Online Collaboratory for NOM Research: Agent-based Simulations, Data-Mining, and Knowledge-Discovery

Madey, G.R., Cabaniss, S.E., Maurice, P.A., Xiang, X., Arthurs, L., Kennedy, R., Huang, Y

University of Notre Dame University of New Mexico

ASLO 2005 February 24, 2005

Overview

- Project Background
- E-Science Background
- The NOM e-Science Collaboratory
- Invitation to Test, Contribute, Participate
- Summary

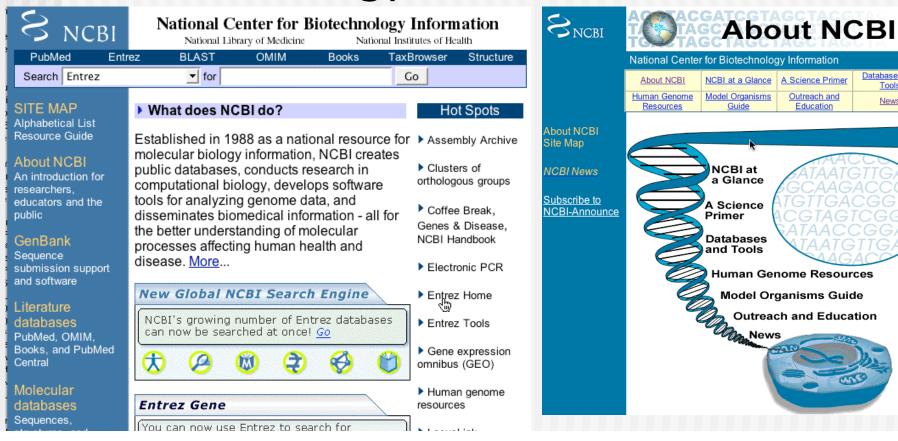
Background

- Small NSF-ITR involving Computer
 Scientists and Environmental Scientists
- Focus: "Stochastic Synthesis: Simulating the environmental transformations of NOM"
- IT Focus: e-Science, Web-Based Science, Agent-Based Simulation, Data Mining

E-Science Background

- NSF Cyberinfrastructure Program
 - Sensor networks
 - Large amounts of data => discovery through datamining
 - Online linked data repositories
 - Online analysis programs: search, extraction, matching, simulation, visualizations, etc.

E-Science Background (cont)


- WWW Telescope
- Virtual Observatories
 - NASA Skyview
 - US National Virtual Observatory
 - International Virtual Observatory Alliance
- More and more research done without every using a telescope => use of distributed data already collected

E-Science Background (cont)

Tools

News

NCBI (National Center for Biotechnology Information)

- Entrez, The Life Sciences Search Engine

номе	SEARCH SITE MAP	PubMed	Entrez	Human	Geno	me GenBank	Map Viewer	BLAST
	Sear	rch across da	ntabases				GO OLEAR Help	
		Welco	me to the n	ew Entrez	cros	s-database search pa	age	
	PubMed: abstracts		ature citations an	d ?	B	Books: online books		?
	PubMed	Central: free, fu	ll text journal art	icles ?	*	OMIM: online Mendelian In	heritance in Man	?
						Site Search: NCBI web and	d FTP sites	?
	Nucleoti	de: sequence dat	tabase (GenBank) ?	0	UniGene: gene-oriented clu sequences	sters of transcript	?
	Protein:	sequence databa	ise	?		CDD: conserved protein don	main database	?
	Genome	: whole genome :	sequences	?	*	3D Domains: domains from	n Entrez Structure	?
	Structure structure		onal macromolec	ular ?	0	UniSTS: markers and mapp	oing data	?
	Taxonon	ny: organisms in	GenBank	?	00	PopSet: population study d	ata sets	?
	SNP: sing	gle nucleotide pol	lymorphism	?		GEO Profiles: expression a abundance profiles	nd molecular	?
	Gene: ge	ene-centered info	rmation	?	ARROY	GEO DataSets: experiment	al sets of GEO data	?
	Homolo	Gene: eukaryotic	homology group	s ?		Cancer Chromosomes: cy	togenetic databases	?
	PubCher structure		mall molecule che	emical ?		PubChem BioAssay: bioac chemical substances	tivity screens of	?
	PubCher	n Substance: ch	emical substance	s e		GENSAT: gene expression	atlas of mouse central	(3)

PubMed	Entrez	BLAST	OMIN	4	Taxonomy	Structure
About BLAST		004 Download the BL				Structure
News Mailing list References NCBI Contributors BLAST Services FAQs Program	(megablas	arch for highly similar sec st) arch for divergent sequer uous megablast) e-nucleotide BLAST (blas short, nearly exact match ce archives with megabla ous megablast	quences nces tn)	PHI Sea Sea (rps	tein-protein BLAST (bla - and PSI-BLAST arch for short, nearly ex arch the conserved don blast) arch by domain archite	act matches nain database
selection guide Web service interface BLAST Software Databases Documentation Errata Executables	 Protein qu 	l query vs. protein databa ery vs. translated databa I query vs. translated data	se (blastx) se (tblastn)	Env Hun Fug Inse	cken, cow, pig, dog, sh ironmental samples nan, mouse, rat u rubripes, zebrafish ects, nematodes, plants robial genomes, other	s, fungi, malaria
Source code	Special		N	leta		
Support • Contact us	 Align two s Screen for 	gene expression data (G sequences (bl2seq) vector contamination (Ve obin BLAST (lgBlast)		• Reti	rieve results by RID	

Model Organism e-Science Sites

- FlyBase: Drosophila
- WormBase: C. elegans
- VectorBase: Mosquitos
- Mouse Genome
- DictyBase
- Etc.
- So many => GMOD

Questions?

- Has this research community begun to participate in the e-Science initiatives?
- Would this community benefit from e-Science initiatives?
- Is this community interested in an e-Science initiatives?
- Is this community willing to experiment?

The NOM e-Science Collaboratory

- Web-based
- Back-end database
- A cluster of simulation servers
- Shared simulation results
- Shared simulation configurations
- Other collaboratory features

Papers

Software

People

Animations

Photos

Stochastic Synthesis: Simulating the Environmental Transformations of Natural Organic Matter

(Project Overview - slides)

Principal Investigators

Steve Cabaniss Chemistry University of New Mexico cabaniss@unm.edu

Jerry Leenheer
US Geological Survey
Denver, CO
leenheer@usgs.gov

Laura Leff
Biology
Kent State University
lleff@kent.edu

Greg Madey
Computer Science & Engineering
University of Notre Dame
gmadey@nd.edu

Patricia Maurice
Civil Engineering & Geological Sciences
Center for Environmental Science & Technology
University of Notre Dame
pmaurice@nd.edu

Robert Wershaw US Geological Survey Denver, CO rwershaw@usgs.gov

> Robert Wetzel Biology

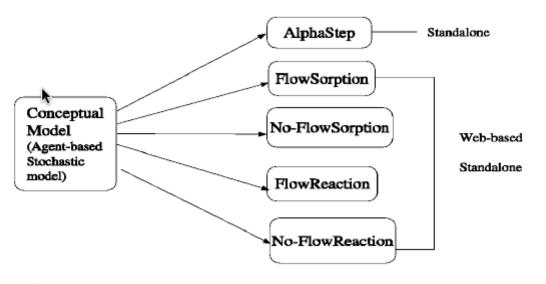
http://www.nd.edu/~nom

Nom Simulators

Home

Overview

Papers


Software

People

Animations

Photos

Modeling Implementations

AlphaStep

AlphaStep is a reference implementation that is coded in Delphi 6 and runs under Windows. It is a demonstration of the NOM conceptual model that doesn't have web and collaboration features. AlphaStep simulates a variety of chemical and biological transformations, but does not simulate any type of transport and does not represent the spatial properties of NOM. AlphaStep is intended as a stand-alone application to allow ecologists, geochemists and environmental scientists to explore possible routes of NOM transformation. AlphaStep can be downloaded below:

- AlphaStep.exe (version 12/2003)
- AlphaStep Users Guide
- AlphaStep FAQ

Software download/online

Web-Based Simulations

The other four implementations are coded using Java programming language (Sun JDK 1.4.2) and Swarm and Repast software. Swarm is a software package for simulating complex systems that was developed at the Santa Fe Institute. It is a set of libraries that

Simulation HomePage: http://tobit.cse.nd.edu/

NOM Simulation

Welcome to NOM Simulation

Available simulation models:

SorptionFlowModel

This is the sorption flow model. Administrator can update the description with detailed information

>New simulation

SorptionBatchModel

This is the sorption batch model

>New simulation

ReactionFlowModel

This is the reaction flow model

>New simulation

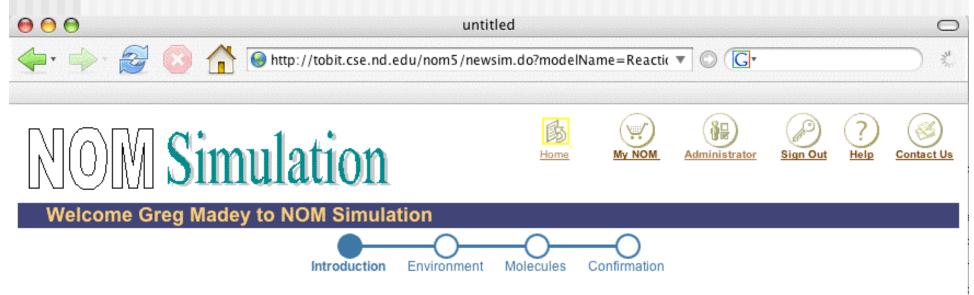
ReactionBatchModel

This is the reaction batch model

>New simulation

NOM Simulation, where we can offer scientists convenient online simulations of natural organic matter (NOM).

We use the state-of-the-art agent-based stochastic simulation methods to model the behavior of natural organic matter.


These simulations also employ autonomic computing technology for self-management.

Please refer to the <u>project home page</u> for more information.

	ing Users name/ password here
Username	
Password	
	Login
New User	? Sign up here

Acknowledgement: The material presented at this web site is based in part upon work supported by the National Science Foundation, Information Technology Research/(ITR/AP-DEB), under Grant No. 0112820. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Reaction Batch Model

Welcome to the ReactionBatchModel simulation. This wizard will guide you to provide inputs for the new simulation. A new simulation ID will be used to identify your new simulation. Do you want to continue?

NOM Simulation

Welcome Greg Madey to NOM Simulation

A new simulation ID 3610 has been assigned to identify your new ReactionBatchModel simulation. In this page, you need to specify environmental parameters for your simulation.

s:		
	I (E m-2)	
	Celsius T	
	Protease	
	Decarboxylase	
	Time Step (hours: delta-T)	
	Random Seed	
		I (E m-2) Celsius T Protease Decarboxylase Time Step (hours: delta-T)

NOM Simulation

Welcome Greg Madey to NOM Simulation

You have provided environment parameters for your new simulation in previous page. In this page, you need to specify molecules and their percentages. To create a new molecule type, press the Create button. To see the definition of a molecule type, move your mouse over the corresponding ... Remember, your simulation ID is 3610.

Select	Molecule Type ID	Molecule Name	Percentage	N
Y	13	Cellulose Sea	100	to
	14	Lignin ^{sea}		is
	15	Protein **		T
	17	Zero 🥯		
	25	Cellulose2 ***		
	26	Lignin2 ^æ		
	27	Protein2 ^{⇔⊗}		
	28	Greg ^{sea}		
	44	Terpene2 ***		

Note: Click a checkbox and the focus will automatically move to the corresponding text field for percentage. The text field is not editable if the corresponding checkbox is not checked. Uncheck a checkbox will make the corresponding text field empty. The sum of the percentages must be exactly 100.

Welcome Greg Madey to NOM Simulation

You have specified all necessary inputs for your new ReactionBatchModel simulation with ID 3610. Please press the finish button to confirm your submission. If you want to cancel your simulation, press the cancel button.

Welcome Greg Madey to NOM Simulation

Dear Greg Madey:

Your new ReactionBatchModel simulation with simulation ID 3610 has been submitted at 02/24/2005 01:19:37. Please save the simulation ID and check back again.

NOM Simulation

Welcome Greg Madey to NOM Simulation

Simulation Inputs

Environment Parameters for ReactionBatchModel

	Ph	1	02	CelsiusT	Water	BacterialDensity	Protease	Oxidase	Decarboxylase	ReactionTime	DeltaT	SampleInterval UseSeed	S
3603	7	0.0001	0.0001	298	1	0.1	0.1	0.1	0.1	1000.25	0.25	1 1	

Molecule Parameters for ReactionBatchModel

SimulationId N	MoleculeId	Name	Percentage	С	Н	N	C	S	P	Doublebond	Rings	Phenyl	Alcohols	Phenols	Ethers	Esters	Ketor	ies A
3603	25	Cellulose2	34	360	602	0	301	0	0	0	60	0	182	0	119	0		0
3603	26	Lignin2	33	400	402	0	81	0	0	160	40	40	2	1	79	0		0
3603	27	Protein2	33	240	382	60	76	0	0	15	5	5	10	0	0	0		0

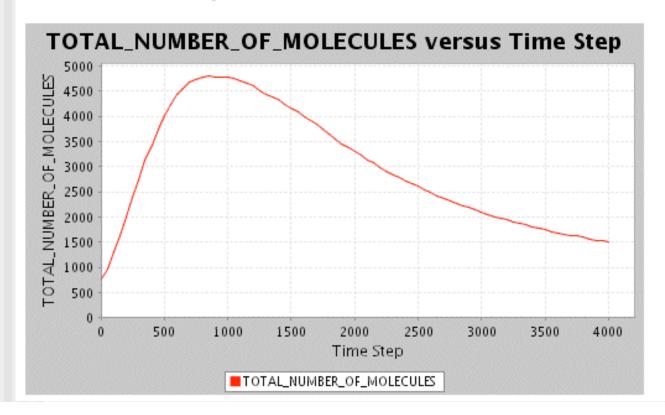
Simulation Reports

Graphical Reports: Built by JFreeChart

Go to the graphical reports page

Simulation

Welcome Greg Madey to NOM Simulation


Please choose a report name, specify sample interval and click the Get Report button. For response, sample interval should be reasonably large.

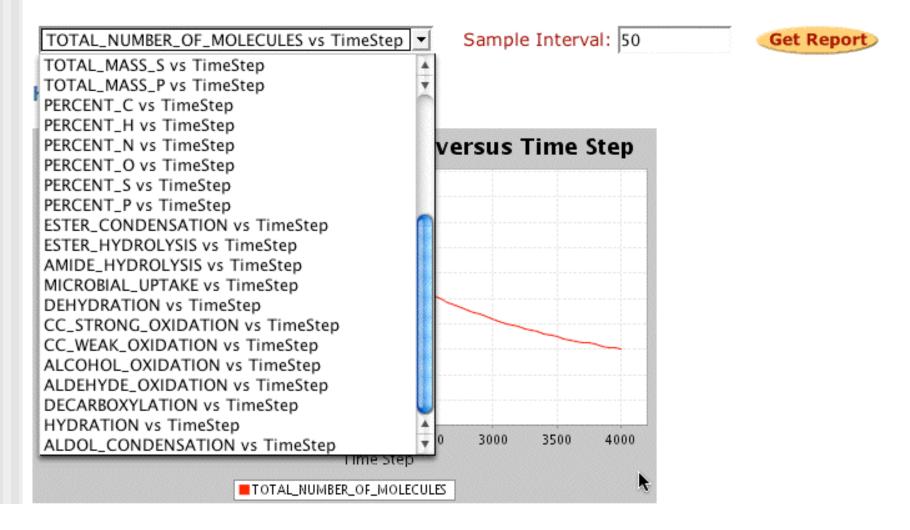
TOTAL_NUMBER_OF_MOLECULES vs TimeStep ▼

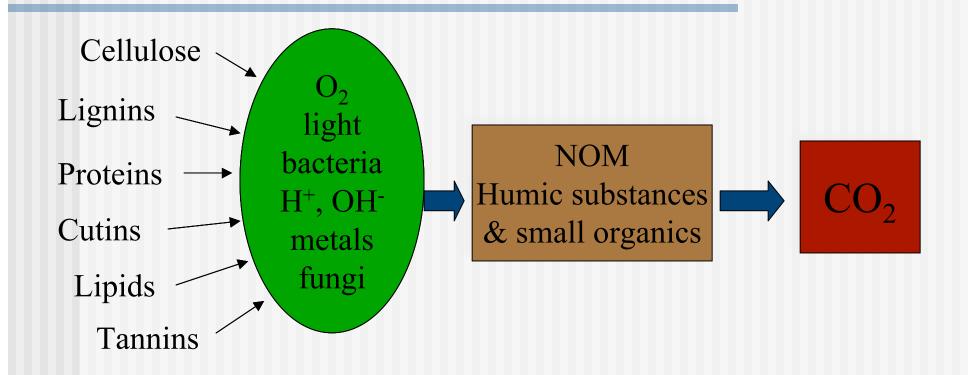
Sample Interval: 50

Get Report

Here comes the Report:

NOM Simulation





Welcome Greg Madey to NOM Simulation

Please choose a report name, specify sample interval and click the Get Report button. For response, sample interval should be reasonably large.

Agent-Based Modeling of NOM

Goal: A widely available, testable, mechanistic model of NOM evolution in the environment.

Data model

Pseudo-Molecule

Elemental
Functional
Structural
Composition

Calculated
Chemical
Properties
and Reactivity

Location Origin State

Environmental Parameters

Physical: Temperature Light Intensity Chemical: Water pH [O₂]

Biological:
Bacterial Density
Oxidase Activity
Protease Activity
Decarboxylase Activity

Invitation to Test, Contribute, Participate

- HTTP://www.nd.edu/~nom/
- HTTP://tobit.cse.nd.edu/

Summary

- Growing phenomenon of e-Science based research
- One small "environmental science" e-Science site: http://tobit.cse.nd.edu
- Invitation to test, download, evaluate, contribute, build your own, etc.
- Description of Agent-based NOM Simulator (downloadable and online) by Steve Cabaniss next!