - Trace changes of the system → Database and data mining technologies

Our model (cont.)

- Web-based simulation model
 - Serve as an example for E-Science
 - G. Fox (2002): E-science meets computational science and information technology. *Computing & Engineering*
 - R. M. Jakobovits, J. F. Brinkley, C. Rosse, and E. Weinberger (1998): Enabling clinicians, researchers, and eductors to build custom Web-based biomedical information system
 - Support the collaborations, data and information sharing between scientists
 - No installation, expensive computation resources needed by scientists

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **■** Future work

Modeling

- A complex system
 - Consists of a large number of objects
 - Molecules, Microbes
 - Heterogeneous properties
 - Individual behaviors
 - Interaction between each other
 - Objects behavior and interaction are stochastically determined by:
 - Attributes (intrinsic parameters)
 - Reactions rates
 - Environment condition (extrinsic parameters)
 - No central control
 - Emergent properties

Modeling (cont.)

- Agent Attributes
 - More specific than "percent carbon" but less detailed than a molecular connectivity map
 - Elemental composition
 - **■** (C, H, O, N, S, P)
 - Functional groups
 - (double bonds, ring structure, alcohols ...)
 - The origin of objects
 - spatial position in the system
 - Precursor type of molecule
 - Probability table of physical and chemical reactions
 - Molecule weight

Modeling (cont.)

- Agent Behaviors (reactions and processes):
 - Transport through soil pores by water (spatial mobility)
 - Adsorb onto or desorbed from mineral surfaces
 - Chemical reactions
 - Total 10 types in current model
 - First order
 - Second order
 - Stochastically determined
- Space:
 - 2-D grid

Modeling(cont.)

- Environmental parameters
 - Temperature
 - pH
 - Light intensity
 - Microbe density
 - Water flow rate
 - . . .

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **■** Future work

Core simulation engine

- Implementation
 - Swarm toolkit (Santa Fe Institute)
 - Java programming language (Sun JDK 1.4.1 01)
- GUI version
 - View the animation of molecules
 - Easy for debugging and modeling
- Web-based version

Core simulation engine (cont.)

- Read simulation parameter from the database (JDBC)
 - Environmental parameters (pH, temperature, light intensity, and so on)
 - Molecule types and distributions
- User defined time has been separated to a large number of equal size time steps
- Write relevant data into the database every time step (JDBC)
 - Trace the dynamic properties of individuals and the system over time

Visualizations — NOM molecules in solution and adsorption

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **■** Future work

Web-based model

- Distributed, Web-based scientific application model
- Based on Sun Java 2 Enterprise Edition (J2EE)
 - Standard HTML Forms / JSP
 - Java Servlets, Java Beans
 - JDBC Oracle
 - Oracle Database, Oracle Forms, and Reports
- Three parts:
 - Intelligent Web-based interface
 - Core simulation engine
 - Data analysis packages, Data mining technologies

Access NOM simulation from Web

Web-based interface

Example of Interface

Welcome to NOM Research Group!				Leilani Arthurs	
		(*Required field	ds)		
Molecule Name*	Make it available to public				
Atoms of the molecule Each field must be a non-negative integer. Default value is 0.	-	(Atom) H (Ato	m) N		
		(Atom) S (Ato	m) P		
Functional groups of the molecule Each field must be a non-negative integer. Default value is 0.	DoubleBond	Rings	Phenyl	Alcohols	Phenols 0
	Ethers 0	Esters 0	Ketones 0	Aldehydes 0	Acids 0
	Arylacids 0	Amines 0	RingN 0	Amides 0	Thioethers 0
	Thiols 0	Phosphoesters 0	HPhosphoesters 0	Phosphates 0	

Create New Molecule Type

Report example

Intelligent interface components

- Email notification
- Running time prediction
 - Static
 - number of molecules
 - number of time steps
 - Dynamic
 - current time step
 - current wall clock time

Intelligent interface components (cont.)

- Find similar simulations
 - Environment parameters
 - Molecule types and distributions
 - Retrieve the data sets from database
 - Points on a high dimension space
 - Euclidean distance
 - Ordered list
 - Review the simulation results or restart

Intelligent interface components (cont.)

- Automatic restarter
 - Save the state of each objects in the system to database every check point
 - Load the state to the core simulation engine

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- **The NOM collaboratory**
- Conclusion
- **■** Future work

Previous work

- Combination of words "collaboration" and "laboratory" first coined by William Wulf (1996): Richard T. Kouzes, James D. Myers, and William A. Wulf. Collaboratories: Doing science on the internet. *IEEE Computer*, 1996
- Diesel Collaboratory: C. M. Pancerella, L. A. Rahn, and C. L. Yang: The diesel combustion collaboratory: combustion researchers collaborating over the internet. In *Proceedings of the 1999 ACM/IEEE conference on Supercomputing*
- BioCoRE: http://ks.uiuc.edu/Research/biocore
- EMSL Collaboratory: http://www.emsl.pnl.gov:2080/docs/collab

The NOM Collaboratory

- Interdisciplinary project
 - Chemists
 - Biologists
 - Ecologists
 - Computer Scientists
- Build and integrate software using J2EE
 - NOM modeling & simulation software
 - XML-based standard data format definitions
 - Data querying and manipulation tools
 - Electronic communication tools

XML-based NOM Markup Language (NOML)

- NOML:
 - Standard data format
 - Environment.dtd, Molecules.dtd, Setup.dtd
- Facilitate communication
 - User ==== User
 - Application ==== Application
- Extension

Other tools

- Molecule editor
 - Define new molecule type
- Molecule validator
 - Authorized persons (Chemists) to validate data
 - Share the molecule type
- Search engine
 - Ad-hoc query
 - View results of the completed simulations
 - Restart some simulations

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **■** Future work

Conclusion

- Agent-based stochastic model for simulating the NOM evolution with discrete temporal and spatial properties
- A Web-based simulation architecture (multiple simulation servers, database servers, and data mining technologies)
- Database technologies
- A Web-based intelligent configuration interface
- The NOM collaboratory

Outline

- Introduction
- Modeling
- Core simulation engine
- Intelligent Web-based interface
- The NOM collaboratory
- Conclusion
- **Future work**

Future work

- Model testing (this summer)
 - Testing of the sorption process
 - More features need to be added into the core simulation engine
- Model validation (this summer)
- Collaboratory:
 - More communication tools
 - More simulation models for NOM study
 - NOML extension

Thank You!

Questions?

GUI version

