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PERFORMANCE OF MULTIPLE MASS DAMPERS
UNDER RANDOM LOADING

By Ahsan Kareem,! Member, ASCE, and Samuel Kline?

AsstRAcT: The dynamic characteristics and effectiveness of multiple mass dampers
(MMDs), a collection of several mass dampers with distributed natural frequencies, under
random loading are investigated in this paper. The MMD attached in a parallel config-
uration modifies the transfer function of the damper-building system by flattening the
peaks observed in a typical single tuned mass damper-building transfer function. The
MMD parameters considered here include the frequency range of MMDs, damping ratio
of individual dampers, and the number of dampers. Uniform and variable frequency
increments in a specified frequency range and mass variation alone, and in combination,
are considered. The secondary inertial effect can be represented by conventional mass
dampers or liquid sloshing or oscillating liquid column dampers. A parameter study is
conducted to delineate the influence of several parameters on the effectiveness and
robustness of MMDs in comparison with a single tuned mass damper (TMD). The random
loads considered here include wind and seismic excitations. It is demonstrated that the
MMD configuration is more effective in controlling the motion of the primary system.
It offers the advantages of portability and ease of installation (because of the reduced
size of an individual damper), which makes it attractive not only for new installation,
but also for temporary use during construction or for retrofitting existing structures.

The utilization of tuned mass dampers (TMD) or tuned liquid dampers for controlling wind-
induced motion has received much attention. The application of these systems in the United
States is rather limited; however, several such systems, with some variations, have been installed
in Japan [e.g., McNamara (1977), Kareem (1983), Sun and Kareem (1986), Kareem and Tamura
(1994), Tamura (1990), Fujita (1991)]. These systems have also been studied for the reduction
of seismic response (Kaynia et al. 1981; and Kareem and Sun 1987). The effectiveness of tuned
mass or liquid dampers in controlling wind-induced motion has been demonstrated in compu-
tational models, wind tunnels, and full-scale testing. Nonetheless, in the case of seismic exci-
tation, the effectiveness of these passive systems has not been established, because of their
inability to respond, within a very short period of time, to a variety of transient base excitations.
This has led to the development of active and hybrid mass damper systems that can accommodate
these features. General information about these systems and their modeling and analysis may
be found in, for example, Housner and Masri 1990; Soong 1990; and Suhardjo et al. (1992).

Multiple mass dampers (MMDs) can be designed in a parallel or series configuration. These
can be incorporated in a structural system at one location or distributed spatially. The effec-
tiveness of multiple dampers, spatially distributed in a structure, was investigated by Bergman
et al. (1989, 1991). The analysis suggested that the damper tuned to the fundamental mode is
most effective and other strategically located dampers, tuned to higher modes, facilitate improved
performance. In a study by Suhardjo et al. (1992), two TMDs in passive and active modes were
investigated for a 60-story building under winds. Kareem and Sun (1987) presented a complete
formulation for the analysis of a multidegree of freedom primary system, combined with multiple
dampers, attached in a parallel configuration at any desired location. More recently, Igusu and
Xu (1991), Xu and Igusa (1992), and Yamaguchi and Harnpornchai (1993) studied the concept
of distributed tuned mass dampers. In this system the multiple secondary systems have their
natural frequencies distributed over a range of frequencies. Such a system promises to be more
effective under excitation frequencies distributed over a wider band. Multiple dampers in the
series configuration are generally limited to two secondary masses and have been shown to be
more effective than a single mass damper (Korenov and Reznikov 1993). During the preparation
of this paper, related studies by Fujino and Sun (1993). Abe and Fujino (1993), and Korenev
and Reznikov (1993) were made available.

In this paper, following the preliminary investigation of the MMDs, their effectiveness is
investigated under narrow- and wide-banded excitations representing wind loads. Their perfor-
mance is also examined under stationary earthquake excitations. Additional damper contigu-
rations, such as variable mass and frequency distribution, are considered to explore the different
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possible combinations of parameters to make the MMDs in a parallel configuration more ef-
fective and robust.

MODELING OF STRUCTURE-DAMPERS SYSTEM

The structure-dampers system can be modeled as a multidegree-of-freedom system represen-
tation of the structure to which MMDs are attached as appendages at a desired location. Al-
ternatively, the primary system can be represented by a single-degree-of-freedom system with
attached MMDs. In the case of a single TMD, Kareem (1983) demonstrated that buildings with
well-separated natural frequencies can be adequately represented by an equivalent single-degree-
of-freedom primary system. The dynamics of a multiple-degree-of-freedom model of the primary
system, with multiple inertial appendages, was reported by Kareem and Sun (1987). The analysis
procedure can be considerably simplified if the contribution of the higher modes of the primary
system is ignored (Kareem 1981). In this case the primary system is represented by its mode-
generalized system in the fundamental mode (Fig. 1).

If the natural frequencies of the MMDs are equal, this configuration degenerates to a single
damper, which, for the optimally tuned situation, has been effectively used in controlling motion.
However, an additional feature of the MMDs is that their frequencies can be distributed around
the natural frequency of the primary system that needs to be controlled. It is important to
exercise caution so that the range of frequencies around the primary system does not become
very large. As will be demonstrated later, this range in its optimal design is small; therefore, a
larger range not only impairs the effectiveness of the system, but may also interfere with the
higher modes of vibration of the primary system. To explore this feature a systematic variation
of the frequencies of the individual dampers is considered. Fig. 2 shows this variation in terms
of the nondimensional frequency of the dampers «, which is the damper frequency divided by
the primary system frequency. Other parameters of interest are da, Aa, and «,, which describe
the spacing of the damper frequency, the total frequency span of the MMDs, and the difference
between the natural frequency of the middle damper from the primary system frequency (Fig.
2). The analysis that follows is based on an equivalent single-degree-of-freedom system (Fig.
1). The offset frequency a is taken to be equal to zero, without any loss of generality. Some
of the key parameters for this study are: (1) The total number of dampers N; (2) the mass ratio
Kp, of the nth damper to the generalized mass of the primary system in the fundamental mode;
(3) the damping ratio &, of each damper; (4) the frequency spacing 8a of dampers; and (5) the
frequency span Aa of dampers.

The equations of motion of the combined system in Fig. 1 are given by the following matrix
equation:

Mi + Cx + Kx = f() (la)

where x, x, ¥, = displacement, velocity, and acceleration of the combined system, with respect
to a fixed reference, when f(r) is an external force acting on the structural envelope (e.g., wind
loading or wave loading). In the case of seismic excitation x denotes relative displacement and
a dot over x represents its time derivative. Accordingly, f(f) = — Mri(f), where r represents
ground displacement influence vector, and %,(f) is ground acceleration. The mass matrix is
diagonal and both C and K matrices are given by
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FIG. 1. Building-MMD System FIG. 2. Frequency Distribution of MMDs
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and the elements of matrix C follow the stiffness matrix format.
The transfer function of the combined system displacement response is given by
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The preceding transfer function can be expressed in the following simplified form:
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where N = total number of dampers; f, = natural frequency of the structures; f, = natural
frequency of the nth damper; M, = generalized mass of the primary system in the first mode;
m,, = mass of the nth damper; &, = damping ratio of the primary structure; &, = ¢, /2m, f,
= damping ratio of the nth damper; and ¢, = damper damping coefficient. The damper
parameters can be expressed in the following nondimensional quantities: w, = m, /M, and «,
= fu/f». Depending on the frequency range, the frequency response characteristics of a MMD
vary from a single peaked function to a flattened shape similar to that caused by an increase in
the damping of a TMD.

The preceding modeling was based on the lumped-mass-type dampers, and a similar procedure
is applicable to liquid-type dampers. For small amplitudes of structural motion one can model
a liquid sloshing and oscillating liquid column-type dampers by an equivalent lumped mass
system [e.g., Kareem and Sun (1987), Fujino et al. (1992), Kareem (1993)]. In the case of liquid
dampers with known transfer functions H, (i2wf), the transfer function in (3) may be rewritten
as

1

[ () = ()] - () 2

where H, (i2mf) = damper transfer function for base force, introduced by an input base ac-
celeration.

H/(i2nf) =

(5)

LOADING DESCRIPTION

350

Due to wind loads, a general type of loading is utilized to examine the performance of MMDs
in this study. A general spectral description of the acrosswind excitation, which includes the
possibility of a secondary peak for building shapes with long after bodies, is employed here.
This is of particular interest to see how a bank of mass dampers with their natural frequencies
distributed over a specified band would respond to a double peaked spectrum. Details of the
across-wind-loading spectral loading are not included here; additional information can be found
in Kareem and Kline (1993). A limited study is also conducted to observe their behavior under
stationary ground excitation. The Kanai-Tajimi spectrum was utilized with a combination of
parameters, i.e., f, = 0.5 Hz and §, = 0.3; and f, = 2.5 Hz and £, = 0.6 for soft and firm
soils, respectively.
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3. PSD of Building-MMD System: (a) Square Building; (b) Rectangular Building

The response of a building-MMD system in wind or seismic excitation is obtained based on
random viabration theory. The factors influencing the response of a structure equipped with a
bank of MMDs include the structural geometry and its dynamic characteristics, number of
dampers, ratio of the damper mass to structural mass, damping ratio of each damper, and the
frequency range of MMDs. For the first part of this study the total mass of the dampers equals
one-hundredth of the building generalized mass in the fundamental mode, with the mass evenly
distributed among the dampers. Two buildings have been considered in this study. One has a
square base (B = 31 m and D = 31 m) and the other has a rectangular base (B = 31 m and
D = 155 m). The building density is assumed to be 192 kg/m?. The total damper mass is equal
to 1% of the building generalized mass in the fundamental mode and is equally distributed
among the individual dampers, unless otherwise indicated. Each damper in the MMD config-
uration has damping equal to 1% of the critical. These buildings were selected to examine the
effect of a unipeak spectrum and a flatter spectrum with dual peaks. The natural frequency in
the across-wind direction for both of the 186-m-high buildings is 0.2 Hz. One percent damping
ratio is taken for both buildings. The response estimates are nondimensionalized for comparison
purposes, such that o7/(2%f,)*M, is taken to be equal to unity, in which o, is the root-mean
square (RMS) value of the forcing function. Like the wind analysis, the response due to an
earthquake is nondimensionalized by taking S,/(2nf,)*M,, equal to unity, the spectral ordinate
in the Kanai-Tajimi spectrum.

The response power spectral density for the square and rectangular buildings are shown in
Figs. 3(a and b). The ordinate describes the spectra of nondimensional response and the abscissa
represents the frequency normalized with the building frequency. The curves representing dif-
ferent configurations are identical in both cases, at frequencies far from the building natural
frequency, but the effect of the dampers is evident at frequencies near the building frequency.
The background response in the case of the rectangular building is quite significant in comparison
with the square building, in which the resonant action is more prevalent.

Effect of Number of Dampers

Effect of Damping

The response spectra for the square building with zero, one, five, 11, and 21 dampers have
been plotted while zooming on to a smaller frequency range of around f/f, = 1.0 in Fig. 4(a—
¢). As one should expect for building alone, or zero damper, there is a single peak where the
excitation frequency equals the building frequency. In the case of a structure with one damper,
there are two distinct peaks. For increasing number of dampers, the curve flattens out when
the dampers cover a certain range of frequencies. This feature indicates that the system is
effective over a wide range of frequencies. A similar trend is observed for the rectangular
building. The effect of increasing dampers is similar to that of adding damping to the dampers:
i.e., flattening of the frequency response function.

The damping ratio of each damper is an important factor. The transfer function of the square
building with 11 dampers is shown in Fig. 5(a). The curves corresponding to six different damping
ratios of the dampers are included for the frequency range of 0.2 and the building damping
ratio of 1% of the critical. The transfer function of the damper is smooth only when the damper
damping ratio is sufficiently high, but even for larger values of damping the amplitude of the
transfer function begins to increase. This observation also holds for the case in which the building
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FIG. 5. Building-MMD Transfer Functions for N = 11, Variable &, : (a) £, = 0.01; (b) &, = 0.005

damping was reduced to 0.005 [Fig. 5(b)]. In this case the damping required for a smoother
transfer is lower, but the local spikes are more pronounced and cover a broader range of
frequencies. The flattening of the combined transfer function is also attributed to the suppression
of secondary peaks introduced by its adjacent damper. This mechanism proceeds in progression,
resulting in the overall flattened transfer function of the combined system.

Nonuniform Mass Distrubution

In the preceding section it was assumed that the total mass of the dampers was 1% of the
building mass, spread evenly among the dampers. The performance of MMDs with an uneven
distribution of mass among the dampers is examined. Fig. 6{a) shows the response spectra for
the square building with 21 dampers. In this configuration the mass of the central damper is
equal to half of 1% of the building generalized mass in the fundamental mode. and the remaining
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half is evenly spread among the other dampers. In subsequent references this configuration will
be referred to as a nonuniform mass distribution of dampers. A comparison of Fig. 6(a) with
Fig. 4 shows that the valley between the peaks, which tends to flatten and broaden the range
of effectiveness of the MMDs or widen the span of frequencies, is missing in Fig. 6(a). The
central damper with half of the mass controls the response trend because the valley does not
get flattened, and as such it reflects the characteristics of a single TMD. However, the effect
of an MMD is evident under secondary peaks, which tend to be flattened for a certain range
of frequencies. The rectangular building showed similar trends in the results. These trends are
present even in the case in which the central damper mass is kept at one-third of 1% of the
building generalized mass, and the remaining two-thirds is spread evenly among the dampers

[Fig. 6(b)].
Nonuniform Frequency Spacing

In the preceding analysis, the frequencies of the dampers are evenly spaced throughout the
indicated range. This spacing is varied to study its impact on the MMD system performance.
One possibility is a system with five dampers in which the dampers are spaced adjacent to the
central damper, as done previously (spacing = range/4), but the remaining two dampers are
spaced at one-half this spacing (spacing = 0.5 range/4). The response spectra of a square building
with this system is given in Fig. 7(a). The response spectra of a similar system, in which the
exterior dampers are spaced at three-fourths of the usual spacing (spacing = 0.75 range/4), are
given in Fig. 7(b). Another possibility for a system with 11 dampers is considered, in which the
dampers adjacent to the central damper are spaced in the usual manner (spacing = range/10),
but the dampers adjacent to these are spaced at nine-tenths of the previous (spacing = 0.9
range/10), and subsequent dampers are spaced with decreasing increments until the exterior-
most dampers are spaced at only six-tenths of the usual spacing. This is shown in Fig. 7(c).

The response spectra of the aforementioned three variable frequency spacing systems are
repeated for a case of variable damper mass, in which half of the total damper mass is assigned
to the central damper while the remaining mass is equally distributed. By comparing the results
obtained in the uniform mass and frequency distribution cases, in Figs. 4(b and c), the effects
of variable distribution are hardly discernable.

Effect of Number of Dampers for Fixed Frequency Range and Fixed
Frequency Spacing

The effect of the number of dampers on the response of the system can be seen in Figs.
8(a.b), in which the frequency range covered by the dampers is fixed at 0.2 Hz, centered at the
building frequency, and evenly spaced. Thus, the frequency increment between the dampers
decreases as the number of dampers increases. A comparison of the system with varying numbers
of dampers is also shown in Figs. 8(c, d), in which the frequency increment between all adjacent
dampers is fixed at 0.01 Hz. Therefore, the frequency range of the dampers, increases as the
number of dampers increases. In Fig. 8(d), the center damper contains half of the total damper
mass, and the remaining mass is evenly distributed among the other dampers. The difference
between Figs. 8(a.b) and 8(c.d) stem from the change in the frequency range.

Equivalent Effective Damping

As indicated earlier, a secondary inertial system indirectly imparts additional damping to the
system through the modification of the building transfer function. The effectiveness of a damper
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system can be assessed by considering the amount of extra damping imparted to the system
[e.g.. McNamara (1977), Kareem (1983)]. The critical damping ratio in a single-degree-of-
freedom model of a building alone, which makes it equivalent to the response of the building-
damper system, is referred to as an equivalent effective damping. The equivalent effective
damping can be estimated by equating the response of a building alone with effective damping
to the response of a building-damper system.

The equivalent damping ratio for the several cases of MMDs considered here are reported
in Tables 1 and 2. The results demonstrate the effectiveness of the dampers as the building
response decreases with the addition of dampers. The comparison with a single TMD highlights
the superiority of the multiple dampers over a single TMD. The equivalent effective damping
is as high as 0.025 with multiple dampers as opposed to 0.01 for the building alone, indicating
an increase in damping by a factor of 2.5. Additional discussion on the sensitivity of effective
damping on several system parameters is given in the following section.

OPTIMAL PERFORMANCE AND ROBUSTNESS OF MMDs
Optimal Performance

To ascertain the most effective system for a given structure, the optimal number of dampers,
frequency distribution of dampers, and damping ratios must be determined. In this study the
H, norm of the system is used as a measure of the optimal performance.

Effect of Damping Ratio

First, the effect of the damping ratio of the MMDs for different frequency ranges on the
building-dampers response is examined. The RMS value of the response is plotted against the
frequency range of MMDs in Figs. 9(a—d) for four different damping ratios of the dampers.
These results clearly point out that there is a well-defined optimum frequency range. For the
square building this range varies from 0.025 Hz to 0.035 Hz as the number of dampers increases
from five to 21. Except for the very high damping value of 0.04, the optimum frequency range
of the MMDs remains unaffected by a change in damper dampings. This trend is slightly affected
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TABLE 1. Summary of MMDs Performance
Equivalent Effective Damping
Frequency ranges Uniform Nonuniform
Number of damper (Aa) mass distribution mass distribution

(1M 2 (3) 4
21 0.025 0.024 0.021
21 0.035 0.025 0.022
21 0.100 0.018 0.019
21 0.150 0.016 0.018
21 0.200 0.014 0.017
21 0.300 0.013 0.016
11 0.025 0.024 0.022
11 0.035 0.025 0.022
11 0.100 0.017 0.019
11 0.150 0.015 0.017
11 0.200 0.014 0.016
11 6.300 0.013 0.015
5 0.025 0.024 0.022
5 0.035 0.023 0.022
5 0.100 0.016 0.016
5 0.150 0.015 0.015
5 0.200 0.014 0.015
S 0.300 0.014 0.015
1 0.000 0.015 0.015

0 0.000 0.01 0.01

as the number of dampers increases. In addition, the effectiveness of dampers with lower damping
value increases as the number of dampers increases. The secondary peaks in the transfer function
lead to a higher RMS value and (in this situation) these peaks are suppressed by an increase in
the number of dampers, or the same effect can be reached by increasing the damping of individual
dampers. For high values of damping it is observed that the optimal frequency range shifts
towards a lower value. Asymptotically, for overdamped MMDs the optimal frequency range
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TABLE 2. Summary of MMDs Performance (Uneven Frequency Spacing)

Equivalent Effective Damping
Frequency range Uniform Nonuniform
Number of damper (Aa) mass distribution mass distribution
(1) (2 ) 4
N = 11; frequency spacing 0.025 0.022 0.020
0.6. 0.7, 0.8, 0.9, 1.0, 0.035 0.025 0.023
0.9.0.8,0.7, 0.6 of 0.100 0.018 0.019
normal spacing = 0.150 0.015 0.017
Aa/(N - 1) 0.200 0.014 0.016
0.300 0.013 0.015
N = 5; frequency spacing 0.025 0.023 0.022
0.75, 1.0, 1.0, 0.75 of 0.035 0.023 0.023
normal spacing = 0.100 0.016 0.016
Aa/(N — 1) 0.150 0.015 0.015
0.200 0.014 0.015
0.300 0.014 0.015
N = §; frequency spacing 0.025 0.022 0.021
0.5, 1.0, 1.0, 0.5 of (.035 0.023 0.023
normal spacing = 0.100 0.015 0.016
Aa/(N — 1) 0.150 0.015 0.015
0.200 0.014 0.015
0.300 0.014 0.015
N =1 0.000 0.015 0.015
N=20 0.000 0.01 0.01
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FIG. 9. Effectiveness of MMDs versus Frequency Range for Different Damper Ratios: (a) N = 5, Uniform Mass; (b) N = 21, Uniform
Mass; (¢) N = 5, m, (center) = 0.01M,/2; (d) N = 21, m, (center) = 0.01M,/2

would approach the zero frequency range, implying a single damper. Therefore, damping above
a certain level may offset the beneficial features of MMDs and reduce these to a single TMD.
For the case in which the central damper mass is half of the total damper mass, the results
generally follow the trend observed in the previous case, with an equally distributed damper

356 JOURNAL OF STRUCTURAL ENGINEERING



mass. One notable exception concerns the better effectiveness of this damper configuration over
the previous one, even for a larger frequency range.

The influence of the damper damping ratio on the performance of the MMD is presented in
Figs. 10(a—d) for six ranges of frequency, which include the range that represented the optimal
values in Fig. 9. For the optimal frequency range, the RMS response reaches the minimum at
the lowest damping ratio. This trend is not observed for responses above and below this range.
For the range below the optimal value the minimum response is obtained at damping ratios
much higher than the optimal, and for ranges above the optimal value the results tend to approach
the optimal damping of a single TMD. With an increase in the number of dampers. there is a
concomitant decrease in the optimal damping ratio. The basic trends are similar in the config-
uration involving the central damper equal to half the mass of the MMDs. In summary. the
performance of the MMDs is influenced by the frequency range, the total number of dampers,
and the damping ratio. For an optimal selection of these parameters an optimal system of MMDs
can be designed. One can draw a parallel between the performance of an optimal single TMD
and optimal MMDs. The TMD involves an optimal tuning and damping ratio; whereas optimal
MMDs involve a frequency range and a combination of damping ratio and number of dampers.
The damping ratio does not significantly influence the effectiveness of the damper system,
provided it is small. An increase in the number of dampers is very similar to the effects of
introducing additional damping in the dampers. Thus, the frequency range remains the most
important design variable.

COMPARISON OF EFFECTIVENESS OF MMDS WITH TMD

To compare the effectiveness of a TMD with a MMD, the variation of the RMS response is
studied with changes in the damping ratio of MMDs. In Figs. 11(a,b), these results are plotted
for a TMD and MMDs tuned according to the results presented in Fig. 10. These parameters
may not represent an optimally tuned system, but for the purpose of the comparison these
values are used based on the optimization of individual parameters. These results suggest that
as the number of dampers increases, not only is the combined response reduced, but this is
accomplished at lower damping values. The curve for a single TMD provides an optimal damping
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FIG. 10. Influence of Damping Ratio on Performance of MMDs with Different Frequency Ranges: (a) N = 5, Uniform Mass; (b) N =
21, Uniform Mass; (¢) N = 5, m, (center) = 0.01M,/2; (d) N = 21, m, (center) = 0.01M,/2
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value of approximately 0.05, which agrees with the damping given by Warburton (1981) for
random excitation. This value differs from that derived on the basis of harmonic excitation given
by Den Hartog (1956), which for the present value of . is equal to 0.06. For optimal parameters
the system response is minimum; correspondingly, the equivalent damping is maximum. These
results are qualitatively summarized here. For an increase in the frequency range above the
optimal and a decrease below it, the equivalent damping tends to decrease. The equivalent
damping is also sensitive to the damper damping ratio for a smaller number of dampers. This
trend is reduced as the number of dampers is increased. For 21 dampers, it is found that the
dependence on damper damping is minimized for frequency ranges both above and below the
optimal value. For the optimal and near-optimal frequency ranges, the equivalent damping is
insensitive to the damping ratio of the dampers except for values less than 0.5%.

The results in Figs. 11(a,b) suggest that the optimal damping for the MMDs is much lower
than that needed for a single TMD. This optimal damping value is close to the damping available
in sloshing liquid unless auxilliary devices such as screens, surface contaminations, or very shallow
water dampers are utilized. Clearly, there is a distinct advantage in using liquid dampers in a
multiple container configuration with slight detuning. This configuration would eliminate the
need to enhance damping to the level required for an optimal single-tuned liquid damper.
However, one should not overlook the presence of nonlinearities in the sloshing mechanism for
low liquid damping. In the case of liquid column oscillators, this may not be of serious concern.
In the case of mechanical dampers, low optimal values of damping in MMDs may cause difficulty
in the excessive displacement of secondary masses.

An examination of the plots in Figs. 11(a,b) show that at damping values lower than the
optimal, the RMS response increases sharply. This increase is more drastic in the case of the
MMDs, which renders these dampers less robust in comparison with the TMDs. Nevertheless,
the MMDs are relatively more effective than a TMD for a large range of damping values. The
MMD configuration in which the central damper has half the damper mass exhibits slightly
improved robustness features as it has some attributes of a TMD. Caution must be exercised
in the selection of damper damping so that it does not fall below the values suggested in these
figures.

The effect of an estimation error in the primary system natural frequency is examined. Figs.
12(a,b) show the RMS value of the response against error or against the change in building
frequency. As noted for a single TMD, a slight detuning of the central damper resuits in
minimizing the response. According to Den Hartog’s (1956) criteria, the offset between the
damper building frequency should be between —0.01 and 0.0073. The observed offset for optimal
tuning in Fig. 12(a) is approximately equal to 0.006. The effectiveness of a TMD is significantly
impaired by an error in estimation of building frequency, as can be noted from the sharp increase
in the response curve. For systems with a frequency range below optimal (i.e., in this example
less than 0.03) the RMS response tends to approach that of a single TMD. However, for a
frequency range above the optimal, the robustness in performance against detuning increases
significantly. For frequency ranges far exceeding the optimal value, the effectiveness of the
damper may be impaired because only a few dampers will be effective. The limiting case
represents only one damper tuned with the primary system, which, because of a small mass as
compared with the total MMDs, is rather ineffective. Despite this compromise in effectiveness,
the performance of the MMDs is still better than a single TMD. This suggests that MMDs may
perform better in an earthquake where there is a degradation of the stiffness of the primary
structure stiffness, or in severe wind conditions where the racking of buildings may result in
changes in their natural frequency.
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TABLE 3. Summary of MMDs Performance under Earthquake

Frequency ranges Equivalent Effective Damping
Number of damper (Aa) f,=25and g, = 0.6 fy =05and§, = 03
() 2 3 {4)
21 0.025 0.024 0.024
21 0.035 0.028 0.029
21 0.055 0.035 0.036
21 0.065 0.036 0.038
21 0.075 0.036 0.037
21 0.1 0.033 0.034
11 0.025 0.024 0.025
11 0.035 0.029 0.029
11 0.055 0.036 0.036
11 0.065 0.036 0.035
1l 0.075 0.035 0.033
it 0.1 0.032 4.033
5 0.025 0.025 0.026
S 0.035 0.030 0.031
5 0.055 0.034 0.036
5 0.065 0.033 0.035
5 0.075 0.031 0.033
5 0.1 0.027 0.028
1 0.000 0.019 0.02
0 0.000 0.01 0.010

RESPONSE UNDER SEISMIC LOADING

In the case of seismic loading, a 31m by 31m square building 93m high, with natural frequency
and damping ratio equal to 0.4 and 0.01 Hz, respectively, is utilized. Two site conditions are
considered, namely firm and loose soils. In the case of loose soil conditions the natural frequency
of the building is closer to the dominant frequency of the ground excitation. which results in a
higher response. The equivalent damping for both cases is reported in Table 3. The optimal
frequency range is different from the wind case as the building frequency and the excitation
frequency contents have changed. The effectiveness of MMDs under seismic loading like wind
loading is higher in comparison with that of a single TMD.

CONCLUDING REMARKS

This study has demonstrated the effectiveness of the MMD system in reducing the structural
response under narrow- and wide-banded excitations represented by wind and seismic loads.
The findings of this study are in general qualitative agreement with the study by Yamaguchi
and Harnpornchai (1993) for harmonic excitations, though quantitative variations exist due to
the nature of the loading considered and additional concepts involving variable mass and fre-
quency spacing configurations examined here. The following key results are presented:

Depending on the frequency range, the frequency response characteristics of MMDs vary
from a single peaked function to a flattened shape, similar to that caused by an increase in
damping for a TMD.

An optimal MMD system can be designed by an optimal selection of the frequency range,
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total number of dampers, and damping ratio, and it is found to be more effective for the same
total mass ratio.

For the optimal and near-optimal frequency ranges, the equivalent damping is insensitive to
the damping ratio of the dampers, except for very low values.

The MMD systems with variable mass dampers or variable frequency spacing alone, or their
combinations, do not offer any distinct advantage or disadvantage over uniformly distributed
mass or frequency systems.

Like a single TMD, MMDs are unrobust under variations in both the damping ratio and the
primary structure’s natural frequency. The MMDs with an optimal frequency range are more
effective than single TMDs for a wide range of damping. This makes them more attractive for
liquid dampers. The performance of MMDs can be enhanced against an error in the estimation
of the primary system’s frequency or changes in stiffness under loads by selecting a frequency
range different from the optimal.

The frequency range of MMDs is the most important parameter as it influences their robustness
and effectiveness. The damping ratio and total number of dampers play a secondary role in the
design of a MMD.

The MMDs offer a smaller size for an individual damper than one massive TMD. which
improves their constructability and maintainability. These features enhance portability and the
ease of installation in existing systems and offer a range of possible spatial distributions in a
structure. The overall effectiveness of the system may not be seriously compromised if one or
more of the dampers fail to function because of mechanical or other reasons.
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