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AUTONOMIC WEB-BASED SIMULATION

Abstract

by

Yingping Huang

Many scientific and engineering simulations are large programs which despite

careful debugging and testing will probably contain errors when deployed to the Web

for use. Based on the assumption that such scientific and engineering simulations do

contain errors and that the underlying computing systems do fail due to hardware

or software errors, we present a framework called autonomic web-based simulation

(AWS), a supporting data warehouse, and their implementations to develop and

deploy reliable web-based simulations. AWS strives to achieve the following features

presented in the Vision of Autonomic Computing: self-configuring, self-optimizing,

self-healing and self-protecting.

We discuss mathematical models to simulate the execution of scientific simu-

lations and formulate objective functions for the purpose of determining optimal

checkpoint intervals. Checkpointing is a basic requirement for self-healing of AWS

and determining optimal checkpoint interval helps achieve self-optimizing of AWS.

A novel three step data cleansing algorithm is designed through approximate

string joins. A self-manageable system is implemented for the NOM simulation

project which allows scientists and other end users run NOM simulations anytime

from anywhere.
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CHAPTER 1

INTRODUCTION

Scientific and engineering simulation is the process of designing a model of a real

system and conducting experiments on this model for the purpose of understanding

the behavior of the system or of evaluating various strategies for the design and

operations of the system. Scientific simulations have been increasingly applied to

solve a variety of scientific problems. Domains such as biology, bioinformatics,

chemistry, and environmental science are benefiting from this capability.

Most simulations models currently available run in stand-alone or traditional

client-server architecture. Both of these models require installing software on the

user’s computers. This presents a significant barrier due the incompatibility that

complicates or prevents installation. Moreover, the stand-alone or traditional client-

server approach have significant drawbacks: (1) lack of collaborations and informa-

tion sharing among users, (2) lack of reliability since usually no fault-tolerant fea-

tures are built into simulations, and (3) lack of centralized simulation management

and data analysis.

To overcome these drawbacks, Web-based simulations have been developed and

deployed recently using server-side technologies [60]. However, developers of large-

scale web-based scientific simulations have experienced increased complexity in their

software systems due to the complex integration of different pieces of services. Web-

based simulations have to be deployed to the Web through computing systems.
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Such computing systems often consist of compiled simulation programs, storage

devices, network, databases, middleware and other servers. These components of

the computing systems often have workflow dependencies and interactions among

themselves. Managing such a computing system involves configuring the individual

components so that the overall system goals can be achieved. In his 2003 Turing

Award speech, ”What next? - a dozen information technology research goals”, J.

Gray, from Microsoft Research, emphasized the need for self-manageable systems in

which the administrator sets system goals and creates high-level policies, while the

system by itself decides how they can be achieved [48].

In 2001, IBM launched the Autonomic Computing initiative to handle this

increased complexity [72]. Autonomic Computing is a vision striving for system self-

management, which has the following four features: self-configuring, self-healing,

self-protecting and self-optimizing.

Actually, all of these features have been under constant investigation by re-

searchers for a long time [34, 106, 123, 16, 86, 125, 26, 107, 28, 120, 4]. Autonomic

Computing tries to unify them into system self-management. The benefits of auto-

nomic computing include stability, high availability and security, and fewer system

or network errors due to self-healing.

Web-based simulations could benefit from system self-management. In this dis-

sertation, we design a robust framework called autonomic web-based simulations

(AWS) to develop and deploy Web-based scientific simulations based on the vision

of Autonomic Computing. The power of simulation is the ability to model the dy-

namics of a real system and to analyze the results. It is important to analyze the

simulation data so that the output of the simulation is not misinterpreted. The

complexity of simulation data often requires more sophisticated analysis other than

statistical analysis, such as data warehousing and data mining. With this in mind,
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we incorporate the techniques of data cleansing, data warehousing and data mining

into the framework for better analysis of simulation data.

The focus of this dissertation is to investigate and design robust methods to build

reliable web-based simulations with the presence of hardware or software failure.

This dissertation does not strive to solve the entire problem of autonomic computing,

because it is believed to be the next era of computing, but instead focuses on select

autonomic computing capabilities for scientific and engineering simulations. In its

2001 Autonomic Computing Manifesto [62], IBM calls on the entire IT industry to

refocus its priorities on cooperating in developing the necessary standards and open

interfaces to make the Autonomic Computing vision a reality.

1.1 Dissertation Contributions

The work described in this dissertation was initiated by a research project, ”Sto-

chastic Synthesis: Simulating the Environmental Transformations of Natural Or-

ganic Matter”, which is supported in part by the National Science Foundation, In-

formation Technology Research (ITR/AP-DEB). This project is a multi-disciplinary

project involving chemists, biologists, geologists, environmental scientists, and com-

puter scientists.

The dissertation’s goals are to design and implement a self-managing system to

support web-based simulations so that scientists and other end users can run scien-

tific simulations and obtain simulation reports anytime from anywhere. Reliability

and efficiency are major concerns in the design of this system.

The main contributions of this dissertation are

• Presentation of three mathematical models to simulate the execu-

tions of scientific simulations: Objective functions on total expected execu-

tion time are formulated. Then the optimal checkpoint intervals are calculated

by minimizing the objective function. Experiments show that the third model
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is effective to simulate the lifecycle of executions of simulations. Through this

model we found that the optimal checkpoint interval is independent of the sim-

ulation restart time, while the total expected execution time is exponentially

dependent on the restart time.

• A framework called autonomic web-based simulations, and a sup-

porting data warehouse, and their implementations: Three basic re-

quirements to achieve autonomic web-based simulations are proposed. These

requirements include 1) simulation checkpoint and restart, 2) proactive fail-

ure detection using Java management and monitoring APIs, and 3) a self-

managing computing infrastructure for hosting web-based simulations.

• A novel three-step data cleansing algorithm is designed through ap-

proximate string joins: The strings are first mapped into high dimensional

Euclidean space, then an approximate matrix multiplication method is used

to find close pairs of points in the Euclidean spaces. Finally, the distances

between preimages of these pairs of points are evaluated to identify the close

pairs of strings. Experiments are conducted on real data sets, which show that

the approach is both effective and efficient compared to other approaches.

• A complete system for NOM (natural organic matter) simulations

is implemented using the idea of autonomic web-based simulations:

A portal is designed using state-of-the-art technologies so that scientists and

other end users can run simulations and obtain reports any time from any-

where. A data warehouse is also designed for scientific simulation data analy-

sis.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 presents three mathematical models for simulation checkpointing. A

best model is selected to determine the simulation checkpoint intervals optimally.

Checkpointing is a basic requirement for self-healing, while optimal checkpoint in-

4



terval selection helps achieve self-optimizing. Both self-healing and self-optimizing

are features of autonomic web-based simulations.

Chapter 3 proposes a framework called autonomic web-based simulation (AWS)

for developing and deploying reliable web-based simulations. It first presents three

requirements for realizing autonomic web-based simulations. It then shows a pro-

totype implementation of AWS so that self-configuring, self-healing, self-optimizing

and self-protecting are achieved.

Chapter 4 describes the design of a data warehousing to support autonomic

web-based simulation. The data warehouse provides necessary tools to analyze

information for the underlying computing infrastructure so as to achieve system

self-management.

Chapter 5 proposes a general data cleansing algorithm using approximate string

joins, and its implementation using pure SQL. Experiments are conducted on real

world data sets to validate the efficiency of this data cleansing algorithm.

Chapter 6 uses the NOM simulation [13] as a case study to evaluate the ef-

fectiveness of autonomic web-based simulation. We also describe our experience in

designing a scientific simulation data warehouse to better analyze and use simulation

data.

Chapter 7 concludes this dissertation. A summary of contributions is presented.
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CHAPTER 2

CHECKPOINTING FOR AUTONOMIC WEB-BASED SIMULATIONS

Checkpointing helps achieve self-healing and self-optimizing of autonomic web-

based simulations. Long-running scientific simulations may crash before completion.

It’s very costly to restart them from scratch in case of failure. Checkpointing pro-

vides a solution so that simulation can be restarted from near the point of failure.

However, it is not trivial to determine the optimal interval between contiguous check-

points. In this chapter, we discuss three models to calculate the optimal checkpoint

interval and predict the expected execution time of scientific simulations.1

2.1 Introduction

Many scientific simulations are long-running and may run for hours, days, or

even months. It’s very costly to restart a simulation from scratch if it dies prema-

turely. To prevent restarting from the beginning, a mechanism called checkpoint-

ing is used to save the state of the simulation periodically. Checkpoint and restart

strategies have been under continuous investigation in the simulation, systems, and

database communities. The papers by Chandy [17] and Nicola [89] give excellent

overviews of checkpointing and recovery strategies in the literature.

Scientific simulations would benefit from this simple checkpointing mechanism

1Part of this chapter appeared in ANSS38 [58], and a full version is under review with Interna-
tional Journal of Modeling and Simulation
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that provides automatic restart or recovery in response to faults and failures, and en-

ables dynamic load balancing and improved resource utilization through simulation

migration [60, 75]. However it is usually not a trivial task to optimally determine

the ”interval” between contiguous checkpoints. Excessive checkpointing would re-

sult in performance degradation and thus longer completion time, while deficient

checkpointing would incur an expensive recovery overhead and thus again longer

completion time. Therefore, a trade-off must be made to determine the checkpoint

interval optimally. We define checkpoint interval to be the time between two con-

secutive checkpoints. In this chapter, we present models to analytically determine

the optimal checkpoint interval.

The rest of the chapter is organized as follows: Section 2.2 discusses the execution

of a simulation; Sections 2.3 to 2.5 propose three models to model the executions of

scientific simulations; Section 2.6 presents the experiments and discussions on these

models; Section 2.7 reviews some of the checkpoint and recovery strategies in the

literature; and finally, Section 2.8 draws conclusions.

2.2 The Execution of a Simulation

Figure 2.1 shows the execution of a simulation, where each xc or rxc is called

an execution segment. We call it an xc-segment or rxc-segment respectively.

The execution lifecycle of a simulation may include a sequence of checkpoints and

possible restarts. Failures may occur any time during the execution of simulations.

Once a failure occurs, the failure is detected and the simulation is restarted from

the most recent checkpoint. From our experience, users(scientists) may even request

to continue a previously completed simulation so that more simulation data can be

produced and studied. As shown in Figure 2.1, when a simulation completes, its

final state is checkpointed.

7



Figure 2.1. Execution of scientific simulations: r is the restart time, c is the check-
point time and x is the checkpoint interval

The total execution time of a simulation can be partitioned into the following

four parts:

• Work Time (denoted by Twork): Time needed to complete a simulation based

on the assumption that the simulation never crashes and thus no checkpoint

is necessary;

• Checkpoint Time (denoted by Tcheckpoint): Time spent to write checkpoint data

to files or databases;

• Redo Time (denoted by Tredo): Time spent to redo the simulation from the

most recent checkpoint to the point of failure;

• Restart Time (denoted by Trestart): Time needed to detect the failures and

restore simulation states from checkpoint data (either data files or databases)

so that redo can proceed.

The total execution time (denoted by Ttotal) is thus

8



Ttotal = Twork + Tcheckpoint + Tredo + Trestart (2.1)

For scientific simulations, Twork is either explicitly specified by the user as an

input or can be derived implicitly based on some terminating conditions. We denote

Twork by N , and the checkpoint interval to be determined by x. To analytically

derive the optimal checkpoint interval x∗, we make the following assumptions:

• The average time before a crash occurs is M , and crashes occur according to a

Poisson process with rate 1
M

. More precisely, (1) crashes occur randomly, but

with a long-term average of one crash per M time units; (2) the likelihood of

a crash is independent of the past history; (3) crashes are rare in a very short

time interval, and there is a negligible chance of more than one crash in a very

short time interval. This assumption is widely used in the literature related to

checkpointing strategies, such as [77, 39, 116]. Based on these assumptions, the

probability that a simulation successfully completes t time units is p(t) = e−
t

M .

• Assume the checkpoint time is c and the restart time is r, where c and r are

constants for all xc-segments or rxc-segments.

Let n be the expected number of failures occurring during the execution of a

simulation, and let f be the fraction of redo time over the time of an execution

segment when a crash occurs. At this point, we also assume that crash does not

occur during an rxc-segment, i.e., crash does not occur immediately after a restart;

however this assumption will be removed in Section 2.5 when we present the best

model. Based on the above assumptions, we have the following facts:

• Twork = N

• Tcheckpoint = Nc
x

• Tredo = f · (x + c) · n

• Trestart = r · n

9



Note that the number of execution segments without failures is N
x
.

Thus the expected total execution time is

Ttotal = N +
Nc

x
+ f · (x + c) · n + r · n (2.2)

We need to derive n and f , so that we can analytically determine x to minimize

Ttotal. We obtain the following:

• The probability to successfully complete an xc-segment without crash is p(x+

c) = e−
x+c
M .

• Therefore, the expected number of execution segments to complete N time

units is N
x·p(x+c)

= N
x
e

x+c
M .

• Thus, the expected number of failures n is n = N
x·p(x+c)

− N
x

= N
x

(
e

x+c
M − 1

)
.

• Suppose z is the time of an execution segment (could be either x+c or r+x+c).

The distribution of failures occurring at t after the most recent checkpoint is

d(t) =
∞∑
i=0

1

M
e−

t+i·z
M

=
e−

t
M

M
(
1− e−

z
M

)
• Therefore, the expected point of failure between 0 and z is

E(z) =

∫ z

0

t · d(t)dt

=

∫ z

0
t · e− t

M dt

M
(
1− e−

z
M

)
= M +

z

1− e
z
M

• Thus, the expected fraction of redo over z time units is

f(z) =
M

z
+

1

1− e
z
M

(2.3)

Before we substitute n and f into equation 2.2, let’s examine some properties of

f . Let y = M
z

, and let g(y) = y + 1

1−e
1
y
. We have the following lemma:
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Lemma 2.1. g(y) = y + 1

1−e
1
y
, y > 0, is monotonely increasing and lim

y→∞
g(y) = 1

2
.

Proof. To prove g(y) is monotonely increasing, it suffices to prove that dg(y)
dy

> 0. In
fact,

dg(y)

dy
> 0 ⇐⇒ 1−

1
y2 e

1
y(

1− e
1
y

)2 > 0

⇐⇒ y
(
e

1
y − 1

)
> e

1
2y

Expand both sides of the last inequality using Taylor series, then

y
(
e

1
y − 1

)
= 1 +

1

2y
+

∞∑
i=2

1

(i + 1)!yi

and

e
1
2y = 1 +

1

2y
+

∞∑
i=2

1

2ii!yi

It’s easy to see that 2i > (i + 1) when i ≥ 2, and thus (i + 1)!yi < 2ii!yi. Therefore,

y
(
e

1
y − 1

)
> e

1
2y , and hence g(y) is monotonely increasing. And

lim
y→∞

g(y) = lim
y→∞

(
e

1
y − 1

)
y − 1

e
1
y − 1

= lim
y→∞

(
∞∑
i=0

1
i!yi − 1

)
y − 1

∞∑
i=0

1
i!yi − 1

= lim
y→∞

∞∑
i=1

1
(i+1)!yi

∞∑
i=1

1
i!yi

= lim
y→∞

1
2

+
∞∑
i=1

1
(i+2)!yi

1 +
∞∑
i=1

1
(i+1)!yi

=
1

2
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Figure 2.2. Average fraction of redo over an execution segment of a simulation

Figure 2.2 confirms that for fixed checkpoint interval x, the average fraction of

redo over an execution segment converges to 1
2

as M increases to positive infinite.

Figure 2.2 is generated using JFreeChart through experiments on running simula-

tions. Next we derive our models to determine the optimal checkpoint intervals for

autonomic web-based simulations.

2.3 Model I

We assume that M is sufficiently large compared to x, c, r. By Lemma 2.1, we

see that f(x + c) is approximately 1
2
. Substitute f = 1

2
and n = N

x

(
e

x+c
M − 1

)
into

equation 2.2, we obtain

Ttotal(x) = N +
Nc

x
+

(
1

2
· (x + c) + r

)
· N

x

(
e

x+c
M − 1

)
(2.4)

We need to find x∗ so that Ttotal(x) is minimized, which suffices to calculate x such

that dTtotal(x)
dx

= 0. We then have
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e
x+c
M (x2 + (c + 2r)x− (c + 2r)M) + (2r − c)M = 0. (2.5)

It’s unlikely to find an exact solution for this equation analytically. To asymp-

totically solve it, we need the following lemma:

Lemma 2.2. − log y ≈ 1− y if 0 < y < 1 and y ≈ 1.

Proof. Use lim
x→0

log(1−x)
x

= −1.

By Lemma 2.2, equation 2.5 can be written as

x + c

M
= − log

x2 + (c + 2r)x− (c + 2r)M

(c− 2r)M

≈ 1− x2 + (c + 2r)x− (c + 2r)M

(c− 2r)M
.

With standard algebraic calculations, the above equation can be simplified to

(x + c)2 = 2(M + r)c

Thus,

x =
√

2(M + r)c− c (2.6)

Hence we have the following:

Theorem 2.1. The optimal checkpoint interval so that the total execution time
is minimized is x∗ =

√
2(M + r)c − c. And the expected total execution time is

Ttotal(x
∗) where T is in Equation 2.4.

2.4 Model II

Instead of approximating f with 1
2
, we now substitute f = f(x+c) = M

x+c
+ 1

1−e
x+c
M

and n = N
x

(
e

x+c
M − 1

)
into equation 2.2, we obtain

Ttotal(x) = N + Nc
x

+

((
M

x+c
+ 1

1−e
x+c
M

)
(x + c) + r

)
N
x

(
e

x+c
M − 1

)
13



After standard algebraic transformations, the above equation can be simplified

as

Ttotal(x) =
N(M + r)

x

(
e

x+c
M − 1

)
(2.7)

Again, to minimize Ttotal(x), we take the first derivative of equation 2.7 and let

it be zero, or equivalently

x + c

M
= − log

(
1− x

M

)
(2.8)

If x∗ is the solution for the above equation, then d2Ttotal(x
∗)

dx2 = N(M+r)
Mx∗2(M−x∗)

> 0. Hence

x∗ achieves the minimum for Ttotal(x)2. It’s far from trivial to solve Equation 2.8

analytically. However, it is extremely simple to solve it numerically based on the

fact in the following lemma:

Lemma 2.3. Equation 2.8 has one and only one solution in the interval (0, M).

Proof. Let g(x) = x+c
M

+ log
(
1− x

M

)
. Then g(0+) = c

M
> 0, and g(M−) = M+c

M
+

log(0+) = −∞ < 0. Since g(x) is continuous, there exists x in the interval (0, M)

such that g(x) = 0. Furthermore, dg(x)
x

= 1
M

(
1− 1

1− x
M

)
< 0 for any x ∈ (0, M),

which means that g(x) is monotonely decreasing in the interval (0, M). Hence, there
exists one and only one x such that g(x) = 0. Thus, the lemma holds.

From the proof of the above lemma, we see that given values of M and c, we can

numerically solve the equation g(x) = 0 using a simple bisection algorithm. In the

following algorithm, ε is typically chosen as 0.0001.

1: set tlo = 0 and thi = M .

2: while (thi − tlo > ε) do

3: tmi = 1
2
(tlo + thi)

4: if g(tlo)g(tmi) > 0 then

5: tlo = tmi

6: else

2If the first derivative f ′(x) = 0 and the second derivative f ′′(x) > 0, then x is a local minimum.
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7: thi = tmi

8: end if

9: end while

Even if we cannot solve the equation 2.8 analytically, we can asymptotically solve

it. To find an asymptotic solution, we consider two cases:

• Case I: c
M
→ 0+, or c � M , i.e., the checkpoint time c is much less than the

average time before crash M . Then x
M
→ 0+ according to equation 2.8. Thus

x + c

M
= − log

(
1− x

M

)
≈ x

M
+

x2

2M2

Thus, we obtain

x =
√

2Mc (2.9)

• Case II: Now we consider the general case. Let d =
√

2c
M

and y = x
M

. Write y

as

y =
∞∑

n=0

and
n (2.10)

From Case I, we see that y → d as d → 0. Thus we have a0 = 0 and a1 = 1.

Expand log(1− x
M

) using Taylor series. Equation 2.8 becomes

1

2
d2 −

∞∑
n=2

yn

n
= 0 (2.11)

To obtain a asymptotic solution, we now let y = d + a2d
2 + a3d

3 + o(d3) and

expand equation 2.11 3 . Equating the terms of powers of d, we have a2 = −1
3
,

and a3 = 1
36

. Thus y = d− d2

3
+ d3

36
+ o(d3). Therefore

x ≈
√

2Mc

(
1− 1

3

√
2c

M
+

c

18M

)
(2.12)

Hence we have the following

Theorem 2.2. The optimal checkpoint interval x∗ that minimizes the total execution

time is asymptotically
√

2Mc
(
1− 1

3

√
2c
M

+ c
18M

)
. And the expected total execution

time is N · 1+ r
M

1−x∗
M

. It’s interesting to note that the optimal checkpoint interval is

independent of the restart time r.

3We are certainly able to approximate the solution to higher orders. However, this suffices to
demonstrate the idea of obtaining asymptotic solutions
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2.5 Model III

In Model I and Model II, we assumed that failure does not occur during rxc-

segments. In this section, we remove this assumption so that a crash may occur in

both xc-segments and rxc-segments.

The probability that an rxc-segment completes without failure is e−
r+x+c

M . Thus

the probability that a failure does occur in an rxc-segment is 1 − e−
r+x+c

M . For a

simulation with total execution time units Ttotal and average time before crash M ,

the expected number of failures is Ttotal

M
.

Therefore, the expected number of failures to occur in rxc-segments is nrxc =

Ttotal

M

(
1− e−

r+x+c
M

)
, and the expected number of failures to occur in xc-segments

is nxc = Ttotal

M
e−

r+x+c
M . Note that a restart time r is added after a failure in an xc-

segment; while a restart time r is not added after a failure in an rxc-segment since

it is already included. Therefore the total execution time is now

Ttotal(x) = N +
Nc

x
+ (f(x + c)(x + c) + r)nxc

+ (f(r + x + c)(r + x + c))nrxc

Substitute f , nxc and nrxc into the above equation and simplify it with a series

of algebraic transformations4, we obtain

Ttotal(x) = MNe
r
M

e
x+c
M − 1

x
(2.13)

As before, we take the first derivative and let it be zero, then we obtain

x + c

M
= − log

(
1− x

M

)
Surprisingly, we have the same minima for Model III and Model II. Hence we have

the following

4See Appendix F for the derivation
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Theorem 2.3. The optimal checkpoint interval x∗ that minimizes the total execution

time is asymptotically
√

2Mc
(
1− 1

3

√
2c
M

+ c
18M

)
. And the expected total execution

time is N · e
r
M

1−x∗
M

. It’s interesting to note that the optimal checkpoint interval is

independent of the restart time r.

We see that Ttotal in Model II and Model III have the same minima. Let

T2=Ttotal(x
∗) in Model II and T3 = Ttotal(x

∗) in Model III. Then

T3

T2

=
e

r
M

1 + r
M

=

1 + r
M

+
∞∑

n=2

rn

n!Mn

1 + r
M

> 1

This means that although Model II and Model III have the same argmins, the

expected total execution time is longer for Model III than Model II. Note that

lim
x→0

ex

1+x
= 1, thus T2 ≈ T3 if the restart time r is far less than M . In other words,

if r � M , then there is no distinguishable difference between Model II and III.

2.6 Experiments and Discussion

A simple Java simulation is developed to experiment with and evaluate the above

three models. The simulation first generates random points of failure according to a

Poisson process with rate 1
M

, then outputs the total execution time as a function of

N , M , r, x, and c. We run the simulation 1000 times for each distinct combination of

N , M , r, x, and c. Appendix A shows the Java implementation of this simulation.

The complete code that generates all experiment data can be downloaded from

http://www.nd.edu/~nom/ckpt.zip. Now we present the following experiments:

• Experiment 1: We set N = 100000, M = 2000, r = 20 and c = 10. The

experimental results are shown in Figure 2.3. Since r and c are small compared

to M , we see that all three models are good matches of the simulation results.

In other words, there is little difference between the three models if r
M

and c
M

are small. The predicted optimal checkpoint interval for Model I is 191. And

the predicted optimal checkpoint intervals for Model II and III are 193.
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Figure 2.3. Experiment 1: N = 100000, M = 2000, r = 20, and c = 10

• Experiment 2: Now we increase the checkpoint time c in Experiment 1, and

set N = 100000, M = 2000, r = 20 and c = 100. The experimental results are

shown in Figure 2.4. We see that Model I deviates from the simulation results.

However, both Model II and Model III are still in good agreement with the

simulation results. Since r � M , there is no distinguishable difference between

Model II and III. The predicted checkpoint interval for Model I is 536. And

the predicted optimal checkpoint intervals for Model II and III are 568.

• Experiment 3: We increase the restart time r in Experiment 2 and set N =

100000, M = 2000, r = 200 and c = 100. The experimental results are

shown in Figure 2.5. We see that both Model I and Model II deviate from

the simulation results. However, Model III is still in good agreement with the

simulation results. The predicted checkpoint interval for Model I is 563. And

the predicted checkpoint intervals for Model II and III are 568.

From the above three experiments, we see that Model III is the best one to

match the simulation results among all the three models. When the restart time r

18



Figure 2.4. Experiment 2: N = 100000, M = 2000, r = 20, and c = 100

Figure 2.5. Experiment 3: N = 100000, M = 2000, r = 200, and c = 100
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Figure 2.6. Experiment 4: N = 100000, r = 20, and c = 100

Figure 2.7. Experiment 5: N = 100000, M = 2000, and r = 20

20



Figure 2.8. Experiment 6: N = 100000, M = 2000, and c = 100

and checkpoint c are � M , the three models are all in good agreement with the

simulation results.

Next we experiment with how the changes of average time before crash M ,

checkpoint time c and restart time r affect the choice of the optimal checkpoint

interval. The optimal checkpoint interval for the simulation is obtained in the

following way: first we calculate the optimal checkpoint interval xopt from Model II

(or Model III, since they are the same); then we run the simulation 1000 times for

each checkpoint interval in a wide neighborhood (for example from xopt − 100 to

xopt + 100) of xopt, and the checkpoint interval that results in least total execution

time is believed to be the optimal checkpoint interval for the simulation.

• Experiment 4: We set N = 100000, r = 20 and c = 100, and let M range

from 1000 to 3000. Figure 2.6 shows the experimental results of the relation-

ship between M and the optimal checkpoint interval x∗. From the figure, we
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see that x∗ monotonely increases as M increases for all three models. And

the optimal checkpoint interval calculated from Model II (or III) is in good

agreement with that from the simulation.

• Experiment 5: We set N = 100000, r = 20 and M = 2000, and let c range

from 100 to 300. Figure 2.7 shows the experimental results of the relationship

between c and the optimal checkpoint interval x∗. From the figure, we see that

x∗ monotonely increases as c increases for all three models. And the optimal

checkpoint interval calculated from Model II (or III) is in good agreement with

that from the simulation.

• Experiment 6: We set N = 100000, M = 2000 and c = 100, and let r range

from 100 to 300. Figure 2.8 shows the experimental results of the relationship

between r and the optimal checkpoint interval x∗. From the figure, we see

that x∗ monotonely increases as r increases for Model I, while stays constant

for Model II and III. The simulation shows that x∗ is almost constant, which

confirms that the choice of optimal checkpoint interval is independent of the

restart time r.

From these experiments, we conclude that Model III is a good model so that we

can use it to calculate the optimal checkpoint interval and predict the total execution

time of a simulation. M and c for a specific scientific simulation can be determined

empirically by running the simulation a sufficient number of times. For example, in

our case study of the NOM simulation, M is determined by running the simulation

many times without checkpointing, and c is determined easily by calculating the

average time spent on checkpointing.

One more interesting finding about Model III is the following lemma:

Lemma 2.4. Let

T (x) = NMe
r
M

e
x+c
M − 1

x
(2.14)

where c > 0, r > 0 and x ∈ (0, M). Suppose x∗ = arg min
0<x<M

T (x), then for any

t > 0 such that 0 < x∗ − t < x∗ + t < M , we have T (x∗ − t) > T (x∗ + t).
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Proof. The proof is omitted since it’s very tedious. See Appendix G for details.

Lemma 2.4 means that an under-predicted checkpoint interval results in longer

total execution time than an equivalent over-predicted one. This conclusion can be

confirmed from Figure 2.3, Figure 2.4 and Figure 2.5.

2.7 Related Work On Checkpointing

In this section, we briefly review related work in the literature. Analytically de-

termining optimal checkpoint dates back to as early as 19745 when Young presented

a first order approximation to the optimum checkpoint interval. The first order ap-

proximation was
√

2cM [100], which coincides with the special case in Equation 2.9.

Our work extends this result to more general cases.

In several other papers [110, 31, 76], a model with Poisson failure is considered

to determine the optimal number of checkpoints which minimizes the expected ex-

ecution time of a program, with an assumption that no failure occurs during the

checkpoint and restart phases. The same model is extended by [45] in which the

optimal number of checkpoints relies on the distribution of the program execution

time. Tantawi and Ruschitzka [116] consider a model with general distribution of

failures and allow failures occurring during the checkpoint and restart phase. This

generality yields a model that needs to compute an infinite number of integrals,

which is computationally intractable. A simpler model is proposed by preventing

failures from occurring during checkpoint and restart. However, this simplification

still results in computing an infinite number of non-linear equations. Thus a even

simpler model is then proposed by imposing more constraints which assume that

the execution time between two successive checkpoints is constant and that the ex-

5The author cannot guarantee this was the earliest work on checkpointing, but a literature
search on scholar.google.com returns this work as the earliest, and citations of this and other more
recent papers do not return earlier citations
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pected restart time equals the mean checkpointing time. With this simplification,

an iteration algorithm with dynamic programming is used to compute an approx-

imation of the optimal number of checkpoints. Ling et al [82] use a variational

calculus approach to derive an explicit formula that links the optimal checkpointing

frequency with a general failure rate, with the objective of globally minimizing the

total expected cost of checkpointing and recovery. The results show that the optimal

checkpointing frequency is proportional to the square root of the failure rate.

In time warp simulations, the state of each process must be checkpointed reg-

ularly in case a rollback is needed [80, 113, 102]. Lin and Lazowska [81] proposed

a model to derive the optimal checkpoint interval by assuming that the rollback

behavior of time warp is not affected by the frequency of checkpointing. An exper-

imental study conducted by Preiss [96] indicates that this assumption is generally

not valid. Lin et al [80] extend [81] to include the effect of the checkpoint interval on

the rollback behavior. A checkpoint interval selection algorithm which determines

the optimal checkpoint interval during the execution of time warp simulations is

proposed. Palaniswamy [92] begins with a model similar to [80] and estimates the

cost of a rollback due to periodic state saving. He models the average overhead

during a given time interval. Minimizing the overhead function yields an expression

for calculating an optimal checkpoint interval.

Our work differs from the aforementioned work in several ways: (1) our simple

assumption (failures occur according to a Poisson process) yields a simple cost func-

tion which is easy to solve numerically using a simple bisection algorithm, and (2)

experiments on simulation show that the model is in good agreement with simula-

tions.
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2.8 Summary

In this chapter, three models are discussed to determine the optimal checkpoint

interval and predict total execution time for long-running scientific simulations. We

can draw the following conclusions from the discussions:

• Model III is the best model that can be used to calculate the optimal check-

point interval and predict total execution time.

• The choice of checkpoint interval is independent of the restart time r; however,

the predicted total execution time is exponentially dependent on r. Therefore,

the total execution time can be reduced dramatically if a failure can be de-

tected and restart can be accomplished quickly.

• An under-predicted checkpoint interval results in longer total execution time

than an equivalent over-predicted one; and therefore, we would rather choose

a larger checkpoint interval if it’s not possible or too difficult to calculate the

optimal.

The ability to restart a failed simulation from the most recent checkpoint is a ba-

sic requirement for developing and deploying autonomic web-based simulations. In

particular, it helps to achieve self-healing and self-optimizing features of autonomic

web-based simulations. In the next chapter, we’ll focus on a robust framework to

build reliable web-based simulations, so that the simulations and underlying com-

puting system can self-configure, self-heal, self-optimize and self-protect.
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CHAPTER 3

AUTONOMIC WEB-BASED SIMULATIONS: A PROTOTYPE

IMPLEMENTATION

Many scientific simulations are large programs which despite careful debugging

and testing will probably contain errors when deployed to the Web for use. Based

on the assumption that such scientific simulations do contain errors and the under-

lying computing systems do fail due to hardware or software errors, we investigate

and design robust methods for building reliable systems to support web-based sci-

entific simulations with the presence of such errors. In this chapter, we present a

framework to build autonomic web-based simulation (AWS). Certain requirements

must be satisfied during the development process of AWS. This chapter presents

these requirements and shows how they can be satisfied. AWS strives to achieve the

four features presented in the Vision of Autonomic Computing [72]: self-configuring,

self-optimizing, self-healing and self-protecting.1

3.1 Background and Related Work

3.1.1 Examples of Web-based Simulations

With the emergence of the WWW, many web-based simulations and simulation

platforms have been developed, such as [60, 121, 54]. In [60], we present a self-

managing infrastructure to host scientific simulations. The infrastructure integrates

1Parts of this chapter appeared in ANSS37 [60], ANSS38 [58] and CITSA2004 [57], and a full
version is under review with IEEE Computing in Science and Engineering
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web servers, database servers, reports servers, data warehouses and data mining

tools to provide a simulation and data analysis environment. The development of

an integrated extensible web-based simulation environment called Computational

Science and Engineering Online (CSEO) is presented in [121] to allow computa-

tional scientists to perform research on chemistry. In [54], the authors report that

a metadata tools system and a data services system are undergoing development

and integration at Sandia National Laboratories, to provide web-based access to

high-performance computing clusters and its associated simulation data.

Some work focusing on simulation data analysis and understanding can be found

in [1]. The authors describe scientific simulation data, its characteristic and the way

scientists generate and use the data. Then they compare and contrast simulation

data to data streams and claim that simulation data is a special case of data stream2.

The authors present a tool called AQSim (Ad-hoc Queries for Simulation Data)

system to analyze simulation data.

3.1.2 Autonomic Computing and Supporting Information Technologies

In 2001, IBM launched the Autonomic Computing initiative, a vision striving

for system self-management. The idea of autonomic computing originates from the

human autonomic nervous system. This system tells the heart how fast to beat,

checks the blood’s sugar and oxygen level, etc. All of these are done automatically

without conscious human attention. That’s precisely what is needed to initiate the

next era of computing: autonomic computing, also known as self-managing systems.

People are aware that it’s a paradox that, to achieve such autonomic features, the

system must become even more complex by embedding the complexity into the

2A data stream is a real-time, continuous, and ordered (implicitly by arrival time or implicitly
by time stamp) sequence of items [43]. It is impossible to control the order in which items arrive,
nor is it feasible to locally store a stream in its entirety. Queries over data streams run continuously
over a period of time and incrementally return new results as new data arrive.
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system infrastructure itself, so that the system management can be automated.

Autonomic Computing includes the following four features: self-configuring, self-

healing, self-optimizing and self-protecting [72]. Self-configuring involves automated

configuration of components and systems following high-level policies. Self-healing

can be accomplished by automatically detecting, diagnosing and repairing local-

ized software and hardware problems. Self-optimizing involves self-tuning of service

parameters. Self-protecting means that the system automatically defends against

malicious attacks or cascading failure. It uses early warnings to anticipate and

prevent system-wide failure.

In this chapter, we investigate current information technologies that favor auto-

nomic computing, and thus autonomic web-based simulations.

The architecture of an autonomic computing system is a collection of components

called autonomic elements, which encapsulates autonomic managers and managed

elements, as shown in Figure 3.1. A managed element can be a hardware resource,

such as a CPU, or an application software, such as a database server, or an en-

tire system. An autonomic manager is an agent managing its internal behavior

and relationships with other agents according to prescribed policies. System self-

management will arise from both interactions among agents and from agents’ inter-

nal self-management.

IBM has conducted research towards autonomic computing, across all levels of

computer management, from hardware to software and some of the work has been

published in the IBM Systems Journal [65, 6, 84, 29]. On the hardware level, systems

are dynamically reconfigurable and upgradeable, enabling the movement of hardware

resources (such as processors, memory and I/O slots) without requiring reboots

[65]. On the operating system level, an active operating system allows monitoring

code, diagnostic code and function implementations to be dynamically inserted and
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Figure 3.1. An autonomic element consists of a managed resource and an autonomic
manager(Adopted from [72])

removed in the system (the so-called ”hot-swapping”) [6]. On the application level,

database self-validate optimizers [84] and web servers are dynamically reconfigured

by agents to adapt service performance [29]. In Markl et al [84], an autonomic

query optimizer automatically self-validates its model to repair incorrect statistics

or cardinality estimates. By monitoring queries as they execute, the autonomic

query optimizer compares the optimizer’s estimates with the actual cardinality at

each step in a query explain plan, and computes adjustments to its estimates that

may be used during future optimizations of similar queries. In Diao et al [29], the

authors use an AutoTune agent framework under the Agent Building and Learning

Environment (ABLE) to automatically tune application-level parameters MaxClient

and KeepAlive to control CPU and memory utilization in an Apache Web Server.

From the above examples, we see that some of the ideas from autonomic com-

puting have already been implemented in practice. In this dissertation, we seek to

put some of the autonomic computing ideas into the field of web-based simulation.

Next, we survey some of the current technologies that favor autonomic computing

and thus autonomic web-based simulations.
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Many recent advances in IT are in favor of autonomic web-based simulation.

These technologies include on-demand computing, utility computing, grid comput-

ing, J2SE (Java 2 Standard Edition) 1.5 (also called J2SE 5.0), service-oriented

computing, dynamic systems initiative, recovery-oriented computing, externalized

architecture adaptation, self-organizing architecture, and workflow management sys-

tem, to name a few.

On-demand (OD) computing is an increasingly popular enterprise model in which

computing resources are made available to users as needed. The resources may be

maintained within the user’s enterprise, or made available by a service provider.

On-demand computing products are rapidly becoming prevalent in the marketplace.

Computer Associates, HP, IBM, Microsoft, and Sun Microsystems are among the

most prominent on-demand vendors. Concepts such as grid computing, utility com-

puting, autonomic computing and adaptive management seem very similar to the

concept of on-demand computing. It’s said that on-demand computing is a broad

category that includes all the other terms3. Utility computing, for example, is an on-

demand approach that combines outsourced computing resources and infrastructure

management with a usage-based payment structure.

Grid computing is distributed computing whose goal is to create the illusion

of a simple yet large and powerful self managing virtual computer out of a large

collection of connected heterogeneous systems sharing various combinations of re-

sources [36, 35, 64]. In most organizations, there are large amounts of underutilized

computing resources. Most desktop machines are busy less than five percent of the

time. Even server machines can often be relatively idle. Industry analysts estimate

that companies on average utilize only 20% of their server capacity. Grid comput-

ing provides a framework for exploiting these underutilized resources and thus has

3See http://wikipedia.org/
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the possibility of substantially increasing the efficiency of resource utilization. Also,

machines may have enormous unused disk drive capacity. Grid computing, more

specifically, a data grid, can be used to aggregate this unused storage into a large

virtual data store, configured to achieve improved efficiency and reliability. An-

other functionality of grid computing is to better balance resource utilization. For

example, grid-enabled applications can be moved to underutilized machines during

peak times. In general, a grid can provide a consistent way to balance the loads on

CPUs, storages, and other resources. According to the the CIO Today Magazine

(March 2004)4, ”Many CIOs are spending good portions of their IT budgets on im-

proving their existing infrastructure”. In other words, there is a focus on increasing

utilization. Grid computing provides a natural platform for grid-enabled applica-

tions, some of which can present autonomic behavior [73, 2]. Therefore, autonomic

computing can benefit from grid computing.

Another important advance in information technology is the release of J2SE 1.55.

The greatest enhancement of J2SE 1.5 from previous editions is monitoring and man-

ageability. Monitoring and manageability is a key component of RAS (Reliability,

Availability, Serviceability) in the Java platform. The release of J2SE 1.5 intro-

duces comprehensive monitoring and management support for the Java platform:

instrumentation to observe the Java virtual machine (JVM), Java Management Ex-

tensions (JMX) framework and remote access protocols. The JVM Monitoring and

Management API specifies a set of instrumentation to allow a running JVM and

underlying operating system to be monitored. This information is accessed through

JMX MBeans and can be accessed locally within the Java address space or remotely

using the JMX remote interface. One of the monitoring features is the low memory

detector. JMX MBeans can notify registered listeners when a low memory threshold

4CIO Today: http://www.cio-today.com
5See http://java.sun.com/j2se/1.5.0
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is crossed. The monitoring and manageability enables self-awareness, which is the

basis of autonomic computing; hence J2SE 1.5 is a contributing platform to develop

autonomic applications, including autonomic web-based simulations. Furthermore,

the possibility to efficiently run separate JVMs provides a basis for isolation of Java

processes and achieving self-healing by fast restarting of failed or paused processes.

Service-oriented computing (SOC) is the computing paradigm that utilizes ser-

vices as fundamental elements for developing applications [93]. Services are au-

tonomous platform-independent computational elements that can be described and

discovered. Adopting the service-oriented computing paradigm has the potential

to reduce programming complexity. However, before the service-oriented comput-

ing paradigm becomes reality, there are a number of challenges to be addressed

including service modeling and design methodologies, architectural approaches, ser-

vice deployment and composition, and supporting infrastructure. Service oriented

computing models have been developing with technologies such as Corba, EJBs and

.Net. With today’s level of maturity, these technologies can provide a foundation

for autonomic systems. The Forrester report on the Fabric Operating System [105]

claims that the Fabric OS will make service-oriented computing a reality, predicts

that service-oriented systems will be running enterprise applications before 2007,

and provides a roadmap for companies on how to prepare to enable their software

systems on the new coming computing platforms.

Analogous to Autonomic Computing, the Dynamic Systems Initiative (DSI) is

a Microsoft-led industry effort on Windows systems to address the complexity in

today’s IT systems and improve their manageability. It has a purpose similar to

the vision of Autonomic Computing. The goal of DSI is to provide solutions to

simplify and automate all aspects of the application life cycle and how businesses

design, deploy and operate distributed systems [88]. Windows Server 2003 marked
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the beginning of the DSI product roadmap, providing a foundation for building

dynamic systems. Visual Studio .Net 2003 and the Windows Server management

tools - Systems Management Server 2003 and Microsoft Operations Manager 2005

- are examples of products that are taking advantage of DSI.

Recovery-Oriented Computing (ROC) [95] emphasizes recovery from failures

rather than failure-avoidance, which is a traditional fault-tolerant approach. The

ROC hypothesis:”Repair fast to improve dependability and to lower cost of owner-

ship”, embraces the fact that hardware faults, software bugs, and human errors are

facts to cope with, not problems to be solved. ROC provides new techniques for this

purpose: (1) Recovery experiments to test repair mechanisms in development and in

the field; (2) Aids for diagnosing the causes of errors in live systems; (3) Partitioning

to rapidly recover from faults and to contain them; (4) Reversible systems to handle

undo of failed operations and provide a safety margin; (5) Defense in depth in case

the first line of defense fails to trap an error; and (6) Redundancy to survive faults

and failing fast to reduce MTTR (Mean Time to Repair).

Adaptation of software architecture uses externalized managers to provide self-

healing of large systems. For example, IBM’s Tivoli monitoring is a systems manager

using an expert system to isolate problems and correct them on local machines [79].

The monitoring software maintains an external model which is accessed by scripts

that isolate problems and repair faults. Externalized adaptation favors a centralized

system organization. In centralized model-based adaptation, an architecture man-

ager maintains, analyzes and corrects the system model. Self-organizing architecture

forces constraints on the system components, and the components are responsible

for managing themselves[40].

Besides managing systems from the architecture level, the data flow in a system

could also be managed. A workflow process is a series of actions that involves
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coordination of tasks, handoff of information and synchronization of activities [9].

A workflow management system manages connections between tasks located on

different hosts. A workflow management model proposed by Shrivastava supports

transactional dynamic reconfiguration of workflow schema and executing workflow

instances [111].

Although significant effort has been reported on guaranting high reliability and

availability of information systems, little research has been reported on how to guar-

antee high reliability and availability of web-based simulations. We present the AWS

framework to develop and deploy reliable web-based simulations. Autonomic web-

based simulations cannot become a reality without satisfying certain requirements.

3.2 Requirements for AWS

We propose the following three basic requirements for AWS:

• The simulation should be able to restart from near the point of failure, since

it is too costly to restart from the beginning.

• The simulation should be aware when a failure may occur in the near future

so that it can terminate itself gracefully and restart.

• The simulation should be deployed to a self-managing computing infrastruc-

ture.

We discuss each requirement in detail and show how they can be achieved.

3.2.1 Requirement 1: Checkpointing and Restarting

One of the basic requirements for AWS is that simulations should be able to

restart from near the point of failure. This is accomplished by the mechanism called

checkpointing. In the previous chapter, we presented and compared three models

to analytically determine the optimal checkpoint interval. The optimal checkpoint

interval is the root for the following equation:
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x + c

M
= − log(1− x

M
) (3.1)

where M is the mean time before crash and c is the mean checkpoint time. Note

that the optimal checkpoint interval is independent of the restart time r. We proved

that the above equation 3.1 has one and only one root in the interval (0, M) and

the solution can be found numerically by using a simple bisection algorithm.

Since 0 < x
M

< 1, we can expand log(1 − x
M

) using Taylor series. Equation 3.1

can be written as

c

M
=

∞∑
n=2

xn

nMn
(3.2)

We see that c
M

increases monotonely as x
M

increases. Vice versa, x
M

increases

monotonely as c
M

increases. From Theorem 2.3 in Chapter 2, the expected to-

tal execution time of a simulation increases as c
M

increases. Therefore, a simulation

can complete more quickly if the checkpoint process can be accomplished faster.

Furthermore, from the same theorem, we see that the total execution time can be

reduced if restart time r can be reduced and mean time before crash M can be in-

creased. The restart time r includes time spent to detect the failure and to restore

checkpoint data. Failure detection time can be dramatically reduced if the failure

can be anticipated in advance. This can be achieved by the second requirement for

autonomic web-based simulation.
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3.2.2 Requirement 2: Proactive Failure Detection with Java Management

Historic concerns about the use of Java for compute-intensive6 applications are

fading as Java is reaching performance parity with other languages (such as Fortran

and C/C++) and has begun to be used in scientific simulations [41, 119, 122, 11].

With the release of J2SE 5.0, monitoring and management APIs are added that

expose information about the JVM and the underlying operating system. The mon-

itoring and management APIs use Java Management Extension (JMX) to expose

data in areas like memory, thread, runtime, operating system and garbage collection

[66]. The use of JMX allows the information to be available locally or remotely to

applications that support JMX. The performance impact of extracting the JVM

information is extremely low [32]. Therefore, it is worthwhile to extract the JVM

information for simulation internal management.

Manageable simulations provide mechanisms by which it is possible to monitor,

track and control themselves. Monitoring means capturing runtime information

from the simulation; tracking means observing aspects of a simulation over a period

of time; and control means altering the behavior of a running simulation. The

information exposed by the monitoring and management APIs in J2SE 5.0 can be

used in:

• External monitoring and management: Allows external monitoring software

such as IBM Tivoli and HP OpenView to monitor the JVM and the simula-

tions.

• Internal monitoring and management: Allows the simulation developers to

add logic to self-monitor and manage the JVM to make the simulation self-

managing.

6Compute-intensive is a term that applies to any computer application that demands a lot
of computation, such as meteorology programs and other scientific applications. A similar but
distinct term, computer-intensive, refers to applications that require a lot of computers, such
as grid computing. The two types of applications are not necessarily mutually exclusive: some
applications are both compute- and computer-intensive.
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Table 3.1

MANAGEMENT INTERFACES FOR MONITORING MEMORY AND CPU

Managed Resource Interfaces in java.lang.management

Memory MemoryMXBean
MemoryPoolMXBean
MemoryManagementMXBean
RuntimeMXBean
GarbageCollectorMXBean

CPU OperatingSystemMXBean
ThreadMXBean
RuntimeMXBean

From the point view of simulation developers, memory consumption and CPU

usage are the major concerns of monitoring simulations. Table 3.2.2 lists the inter-

faces in java.lang.management that can be used to monitor memory consumption

and CPU usage.

From our experience in developing the NOM simulations, OutofMemoryError

is not an uncommon exception. Collection classes such as HashTable and Vector

can be easily misused and result in memory leaks. Another possible cause of an

OutOfMemoryError exception is the most common unintentional object retention,

which causes the heap to grow to an unexpected size. The memory usage can be

polled using the getUsage() method, or an event notification-based mechanism can

be used to monitor memory by setting a usage threshold using

memoryPool.setUsageThreshold(MEMORY_MAX)

where memoryPool is an instance of MemoryPoolMXBean and MEMORY MAX is

the peak memory value in bytes. When the memory usage exceeds the threshold,

an event MemoryNotificationInfo will be generated. When the event is received, the

simulation can checkpoint and terminate gracefully.
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Unexpected CPU usage of a running simulation indicates a simulation may not

be behaving as expected. The CPU usage information can be obtained from the

ThreadMXBean interface by calling methods such as getThreadInfo(), getThread-

CpuTime(), and getThreadUserTime(). A running simulation with unexpected

CPU usage can terminate itself and return to the simulation job queue (described

in later sections).

Adding the monitoring and management code into simulation codes makes run-

ning simulations (self-)manageable. Hence, to build autonomic web-based simu-

lations, we require the simulations to be manageable using the monitoring and

management APIs.

3.2.3 Requirement 3: self-managing Infrastructure

Web-based simulations must be deployed to the web for use through some com-

puting systems. We propose a self-managing computing grid that enables users to

run simulations and obtain simulation reports anytime from anywhere. Figure 3.2

shows the network diagram of the computing grid which serves the simulations.

The firewall/router forwards incoming HTTP traffic to an appropriate applica-

tion server, which hosts the front-end web applications for user interface and simu-

lation data analysis and visualization. The operational database serves as the back

end for the web applications and simulation servers on which simulations run. The

data warehouse server is used for efficient data analysis and data mining. Although

not shown in the figure, a standby database server and a standby data warehouse

are configured so that in case the primary database (data warehouse) is down due

to hardware/software errors, the standby database can take the role of the primary

database. There is an autonomic agent running on each component of the comput-

ing infrastructure to monitor and manage the corresponding component. And an
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Figure 3.2. Network diagram of the self-managing computing grid: autonomic
agents are installed and running on the firewall/router, application servers, simula-
tion servers, database server and data warehouse; an autonomic manager is running
inside the database server, which is implemented using stored Java procedures
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autonomic manager implemented using stored Java procedure running inside the op-

erational database server. The autonomic manager includes a simulation dispatcher

which distributes user submitted simulation jobs and crashed jobs to appropriate

simulation severs.

Figure 3.3 shows the data flow diagram7 for autonomic web-based simulation.

When a user submits a simulation, the information related to the simulation is

stored in the Submission Status data store. The autonomic manager checks the

submission, chooses an appropriate simulation server with the smallest load average

to execute the simulation, and puts the submission into a job queue. An autonomic

agent on a simulation server checks the job queue and invokes the simulation if

any. The autonomic agent also monitors simulations currently running on its corre-

sponding simulation server. If a failure is detected, the submission status is updated

and the autonomic manager will redistribute the simulation to another appropriate

simulation server.

Self-awareness is a basic feature for autonomic applications, including autonomic

web-based simulations. To enable self-awareness of AWS, we need a data model to

enable efficient storage and retrieval of information about all components in the

system. Figure 3.4 shows the entity-relationship diagram. Note that not all entities

and attributes are listed here because of space constraints. Next we describe the

ER diagram in more detail.

• User (ID, firstname, lastname, password, email, role id, verified by, mem-

ber since) is the table for all users including administrators of the system.

• Role (ID, name, description): User access to the system is controlled by roles;

possible roles including admin, normal, none.

7A data flow model is also known as a process model. Process modeling is an analysis technique
used to capture the flow of inputs through a system to their resulting output. The model is simple
in that there are only four types of symbols - process, dataflow, external entity and data store.
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Figure 3.3. Data flow diagram of AWS describing the process after a simulation is
submitted

• Model (ID, name, description, checkpoint interval, restart time, checkpoint time,

MTTF, code) is the table for all simulation programs. MTTF (mean time to

fail), checkpoint interval, restart time and checkpoint time are important fea-

tures of simulation models and are determined by experiments. Code stores

the path where the compiled simulation program resides.

• Input (simulation ID, parameter name, parameter value) is the input table

for instances of simulations.

• Server (ID, hostname, IP, DATA HOME, free space, loadavg, free memory,
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Figure 3.4. ER diagram for self-awareness of AWS components

active simulations, status, role, uptime, current time, JAVA HOME, J2EE HOME):

Available application servers and simulations are stored in this table. Informa-

tion such as load average, and free memory about these servers is periodically

updated by autonomic agents. DATA HOME is the directory on a simulation

server where simulation output files are stored. Based on the percentage of

free space available on the simulation server, simulation output files are purged

from local drives and stored on a configured NFS server. Role denotes whether

a server is currently a simulation server or an application server.

• Submission (ID, user id, model id, submit time, input id, status): Informa-

tion about user submitted simulations are stored in this table. A submission’s

status can be submitted, crashed, restarted.

• Execution (simulation id, execution id, server id, starttime, endtime, status,

checkpoint id): A simulation may break down into execution segments; each
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segment records the start time, end time of the segment, as well as checkpoint

data.

• Checkpoint (ID, checkpoint data): Checkpoint data for simulations in each

execution segment is stored in this table. Note that this table grows very fast,

and therefore, data is frequently purged for better performance.

The efficiency of the above data model is vital in the design of the system, since

the information in these tables are frequently queried and updated by the autonomic

manager and autonomic agents to direct their behaviors.

3.3 Self-manageability of AWS

The autonomic manager is a Java stored procedure which resides inside the

operational database server. Functionalities of the autonomic manager include dis-

patching simulation jobs to simulation servers, querying the operational database

metrics such as free space, memory and CPU usage, managing autonomic agents

running on simulation servers, application servers, database servers, data warehous-

ing and the firewall/router. Functionalities of autonomic agents vary on different

components. Appendix H shows an implementation of autonomic agents on simula-

tion servers. Self-manageability of autonomic web-based simulations includes self-

configuring, self-healing, self-optimizing and self-protecting. We show how these

features are achieved in next sections.

3.4 Self-configuring

Self-configuring involves autonomic incorporation of new components and auto-

nomic component adjustments to new conditions. Self-configuring is accomplished

by the autonomic agents. Most of the self-configuring tasks are for the purpose of

performance optimization, for example, application server self-configuration is for
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Figure 3.5. Multi record format to solve schema changing problem

best performance. Next we describe a few self-configuring tasks in our implementa-

tion.

3.4.1 Data-Driven Web Interface

Unlike business applications, scientific applications often result in schema change.

For example, the input metadata for a simulation program may change because of

research uncertainty. Based on our experience in developing the NOM simulators

[13], the input parameters changed several times because of research needs. Such

change results in change of database schema and the corresponding web interfaces.

However, the changes can be automated with the help of multi-record data format

as shown in Figure 3.5. An advantage of the multi-record data format is that we can

use the input table for all simulation models. A data driven interface is designed so

that the input metadata is retrieved to avoid manual editing of the JSP(JavaServer

Page)/UIX (User Interface XML) code.
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3.4.2 Automatic Configuration of the Firewall/Router

Although the web application is installed on all simulation servers inside the

computing grid, only one application server is configured to be active at a certain

time. The firewall/router forwards incoming HTTP traffic to the application server.

In the case that the application server is down, another application server is started

by an autonomic agent directed by the autonomic manager. The firewall/router

must be re-configured so that the HTTP traffic is routed to the current application

server. This is done by an autonomic agent on the firewall/router by issuing an

”iptables” command. How to detect the failure of an application server is discussed

in the section of self-healing of application servers.

3.4.3 Automatic Configuration of the Simulation Servers

A new simulation server can be discovered if an autonomic agent is installed

and running on it. The autonomic agent issues an ”insert” into the Server table.

Hostname, IP address, and metrics such as load average, free memory and free space

can be obtained by calling operating system commands. For a new simulation server,

the simulation programs may not have been installed locally. The Model table is

queried by the autonomic agent to obtain the path where the code is located on

the database server. An ”scp” command is issued then to copy the simulation code

from the database server. The following code snippet shows the ”insert” command

for registering a new simulation server.

insert into server values (server_id.nextval, hostname, ip, $HOME,

free_space, load_average, free_memory, 0, ’up’, ’simserver’,

sysdate, sysdate, null, null);

Information in the Server table is updated frequently (every 5 seconds in our

implementation). When an ”update” command is issued, the old record is inserted

into the Server History table by a database trigger automatically. Server History
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has the same structure as the table Server, but its primary key is now the combi-

nation of ID and current time. Data in the Server History is valuable to analyze

the performance of simulation servers. We’ll discuss this issue in this chapter and

Chapter 4 when dealing with self-optimizing and data warehousing for AWS.

3.5 Application Server Self-configuration

The J2EE application server uses a distributed multi-tiered application model for

enterprise applications. Application logic is divided into components according to

function, and the various application components that make up a J2EE application

are installed on different machines depending on the tier in the multi-tiered J2EE

environment to which the application components belongs. Figure 3.6 shows the

architecture of multi-tiered J2EE applications. J2EE applications are generally

considered to be three-tiered applications because they are distributed over three

locations: clients machines, the J2EE server machine (including the web tier and

business tier), and the database or legacy machines at the back end. Three-tiered

applications extend the standard two-tiered client-server model by placing a multi-

threaded application server between the client application and the back-end storage.

Issues such as concurrency, security, transactions, database accesses are handled

by the application server. The performance of an application server depends heavily

on its configuration. A typical commercial off-the-shelf (COTS) application server

has hundreds of performance related parameters that are tunable. Appropriate

configuration is a difficult and error-prone task [98, 126, 70] due to the large number

of parameters and inter-relationships among them. Such parameters include thread

pool sizes, queues, data source connection pool size, dynamic cache size, timeouts

and retries, and memory allocations.

As shown in Figure 3.7, enterprise java beans invoked by servlets are managed
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Figure 3.6. Multi-tiered J2EE applications (adopted from Sun Microsystems)

by the Object Request Broker (ORB) inside the EJB container. The ORB thread

pool size can be customized. If an EJB request cannot be served by a server thread,

it will be put in the waiting queue and the queue size can be tuned also. The

size of the data source connection pool affects the number of concurrent accesses to

the database. For applications that perform a combination of updates and complex

parallel queries to the same database table, performance can be improved by limiting

the number of database connections so that contention is reduced.

The performance of the application server depends on these parameters in a

non-linear way. Even worse, the performance depends on these parameters in a non-

convex way, although our experiments do suggest that the average response time is

convex against some parameter8 by fixing others, as shown in Figure 3.8, which is

8A function is convex on each parameter may not be convex itself. For example, the function
f(x, y) = x2 +4xy + y2 is convex for x (or y) by fixing y (or x) since d2f

dx2 = 2 > 0 and d2f
dy2 = 2 > 0.
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Figure 3.7. Self-tuning thread pool size and connection pool size

obtained from experiments. Non-convexity suggests that the global optimum is not

easy to find. Furthermore, once these parameters are set, it is usually not possible

to change them without shutting down the application server.

In today’s practice, configuration of application servers is done in a trial-and-

error manner, which needs a significant amount of expert knowledge about the

application server and applications. Besides, the trial-and-error process requires a

significant amount of time to do load testing. Therefore, an automatic configuration

of the application server by an autonomic agent is useful in practice. In this section,

we formulate the problem to be a global optimization problem. Similar work on

configuring large-scale networks can be found in [117, 126].

3.5.1 Problem Formulation

The application server parameter configuration problem can be formulated as

follows:

Given a set of tunable parameters x1, · · · , xn where xi ∈ Ii = [x
(i)
min, x

(i)
max] for

However, f(x, y) is not convex since its Hession matrix
(

2 4
4 2

)
is not positive definite.
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Figure 3.8. Average response time versus server thread pool size

1 ≤ i ≤ n, and a continuous objective function f : I → R where I = I1 × · · · × In

is compact in Rn, find a global minimum,

x∗ = arg min
x∈I

f(x). (3.3)

Since f is continuous on a compact set I, it is guaranteed that the global min-

imum and global maximum exist. The objective function f can be the measure

of the average response time (ART), or the system throughput - transactions per

second (TPS), or a combination of both. In practice, the objective function f is

analytically unknown (i.e., it is not possible to explicitly express the objective func-

tion f) and its function value at a certain parameter setting can only be obtained

through experiments.

It is generally hard to find the global optimum, therefore, in practice, a good

solution near the optimum is acceptable for efficiency reasons. There are a number

of heuristic methods for global optimizations such as recursive random search [117],

smart hill climbing [126], simulated annealing [101], Tabu search [42], and genetic

algorithms [44]. We review some of these algorithms. Recursive random search
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utilizes pure random sampling to first identify promising areas and then to start

random sampling processes in these areas that shrink gradually to local optima.

The algorithm then restarts the random sampling processes and tries to find a more

promising area to repeat the local recursive search. The smart hill climbing algo-

rithm is based on the ideas of importance sampling and Latin Hypercube Sampling.

Simulated annealing mimics the physical annealing process, where a solid material

is first melted by heating to a very high temperature and then cooled down at a

very slow speed to a final crystalling state with the lowest energe.

We use the recursive random search algorithm with slight modification. Define

φI(y) =
m({x ∈ I|f(x) < y})

m(I)
(3.4)

where m is the Lebesgue measure in Rn. Let ymin = min f(x) and ymax = max f(x),

then

φI(y) : [ymin, ymax] → [0, 1] (3.5)

is continuous and monotonely increasing. For any r ∈ [0, 1], there exist yr ∈

[ymin, ymax] such that φI(yr) = r. Define

AI(r) = {x ∈ I|f(x) < yr}. (3.6)

Then m(AI(r)) = r ·m(I) and lim
r→0

AI(r) = {x∗}.

Let xi, i = 1, · · · , m be a sequence of random samples, and let x0 = arg min
1≤i≤m

f(xi),

then the probability that x0 ∈ AI(r) is

p(x0 ∈ AI(r)) = 1− (1− r)m. (3.7)

For any 0 < r < 1, the above probability tends to 1 with increasing m. For

example, let r = 0.1 and m = 44, then the above probability is greater than 0.99.
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In other words, it takes only 44 samples to reach a point in the promising area Ai(0.1)

with probability 0.99. The recursive random research algorithm makes use of this

property to gradually shrink the promising area to reach a minimum as follows: when

x0 was found, a neighborhood of x0, ND(x0) = {x ∈ D||xi − x0i| < r
1
n |ri − li|,∀i}

where D is initially I and later the new smaller sample parameter space, and ri and

li are the endpoints of the ith coordinate.

3.5.2 Configuring the Application Server

The performance related parameters are tunable in the application server config-

uration files server.xml and data-sources.xml. In our implementation, we configure

the parameters global-thread-pool, queue and max-connections, where thread pool

size is between 1 and 200, queue size is between 1 and 200, and max-connections is

between 1 and 200. Note that max-connections should be bounded by the database

initialization parameter processes, which was configured to be 300. For a specific

parameter setting, we use Grinder [49] to simulate HTTP requests to the appli-

cation server. The Grinder is an open source load-testing framework available on

SourceForge.net. The Grinder can simulate simultaneous clients access the web ap-

plication using Java threads. The Grinder calculates the average response time when

all transactions are completed. There are many other load testing tools, including

JMeter9, Cactus10 and http load11.

We implemented the recursive random search algorithm to tune the aforemen-

tioned parameters based on the simulated load of 50 concurrent users. The result

is shown in Table 3.2.

Note that the connection pool size 30 is less than the thread pool size, which

confirms that to obtain ideal performance, the server thread pool and data source

9See http://jakarta.apache.org/jmeter/
10See http://jakarta.apache.org/cactus/
11http://www.acme.com/software/http load/
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Table 3.2

OPTIMAL CHOICE OF THREAD POOL SIZE, QUEUE SIZE AND

CONNECTION POOL SIZE

Thread Pool Size Queue Size Connection Pool Size

40 77 30

Figure 3.9. Average response time versus number of concurrent users and for each
server thread setting

connection pool should have a threading ”funnel effect” [70]. In other words, the

data source connection pool size should be less than the server thread pool size.

Once these parameters are set, the average response time is linearly dependent on

the number of concurrent users, as shown in Figure 3.9.

3.6 Self-healing

Self-healing can be accomplished by automatically detecting, diagnosing and

repairing localized software or hardware problems. Some sort of redundancy is nec-

essary to achieve self-healing. For example, the operational database is vital in the
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successful operation of the system, therefore, a hot standby database is configured

so that it can take the role of the primary database in case of failure. The appli-

cation servers and simulation servers are also configured with redundancy. Failures

of local running simulations and web applications are detected by the autonomic

agents running on simulation servers and application servers. Failures of simulation

servers and application servers are detected by the autonomic manager in which the

autonomic agents do not respond in a timely fashion.

The non-functional period of a failed service or node is comprised of two distinct

phases: periods when a system is unaware of a failure (failure-detection latency)

and periods when a system attempts to recover (failure-recovery latency) [27]. For

example, restart time of a simulation consists of a failure detection phase and a

redo phase. As we learned from the previous chapter, the predicted total execution

time of a simulation is exponentially proportional to the restart time. Therefore, a

fast failure detection algorithm dramatically improves the total execution time of a

simulation. With the Java Monitoring and Management APIs used in simulation

programs, the failure detection phase can be expedited.

3.6.1 Self-healing Application Servers

Application servers are middleware running J2EE applications. Although com-

mercial application servers are tested against failures, software errors still occur.

For example, OutOfMemoryError exception is not uncommon for commercial ap-

plication servers. A search on ”application server OutOfMemoryError” on Google

returns thousands of hits. Usually the number of such exceptions can be reduced by

initiating a larger heap size with the -Xmx option. However, this error still occurs.

Figure 3.10 shows an instance of the OutOfMemoryError in our application log. We

take the following actions for the purpose of self-healing application servers.
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Figure 3.10. An instance of OutOfMemoryError in application log

• Although JMX is not available in Oracle Application Server, we can use a

similar tool called dynamic management service (DMS)12 to monitor an run-

ning application server instance. DMS can monitor the total and used heap

memory. Once a usage threshold is crossed, the application server is restarted.

if(usage.getUsed()/usage.getMax() > SOME_THRESHOLD){

shutdown_app_server();

}

where SOME THRESHOLD is the ratio of the amount of used memory over

maximum amount of memory. If the threshold is crossed, another application

server will be started by a local autonomic agent directed by the autonomic

manager, and the application server is shutdown gracefully by the local au-

tonomic agent. And the autonomic agent on the firewall/router will issue an

”iptables” command to forward HTTP traffic to the new application server.

12See http://download-west.oracle.com/docs/cd/B10464 01/core.904/b12020/toc.htm
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• Monitoring the application server by the autonomic agent on the firewall/router

by using the ”wget” command as follows:

#!/bin/sh

( wget -1 -s -O - $AS_SERVER &

as_pid=$!

echo $as_pid > $AS_PID

{sleep 2; kill $as_pid; } &

) | head -1 | cut -d’ ’ -f2 > $AS_RESPONSE

resp=‘cat $AS_RESPONSE‘

if [ $resp == "200" ]; then

echo 1 > $ASUPDOWN

else

echo 0 > $ASUPDOWN

fi

If the return code of the command is not 200, then the application server

is believed to be down. The monitoring script may hang if the application

server is not reachable, therefore, we kill the script after 2 seconds. In case the

application server is down, the local autonomic agent notifies the autonomic

manager by updating the corresponding entry in the Server table and another

application server will start by the corresponding local autonomic agent.

3.6.2 Self-healing Simulation Servers

The autonomic agents on the simulation servers update the corresponding entry

in the Server table frequently (every 5 seconds in our implementation). This opera-

tion serves as a heart-beat of the simulation server. A simulation server is considered

to be down if the update operation is not accomplished in a timely fashion. More

precisely, if sysdate−current time > 5
24∗60∗60 , the simulation server is considered to

be down. All simulations currently running on the simulation server are marked as

failed. Then the entries in the Submission table and Execution table are updated.

The autonomic manager will dispatch failed simulations to appropriate simulation
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servers. Local autonomic agents will restart the failed simulations by querying the

Execution table and by fetching checkpoint data from the Checkpoint table.

3.6.3 Self-healing Failed Simulations

As described before, the Java Monitoring and Management APIs can be used

to monitor memory usage and CPU usage. Once these monitored metrics exceed

thresholds, the simulation terminates gracefully and corresponding entries in the

Submission and Execution tables are updated. Exactly the same as described in

the above section. The local autonomic agents monitor running simulations as

through the MBean interface in the simulation. If a response does not arrive in a

timely fashion, the execution segment of the simulation is marked as failed and a

”kill” command is issued in case the process is running but not responding. Failed

execution segments result in modification of the Submission and Execution tables

the same way as described above.

An execution of a simulation is monitored as follows: the autonomic agent re-

trieves status (EXECUTING or COMPLETED) and pid from the EXECUTIONS

table for its underlying simulation server. If the status of an execution is EXECUT-

ING, it then queries the underlying operating system to see whether the simulation

is running with the corresponding pid. If such pid does not exist, the execution is

reported as CRASHED.

3.6.4 Self-healing Database Servers

The health of the operational database is vital in the success of the AWS system.

Therefore, we have done a large amount of work to monitor the operations of the

database server, as listed in Table 3.3. The autonomic agents residing on the data-

base server and an external machine (currently, joy.cse.nd.edu) monitor the managed

resources, analyze the exceptions, plan and execute corresponding actions. Appen-
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dix C shows a script to monitor the availability of application server and database

server.

Table 3.3. DATABASE SERVER MONITORING

Managed Resource Monitor/Analyze/Plan/Execute

Database connection To monitor the availability of database server and lis-

tener. If testing connection fails, the listener log file is

deleted and listener is restarted

Alert logs To check the alert log file periodically to identify any

logs for error or warning. If fatal errors are detected, a

message is sent to the administrator. Fatal errors are

difficult to be handled by the autonomic agent. There-

fore, the database administrator get involved to solve the

solution.

Tablespace size To check the size of tablespace and free space available.

If the tablespace reaches the threshold limit, it will au-

tomatically extend the tablespace and send a message to

the administrator.

Archive logs To check if the archive logs are created properly in the

current directory and check whether the archive logs are

backed and applied properly to the standby database

server. If not, a message is sent to the administrator.
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Table 3.3. CONTINUED

Managed Resource Monitor/Analyze/Plan/Execute

Hit ratio To check the overall buffer cache hit ratio for the entire in-

stance since it was started. If the ratio reaches the thresh-

old limit, certain actions are taken such as dynamically

adjusting memory (for example, the shard pool size) and

a message is sent to the administrator.

Listener log file size To check the size of listener log files on each databases,

including standby databases. If the listener log file size

reaches the threshold limit, the listener logs files are emp-

tied and a message is sent to the administrator.

Size of extents To check the segments of each tablespace, number of ex-

tents, initial size of extent, next extent size, minimum

extents, maximum extents and status. Certain actions

are taken to avoid the infamous ORA-00555: rollback

segments too old error.

Disk space To check the disk space availability for data files, log files

and temp space. If the available size reaches the thresh-

old limit, certain actions such as purging and compressing

files are taken, and a message is sent to the administrator.

CPU usage To monitor the CPU performance and its usage, and log

the metrics to the database.
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Table 3.3. CONTINUED

Managed Resource Monitor/Analyze/Plan/Execute

Memory usage To monitor the memory usage, memory page faults and

log the metrics to the database.

Resource locks To check locked resources and logs to the database

Invalid objects To identify invalid objects in the databases. Invalid ob-

jects are recompiled by the agent by issuing ”alter ob-

ject name compile” SQL command.

Chained rows To identify chained rows. And a batch operation is done

to relocate data.

3.7 Self-optimizing

The idea of formulating self-configuring tasks to be global optmizations also

applies to self-optimizing. However, usually the performance related parameters

cannot be changed dynamically without rebooting the services, which makes self-

optimizing technically difficult. For self-optimizing of the AWS system, we would

like to address load balancing of simulation servers as a case study of system self-

optimizing.

3.7.1 Self-optimizing Simulation Servers

Load balancing simulation servers are achieved in the following manner:

• A new or failed simulation is assigned to a simulation server with lowest load

average that is below a present threshold by the autonomic manager.
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• The local autonomic agent checks the job queue and starts the simulation if

any.

• The autonomic manager monitors the workload of all simulation servers and

may request a migration of simulation from a congested server to an under

utilized server.

The purpose of simulation migration is to balance load averages and improve

simulation completion time. However, excessive migration will cause simulations

bouncing back and force between simulation servers, like thrashing in distibuted

systems. Then when should a migration occur? It is determined by the following

procedure:

• The load averages of the n simulation servers in the last k periods are queried

from the Server History table. Denote them by Lij where 1 ≤ i ≤ n and

1 ≤ j ≤ k.

• The expected load average of a simulation server at time period j is Eij =
nP

i=1
Lij

n
.

• A chi-square test is conducted to determine whether there is a bias in the load

averages. In other words, whether the simulation servers are not balanced. If

the null hypothesis is rejected, then a simulation is migrated from a simulation

server with highest load average to another simulation server with lowest load

average. The migration takes place in a sequence of actions: first the simula-

tion checkpoints and terminates, then it is restarted in the target simulation

server by retrieving checkpoint data from the Checkpoint table.

We have implemented the chi-square test using SQL and typically chosen k = 21.

In our chi-square test, the degree of freedom df = 20∗(n−1), where n is the number

of simulation servers in the last k = 21 time periods. Note that a time period

consists of 5 seconds in our implementation. The following SQL code snippet shows
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the calculation of χ2 value, and it is highly optimized using Oracle data warehousing

analysis functions.

with

recent21 as

(select * from

(select id, loadavg,

rank() over (order by current_time desc) as my_rank

from server_history

group by id

)

where default_rank <= 21

),

avg_host_ld as

(select avg(loadavg) as avg_ld, my_rank from recent21

group by my_rank

)

select sum(vv) as chi_square from

(select (loadavg-avg_ld)*(loadavg-avg_ld)/avg_ld as vv

from recent21, avg_host_ld

where recent21.my_rank=avg_host_ld.my_rank

)

/

Note that df in our case is usually large, therefore, the chi-square distribution ap-

proaches to a normal distribution. Choosing the confidence level 0.05, we see that

the critical value is 1.6449. Therefore, if the calculated χ2 value is above 1.6449, the

null hypothesis is rejected, which results in a simulation migration.

3.8 Self-protecting

Self-protecting means the system automatically defends against malicious attacks

or cascading failures. It uses earlier warnings to anticipate and prevent system wide

failure. In our implementation, access to the system is controlled using different

levels of users roles. More precisely, the following actions were taken to protect the

system:
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• A firewall script was designed and configured so that only one port (80) was

open to the public so that the system can be accessed using a web browser.

• Users must register and be verified by the administrator so that access rights

can be given.

• Users are given different levels of roles, such as admin, normal and none. Users

with the admin role can manage all the components of the system. Users with

normal role can only submit simulations and obtain simulation results. Users

with the none role cannot access the system, which is the default when a user

is created.

• Early warnings such as the prediction of OutOfMemoryError were used to

terminate appropriate components such as application servers and running

simulations and restart them in a timely fashion to prevent system wide fail-

ures.

3.9 Summary

In this chapter, we have presented the framework of autonomic web-based simula-

tions and its prototype implementation. AWS cannot be achieved without satisfying

certain requirements. These requirements include

• Ability to checkpoint and restart simulations.

• Application of J2SE 5.0 Monitoring and Management APIs.

• A self-managing computing grid to host simulations.

Autonomic web-based simulations enable end users to run simulations anytime any-

where with guaranteed success. In the next chapter, we design a data warehouse

for autonomic web-based simulations. The main purpose of the system is to gener-

ate reports about the reliability and performance of the computing grid that hosts

web-based scientific simulations.
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CHAPTER 4

A DATA WAREHOUSE FOR AUTONOMIC WEB-BASED SIMULATION

Web-based simulation is the integration of the Web and the field of simulation.

Autonomic Web-based simulation (AWS)[58] is a framework to develop and deploy

reliable web-based simulation based on the vision of autonomic computing[72]. In

this chapter, we describe the design and implementation of a data warehouse for

autonomic web-based simulation. The main purpose of the system is to generate

reports about the reliability and performance of the computing grid that hosts web-

based scientific simulations.1

4.1 Introduction

Scientific simulations have been increasingly applied to solve a variety of scientific

simulations. Domains such as environmental science, in particular, benefit from this

capability. For example, we have developed a series of computer models to simulate

the behavior of natural organic matter (NOM). These models can play a critical

role in understanding and predicting the properties of NOM over time as it evolves

from precursor molecules to eventual mineralization [13]. Web-accessible models are

developed and deployed so that our collaborators can run simulations and generate

reports remotely. However, these scientific simulations are large programs which,

1Part of this chapter will appear in Cybernatics and Information Technologies, Systems and
Applications 2005 [59]
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despite careful debugging and testing, will probably contain errors when deployed

to the web for use. Based on the assumption that such errors do exist and the

underlying computing system does fail due to hardware/software errors, we proposed

a framework called autonomic web-based simulation (AWS) to develop and deploy

web-based simulations based on the vision of autonomic computing.

AWS employs a self-manageable computing grid to host the simulation models.

The computing grid is based on a multi-tiered architecture that consists of data-

base servers, simulation servers and web servers. One of the key features of the

self-manageable computing grid is self-awareness. To enable self-awareness of the

system, a normalized data model was designed so that information about the grid

was stored in an operational database and trackable at any time. We are inter-

ested in collecting information about the grid, and then identifying usage patterns

to make better use of resources, which eventually can be used by the system for self-

optimization. Therefore, we are in need of a system that can automatically perform

data analysis, and trends prediction. Data warehousing is a necessary technology

for collecting information from distributed sources including operational databases

and then performing data analysis [18, 63, 74, 97].

A data warehouse is generally accepted as a large database that is populated with

a significant amount of transactional data. Data warehousing is supposed to provide

data that is subject-oriented, integrated, non-volatile and time-variant. The purpose

of data is to support scientific discovery, engineering design and decision making with

the aid of data analysis techniques. Data mining techniques are typically employed

to derive information from the warehouse that will ultimately help in the discovery,

design and decision making process. A major difference between a data warehouse

and a transaction database is the frequency in which the information is updated.

Each new transaction in a transactional database results in the database being
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updated. This differs from the data warehousing scenario where data is updated at

regular time intervals. Once data is entered into the data warehouse, it is considered

to be non-volatile or read only.

4.2 Background and Related Work

During the past years, the database community has been active in modeling

and managing high dimensional scientific data. For example, Malon and May [83]

describe data models to support data generated from physical experiments. Chen

et al [20] discuss the feasibility of building data stream systems for online analytical

processing (OLAP). Abdulla et al [1] compare scientific simulation data with data

streams and argues that simulation data is a special case of data streams. Based on

this argument, they builds the AQSim (Ad-hoc Queries for Simulation data) system.

Critchlow et al [25] develop an interface for a data warehouse through a web-based

GUI and let users query data. It uses a Java back end with JDBC connection

to translate user commands into SQL queries and return the results to the users.

Wong et al [124] present a data warehouse framework which encompasses imaging

and non-imaging information in supporting disease management and research. The

implementation is based on a Java CORBA and web-based architecture. Singhal

[112] describes the design of a data warehouse for AT&T business service so that

reports about the performance and reliability of network can be generated.

4.3 Data Warehouse for AWS

The purpose of the AWS data warehouse is to generate reports about the per-

formance and reliability of simulation models and the underlying computing grid,

and then use them to make better use of the system resources. The computing grid

is used to let end users (scientists) run simulations and obtain simulation reports

remotely. The data source of the AWS data warehouse is the operational database

that stores detailed information about

65



• Execution segments of simulations. Simulations will probably break down

into execution segments because of possible failures. Information related to

an execution segments include start time and end time, restart and checkpoint

time, etc.

• Capacity and number of connections to the database servers; Data generated

from the simulations are stored in local drives and loaded into the database by

autonomic agents on simulation servers. The capacity and total connections

to the database servers limit the total number of concurrent database accesses.

• Number of concurrent connections to the application servers. This information

will be used to guide the application server to spawn an appropriate number

of server threads so that user requests can be handled properly.

• Load metric and number of active simulations of the simulation servers. This

information is used by the autonomic manager and the simulation dispatcher

so that a new or failed simulation is distributed to an appropriate simulation

server.

For further details, please refer to Huang et al [60].

We are interested in deriving the following information about simulation models

from the data warehouse so that the optimal checkpoint interval can be calculated

and the completion time of simulations can be predicted (Interested readers please

refer to http://www.nd.edu/~nom/publications/ckpt.pdf for details):

• Mean Time to Crash (MTTC): The average time before simulations crash.

• Mean Restart Time (MRT): The average time to store data from the most

recent checkpoint.

• Mean Checkpoint Time (MCT): The average time to write checkpoint data to

files or databases.

The main reason to separate decision making data and the operational data is

performance. The operational database was designed for transactional workloads.

Complex queries and reports degrade the performance of the transactional database.
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Furthermore, multi-dimensional modeling is required to optimize complex queries

and the report generation process.

The main components of the AWS data warehouse system are as follows.

1. The AWS operational data source contains information about: simulation
servers, simulation models, user submissions, and execution segments.

2. The Oracle9i Data Warehouse Builder is an Extract-Transform-Load (ETL)
tool that defines how data is extracted from the operational data sources,
transformed by the mapping operators, and loaded into the target schema in
the AWS data warehouse.

3. Once the AWS data warehouse has been populated, OLAP tools such as Oracle
OLAP is configured to access the data warehouse in order to generate reports.

The simple architecture of the AWS data warehouse is shown in Figure 4.1. The

following lists some of the advantages of the AWS data warehouse system:

• The separation of decision making data and operational data makes report

generation more efficient. Also, the report generation process does not impact

the workloads of the transactional database.

• One of the most common queries is the star query in which each of the di-

mension tables is joined to the fact table using the primary-key/foreign key

relationship. Creating appropriate indexes on the dimension tables and bitmap

indexes on the fact tables make it possible for the query to use star transfor-

mation, an algorithm for optimizing star queries.

• Fact tables and related indexes are partitioned according to list of simulation

models and range of simulation IDs. Partitioning the data and indexes makes

it possible for data management operations including queries to be performed

at the partition level.

• Query performance is further improved by pre-calculating and storing results

of frequent queries, especially for queries involving aggregation.
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Figure 4.1. Simple Architecture of the AWS Data Warehouse System

4.4 Data Modeling with Star Schema

The execution segments of simulations are modeled using star schema. A star

schema is a relational schema whose design represents a multidimensional data

model, which consists of at least one fact table and one dimension table. Figure 4.2

shows a star schema of our application, which has a fact table EXECUTIONS and

multiple dimensions such as model, user, server, simulation and time. Simulation

refers to which simulation the execution segment belongs to. User refers to the

owner of the execution segment. Model refers to the simulation model of the execu-

tion segment. Server refers to the simulation server on which the execution segment

was executing. Time represents the time when the execution segment started. The

time dimension has a hierarchy that can be used to create aggregates by rolling up

or drilling down.
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4.4.1 Designing Mappings

Mappings describe a series of operations that extract data from the operational

data source, transform it and load it into the target schema. The Oracle Warehouse

Builder provides a visual presentation of data flow and operations performed on the

data. The Mapping Editor is the interface for designing and editing mappings, which

includes a variety of operators to transform data before loading into the target. To

improve the performance of reports generation, we extensively used the Aggregator

Operator that calculates data aggregations such as summations and averages and

provides an output row set with the aggregated data. Examples of the aggregate

data include mean time to crash, mean restart time and mean checkpoint time.

The Filter Operator is also used to manage data quality. The filter operator

creates a set of conditions that check for rules that data must obey before being

loaded into the target schema of the data warehouse. Although most of the data in

the operational data source is generated automatically, we still check the validity of

the data using the following rules:

• For an execution segment, the end time must be greater than the start time.

• The restart time and checkpoint must be in a reasonable range.

4.4.2 Metadata Management

Metadata is the key success factor of a data warehouse project. It captures all

kinds of information necessary to extract, transform and load data from the source

systems into the data warehouse; and afterwards to use and interpret the data

warehouse contents. Our solution uses the Oracle Warehouse Builder to browse

and manage metadata of the AWS data warehouse. The Warehouse Builder Design

Repository, installed in an Oracle database, stores the metadata definitions for all of

the objects used, including logical and physical schemas, transformation and map-

ping rules. The warehouse builder browser can be used to view reports of metadata.
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These reports include implementation reports, lineage and impact analysis reports

and diagrams.

4.4.3 Data Refreshing

The Warehouse Builder can create jobs in the Enterprise Manager so that data

loading and refreshing jobs can run at scheduled times. Our experience shows that

the parition scheme of tables and indexes is crucial in determining the efficiency of

refresh operations during the load process.

Since the source of the data warehouse is a transactional database, we use DML

(Data Manipulation Language) statements to refresh data. The data that is ex-

tracted from the source is not simply a list of new records to be inserted into the

data warehouse. Instead, the new data set is a combination of new records and

updated records. In this case, we use the merge operation in Oracle9i, which can

be executed using one SQL statement.

The success of data loading and refreshing is monitored by the enterprise man-

ager. The data is automatically reloaded if a failure occurs.

4.5 Status Report

We can query the mean crash time before crash (M), mean restart time (R)

and mean checkpoint time (C) for each simulation models. These metrics can be

used to calculate an optimal checkpoint interval and predict the completion time of

simulations. More precisely, The optimal checkpoint interval is the solution (x∗) of

the following equation

x + C

M
= − log(1− x

M
) (4.1)
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Figure 4.2. A Star Schema in AWS DW
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The equation can be solved numerically using a simple bisection algorithm. And

the predicted completion time is

Ne
R
M

1 + R
M

1− x∗

M

(4.2)

The following SQL code snippet shows the calculation of the optimal checkpoint

interval in PL/SQL:

create or replace function

compute_ckpt_interval (m number, c number, epsilon number := 0.0001)

return number

is

lo number;

hi number;

mi number;

begin

lo := epsilon;

hi := m - epsilon;

loop

mi := (lo+hi)/2;

if first_derivative(lo, m, c) * first_derivative(mi, m, c) > 0 then

lo := mi;

else

hi := mi;

end if;

exit when hi - lo < epsilon;

end loop;

return mi;

end;

/

create or replace function first_derivative(x number, m number, c number)

return number

is

begin

return (x+c)/m + ln(1-x/m);

end;

/
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4.6 Summary

In this chapter, we described the design of a data warehouse that is used to

support autonomic web-based simulation. The data analysis capability of the data

warehouse provides trends prediction so that it can be used to make better use of

the system resources.

The power of scientific simulation is to model a real system and analyze the

results. Besides statistical analysis, more advanced analysis techniques are necessary

for better understanding and use of simulation data. In the following chapters, we

present a general data cleansing algorithm and describe our experience building

scientific data warehouses and applying data mining to simulation data.

73



CHAPTER 5

DATA CLEANSING THROUGH APPROXIMATE STRING JOINS

In this chapter, we describe a novel three step approach data cleansing algorithm

through approximate string joins. The goal of the approximate string join is to find

(almost) all pairs of strings such that their distance is below a certain threshold.

We first map the database of strings into points in an Euclidean space, then use

approximate matrix multiplication to find approximately all pairs of close points.

These pairs of close points are further evaluated using the string distance to filter

false positives. We implement this method in a commercial database. Experiments

show that this approach is both effective and efficient. We also point out the limi-

tations of this approach and present the extension of the mapping approach using

edit distance with moves.1

5.1 Introduction

Data is one of the most valuable components in scientific and engineering re-

search. Often string matching or approximate string match are required in scientific

data analysis, e.g., bioinformatics. Data has also become one of the most valuable

assets of corporations. It is used in business intelligence applications to support

strategy analysis and decision making. But the value of data is highly dependent on

1A shorter version appeared in WWW 2004 [56], and a full version is under review with Inter-
national Journal of Computer Science and Applications
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its quality. Poor quality data can cause wrong decision making and even business

failure. Thus, it is critical to cleanse data before loading it into data warehouses

and using it for data analysis and mining [85].

Data cleansing has attracted much attention from researchers. Real world data

may come from heterogeneous sources and may be dirty due to user input errors, dif-

ferent flavors of abbreviations, etc. It is highly likely that two or more records whose

textual representation differ may actually represent the same real world entity. For

example, the two records “University of Notre Dame” and “Notre Dame Univer-

sity”, actually represent the same entity ( although their edit distance2 is 20). Such

records are called approximate duplicates. Data cleansing seeks to identify such

duplicates and merge them into integrated database records.

Some work has been done to address the problem of approximate duplicates

detection, which was also referred to as the merge/purge problem [51] and record

linkage [68]. Many data cleansing algorithms are implemented using string join,

or text join. Normally, string edit distance, q-gram distance or the vector cosine

similarity [47] are used to determine whether two records are “close” enough to

be approximate duplicates. More recently, some researchers have used machine

learning to “learn” string similarity measures that combine these standard metrics

[23, 103, 118, 8].

No matter how the string distance is defined, it is necessary to identify (almost)

all pairs of strings whose distances are below a certain threshold. This operation

is called string join [46] or text join [78]. Since more and more web sites utilize

RDBMS as the backend, it is natural that the data we need to operate is inside

some commercial database systems. Therefore, for robustness and efficiency, it is

desirable to implement such operations inside the databases.

2See Appendix D for an implementation of edit distance in PL/SQL
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A baseline approach for string join is the pairwise comparison. We experimented

with this baseline approach using the edit distance. We implemented edit distance

using PL/SQL and ran the baseline approach using a database of 60,000 strings

from an internation movie database. The experiment was conducted in Oracle10g

running on Redhat Enterprise Linux 3.0 Advanced Server. It took almost two days to

accomplish on a dual 3Ghz Xeon Server. Therefore, faster algorithms are necessary

to conduct string join.

In this chapter, we present a novel three step approach: first, we map the data-

base of strings into points in an Euclidean space; then, we use approximate matrix

multiplication to identify close pairs of points, whose pre-images are candidates for

“similar” strings pairs; finally, these candidates are evaluated using the string dis-

tance to determine whether they are actually similar. We implement this method

using Oracle PL/SQL for both efficiency and robustness. In this chapter, we use the

popular edit distance. But there is nothing to restrict our methods to be applied to

other metrics. To summarize, our contributions reported in this chapter are:

• A novel three step approach to detect approximately matching strings. Our

method is implemented using database languages for both efficiency and ro-

bustness.

• Evaluation of our method using real world data sets. Experiment shows that

our method is both efficient and accurate.

• A review the drawbacks of our methods. Then we extend them via string

distance with block move for better performance.

The rest of the chapter is organized as follows. In section 2, we present back-

ground. We also present implementations of mapping algorithms using SQL. In

section 3, we present the implementation of approximate matrix multiplication. In

section 4, we describe the experiments, review the performance of our methods, and

extend them to other more suitable string distances. In section 5, we review the

most closely related work. Finally, in section 6, we draw conclusions.
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5.2 Background

In this section, we introduce the popular metric mapping methods, namely,

FastMap [33] and SparseMap[55]. We first list some relations (tables) used in our

implementation. For simplicity, we omit the subscripts. For example, we use R to

represent two string databases Ri, i = 1, 2.

• R(tid, doc): This relation holds the database of strings, which can be popu-

lated using SQL*Loader from a text file. Each tuple (tid, doc) holds a string

doc with a unique tid.

• R M(tid, cid, coord): A tuple (tid, cid, coord) indicates the coordinate of a

string with tid in the dimension cid.

• Dists (t1, t2, dist): Dists is a temporary table, which means that its data is

deleted after each iteration. A tuple (t1, t2, dists, dim) indicates the distance

of string t1 and t2 computed so far.

• Sk(tid, doc): Sk is a temporary table that consists of a subset of R. Sk is used

as a reference set in SparseMap. Its data is deleted after each iteration.

• Q(t1, t2): Q is a temporary table whose data is deleted after each iteration.

A tuple (t1, t2) indicates the string t2 whose distance computed so far is the

minimal to string t1.

The database of strings are mapped to an Euclidean space using one of these

mapping methods. For any finite metric space (S, d), we can usually find a mapping

F that maps the |S| objects into a vector space of sufficient high dimensionality

k, such that the distances between the objects in S are approximately preserved

when using a proper distance function d′ in the k-dimensional space. The mapping

F must be constructed using substantially less then O(|S|2) distance computations.

(Otherwise, the mapping method is no better than the baseline pairwise comparison

approach.)
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There are several metrics to measure the quality of a mapping F:

• Distortion: distortion is defined as

min{c1c2 :
d(s, t)

c1

≤ d′(F (s), F (t)) ≤ c2 · d(s, t)},

for all (s, t) ∈ S × S. The smaller the distortion, the better quality F has.

• Stress: stress is defined as∑
(d′(F (s), F (t))− d(s, t))2∑

d(s, t)2
.

The summation is over all (s, t) ∈ S×S. Again, the smaller stress, the better

quality F has.

In the context of approximate string join, the above metrics of mapping quality

are not informative since we care about the percentage of pairs we found and the

number of pairs of candidates. We modify the definition of “cost” in [68] and use

it as the metric to measure the quality of mappings later in this section. Next,

we introduce the most popular mappings: FastMap and SparseMap. Readers are

encouraged to read the paper [52] by Hjaltason et al., where the embedding methods

are discussed in detail.

5.2.1 FastMap

FastMap [33] iterates to find two strings (pivot objects), which should be the

farthest pair of strings. A line is drawn between them to form a coordinate axis and

the coordinate value on this axis for each string s is determined by projecting s to

this axis. Given a dimension k, FastMap iterates k times to form k orthogonal axis

and maps each string into a point in the k-dimensional Euclidean space.

The following code shows a snapshot of the implementation of FastMap in

PL/SQL. The getDistanceAll function, which is omitted here, computes the dis-

tance from a string to all other strings and returns the tid of the string with largest
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distance. The second parameter indicates whether these distances should be stored

in the temporary table Dists.

procedure fastmap (k number) is

a number; b number; dist number;

begin

for i in 1..k loop

choosePivot(a,b);

select dist into dist from dists where t1=a and t2=b;

insert into r_m

select ta.t2, i,

(ta.dist * ta.dist + dist*dist - tb.dist * tb.dist)/(2 * dist)

from (select t2, dist from dists where t1=a) ta,

(select t2, dist where t1=b) tb

where ta.t2=tb.t2;

end loop;

end;

/

procedure choosePivot (a out number, b out number) is

begin

a := 1;

for i in 1..4 loop

b := getDistanceAll (a, 0);

a := getDistanceAll (b, 0);

end loop;

b := getDistanceAll(a, 1);

a := getDistanceAll(b, 1);

end;

/

Ideally, the choosePivot procedure should get the farthest pair of strings. Unfortu-

nately, determining such a pair of strings would require pairwise comparison, which

is computationally prohibitive. Faloutsos [33] proposed a heuristic to determine an

approximately farthest string pair. The heuristic first chooses an arbitrary string a

and then finds the string b with largest distance. Then it finds the farthest string

for b. The process is iterated several times. Our experiments show that there is
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little difference between (1) choosing the first string from the string database and

iterating 3 times and (2) randomly choosing a string and iterating many (> 3) times.

In our implementation, we iterate 5 times to approximately determine the pair of

pivot strings. Therefore, FastMap requires 10kN edit distance computations, where

k is the dimension of the embedding space and N is the number of strings in the

database.

5.2.2 SparseMap

SparseMap [55] is based on the well-known Lipschitz embeddings [10], with two

heuristics to reduce the construction time and dimensionality of Lipschitz embed-

dings. The first heuristic is a loop interchange which aims to reduce the number

of string distance computations. The second heuristic, greedy re-sampling, reduces

the dimensionality of the resulting embedding space.

The following code shows the implementation of the first heuristic of SparseMap.

procedure sparsemap (k number) is

begin

for i in 1..k loop

setSk(i); mapdimension(i);

end loop;

end;

/

procedure setSk (k number) is

rows number; size number; qry varchar2(200);

begin

select count(*) into rows from r;

size := power (2, floor(log(2,rows));

execute immediate ’drop table sk;

qry := ’create global temporary sk as select * from r sample (’

|| ’100*size/rows ||);

execute immediate qry;

end;

/

procedure mapdimension (k number) is
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begin

if k=1 then

execute immediate ’insert into r_m select r.tid, 1, ’||

’ min(ed(r.doc, sk.doc))’||

’ from r, sk where r.tid=sk.tid group y r.tid’;

return;

end if;

execute immediate ’insert into dists select r1.tid t1, r2.tid t2,’||

’ sqrt(sum((r1.coord - r2.coord) * (r1.coord - r2.coord))) dist ’||

’ from r_m r1, r_m r2, sk’ ||

’ where r2.tid = sk.tid and r1.cid = r2.cid group by r1.tid, r2.tid;

execute immediate

’insert into r_m select r1.tid, k, ed(r1.doc, r2.doc)’

||’ from r r1, r r2, q’ ||

’ where r1.tid = q.t1 and r2.tid = q.t2’;

end;

/

For each dimension 1 ≤ i ≤ k, a subset Si of strings is generated, which serves

as the reference set for the i− th dimension. (For an explanation of the concept of

reference set, please refer to [10].) The size of Si is determined from the size of the

database and the ith dimension. For the first dimension, each string’s coordinate

is obtained from it’s distance to S1, where d(s, Si) = min{d(s, t) : t ∈ Si}. In the

above code, ed is the edit distance. For higher dimension j > 1, the coordinate of a

string s is determined as follows: for each string t in Sj, we compute the approximate

distance δ(s, t) =

√
j−1∑
l=1

(sl − tl)2, where sl is the lth coordinate of s and similar to

t. Then we find the string t with smallest δ distance to s and compute their true

distance, which becomes the jth coordinate of s.

From the implementation, we see that it requires kN distance evaluations to

map the N strings to k dimensional Euclidean distance. We found that SparseMap

runs much faster than FastMap since SparseMap accesses the database with fewer

disk I/Os.
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5.2.3 Quality of Mappings

To measure the quality of a mapping in the context of string join, we define the
metric ”cost” as follows:

1. Run the mapping algorithm (either FastMap or SparseMap) against R1 and
R2, for a dimension k.

2. Randomly select a small percentage (say, 2%) of strings from R1 and R2. Used
the baseline approach to find all similar string pairs within a certain threshold
δ.

3. Compute their Euclidean distances of these pairs and put them into equal
depth buckets, where the number of buckets is 1

ε
. Let δ′ be the left boundary

of the last bucket.

4. Define cost as follows:

cost(d, ε) =
|{(s, t) : d′(F (s), F (t) < δ′}|

|{(s, t) : d(s, t) < δ}|
(5.1)

The definition of ”cost” is very similar to that in [68]. Note that, when we

allow a small percentage ε (we call it the confidence level) of missing true positives

(i.e., recall=1 − ε), the cost is reduced significantly. The reason we define cost as

above is, that the mapping algorithms can map similar strings to arbitrarily far

away points in the embedding space. To cut off these extreme cases, the mapping

preserves distances pretty well. The left part of Figure 5.1 confirms that cost drops

dramatically as ε increases. The right part of Figure 5.1 (roughly) suggests that

cost decrease as dimensionality increases. The experiment shown in the left part of

Figure 5.1 is conducted with the following constraints: Both R1 and R2 have 30,000

strings, we use the SparseMap and dimension k = 40. The experiment shown in the

right part of Figure 5.1 is conducted with the following constraints: Both R1 and

R2 have 30,000 strings, we use the SparseMap, and ε = 0.05.

To improve the quality of mappings, [55] proposed a heuristic called greedy re-

sampling. We modify it slightly such that it works for the approximate string join

case. After we have selected k reference sets, each single reference set is compared

82



Figure 5.1. Cost versus confidence level ε and cost versus dimensionality k

in terms of the ”cost(1, 0)” (note that cost is the function defined in Equation 5.1)

of the embedding using only that reference set. Once the best reference set S1

with smallest cost(1,0) is selected, we can pick the second reference set S2 as the

one which produces the best ”cost(2,0)” when combined with S1. The process can

be repeated until we have reordered all k reference sets by decreasing order by

quality. Experiments show that greedy re-sampling reduces the ”cost”, as shown in

Figure 5.2. The experiment is conducted with the following conditions: We run the

SparseMap with and without greedy re-sampling for dimensions 10 to 50. Both R1

and R2 have 30,000 strings and δ = 3.

5.3 Similarity Join in Euclidean Space and Approximate Matrix Multiplication

In the previous section, we have mapped the database of strings to an Euclidean

space and determined a new threshold δ′, which is the left boundary of the last

bucket. The second step tries to find (almost) all candidate pairs of close points in

the Euclidean space. In the third step, we check each candidate pair by evaluating

their edit distance to see whether they form a similar string pair.
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Figure 5.2. Cost reduced by greedy resampling

Note that for any two points x and y in Rk, their Euclidean distance can be

computed ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 < x, y >, where < ·, · > is the inner product.

Therefore, to identify {(x, y) : ‖x− y‖ < δ′} is equivalent to identify

{(x, y) :< x, y >>
‖x‖2 + ‖y‖2 − δ′2

2
}. (5.2)

Let A be the matrix formed by the images of R1 and B be the matrix formed by

the images of R2. More precisely, every row of A is obtained by mapping a string

in R1 and similar to B. To compute < x, y > for all pairs of x and y is equivalent

to compute ABt where Bt is the transpose of B. To analyze the complexity of the

similarity join in the Euclidean space, without lose of generality, we assume that the

sizes of both R1 and R2 are N . Then both A and B are of size N×k. Therefore, the

baseline approach to identify point pair set 5.2 runs in O(kN2) time since all ‖x‖2

and ‖y‖2 can be pre-computed in O(kN) time. The following SQL code snippet

shows a pure SQL implementation of the baseline approach to compute ABt and

check the original string distance to see whether the candidate pair is actually a

similar string pair.

create table noms1 as

select tid, sum(coord * coord) nom2 from r_m1 group by tid;

create table noms2 as
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select tid, sum(coord * coord) nom2 from r_m1 group by tid;

Select r1.tid t1, r2.tid t2

from r_m1 r1, r_m2 r2, noms1 n1, nroms2 n2

where r1.cid=r2.cid and n1.tid=r1.tid and n2.tid=r2.tid

group by r1.tid, r2.tid

having sum(r1.cooord * r2.coord)

> sum((n1.nom2 + n2.nom2 - d * d)/

/

select r1.tid t1, r2.tid t2 from r r1, r r2

where (r1.tid, r2.tid) in (

select rm1.tid t1, rm2.tid t2

from r_m1 rm1, r_m2 rm2, noms1 n1, norms2 n2

where rm1.cid = rm2.cid and n1.tid = rm1.tid

and n2.tid = rm2.tid

group by rm1.tid, rm2.tid

having sum(rm1.coord * rm2.coord)

> sum((n1.norm2+n2.om2 - d * d)/2

and ed(r1.doc, r2.doc) < d

/

5.3.1 Approximate Matrix Multiplication

The task here is to approximately calcuate ABt. As we are aware, there exist

two algorithms for approximate matrix multiplication. In [21], Cohen et al. propose

a random-sampling based algorithm that identifies high-valued entries of nonnega-

tive matrix products, without computation of the product. In [30], Drineas et al.

proposed a randomized algorithm which randomly picks s columns of A to form an

N×s matrix S and the corresponding columns of B to form an N×s matrix R. Af-

ter scaling the columns of both S and R, we let P = SRt, which is an approximation

of ABt.

We denote by Aj the jth column of A as a column vector, similar to B. We denote

by Ai the ith row of A as a row vector, similar to B. Let ‖Aj‖ be the Euclidean

norm of the column vector Aj. let |Aj| be the l1 norm of the column vector Aj,

i.e., |Aj| =
∑N

i=1 aij. Note that all entries in A (produced by the mapping) are
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non-negative.

5.3.2 Implementing Fast Monte-Carlo in SQL

Here is the fast Monte-Carlo algorithm from [30] with some modification.

• for i=1 to k, we choose pi = ‖Ai‖‖Bi‖Pk
l=1 ‖Ai‖‖Bi‖

. Note that
∑

pi = 1.

• for t=1 to s independently

– pick it ∈ {1...k} at random with prob(it = j) = pj, j = 1...k

– include Ait/
√

spit as a column of S and Bit/
√

spit as a column of R

• return SRt as the approximation of ABt.

It can be proved that the expected value of the ijth entry of SRt is equal to that

of ABt.

We implement this sampling algorithm in PL/SQL using the DBMS RANDOM

package, which is used to generate random numbers in an Oracle database. In-

tuitively, after s random trials, each column Aj of A would have been picked

round(s · pj) times on average. We show the deterministic version of the sampling

algorithm using SQL in Figure 5.3. Our experiments shows that the deterministic

version works equally well as the randomized version and runs faster.

As we see from the figure, two new relations R M11 and R M22 are created.

Replace R M1 with R M11 and R M2 with R M22 in the above code snippet, we

obtain an approximate string join.

5.3.3 Implementing Cohen’s Sampling Algorithm in SQL

Cohen’s sampling algorithm tries to find out all large valued entries in a matrix

before doing the actual product. For each column j, we sample a row vectorAi

with probability
aij

|Aj | and we performance s Bernoulli trials for each row. We can
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Figure 5.3. SQL implementation of a deterministic version of the fast Monte-Carlo
algorithm

Figure 5.4. SQL implementation of a deterministic version of Cohen’s sampling
algorithm

implement this sampling algorithm using PL/SQL. Again, a deterministic version of

the sampling algorithm can be implemented using SQL. We sample on the relation

R M2 as shown in Figure 5.4 .

It’s interesting to note that Cohen’s sampling algorithm is not symmetric, which

is different from the fast monte-carlo algorithm. Figure 5.4 shows a sampling per-

formed on R M2. We can also perform sampling on R M1 and combine the sam-

pling to form other variations of sampling method. [78] gives detailed discussions of

these variations.
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5.4 Experiments and Discussions

Our method is a three step approach: we first map the databases of strings to

points in an Euclidean space; then we conduct approximate similarity join in the

Euclidean space using approximate matrix multiplication; finally, the candidates are

evaluated using original string distance to filter false positives. We implemented our

approach in a commercial RDBMS. The rest of this section is organized as follows:

In Section 5.4.1, we describe the datasets and techniques used for our experiments.

In Section 5.4.2, we report the results and perform discussions.

5.4.1 Settings

We implemented the algorithms described in Section 5.2 and Section 5.3 in Or-

acle10g, running on a dual CPU Redhat Enterprise Linux 3.0 Advanced Server,

with 2× 3GHz Intel Xeon CPUs and with 2Gb of RAM. The mapping algorithms,

FastMap and SparseMap, are implemented using PL/SQL. The similarity join in

an Euclidean space is implemented using only SQL, with a string edit distance

implementation using PL/SQL.

Datasets:We collected a sample of 60,000 movie star names and movie names

without duplicates from the international movie database. (For any datasets that

have duplicates, a sorting method can be used to remove duplicates.) Then we split

the sample randomly into two datasets R1 and R2, each consists of 30,000 strings.

For both R1 and R2, their average string length is around 14. The distribution of

lengths of strings is close to a normal distribution.

Measurements: Let Aδ be the result of an approximate string join and let Bδ

be the result of a baseline string join. The notions of precision and recall are defined

as follows:

precision(δ) =
|Aδ ∩Bδ|
|Aδ|
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recall(δ) =
|Aδ ∩Bδ|
|Bδ|

Precision captures the proportion of string pairs in Aδ that are actual similar

string pairs in Bδ. Recall captures the proportion of correct similar string pairs in

Bδ found in Aδ. A 100% precision indicates that all string pairs found are actually

similar strings. However, it does not mean all similar string pairs are found in the

approximate string join. In the context of approximate string join, recall is more

important then precision, since false positives can be filtered after the join (as long

as precision is not too small, otherwise, the algorithm is no better than a baseline

pairwise approach).

Techniques: We compare FastMap and SpaseMap for mapping strings to points.

We compare fast Monte-Carlo and Cohen’s sampling methods for approximate ma-

trix multiplication. In addition, we also compare our approach with the approach in

[46] where three filtering mechanisms, namely, length filter, count filter and position

filter, are implemented using SQL statements.

5.4.2 Results and Discussions

Comparing mapping algorithms: We compare the following mapping al-

gorithms:

• FastMap

• SparseMap without greedy resampling

• SparseMap with greedy resampling

We first compare their running time (seconds) with respect to the dimensionality k

and data size, as shown in Figure 5.5. Note that the left figure is a log-log plot, and

the slopes of the lines are close to 2; therefore, the mapping execution time is O(k2).

From the right figure, we see that the mapping execution time is proportional to
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Figure 5.5. Execution time of mappings versus dimensionality k and data size

data size. From Figure 5.5, SparseMap runs faster than FastMap for fixed datasize

and dimensionality, even SparseMap with greedy resampling is faster then FastMap.

Table 5.1 shows the new threshold δ′ after each mapping method, where dimen-

sionality k = 45, confidence ε = 0.05, and datasize is 30,000. Method 1,2,3 denotes

FastMap, SparseMap with greedy resampling and SparseMap without greedy re-

sampling respectively. We see that SparseMap maps the points farther away than

FastMap.

Table 5.1

NEW THRESHOLDS FOR DIFFERENT MAPPING METHODS

Method δ = 1 δ = 2 δ = 3
1 3.45 5.98 9.32
2 4.33 7.99 12.23
3 5.32 9.35 15.48

Figure 5.6 shows the trends of cost versus dimensionality for each mapping

method. We see that FastMap has the best cost, SparseMap without greedy re-

sampling has the worst cost and SparseMap with greedy resampling has almost the
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Figure 5.6. Cost versus dimensionality k for each mapping method

same cost as FastMap.

Comparing join algorithms: The similarity join in Euclidean space is real-

ized using approximate matrix multiplication. In previous sections, we implemented

both algorithms using pure SQL. We first compare the execution time for the fast

Monte-Carlo and Cohen’s sampling methods against the number of Bernoulli trials

s. Then we compare the recall of both methods against the number of Bernoulli

trials s. Figure 5.7 shows that with the same number of Bernoulli trials s, fast

Monte-Carlo method runs slightly faster. Both methods achieve approximately the

same recall. We see that as s increases, both execution time and recall increase.

Comparing with other approaches: We compare our approach with that in

[46]. We use the SparseMap with greedy resampling method to map the two string

databases R1 and R2 to R40, the 40-dimensional Euclidean space. Then we use the

fast Monte-Carlo method to find nearly all pair of close points and finally, we do a

post-join filtering. We found 91.2% of strings pairs in less than 1 hour, while the

method in [46] takes 12 hours.
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Figure 5.7. Comparing approximate matrix multiplication methods

5.4.3 Limitations of the Mapping Approach

A low distortion embedding of edit distance into normed space is very desirable.

Unfortuately, so far essentially nothing is known about the embeddability of the edit

distance into a normed space, except for generic embeddability results for metric

space, which do not provide interesting bounds. The performance of the mapping

algorithm may degrade if we cannot control the quality of mapping, since the post-

join process will take a long time if two many candidates are found.

In [24], the edit distance is modified by allowing the moving any contiguous

block of characters as a single operation, then the resulting block-edit metric can

be embedded into l1 with distortion O(logd · log∗d), where d is the longest length

of the strings. In some cases, the block-edit metric may be more reasonable: for

example, the two strings ”University of Notre Dame” and ”Notre Dame University”

have large edit distance (20), while they have a small block-edit metric distance. If

we use the block-edit metric, we can conduct the approximate string join in the l1

space. The embedding space l1 in [24] has very high dimensionality, therefore, some

popular similarity join methods do not work. Approximate matrix multiplication

method does not work for l1 space either.
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5.5 Related Work

Data cleansing has become an important field in recent years. Hernandez and

Stolfo [51] studied the approximate duplicates detection problem using the sorted-

neighborhood method. In their method, a key is generated and the database is sorted

using this key. Then, they use the sliding window approach to detect approximate

duplicates. Ananthakrishna [5] proposed an algorithm for eliminating duplicates in

dimensional tables in a data warehouse. Chaudhuri [19] proposed a new similarity

function and used this function to develop a online fuzzy match algorithm.

Li [68] proposed a two step approach for approximate string join. A database

of strings is first mapped to an Euclidean space using StringMap, a variation of

FastMap and then used a similarity join algorithm to detect candidates. The simi-

larity join algorithm does not work in high dimensional space because of the ”curse

of dimensionality”. Gravano [78] proposed a sampling method for approximate text

join using the vector cosine metric. Cohen [22] used a clustering method to create

clusters for potential duplicates. The work in [68] and [78] are closest to our work.

5.6 Summary

In this chapter, we designed a novel three step approach data cleansing algo-

rithm based on approximate strings joins. We first map each string database to

an Euclidean space and then conduct similarity join in the Euclidean space using

approximate string join. Experiments show that this approach is both accurate and

efficient. We also point out the limitations of the mapping approach: since the

quality of the mapping can not be guaranteed, in order to find almost all pair of

similar strings, we might need to check a huge number of string pairs, which may

degrade the performance of our algorithm.
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CHAPTER 6

A CASE STUDY: THE NOM SIMULATION PROJECT

We describe the agent-based stochastic simulation models of NOM transforma-

tions and its implementation using Java/Swarm/Repast. The simulation models

are deployed to the Web for service. We design a portal using the best practice

Model-View-Controller based architecture to facilitate remote invocation of simula-

tions, analysis and visualization of the simulation datasets. The NOM simulation

models may be useful in many areas including chemistry, geology, microbial ecology

and environmental science. 1

6.1 Introduction

Natural Organic Matter (NOM) is a complex mixture of compounds formed as

a result of the breakdown of animal and plant material in the environment. NOM

is ubiquitous in terrestrial, aquatic, and marine ecosystems, playing a crucial role

in such important processes as the evolution and fertility of soils; the mobility and

transport of pollutants such as trace metals, radionuclides and hydrophobic organic

compounds; the availability of nutrients to micro-organisms and plant communities;

the growth and dissolution of minerals; and the global biogeochemical cycling of the

elements [3].

1Part of this chapter appeared in IEEE Computing in Science and Engineering [61]
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NOM has a significant impact on all aspects of drinking water treatment. NOM

is responsible for the majority of the coagulant demand. Therefore water with

high dissolved organic carbon levels usually has a high coagulant requirement and

consequent high treatment costs. NOM can cause major problems in the treatment

of water as it reacts with chlorine to form disinfection by-products. Many of the

disinfection by-products (DBPs) formed by the reaction of NOM with disinfectants,

are reported to be toxic and carcinogenic to humans if ingested over an extended

period of time. The removal of NOM and hence reduction in DBPs is a major goal

in the treatment of any water source.

The importance of NOM attracts numerous researchers, including chemists, ge-

ologists and even computer scientists. Despite decades of research, we still know

relatively little about the structure, chemical composition, and chemical properties

such as molecular weight, functional group concentrations, structure, composition,

and reactivity [87, 14, 71].

During the last 50 years, some research has been done on the functional behav-

ior of NOM molecules, and different models are proposed to handle NOM research,

including ODE (Ordinary Differential Equation), PDE (Partial Differential Equa-

tion), etc (see Section 6.2). But the diversity of the compounds present in NOM

leads to the difficulty of describing the mixture adequately and makes models com-

putationally expensive.

In this chapter, we describe a new agent-based stochastic modeling approach

to simulate the behavior of NOM. The simulation was implemented using Java, the

Swarm library [115] and RePast [99]. To make the simulation accessible by scientists

around the world, we employ the J2EE (Java 2 Enterprise Edition) and RDBMS

(Relational DataBase Management System) technologies.

The rest of the chapter is organized as follows. Section 2 identifies some previous
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simulation models and points out their limitations. Section 3 presents our new agent-

based stochastic model of NOM, performance discussions and model verification and

validation. Section 4 introduces the information technologies involved in our work.

Section 5 describes the project portal. Section 6 provides detailed checkpoint and

restart processes for the NOM simulation. Section 7 describes our experience on

building the NOM data warehouse. Finally, section 8 summarizes this chapter.

6.2 Background

Despite decades of research, we still know relatively little about the structure,

chemical composition and reactivity of NOM primarily because it is a complex

mixture of molecules with different physico-chemical properties such as molecular

weight, functional group concentration, structure, composition and reactivity. The

evolution of NOM from its biological precursor compounds is both an interesting

biogeochemical problem and an important aspect of predictive environmental mod-

eling. On one hand, carbon cycling models based on average properties of various

organic carbon pools are too simplistic to represent the heterogeneous structure of

NOM and its complex behavior in the environment. On the other hand, molecu-

lar models employing connectivity map or electron density are too computational

expensive to be useful for large-scale environmental simulations.

With awareness of the drawbacks of the previous models, we propose a middle

path: development of an innovative stochastic model that will allow, for the first

time, forward modeling of the evolution of NOM structure and properties. This sto-

chastic model of NOM evolution represents individual molecules as discrete objects

of specified elemental and functional group composition, size and reactivity. Tempo-

ral evolution of NOM from biological precursor compounds such as lignin, polysac-

charides and proteins is simulated using Monte Carlo algorithms in which specific
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probabilities are assigned to particular transformations. These algorithms employ

newly-developed pseudo-random number generators with long periods and robust

statistical properties provided by the Swarm library. Both physico-chemical and

biochemical effects are incorporated probabilistically. The reactivity of the result-

ing NOM assemblage over time is predicted based on the distributions of molecular

properties.

This stochastic approach has several advantages: it is much less computation-

ally intensive than molecular modeling or explicit kinetic simulation of hundreds of

compounds, it can readily be adapted to a variety of time scales and processes, and

it intrinsically handles NOM structural and functional heterogeneity.

6.3 Agent-based Stochastic Model

In this section, we present the stochastic simulation model using agent-based

technology. This stochastic model of NOM represents individual molecules as dis-

crete objects of specified elemental and functional group composition, size and re-

activity. Temporal evolution of NOM from biological precursor compounds such as

lignin, polysaccharides and proteins is simulated in which specific probabilities are

assigned to particular transformations. The reactivity of the resulting NOM assem-

blage over time can be predicted based on the distributions of molecular properties.

6.3.1 Modeling of NOM Evolution

Since representing each molecule as a detailed chemical structure is prohibitively

computationally expensive, we design a data structure which is much simpler to

work with but which encapsulates much of what we know and when we wish to

know about NOM. The data structure includes the following:

• The elemental formula, i.e., the number of C, H, O, N, S and P atoms in the

molecule.
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• A record of the molecular ”origin”, i.e., the type and size of precursor mole-

cule and the time at which it was entered into the simulation. This allows

the calculation of separate ”turnover time” and apparent ages for individual

molecules and fractions.

• Functional group counts: carboxylic acid, alcohol, ester, keton, aldehyde, thiol,

sulfato, amine and peptide groups are counted in each molecule.

The NOM simulation is implemented in a discrete 2D space with discrete time.

The simulated space is a rectangular lattice. Each molecule can occupy at most one

cell, and each cell can host one or more molecules. The molecules in the simulation

are intended to represent a sample from a large population in the system under

study. During execution of the simulation, each molecule may move to another cell

or stay in a fixed cell according to predefined simple rules that describe physical

processes. In chemical reactions, one molecule could split; two or more molecules

could combine and occupy just one cell.

There are 10 types of chemical reactions represented in the simulation system:

ester condensation, ester hydrolysis, amine hydrolysis, microbe uptake, dehydration,

strong C=C oxidation, mild C=C oxidation, alcohol (C-O-H) oxidation, aldehyde

C=O oxidation, and decarboxylation. Each molecule has a probability for each type

of chemical reaction. The calculation of the probability is based on the structure of

the molecule, and the environment in which the molecule resides. These environ-

mental variables include the length of the time step, microbe density, fungal density,

pH value, temperature, pKw (the equilibrium constant for the autolysis of water,

which is very close to 14.0), oxygen density, light density, etc. After each chemical

reaction, the probabilities of these reaction types are re-calculated. The reaction

probabilities are stored in an array associated with each molecule.
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In each time step, for each molecule, a random number is generated which is

used to determine whether a chemical reaction will occur, and if one occurs, which

reaction type. In the simulation, the sum of all the reaction probabilities is controlled

to be less than 1 percent. The interval [0, 1], is partitioned into 11 subintervals. The

length of the first interval is equal to the probability of the first reaction type; the

length of the second interval is equal to the probability of the second reaction type,

etc. The length of the last interval is the probability in which no reaction will

occur. The generated random number from the interval [0,1) will reside in one of

these intervals, and it will decide which chemical reaction will occur, if any at all.

If the chosen chemical reaction type is a second order reaction (the probability

of higher (> 2) order reactions is so small that we can safely ignore them), i.e., there

will be two molecules involved in the reaction, the second molecule will be chosen

from one of its nearest neighbors who are not yet involved in a chemical reaction.

After the reaction takes place, the probability tables for involved molecules are

updated at the end of the time step and the new probability tables are assigned to

newly produced molecules.

The NOM simulation is implemented using Java/Swarm/RePast, the Oracle

RDBMS, JDBC (Java Database Connectivity) and SQL*Loader.

6.3.2 Performance Discussion

Agent-based modeling (ABM) (also known as individual-based modeling (IBM)

[50]), and equation-based modeling (EBM) are two approaches for modeling com-

plex systems. ABMs and EBMs are significantly different with respect to which

characteristics they focus on. ABMs focus on the characteristics of each individual

and track them through time. EBMs, on the other hand, focus on the characteris-

tics of the population, which are averaged and simulation changes in the averaged
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population characteristics [94]. It involves a process for solving a set of differential

equations. EBMs can describe already known global properties of a system, but

often can neither explain the origin of those properties nor track the behavior of

individual components. The objectives of ABMs are describing the heterogeneous

aspects of individual agents and system, providing a mechanism for interactions

between individual agents, and predicting phenomena at higher levels based on the

actions of individual agents, in a bottom-up approach. The NOM complex sys-

tem consists of a large number of heterogeneous molecules and microbes. Individual

molecules can be transported through the soil medium via water flow, adsorb on the

soil particle surfaces, and react with other molecules or microbes. The properties of

each individual molecule can change over time. Also, new molecules are emerging

(one molecule is split into two) and molecules disappear (reacting with microbes)

in the system. It is hard to capture the global properties of the NOM system ac-

curately with EBMs modeling approach. Cabaniss [12] presents several examples

showing that the use of “average” values to represent the complexity of NOM is

problematic. It can result in discrepancies when the model results are compared

with the results from the laboratory studies. Therefore, ABMs is more suitable

for modeling the NOM complex system that is composed of interacting individuals

and exhibits a wide range of dynamic behavior. Agent-based modeling of molecules

as objects is also being investigated in Cell Biology. For example, at Cambridge

University, in the UK Shimizu et al. [90, 109, 108] create a stochastic simulator for

chemical reactions among molecules. In their model, each molecule is represented

as an independent software object, called agent in our model.

The agent based approach is more flexible and accurate to model the evolution

of NOM. However, compare to the equation based modeling approach, it is much

slower. The performance becomes an important issue for the agent based simulation.
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Determining and understanding the factors that affect the performance of simula-

tion from a software engineering perspective and identifying and eliminating the

bottlenecks that limit scalability at the software development stage are necessary

for achieving high performance. Several approaches for exploring the performance

and scalability improvement of the simulation model are taken. These approaches

include runtime optimization, database access, objects usage, and parallel and dis-

tributed computing. We discovered that by employing these technologies and im-

plementing the distributed simulation model with MPJ [15], the performance can

be improved by 25 times. The performance is expected to increase more while the

number of agents in the system increases. The advantages (flexibility and accuracy)

of using ABMs in the NOM system may overcome the performance concern.

6.3.3 Verification and Validation (V & V)

Verification and validation (V & V) are processes to increase confidence in sim-

ulations. Verification is about getting the ”simulation right” while validation is

about getting the ”right simulation”. Although neither process guarantees absolute

confidence, we used numerous V & V techniques on the NOM simulation. We de-

scribe these techniques using an adapted version of Sargent’s V & V process shown

in Figure 6.1 [104]. The simulation process starts with an identification of research

questions of interest. Through analysis and modeling, a conceptual NOM model

is developed that includes the important features relevant to the research question.

The conceptual model is based on theory and domain knowledge from environmental

chemistry. This theoretical foundation includes 1) the heterogeneity of NOM mole-

cules, 2) the important NOM iterations with mineral surfaces such as adsorption,

hemi-micelle formations, acid or complexing dissolution, and reductive dissolution,

3) NOM interaction with pollutants, 4) relationships between NOM adsorption to
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mineral surfaces and the molecular weight of the NOM molecules, and 5) probabilis-

tic reaction kinetics based on elemental composition and the nature of functional

groups in the molecules. The incorporation of such theory and domain knowledge

provides us initial face validity, i.e., the logic of the conceptual model appears to

domain experts to include appropriate mechanisms and properties of the research

problem. Six scientists - two biologists, a chemist, a geomicrobiologist, and two

soil scientists - evaluated the conceptual model for face validity. Once the concep-

tual model achieves its initial validation, coding of the agent-based simulation took

place. At this step, verification methods such as code walk through, trace analysis,

input-output testing, and boundary testing were used to verify the correctness of the

simulation. To date, the validation of the simulation has included comparisons of

simulation behavior with mathematical models and experimental results. For exam-

ple, the simulation has been used to study the relationship between the adsorption

of NOM molecules on mineral surfaces and the molecular weight of the molecules.

This relationship has been empirically observed to have a log-normal distribution.

The simulation has yielded a similar log-normal distribution as reported by Arthurs

et al [7]. Additional such comparisons between theoretical, empirical and simulation

predictions have been completed.

6.4 Simulation Technologies

In the simulation described in this chapter, multiple information technologies

are integrated to investigate a new paradigm of scientific inquiry. Java is reaching

performance parity with other languages (e.g., C/C++) and has begun to be used

in scientific simulations [41] [119] [122]. With the release of J2SE 1.5, management

and monitoring features can be inserted into the simulation programs to monitor

the Java Virtual Machine and the underlying operating systems.

102



Figure 6.1. The verification processes of the agent-based stochastic model

Fox examined the paradigms of scientific study and introduced a fourth para-

digm [37]. We used to speak of three approaches to science: experiment, theory

and the computational approach. The fourth paradigm of scientific study uses IT

technologies such as web, databases and data mining. We support the molecular

simulation models using these IT technologies.

The NOM simulation system includes a portal which allows users to provide in-

puts and to obtain data analysis reports for their simulations through Web browsers.

The NOM is implemented using J2EE (Servlets, JavaServer Pages, JavaServer

Faces and Enterprise Java Beans) with the best practice MVC (Model-View-Controller)

architecture, running on Oracle9i Application Servers. Simulation data is stored

into Oracle databases through Java Database Connection (JDBC), and is extracted,

transported, transformed and loaded into a data warehouse using SQL*Loader and
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PL/SQL procedures. Reports of the simulation results are generated using Java,

SQL, PL/SQL, XSQL and JFreeChart.

In the following section, we briefly introduce these technologies.

• Java: Java technology is both a programming language and a platform. The

Java platform has two components: (1) the Java Virtual Machine (JVM) and

(2) the Java Application Programming Interface (Java API). In the J2SE 1.5

release, the Management and Monitoring APIs enable monitoring of the Java

Virtual Machine and the underlying operating systems inside Java programs.

• Swarm/RePast: Swarm is a set of APIs developed at the Santa Fe Institute.

From the documentation: ”Swarm is a muti-agent software platform for the

simulation of complex adaptive systems. In the Swarm system the basic unit

of simulation is the swarm, a collection of agents executing a schedule of ac-

tions. Swarm supports hierarchical modeling approaches whereby agents can

be composed of swarms of other agents in nested structures. Swarm provides

object oriented libraries of reusable components for building models and ana-

lyzing, displaying and controlling experiments on those models.” RePast is a

software framework for creating agent based simulations using Java. It bor-

rows much from the Swarm simulation toolkit and can properly be termed as

”Swarm-like”.

• Oracle RDBMS/Data Warehousing/Data Mining: The purpose of databases

is to store and retrieve related information. A database server is used to solve

the problems of information management. In general, it reliably manages a

large amount of data in a multi-user environment so that many users can

concurrently access the same data. A database server also prevents unautho-

rized access and provides solutions for failure recovery. In our work, we use

the Oracle database servers to support data analysis, data warehousing and

data mining. A data warehouse is a relational database that is designed for

query and analysis. In addition to a relational database, a data warehouse en-

vironment includes an extraction, transportation, transformation and loading

(ETL) solution, an online analytical processing (OLAP) engine, client analysis
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tools and other applications such as Data Mining that manage the processing

of discovering patterns and trends inside the data.

• JDBC: JDBC(Java Database Connectivity) is a standard Java interface for

connecting from Java to relational databases such as Oracle. The JDBC stan-

dard was defined by Sun Microsystems, allowing individual providers to imple-

ment and extend the standard with their own JDBC drivers. JDBC is based

on the X/Open SQL Call Level Interface and complies with the SQL92 Entry

Level standard. In our work, we use Oracle JDBC Thin driver, which allows a

direct connection to the database by providing an implementation of SQL*Net

and TTC (the wire protocol used by Oracle Call Interface (OCI)) on top of

Java sockets and runs over TCP/IP.

• J2EE: The Java 2 Enterprise Edition (J2EE) has historically been an architec-

ture for building server-side deployments in the Java programming language.

It can be used to build traditional web sites, software components, or pack-

aged applications. We use the following J2EE technologies in our work: (1)

Java Servlet, (2) JavaServer Pages (JSP), (3) JavaServer Faces (JSF), and

(4) Enterprise JavaBeans (EJB). Java Servlets provide a component-based,

platform-independent method for building Web-based applications. JSP tech-

nology is an extension of the servlet technology created to support authoring of

HTML and XML pages. It makes it easier to combine fixed or static template

data with dynamic content.

• JSF: JavaServer Faces (JSF) technology simplifies building user interfaces

for JavaServer applications. JSF technology includes (1) a set of APIs for

representing user interface (UI) components and managing their state, han-

dling events and input validation, defining page navigation, etc. and (2) a

JavaServer Pages (JSP) custom tag library for expressing a JavaServer Faces

interface within a JSP page. Oracle Application Server provides a J2EE com-

pliant platform to develop and deploy Internet applications, Web sites and

portals. We use Oracle Application Server as the platform to deploy web ap-

plications which provide interfaces to the users and visualize browser-based

data analysis results.
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• XSQL: XSQL is a servlet tool that processes SQL queries and outputs the

result set as XML. It is the combination of XML and SQL to provide a language

and database independent means for storing SQL queries, clauses and query

results.

• JFreeChart: JFreeChart is a free Java class library for generating charts, in-

cluding pie charts, bar charts, line and area charts, scatter plots and bubble

charts, time series charts, combination charts, etc. We are using JFreeChart

to visualize data analysis results. The dynamic graphs created by JFreeChart

are embedded in JSP pages.

6.5 The NOM Portal

The NOM portal is a web application adhering to the Model/View/Controller

(MVC) design pattern. It is implemented using two existing J2EE application frame-

work: Apache Struts and Oracle Application Development Framework(ADF). Both

the Struts and ADF echo the pragmatic suggestions that Johnson details throughout

his book [69]. The NOM portal has the basic architecture illustrated in Figure 6.2.

• The model layer represents the information needed by the application, it is im-

plemented using a combination of EJB, JavaBeans and Business Components

for Java (BC4J).

• The controller layer handles user input, interfaces with the model layer, and

picks the presentation. It is implemented using Apache Struts [114]. The

core of the Struts framework is a flexible control layer based on standard

technologies such as Java Servlet, JavaBeans, ResourceBundles and XML, as

well as various Jakarta Commons packages.

• The view layer presents the model data to the end-user. It is implemented

using a combination of JSP, UIX (User Interface XML) and JSF.

The model layer consists of business services that expose application function-

ality and access to model data through a business service interface. These business
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Figure 6.2. The MVC Model 2 NOM Portal Architecture

services, in turn, rely on query components to retrieve data and on business objects

to validate and persist any new or modified data. Code implementing the business

delegate design pattern abstracts the details of locating and using the business ser-

vices. The architecture we use in our work to design the web application is the best

practice ”JSP Model 2” architecture. The number ”2” is used because this MVC-

based architecture is an evolution over the first generation of JSP-based approaches.

6.6 Checkpoint and Restart

From Chapter 2 and Chapter 3, we learned that

• The optimal checkpoint interval is independent of the restart time. However,

the expected simulation completion time is exponentially dependent on the

restart time and thus a fast failure detection yields faster simulation comple-

tion time.
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• The optimal checkpoint interval and expected simulation completion time in-

crease monotonely as checkpoint time increases.

In this section, we describe what data are to be checkpointed and how they are

retrieved for restarting. Since the checkpoint time and restart time are very much

related to the simulation completion time, we propose and compare different ways

to do checkpoint and restart.

6.6.1 Checkpoint

Basically, everything required to restore the simulation state needs checkpointed.

For the NOM simulation, checkpointed data include

• Molecule composition information.

• Reaction probabiilities for each reaction type.

• Molecule status, for example, whether adsorbed.

• Current and previous positions in the environment for each molecule.

The checkpoint data is eventually stored in the database. Different ways to

store checkpoint data include JDBC and SQL*Loader. Experiments comparing the

performance for each method show that SQL*Loader is a number of times faster

than JDBC. Therefore, we use SQL*Loader to do checkpoint. The procedure is as

follows:

1. Checkpoint data is first written to a text file on local drive of a simulation
server.

2. The data in the text file is loaded into the database through SQL*Loader. A
log file is generated when doing SQL*Loader. If the load fails, error messages
are generated in the log file. The data is re-loaded if error message exists in
the log file. This is done by the autonomic agent on the simulation server.

The checkpoint process takes about 5 seconds to accomplish in average.
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6.6.2 Restart

When a failure occurs, the checkpoint data inside the database is retrieved for

restarting the simulation. This retrieval is accomplished through JDBC. There

are several ways to retrieve data through JDBC certainly, our experience tells us

batched PreparedStatement outperformances its counterpart Statement. The JDBC

driver makes two round trips to the database for each select statement. On the first

roundtrip, it retrieves the metadata for the columns selected. On the second round

trip, it retrieves the actual data selected. With this in mind, the performance for

select statements can be improved by roughly 50% if we define the select statement

by using Oracle’s defineColumnType() method with an OracleStatement object.

When we predefine a select statement, we provide the JDBC driver with the column

metadata using the defineColumnType() method, obviating the need for the driver

to make a round trip to the database for metadata information.

The average restart time is the summation of two periods:

• Period where system is not aware of the failure before detection.

• Period where simulation restores state from checkpoint data.

In the NOM simulation, the average restart time is about 11 seconds.

6.7 Checkpoint Interval for NOM Simulation

In our implementation, the checkpoint interval is calculated as follows:

• The average iterations to crash M is 5000 iterations.

• The average time to accomplish one time step is 1 second.

• The average checkpoint time c in time steps is thus 5 iterations.

• The average restart time in time steps r is thus 11 iterations.
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The goal is to calculate the checkpoint interval in iterations, instead of time.

From the above, the average checkpoint interval in iterations is the solution for the

following equation:

x + 5

5000
= − log(1− x

5000
) (6.1)

Solving the above equation, we obtain the checkpoint interval is 224. This in-

formation about M , c and r are queried from the AWS data warehouse. Once the

checkpoint interval is calculated, it is inserted into the Model table. When a new

simulation is executed, the checkpoint interval is further retrieved from the Model

table.

6.8 Building the NOM Data Warehouse

Data warehousing has been the platform for use of technologies such as online

analysis processing (OLAP), decision support system (DSS) and data mining (DM).

It has proven to be an invaluable tool by integrating information across the enterprise

for decision making. The success of data warehousing in business motivates us

to investigate and explore its use in the area of scientific simulation. Scientific

simulations generate a huge amount of data, which motivates us to believe that

data warehousing is a useful tool to better analyze and use the simulation data. In

this paper, we describe our experience in building data warehouses for the scientific

simulation project on modeling behavior of natural organic matter (NOM). We also

describe the front end applications to visualize the simulation datasets. We believe

this simulation data warehousing framework can be modified and generalized for

other scientific simulation areas.
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6.8.1 Introduction

Scientific simulations has been increasingly applied to solve a variety of scientific

problems. Domains such as environmental science, in particular, benefit from this

capability. As a demonstratible example, we have developed a series of models to

simulate the behavior of natural organic matter (NOM). These models can play a

critical role in understanding and predicting the properties of NOM over time as it

evolves from precursor molecules to eventual mineralization [13].

However, running such simulations can require a large number of computing

resources and produce terabytes of data. Effective storage and retrieval methods

must be devised to cope with these volumes of data. Querying the simulation results

is an enormously expensive task, especially for cross-simulation analysis. The success

of data warehousing in the business world motivates us to think of data warehousing

as a platform to store and analyze scientific simulation data. In this paper, we

describe in detail the implementation and maintenance of a scientific data warehouse

for environmental simulations. The simulation data warehousing framework can be

easily modified and generalized for other areas of scientific simulation.

The simulation generated data was originally stored on local disks of simulation

servers. However, there are many drawbacks of storing data on local disks. First of

all, the data are inefficiently managed via text files and it is hard to query text files

for data analysis. Secondly, there is no guarantee of data integrity. Thirdly, since

data analysis must be done on local machines, collaboration among researchers was

inhibited. Fourthly, simulation model verification and validation process requires

parameter sweeping and cross simulation data analysis, and it is very difficult to

accomplish without data warehouse support. Such obstacles hindered the possi-

bility of scientists outside of computer science department to collect and analyze

simulation data. With these drawbacks in mind, we design a data warehouse for
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simulation data management and data analysis.

6.8.2 Background and Related Work

During the past years, the database researchers have been active in modeling

and managing high dimensional scientific data [20, 83, 1, 25]. [83] describes data

models to support data generated from physical experiments. [20] discusses the

feasibility of building data stream systems for online analytical processing (OLAP).

[1] compares scientific simulation data with data streams and argues that simulation

data is a special case of data stream. Based on this argument, [1] builds the AQSim

(Ad-hoc Queries for Simulation data) system. [25] develops an interface for data

warehouse through a web-based GUI and let users query data. It uses a Java back

end with JDBC connection to translate user commands into SQL queries and return

the results to the users. [124] presents a comprehensive data warehouse framework

which encompasses imaging and nom-imaging information in supporting disease

management and research. The implementation is based on a Java CORBA and

web-based architecture.

There are also efforts such as [54], to describe integration of metadata tools and

data services systems for web-based management of large-scale scientific simulation

data. However, none of the above related work provides sufficient details to im-

plement and manage data warehouse specific to facilitate scientific simulations. A

data warehouse can grow quickly to terabytes in size. Without satisfactory query

performance, it is of little use. We believe it’s worthwhile to point out the issues

related to implementation and management of scientific simulation data warehouses

to achieve excellent query performance. A well-tested commercial database such as

Oracle and IBM DB2 is suitable to be the underlying database for building scientific

data warehouses. In this paper, we use Oracle9i Release 2 to build data warehouses
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because of its robustness and popularity.

6.8.3 Building Data Warehouses for Scientific Simulations

A data warehouse is a database that is designed for query and analysis rather

than transaction processing. A data warehouse environment includes an extrac-

tion, transportation, transformation and loading (ETL) solution, online analytical

processing (OLAP) and data mining capabilities [91]. A common way of introduc-

ing data warehousing is to refer to the characteristics of a data warehousing by W.

Inmon [63]: subject oriented, integrated, nonvolatile and time variant.

In a data warehouse, the primary activity is querying data. The only update

activity occurs when new data is loaded. Data warehouses are designed for quick

retrieval. Information is often derived from other data, by rolling up data into

summaries, drilling down to details, or looking for patterns and trends [53]. In an

online transaction processing (OLTP) system, database schemas are designed using

entity relation (ER) diagram. Normalization is used to ensure consistency and re-

move redundancy. In order to optimize performance for a data warehouse, a new

data model other than ER diagram is needed. Kimball [74] introduced the star

schema and dimensional modeling techniques. The dimensional approach organizes

data into fact and dimensional tables. This process of designing dimensional and

fact tables is called a logical design. Once the logical design is done, it has to be

converted to a physical representation that optimizes performance and automates

management. The rest of this section is organized as follows: we first discuss the

requirement gathering process to build a successful data warehouse for scientific

simulations; then we present the details to logically and physically build the data

warehouse; after that we investigate and explore methods to automate data ware-

house management; and finally we present web applications to visualize query and
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data analysis results.

6.8.4 Requirements Gathering

All system designers know that you must have sound requirements in order to

build any system, including data warehouses. Every project methodology includes a

section on requirements gathering. The primary purpose of gathering requirements

is to understand what the scientists needs from their data analysis environment.

The data warehouse designer must understand the basic purpose of the scientists

and the challenges facing them.

In an OLTP environment, system design life cycle is the common methodology

to build an operational system. The correct requirements can be gathered with

proper analysis in the beginning. And the end user requirements are often very

clear. In a data warehousing environment, however, it is usually not possible to

gather requirements at the beginning, because the end users often do not know how

they will use the data. This is especially true for scientists. Without a prototype of

data warehouse, the scientists do not know what can be done by the data warehouse

and what they expect the data warehouse to accomplish for them. Therefore, it is

not possible to start building the data warehouse with all requirements in hand.

The goal is therefore to be flexible enough to deal with dynamically changing needs

from scientists, and the data warehouse must be modified in an iterative way.

Although we can not gather all requirements from scientists to start with. We

can still keep some initial requirements in mind. Such requirements include what

queries need available. Such queries include ”what is the evolutionary relationship

between molecule density and time”.

Although data warehousing has matured as a technology over the last few years,

many challenges exist as the dynamic research environment changes. The data
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warehouse must be built for performance and reliability and must be able to scale

with increasing data volume and more users. As the data warehouse is growing to

terabytes in size, with increasingly higher availability requirements, it is critical to

maintain good performance for large number of geographically distributed scientists.

The ability to visualize data warehouse reports on the Web makes information easily

available to scientists. With the average user only staying on a Web page five sec-

onds, it is vital to make reports up-to-date and available instantaneously. Therefore,

reports must be summarized, precalculated and cached [53].

6.8.5 Building the Warehouse

Building a data warehouse involves extracting data from operational database

systems and sometimes combining the data from flat files, transforming it into a

uniform format and loading it into the database. Operational data must be extracted

from the source operational systems and copied to the staging area - a temporary

location where data is integrated, cleansed, transformed, and standardized for the

warehouse. Once the data is transformed, it is ready to be transported and loaded

into the warehouse.

Simulation Data Warehousing Architecture

The simulation data warehousing framework is based on multi-tiered architec-

ture, as shown in Figure 6.3, which consists of the web applications for visualization,

simulation servers on which simulations generate simulation data in flat files or in

operational databases, the data staging area and the data warehouse.

• Simulation Server Pool - Simulation data is the major data source for the sim-

ulation data warehouse. Simulations run on one of the servers inside the simu-

lation server pool. A load balancing algorithm is used to distribute simulation

jobs to the simulation server pool. Be aware that long-running simulations
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Figure 6.3. The multi-tiered simulation data warehousing architecture

are very likely to crash despite careful testing and debugging. Checkpointing

seems to be the solution for long-running simulations. The details for load

balancing and checkpointing/restarting are beyond the scope of this paper.

Interested users may refer to our previous paper [60]. Data generated from

the simulation are initially stored as text file on the local simulation server.

The data are also loaded into an operational database system for user queries.

• Operational Data Sources - However, this operational database system is not

capable of large-scale data analysis for simulation model verification, validation

and finally for prediction. And data may need to be transformed before loading

into the data warehouse. In our project, the operational databases reside on

Red Hat Enterprise Linux Advanced Servers running Oracle9i in a private

subnet.

• Staging Area - Data staging area is a temporary storage location for data

that need to be integrated, cleansed, transformed and standardized. In our

project, we develop PL/SQL packages and programs to do the work. One
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restriction on the staging area is that it does not provide query and data

analysis capabilities. These capabilities are available in data warehouses.

• Data Warehouse - Simulation data are loaded into the data warehouse using

SQL*Loader and transportable tablespaces. The data warehouse is an Or-

acle9i database running on a Redhat Enterprise Linux Advanced Server. It

provides services such as data analysis and visualization. The Oracle9i data

warehouse provides SQL for aggregation, analysis, reporting, OLAP and data

mining services. The data warehouse can also be linked to statistical software

such as SPSS for hypothesis testing.

Design Considerations

The primary goal of a data warehouse is for query and data analysis. Therefore,

we should focus on ensuring that queries are processed quickly. However, the data

warehouse should also be designed to be easy to manage. The management issues

include backup and recovery, loading new data, aggregating new data, indexing

and archiving data. We briefly discuss methods that are useful to model the data

warehousing for easy management and good performance.

In a data warehouse environment, the modeling methodology is dimensional

modeling, instead of entity relationship modeling. The dimensional model views

data from a different perspective and describe data using dimensions and facts. For

example, we use dimensional modeling to design a data warehouse for the Reaction-

Batch model, where Submission, Time, Environment and Molecule are dimensional

tables and ReactionBatch is the fact table which records information for each sub-

mission, each time step, each environmental variable and molecule distribution.

During the new data loading phase, the expected loading time can be precal-

culated based on the amount of data and the degree of parallelism. Summary

management can be used to create summary tables of aggregated data. There are

many techniques that can be used to improve query performance. A classical of
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which is to create various number of indexes based on the construction of query

statements.

Another important consideration is the physical placement of data. Query per-

formance can be improved if the number of I/O can be reduced. A big fact table

is partitioned into a number of smaller tables and each of which is placed on sep-

arate I/O devices that are configured for bandwidth instead of capacity. Since the

paritioning reduce the number of I/O contentions, query performance benefits from

partitioning the fact tables.

Implementing the Data Warehouse

The target physical machine is a dual 3.0 Xeon processor Red Hat Enterprise

Linux Advanced Server with several RAID 1 and RAID 5 systems on which the data

warehouse has been implemented using Oracle9i Release 2.

It takes a few steps to create the data warehouse, shown as follows:

1. Create the starting Oracle database - This starting database can be created
either manually or using the database configuration assistant. Our simulation
data warehouse was named ”db1”.

2. Create the tablespaces and data files - A tablespace is created for all the
dimensional tables, and another tablespace is created for indexes for all the
dimensional tables. One tablespace suffices for the dimensional tables since
there are small in size. A separate tablespace is created for each partition of the
fact table. The fact table is partitioned based on the range of simulation id,
which is the identifier for each distinct simulation. Ideally these tablespace
should reside on distinct hard disks. If not feasible, however, the hard disks
can be used in a round-robin fashion. Also, a separate tablespace is create for
local indexes of each partition. The following shows a snapshot of the SQL
code to create these tablespaces. Note that the tablespaces for tables and the
tablespaces for indexes reside on separate hard disks so that I/O contentions
can be reduced and thus performance query performance is improved.

-- tablespace for dimensions

create tablespace nom_dim

data file

’/data00/db1/dimensions.dbf’

size 128M
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autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

create tablespace nom_dim_idx

data file

’/data01/db1/dimensions_idx.dbf’

size 32M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

-- tablespace for fact tables

-- for the first 300 simulations

create tablespace nom_fact100

data file

’/data02/db1/fact100.dbf’

size 128M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

create tablespace nom_fact100_idx

data file

’/data01/db1/fact100_idx.dbf’

size 32M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

create tablespace nom_fact200

data file

’/data02/db1/fact200.dbf’

size 128M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

create tablespace nom_fact200_idx

data file

’/data01/db1/fact200_idx.dbf’

size 32M

autoextend on default storage

(initial 16M next 16M pctincrease 0
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maxextents unlimited);

create tablespace nom_fact300

data file

’/data02/db1/fact300.dbf’

size 128M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

create tablespace nom_fact300_idx

data file

’/data01/db1/fact300_idx.dbf’

size 32M

autoextend on default storage

(initial 16M next 16M pctincrease 0

maxextents unlimited);

When more and more simulations are completed, new tablespaces for new
partitions and indexes are created automatically.

3. Create the tables, constraints and indexes - The dimensional tables are cre-
ated in the nom dimensions tablespace and the indexes for the dimensional
tablespace are created in the nom dimensions idx tablespace. The fact tables
contain millions of rows and thus are partitioned based on the range of sim-
ulation id. The following code snapshot shows the creation of the fact table
ReactionBatch:

create table ReactionBatch

(simulation_id number not null,

...

) partition by range (simulation_id)

( partition fact100

values less than 100

pctfree 0 pctused 99

storage (initial 16M next 16M

pctincrease 0 )

tablespace fact100,

partition fact200

values less than 200

pctfree 0 pctused 99

storage (initial 16M next 16M

pctincrease 0 )

tablespace fact200,
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partition fact300

values less than 300

pctfree 0 pctused 99

storage (initial 16M next 16M

pctincrease 0 )

tablespace fact300);

Indexes for these partitions are created correspondingly and reside on the
appropriate tablespaces created before.

4. Define the security constraints - System and object privileges are granted to
the users of the data warehouse so that the users can create summaries for
aggregated data.

5. Analyze the tables and indexes after finishing data loading - The final step
to create a data warehouse is to analyze the tables and indexes so that the
cost-based optimizer can take into effect improve the query performance.

Once the data warehouse is created, data in the operational systems and flat files

must be loaded. Populating a data warehouse involves all of the tasks related to

getting the data, cleansing and transforming the data to the right format, loading

the data into the data warehouse, and preparing data for analysis.

One of the most popular tools to loading data is SQL*Loader. In our imple-

mentation, we use SQL*Loader to load simulation data into the data warehouse.

In a simulation data warehousing environment, the data transforming and loading

processes can be automated because simulation data fits in predefined format. Au-

tomatic procedures are created to inspect the log files of SQL*Loader. If errors exist

in the log file, the data is reloaded.

Optimizing the Warehouse

Simulation data warehouse is primary used to organize data for analysis and

prediction queries. It is very easy for a simulation data warehouse grow to several

terabytes in size. Without satisfactory query performance, a large data warehouse

is of no use, therefore, it is extremely important for the data warehouse to retrieve
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and process large amount of data efficiently. There are scientific data warehousing

projects as indicated in the literature review section. But none of them discussed

about performance of the data warehouses. We believe methods to improve query

performance is critical in simulation data warehouses. We look at several tech-

niques including data partitioning, indexing, query optimization automatic memory

management and summary management.

Data warehouses tend to read large amounts of data to answer queries and hence

it is important to use indexes. Indexes should be built on columns that are often

part of the selection criteria of a query statement. Unlike OLTP systems, which

have mostly update queries, data warehouse can have more indexes than an OLTP

system.

Very large tables and indexes can be divided into smaller, more manageable

partitions. Partitioning the data and indexes makes it possible for data management

operations including queries to be performed at the partition level. It also allows

queries to take the advantage of parallel processing.

There are different ways to retrieve the same set of rows in the data warehouse.

An index could be used to locate the rows or a full table scan could be used to

locate the same rows. One of most common queries in a data warehouse is the star

query in which each of the dimension tables is joined to the fact table using the

primary-key/foreign-key relationship. Creating appropriate indexes on the dimen-

sion tables and fact table makes it possible for the query to use star transformation,

an algorithm for optimizing star queries.

Queries in the data warehouse need a significant amount of memory for sort and

join operations. Various initialization parameters related to memory management

must be tuned to get good performance. By taking the advantage of the automatic

memory management feature of Oracle9i Release 2, we can relieve the burden of
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memory tuning for each query to the system.

A common technique used in data warehouse is to precompute and store results

of frequent queries, especially for queries involving aggregation. An example of such

a query is the average molecular density over time for 100 consecutive simulations.

As multiple scientists interested in the same query over time, the result would be

aggregated over and over again for each user. Rather than wasting computing

resources re-executing such query repeatedly, the result could be precalculated and

saved in a table. Such tables are called summaries or summary tables. As new

data is loaded into the simulation data warehouse, the data in the summary tables

are not synchronized. In order to bring the summary tables up-to-date, it must

be refreshed. The Summary Management feature provided in Oracle9i can keep

summaries up-to-date automatically.

A well-designed data warehouse can deliver excellent performance for large queries

that process large amounts of data.

6.8.6 Managing the Warehouse

Once the data warehouse has been created and populated with data, it is im-

portant to ensure it is correctly managed. Hard disks, memory and CPU resources

must be managed. The management issues include backup and recovery, perfor-

mance tuning, security maintenance and space usage monitoring.

Our data warehouse has a hot standby data warehouse residing on a different

machine in the same private subnet. Once data is loaded in the data warehouse, the

data is automatically transfered to the standby data warehouse. In this manner,

the standby data warehouse can take the role of the primary data warehouse in case

of failure.

The data warehouse should be tuned just like any other database systems, plus
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the tasks such as improving data load time, improving query response, improving

refreshing performance and improving maintenance time. Since the primary goal of

a data warehouse is for query and data analysis, the first thought on performance

tuning is to improve query performance. In a data warehousing environment, one

of the best ways to improve query performance is to create materialized views.

Provided the query is used frequently, with the existence of a materialized view, the

query can be executed by retrieving the results from the materialized view rather

than the detail table.

Security is less important in simulation data warehouses than business data

warehouses. But since the data warehouse is in use for scientists geographically

distributed, it is still important to make sure the data is correct when transferring

over the Internet. We can use the GRANT and REVOKE commands to specify

explicitly who can access the tables. Another techniques we use is to create roles,

assign privileges to the roles and then grant the roles to the users.

Another very important management issue is to know how much space is avail-

able in the data warehouse. One technique we use to avoid running out of space is

to create the data files with autoextend and unlimited extents. However, this won’t

help if the disks actually fill up. We created space monitoring scripts so that when

the disk space usage is approaching some threshold (e.g., 90%), some operations

such as purging or compression are performanced automatically.

6.8.7 Visualization

The advancement of internet technologies make it possible to publish the data

from the data warehouse to the Internet. We use the Oracle9i Application server

and JFreeChart [67] to create web applications to deliver reports to the scientists

through the Web. The web applications use JDBC to retrieve data from the data
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warehouse and use JFreeChart to convert data into graphical reports. JFreeChart

is a free Java class library for generating charts including pie charts, bar charts, line

and area charts, time series charts, and so on.

One important usage of our simulation data warehouse is to help scientists study

the time-dependent evolution of NOM in the environment. There are many time-

dependent features for the NOM molecules, such as the number of adsorptions, the

number of precursor molecules, the molecular density and so on. See Appendix B

for some visualization screenshots.

6.8.8 Summary

We have presented a framework to build scientific simulation data warehouses

and visualization software for supporting environmental research. The significance

of this work is more practical than theoretical. The contribution of this work is

to establish the viability of data warehouses in managing and analyzing scientific

simulation data.

Our experience in building scientific simulation data warehouses include the

following:

• Simulation data warehouses can grow quickly in size. Performance and man-

agement become key issues. In this paper, we not only described the design

and implementation of the data warehouse, but also presented methods to

improve performance and automate management.

• Data analysis software such as SPSS, and data visualization applications can

be incorporated to the data warehouse. The development of scientific sim-

ulation data warehousing solutions makes a close collaborative effort among

environmental scientists by providing efficient data storage, information re-

trieval, data analysis and visualization tools.

• A well designed data warehouse can speed up data mining processes be-

cause data can be efficiently queried in generally time-consuming data mining
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processes.

• The data warehouse can be easily extended to incorporate experimental data

for the purpose of simulation model verification and validation. The data

analysis SQL functions provided by the data warehouse are important vehicles

for scientists to advance research and understanding in the area of environ-

mental science.

We are currently using the data warehouse for simulation model verification and

validation, data mining and hypothesis testing. We are also gathering feedback

from our end users (environmental scientists) to make iterative improvements and

incorporate more data analysis procedures for testing and evaluation purposes. Keep

in mind that building a data warehouse is not a short term project, but a long

term iterative process, and therefore the data warehouse can always be improved.

Future work will explore the data warehouse to better serve scientists and test

the generality of the data warehousing framework by using it for other scientific

researches. Such a scientific research is to understand the open source software

development phenomenon [38].

6.9 Summary

In this chapter, we have described the agent-based stochastic simulation ap-

proach to model the behavior of natural organic matter (NOM). The simulation has

been implemented using Java/Swarm/RePast. To make the simulation accessible

to geographically distributed scientists, we have designed and implemented a portal

using the best practice Model-View-Controller based architecture. The portal is

deployed to a self-manageable computing infrastructure. We also described our ex-

perience on building the NOM data warehouse for better data analysis and provided

a case study using data mining to study the NOM simulation data.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

It is believed that autonomic computing will be the next era of computing.

Autonomic computing provides a natural platform for web-based simulations. In

this dissertation, we have explored current information technologies that are in favor

of autonomic computing. We also find autonomic computing is useful in the field of

web-based simulations.

7.1 Summary of Achievements

Many scientific simulations are large programs which despite careful debugging

and testing will probably contain errors when deployed to the Web for use. Based on

the assumption that such scientific simulations do contain errors and the underlying

computing systems do fail due to hardware or software errors, we investigate and

explore robust methods for building reliable systems to support web-based scientific

simulations with the presence of such errors. We have presented a framework to build

autonomic web-based simulation (AWS). AWS cannot come from nowhere. Certain

requirements must be satisfied during the developing process of AWS. More precisely,

the simulation should be able to checkpoint and restart; J2SE 5.0 monitoring and

management APIs are very helpful to make simulations internally self-manageable.

A self-manageable computing infrastructure is necessary to host web-based simula-

tions. AWS strives to achieve the four features presented in the Vision of Autonomic
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Computing [72]: self-configuring, self-optimizing, self-healing and self-protecting.

In this dissertation, we have proposed and compared three models to simulate

the lifecycle of scientific simulations. We can draw the following conclusions about

checkpointing scientific simulations:

• The choice of checkpoint interval is independent of the restart time r; however,

the predicted total execution time is exponentially dependent on r. Therefore,

the total execution time can be reduced dramatically if a failure can be de-

tected and restart can be accomplished quickly.

• An under-predicted checkpoint interval results in longer total execution time

than an equivalent over-predicted one; and therefore, we would rather to

choose a larger checkpoint interval if it’s not possible or too difficult to calcu-

late the optimal.

In this dissertation, we have also evaluated a set of simple and yet efficient data

cleansing methods through approximate string join. The goal of the approximate

string join is to find (almost) all pairs of strings such that their distance is below

a certain threshold. The approximate string join methods are based on a three

step approach. We first map the database of strings into points in an euclidean

space, then use approximate matrix multiplication to find approximately all pairs of

close points. These pairs of close points are further evaluated using the string dis-

tance to filter false positives. We implement this method in a commercial database.

Experiments show that this approach is both effective and efficient.

7.2 Future Directions

According to the the CIO Today Magazine (March 2004), ”Many CIOs are spend-

ing good portions of their IT budgets on improving their existing infrastructure”.

In other words, there is a focus on increasing utilization. Autonomic computing

promises self-manageable systems. Our future research will focus on ways to build

autonomic enterprise information systems.
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Some premilary thoughts on autonomic information systems:

• Self-configurable enterprise systems: global optimization seems to be a promis-

ing method to auto-tune enterprise systems performance related parameters.

More investigation on current global optimization methods will be conducted

and find most efficient existing or new methods for global optimization. Note

that efficiency is the most prominant consideration in configuring enterprise

systems.

• Self-optimizing enterprise systems: Control theory seems to be a good method

for self-optimization. Future work requires a good understanding of control

theory. In general a control system is composed of a controller and a controlled

system. The controller controls the controlled system via feed-forward control

strategy or feed-back control strategy. For example, the controlled system

could be a J2EE application server and the controller regulates performance.
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APPENDIX A

CODE USED IN CHAPTER 3

public class Checkpoint {

public Checkpoint() {}

private int crash_now(int M) {

return (int) (-M * Math.log(Math.random()));

}

public int total_time(int N, int M, int r, int x, int c)

//M is the average time before crash, and

//x is the checkpoint interval, and

//r is the restart time, and

//c is the checkpoint time, and

//N is the total time required if no crash and no checkpoint

{

int steps_completed = 0;

int total_steps = 0; //to be returned

int next_total_steps = 0;

int point_of_failure = crash_now(M);

//System.out.println("Crash at time step: "+crash_time);

int next_checkpoint = 0;

int execution_segment = 0;

boolean segment_success = true;

int redo = 0;

while(steps_completed < N) {

if((steps_completed + x) < N) {

execution_segment = x + c; //xc-segment: x+c

} else {
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execution_segment = N - steps_completed + c;

}

if( !segment_success) {

execution_segment += r; //rxc-segment: r + x + c

}

next_total_steps = total_steps + execution_segment;

if(next_total_steps < point_of_failure) {

segment_success = true;

steps_completed += x;

total_steps += execution_segment;

} else // crashed

{

segment_success = false;

total_steps = point_of_failure;

point_of_failure += crash_now(M);

}

}

return total_steps;

}

public double

avg_total(int N, int M, int r, int x, int c, int runs) {

int sum_total = 0;

double avg_total = 0.0;

for(int i = 0; i < runs; i++) {

sum_total += total_time(N, M, r, x, c);

}

if(runs > 0) {

avg_total = (double) sum_total / runs;

}

return avg_total;

}

}
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APPENDIX B

SELECTED SCREEN SHOTS

B.1 Select Screen Shots for NOM Simulation
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Figure B.1. NOM homepage

Figure B.2. NOM mynom page
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Figure B.3. NOM report for simulation 3607

Figure B.4. NOM report for simulation 3608
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Figure B.5. NOM management page

Figure B.6. NOM simulation input page
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Figure B.7. NOM sign up page
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APPENDIX C

MONITORING APPLICATION SERVER AND DATABASE SERVER

AVAILABILITY

#!/bin/sh

LOGDIR=/home/yhuang3/research/monitor/log

PID=$LOGDIR/monitor.pid

AS_PID=$LOGDIR/monitor_as.pid

AS_RESPONSE=$LOGDIR/as_response

DB_RESPONSE=$LOGDIR/db_response

DB_PID=$LOGDIR/monitor_db.pid

ASUPDOWN=$LOGDIR/asupdown

DBUPDOWN=$LOGDIR/dbupdown

AS_SERVER=http://tobit.cse.nd.edu

DB_SERVER=nom/nom@db1

# DB_SERVER=yhuang3/yhuang3@joy

email_me(){

echo "$2" |mail -s "$1" -c gmadey@nd.edu yhuang3@nd.edu

}

monitor_as(){

previous_as_status=‘cat $ASUPDOWN‘

echo "previous as status "$previous_as_status >> $LOGDIR/status.log

(

wget -q -s -O - $AS_SERVER &

as_pid=$!

echo $as_pid > $AS_PID

{ sleep 5; kill $as_pid; } &
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sleep 1

wait $as_pid

) | head -1 |cut -d’ ’ -f2 >$AS_RESPONSE

resp=‘cat $AS_RESPONSE‘

echo "response code "$resp >> $LOGDIR/status.log

if [ $resp == "200" ]; then

echo 1 > $ASUPDOWN

else

echo 0 > $ASUPDOWN

fi

as_status=‘cat $ASUPDOWN‘

echo "as status "$as_status >> $LOGDIR/status.log

if [ $previous_as_status == "1" ]; then

if [ $as_status == "0" ]; then

echo "mail me" >> $LOGDIR/status.log

subject="AS down"

text="AS is down as of "‘date‘

email_me "$subject" "$text"

fi

fi

}

monitor_db(){

previous_db_status=‘cat $DBUPDOWN‘

echo "previous db status "$previous_db_status >> $LOGDIR/status.log

(

sqlplus $DB_SERVER @db1.sql &

db_pid=$!

echo $db_pid > $DB_PID

{ sleep 5; kill $db_pid; } &

sleep 1

wait $db_pid

) | grep "Connected to:" >$DB_RESPONSE

resp=‘cat $DB_RESPONSE‘

echo "response code "$resp >> $LOGDIR/status.log

if [ ${#resp} -ne 0 ]; then

echo 1 > $DBUPDOWN

else

echo 0 > $DBUPDOWN

fi
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db_status=‘cat $DBUPDOWN‘

echo "db status "$db_status >> $LOGDIR/status.log

if [ $previous_db_status == "1" ]; then

if [ $db_status == "0" ]; then

echo "mail me" >> $LOGDIR/status.log

subject="DB1 down"

text="DB1 is down as of "‘date‘

email_me "$subject" "$text"

fi

fi

}

start(){

touch $PID

echo 1 >$ASUPDOWN

echo 1 >$DBUPDOWN

{ { while true;

do

# monitor application server using wget

monitor_as

# monitor database server using sqlplus

monitor_db

sleep 300

done

} > /dev/null 2>&1 </dev/null &

pid=$!

echo $pid > $PID

}&

echo "Monitor is started."

}

stop(){

if [ -f $PID ]; then

for i in ‘cat $PID‘

do

kill -9 $i

done

rm -rf $PID

fi

echo "Monitor is shutdown."

}
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status(){

if [ -f $PID ]; then

pid=‘cat $PID‘

echo "Monitor is running with pid="$pid

else

echo "Monitor is shutdown."

fi

}

restart(){

stop

start

}

case "$1" in

start)

start

;;

stop)

stop

;;

status)

status

;;

restart)

restart

;;

*)

echo "Invalid argument."

;;

esac
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APPENDIX D

EDIT DISTANCE IMPLEMENATION IN PL/SQL

create or replace function ed(s in varchar2, t in varchar2)

return number

deterministic

as

s_len number :=nvl(length(s), 0);

t_len number :=nvl(length(t), 0);

type thenumbers is table of number index by binary_integer;

col_to_left thenumbers;

cur_col thenumbers;

v_cost number:=0;

begin

if s_len=0 then

return t_len;

elsif t_len=0 then

return s_len;

else

for j in 0..t_len loop

col_to_left (j) := j;

end loop;

for i in 1..s_len loop

cur_col(0) := i;

for j in 1..t_len loop

if substr(s, i, 1) = substr(t, j, 1) then

v_cost :=0;

else

v_cost :=1;

end if;

cur_col(j) := least (cur_col(j-1)+1,

col_to_left(j) +1,

col_to_left(j-1) + v_cost);

end loop;
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for j in 0..t_len loop

col_to_left (j) :=cur_col(j);

end loop;

end loop;

end if;

return cur_col(t_len);

end;

/
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APPENDIX E

NOM REACTION BATCH MODEL DATA

SQL> desc reactionbatchmodel

Name Null? Type

----------------------------------------- -------- -------

SIMULATION_ID NOT NULL NUMBER

TOTAL_NUMBER_OF_MOLECULES NUMBER

TOTAL_MOLECULAR_WEIGHT NUMBER

MWN NUMBER

MWW NUMBER

Z_AVERAGE NUMBER

EQUIVALENT_WEIGHT NUMBER

PERCENT_AROMATIC NUMBER

TOTAL_MASS_C NUMBER

TOTAL_MASS_H NUMBER

TOTAL_MASS_N NUMBER

TOTAL_MASS_O NUMBER

TOTAL_MASS_S NUMBER

TOTAL_MASS_P NUMBER

PERCENT_C NUMBER

PERCENT_H NUMBER

PERCENT_N NUMBER

PERCENT_O NUMBER

PERCENT_S NUMBER

PERCENT_P NUMBER

ESTER_CONDENSATION NUMBER

ESTER_HYDROLYSIS NUMBER

AMIDE_HYDROLYSIS NUMBER

MICROBIAL_UPTAKE NUMBER

DEHYDRATION NUMBER

CC_STRONG_OXIDATION NUMBER

CC_WEAK_OXIDATION NUMBER

ALCOHOL_OXIDATION NUMBER
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ALDEHYDE_OXIDATION NUMBER

DECARBOXYLATION NUMBER

HYDRATION NUMBER

ALDOL_CONDENSATION NUMBER
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APPENDIX F

DERIVATION OF MODEL III

Let T = Ttotal(x) for simplicity. Then

T = N +
Nc

x
+

(
M +

x + c

1− e
x+c
M

+ r

)
T

M
e−

x+c+r
M

+

(
M +

x + c + r

1− e
x+c+r

M

)
T

M

(
1− e−

x+c+r
M

)
which reduces to

0 = N +
Nc

x
+

T

M

((
x + c

1− e
x+c
M

)
− (x + c)

)
e−

x+c+r
M

Divide both sides by (x + c), we obtain

0 =
N

x
+

T

M

((
1

1− e
x+c
M

)
− 1

)
e−

x+c+r
M

Thus

T = NMe
r
M

e
x+c
M − 1

x
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APPENDIX G

PROOF OF LEMMA 2.4

Proof. Without lose of generality, it suffices to prove that

T (x) =
ex+c − 1

x
, 0 < x < 1 (G.1)

has the following property: for any t such that 0 < x∗ − t < x∗ + t < 1, we have
T (x∗ − t) > T (x∗ + t) where x∗ = arg min

0<x<1
T (x). In fact, since x∗ = arg min

0<x<1
T (x),

we have ex∗+c = 1
1−x∗ . Let

h(t) = (T (x∗ − t)− T (x∗ + t))(x
∗2 − t2) = t(e−t + et − 2)− x∗(et − e−t − 2t)

Let g(t) = et − e−t − 2t, then g(0) = 0 and g′(t) = et + e−t − 2 > 0. Therefore,
g(t) > 0. Note that x∗ < 1− t and 0 < t < 1

2
. Hence,

h(t) > t(e−t + et − 2)− (1− t)(et − e−t − 2t) = e−t − et + 2tet − 2t2

Let

p(t) = e−t − et + 2tet − 2t2, 0 < t <
1

2
. (G.2)

Then p(0) = 0 and

p′(t) = −e−t − et + 2et + 2tet − 4t

= (et − e−t − 2t) + 2t(et − 1)

= g(t) + 2t(et − 1) > 0

Therefore, p(t) > 0. Hence h(t) > 0 and finally T (x∗ − x) > T (x∗ + t).
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APPENDIX H

IMPLEMENTATION OF AUTONOMIC AGENTS ON SIMULATION SERVERS

#!/bin/sh

DIR=/export/disk1/users/nom/agents

HOST=‘hostname | tr -d "sim"‘

PIDFILE=$DIR/agent${HOST}.pid

URL=nom/nom@db1

start(){

if [ -f $PIDFILE ]; then

echo "Agent seems to be running. Try to restart."

restart

return

fi

{

{

while true

do

newserver

loadavg

checkjob

check_crashed_job

failure_detect

sleep 3

done

} >/dev/null 2>&1 </dev/null &

pid=$!

echo $pid > $PIDFILE

} &

}
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stop(){

if [ ! -f $PIDFILE ]; then

echo "Agent is not running."

return

fi

local line

read line < $PIDFILE

kill $line || echo stop agent

rm -f $PIDFILE || echo remove agent pid

}

restart(){

stop

start

}

newserver(){

sqlplus $URL >/dev/null <<!

insert into servers (server_name) values ($HOST);

commit;

exit

!

}

loadavg()

{

LOADAVG=‘cat /proc/loadavg | (read u v w x y; echo $u)‘

sqlplus $URL >/dev/null <<!

update servers set loadavg=${LOADAVG}, now=sysdate, status=’UP’

where server_name=${HOST};

commit;

exit

!

}

checkjob()

{

SPOOL=$DIR/check${HOST}.txt

sqlplus $URL >/dev/null <<EOF

set head off

set feedback off

set termout off

spool $SPOOL
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select * from dispatcher where appserver=$HOST;

spool off

exit;

EOF

SED="sed -e ’/SQL>/d’ -e ’/^[ ]*$/d’ $SPOOL"

eval $SED | while read SIMULATION_ID SERVER SIMULATOR TIMEWAIT

do

#echo $SIMULATION_ID

#echo $SERVER

#echo $SIMULATOR

echo "java -jar ${SIMULATOR}.jar $SIMULATION_ID"

java -jar ${DIR}/${SIMULATOR}.jar $SIMULATION_ID batch 0 \

> ${DIR}/output/${SIMULATION_ID}.out &

PID=$!

# delete dispatcher

# update submissions

# update simulations

sqlplus $URL >/dev/null <<EOF

delete dispatcher;

update submissions set confirmed=’D’

where simulation_id=$SIMULATION_ID;

insert into simulations (simulation_id, model_name, server_name,

status, starttime) values ($SIMULATION_ID, ’$SIMULATOR’,

’$SERVER’, ’EXECUTING’, sysdate);

insert into simulation_pid (simulation_id, pid, server) values (

$SIMULATION_ID, $PID, $HOST);

commit;

exit;

EOF

done

}

check_crashed_job()

{

SPOOL2=${DIR}/check_crashed${HOST}.txt

sqlplus $URL >/dev/null <<EOF

set head off

set feedback off

set termout off

spool $SPOOL2
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select * from dispatcher_restart where appserver=$HOST;

spool off

exit;

EOF

SED="sed -e ’/SQL>/d’ -e ’/^[ ]*$/d’ $SPOOL2"

eval $SED | while read SIMULATION_ID SERVER SIMULATOR TIMEWAIT

do

echo "java -jar ${SIMULATOR}.jar $SIMULATION_ID"

java -jar ${DIR}/${SIMULATOR}.jar $SIMULATION_ID batch 0 \

> output/${SIMULATION_ID}.out &

PID=$!

# delete dispatcher

# update submissions

# update simulations

sqlplus $URL >/dev/null <<EOF

delete dispatcher_restart;

update crashed_simulations set confirmed=’D’

where simulation_id=$SIMULATION_ID;

update simulations set status=’RESTARTED’

where simulation_id=$SIMULATION_ID;

update simulation_pid set pid=$PID, server=$HOST

where simulation_id=$SIMULATION_ID;

commit;

exit;

EOF

done

}

failure_detect()

{

SPOOL3=${DIR}/failure_detector${HOST}.txt

sqlplus $URL >/dev/null <<EOF

set head off

set feedback off

set termout off

spool $SPOOL3

select s.simulation_id, s.model_name, sp.pid from

SIMULATIONS s, SIMULATION_PID sp

where s.simulation_id = sp.simulation_id and

s.status != ’COMPLETED’ and server=$HOST;

spool off
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exit;

EOF

SED="sed -e ’/SQL>/d’ -e ’/^[ ]*$/d’ $SPOOL3"

eval $SED | while read SIMULATION_ID MODEL_NAME PID

do

echo $SIMULATION_ID $MODEL_NAME $PID

STATUS=‘ps -fu $USER |grep -v grep | grep " $PID "‘

if [ $? != 0 ]; then

sqlplus $URL <<EOF

update simulations set status=’CRASHED’

where simulation_id=$SIMULATION_ID;

insert into crashed_simulations (simulation_id, model_name,

time_submitted, confirmed) values (

$SIMULATION_ID, ’$MODEL_NAME’, sysdate, ’Y’);

update crashed_simulations set time_submitted=sysdate,

confirmed=’Y’ where simulation_id=$SIMULATION_ID;

commit;

exit;

EOF

fi

done

}

case $1 in

start)

start

;;

stop)

stop

;;

restart)

restart

;;

*)

echo "usage: daemon.sh [start|stop]"

;;

esac
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