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Abstraet--A solution, exact to second-order, is presented for the nonlinear diffraction of 
random waves by a fixed, surface-piercing vertical circular cylinder in deep water. The incident 
wave field is considered as a stationary random process, and the nonlinear diffraction problem 
is analyzed utilizing the Stokes perturbation expansion procedure combined with a 
Fourier-Stieltjes spectral representation of the stationary random wave kinematics. The second- 
order velocity potential is explicitly obtained by applying a modified form of Weber's Integral 
Theorem to invert the inhomogeneous second-order free-surface condition. Particular attention 
is directed towards the second-order diffraction forces on the cylinder. The spectral description 
of the second-order diffraction forces involves a complicated integral expression with highly 
oscillatory wave-wave interaction kernels and multiple convolutions of the linear wave spectrum. 
The present approach provides a complete spectral description of the second-order diffraction 
forces, and yields the spectral densities of the diffraction forces at the sum and difference 
frequencies. Numerical results are presented which illustrate the spectral content of the 
diffraction force due to an incident wave field represented by a superposition of waves described 
by band-limited white noise processes centered at different frequencies. 

INTRODUCTION 

THE ESTIMAnON of wave diffraction loading on fixed, vertical surface-piercing cylinders 
has been a subject under investigation for decades ever since the analysis of the 
diffraction of linear waves in infinite water depth was reported by Havelock (1940). 
MacCamy and Fuchs (1954) subsequently extended this theory for the case of finite 
water depth. However, the results of the linear diffraction theory are based on linearized 
conditions on the free-surface, and therefore its application is restricted to waves of 
small amplitude. For waves of finite amplitude, a diffraction theory which is able to 
account for free-surface nonlinearities in a consistent manner is necessary. 

Nonlinear diffraction analyses that involve the extension of the linear theory of 
Havelock or MacCamy and Fuchs to include finite wave amplitude effects resulting 
from the diffraction of second-order Stokes waves have been reported by several 
investigators. The main difficulty in formulating a consistent second-order diffraction 
theory has been in the correct treatment of the inhomogeneous free-surface boundary 
condition which appears at second-order and, consequently, several incomplete sol- 
utions exist in the literature [see, for example, Williams (1989) for a review]. 

In view of the difficulties associated with specifying a complete form for the second- 
order potential, in recent years much attention has been focused on an indirect 
approach, originally due to Molin (1979) and Lighthill (1979), in which the second- 
order hydrodynamic loads may be calculated without the explicit calculation of the 
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second-order potential. Examples of the use of this technique may be found in the 
works of Eatock Taylor and Hung (1987), Abul-Azm and Williams (1988, 1989a, b) 
and Ghalayini and Williams (1989, 1991). Also, most recently, numerical schemes 
based on the source-sink technique (integral equation approach) utilizing appropriate 
Green's functions have been utilized to obtain second-order diffraction loads and local 
quantities such as the second-order wave elevation and pressure distribution. Examples 
of these methods, for both monochromatic and bichromatic incident waves, may be 
found in the papers of Kim and Yue (1989, 1990, 1991). Kim (1991) anti Eatock 
Taylor and Chau (1992). 

In the present paper the nonlinear diffraction of deepwater random waves by a 
vertical circular cylinder to second-order is investigated. This is in contrast to the above 
works which treated monochromatic or bichromatic wave diffraction only. In general, 
physical quantities of a random wave field can be represented by Fourier-Stieltjes 
spectral integrals (Doob, 1953; Yaglom, 1962) provided that the random wave field is 
statistically stationary in time and homogeneous in space. The method employed herein 
is a direct solution for the second-order velocity potential, formulated in terms of 
Fourier-Bessel integrals (Hunt and Baddour, 1981; Hunt and Williams, 1982) and 
inverted by means of a modified form of Weber's Integral Theorem (Griffith. 1956. 
1957). Subsequently, explicit expressions for the nonlinear diffraction loading /up to 
second-order) on the cylinder in the direction of wave propagation are developed~ In 
particular, the mean and power spectral density of the nonlinear diffraction loads are 
evaluated. The numerical results illustrate that the spectral density of the second-order 
diffraction forces may be significant at both low and high frequencies~ 

FORMULATION 

A fixed, surface-piercing, vertical circular cylinder of radius a is subjected to umdirec- 
tional random waves in deep water. The flow is assumed irrotational and the fluid 
incompressible. Hence, the fluid motion may be characterized by a velocity potential 

and the fluid velocity vector is given by q --: V~. The velocity potential • satisfies 
Laplace's equation, 

V2dp(r,O,z,t) = [), (1) 

where t denotes time. A cylindrical coordinate system (r,O,z) is employed with the z- 
axis directed upwards from an origin at the mean water level which coincides with the 
axis of the cylinder (see Fig. 1). The fluid is also subjected to the following boundary 
conditions: 

qbz --~ 0 as z--~ - ~ ,  ~2) 

qbr = 0 at r = a - ~  < z < "q, (3) 

lab  ~1, + qb~-qr + r2 o ~10 - qbz = 0 at z = vl, and (4) 

1[ 
qb,+2 ~ +  ~o + ~ 2  + g - q = 0  a t z = n ,  (5) 

where xl(r,O,t) denotes the free-surface elevation, g is the acceleration due to gravity 
and subscripts indicate partial differentiation. 
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FI6. 1. Definition sketch for a vertical circular cylinder subjected to unidirectional random waves in deep 
water. 

The velocity potential • and the free surface elevation -q are expressed in Stokes 
perturbation expansions as 

(I) = E( I  ~(1)  "~ e 2 ( I  ) ( 2 )  -]- . . .  (6) 

"q = e ' q  (1 )  -[- e 2 3 ]  (2)  -~- . . . ,  (7) 

where ~ J )  and -q~J), j = 1, 2 .. do not functionally depend on the perturbation parameter  
e, which physically represents an averaged wave steepness, and e is assumed sufficiently 
small such that the convergence of the power series solutions is ensured. 

Expanding the nonlinear free-surface boundary conditions, Equations (4) and (5), 
in Taylor series about z = 0, substituting the Stokes perturbation series in Equations 
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(6) and (7) for  • and -q, and equa t ing  t e rms  in like powers  of  ~:, leads t~ b, mndarx 
condi t ions at var ious  orders  in c at z --: (L valid for all r. 0 and t. Therefor , . .  i.~,~ the 
f irs t-order,  the bounda ry  condi t ions at z ,--: 0 arc 

3ql l~ - O(~ ') = 0, i~,) 

g ~ l  (~) + ~,d)(~) = 0 ,  ( 9 )  

and,  at s econd-orde r ,  

33~ 2) - O (2) = d)(~>~,(') -- 1 0(.~ (~) 
r ~ 

l 1 (j) 
gqq(2 ,  ~_ (~)(t 2) = T]( 1 '(I)(t l)z --  ,~ [(ID!'I)] 2 -~ (I)0 . l l )  

For  conven ience ,  qq(~) and ,q(z) are usually e l iminated  to give boundary  condi t ions  on 
(I)°) and • (2) a lone,  namely  

0~, ~) + g O ~  ~) = 0, (12) 

0~2) + g O ( 2 )  = o 0 ( , '  ) 3Z [ 0 ( 1 ) ] 2 + [ 0 ( 1 ) ] 2 +  fiE)( I '  . ( 1 3 )  

Also,  Equa t ions  ( 1 ) - ( 3 )  may  be rewri t ten in t e rms  of the f i rs t-order  and second-o rde r  
veloci ty potent ia ls  as 

V2(I D(1) ~-- 0, V2(I D(2) = 0, 

O(fl)--+ 0, O~2)--+ 0 a s z - *  - -~ .  

(I)(~ 1) = 0, (I)(~ 2) = 0 at r = a. 

14) 

15) 

16) 

There  r ema in  two fur ther  condi t ions  to be satisfied by (I)(~) and • (2), namely  radiat ion 
condi t ions  as r tends  to infinity. These  p rove  not to be  the same.  The  condi t ion on 
(p(l) will be  addressed  in the f i rs t-order  solut ion and the condi t ion on (p(2~ cannot  be 
assigned be fo re  the f i rs t-order  solut ion is deve loped .  

F I R S T - O R D E R  S O L U T I O N  

T h e  f i rs t -order  diffract ion theory  for  r a n d o m  waves  in the p resence  of a vertical 
circular  cyl inder  in deep  wate r  may  be ob ta ined  in a way similar to that  appl ied by 
M a c C a m y  and Fuchs (1954). The  f irs t-order  velocity potent ia l  is cons idered  to be 
c o m p o s e d  of incident  and scat tered componen t s ,  namely  

0 (1) = O~ l) + O~ ~. (17) 

where  the incident  velocity potent ia l ,  O) ~), represents  a r a n d o m  wave  field in which 
waves  p r o p a g a t e  unidirect ional ly  (in the x-di rec t ion) .  Accord ing  to the spectral  rep-  
resen ta t ion  t h e o r e m  for  s ta t ionary  r a n d o m  processes  ( D o o b ,  1953; Yag lom,  1962), the 
incident  wave  field can be expressed  as 

o ~ l ) ( x , z , t )  = ( ~  __ ige~2Z/gei(l~t~x/u- ~,, d~((o), (18) 
L-  
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where ~(to) is a random process with uncorrelated increments, d~(to), satisfying the 
following 

E[d~(to)] = 0 (19a) 

in which S~(to)  denotes the incident wave spectrum (two-sided), to is the circular 
frequency in rad/sec, the symbol * denotes the complex conjugate. It is noted that 
d~*(to) = d~(- to)  is required to make ~ 1 )  real valued. Moreover,  since d~(to) rep- 
resents a random wave amplitude of linear waves, it is assumed to be Gaussian. In 
cylindrical coordinates the incident velocity potential can be written as 

~l'(r,O,z,t)=fi~-ig[n~_ i"Jn(to2r/g)ein°)¢o2Z/ge-i~°'d~(to ) 

+ -~ _ ig ~ ei~°J d~(to), (20) fo ~ [,~_~ (-i)~J~(to2r/g) e'OZ~/ge '°~' 

where J~(.) denotes the Bessel function of the first kind of order n and use has been 
made of the identity, 

eim=eib( . . . .  0)= ~ inJn(br) ei,,o. (21) 
r t =  

The corresponding scattered velocity potential is given by 

¢b~ l )( r,O,z, t ) = f ~  ei~t d~'~s,(12", r,0,z) (22) 

where ~s(O;r,O,z) denotes a random process with uncorrelated increments, 
d~, (12;r,0,z). Since the scattered velocity potential is required to satisfy Equations (14) 
and (15), by a separation of variables, di~.~(12;r,0,z) can be written as 

d~(~);r ,0,z) = F(r,O,k)e I~lz d~(f~),  (23) 

where k is the separation constant, {s(12) denotes a random process with uncorrelated 
increments, d g ( O ) ,  and F(r,0,k) is a deterministic function satisfying the Helmholtz 
equation, namely 

1 1 F 
F ~ +  r F ' + r 2  oo+lkl 2F=O,  (24) 

to which the general solution is given by 

r ( r ,0 ,k)  = ~ [A,H}, ') (Iklr) + B,H22) (Iklr)] e'"", (25) 

where H~)( - )  and H~2)(-) are Hankel functions of the first and second kinds of order 
n, and A,  and Bn are constants to be determined. 

Therefore, the scattered velocity potential can be written as follows: 
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alp(s1)(r,O,z,t) = Z [AnH(n 1) (Ikl r) + BnH(~ 2) (Iklr)] ei"° el~lz eZntdG(fl) - 
n . . . . .  m 

(26) 
Substitution of this form for the scattered potential into the free-surface boundary 
condition, Equation (12), yields 

( - 0  2 + ~k[) ~ ,  [A~H(~ 1) (Iktr) + BnH gz) (Iklr)] 
n = - - o o  

• e in° elklzeif~t d~( f t )  = 0 (27) 

which implies that 

- f F  + glkl = O, (28) 

which is the well-known linear dispersion relation in deep waters. Consequently, ~s (~) 
can be expressed as 

dp~ 1)(r,O,z,t) = [A~H~l)(122r/g) + BnH~Z)(flZr/g) ] 

e in° e l l 2 z / g  e in' dG(O). (29) 

As ~ j l )  has to satisfy the radiation condition as r --+ m, terms such as Hgl)(fl2r/g) e ***t 
for f~ > 0 and H(~2)(gFr/g)e ~n' for I~ < 0, which represent waves propagating from 
infinity toward the cylinder, are unacceptable on physical grounds. Thus, the scattered 
velocity potential can be expressed by 

O(~) ( r ,O , z , t ) : f o [~__BnH( f l ' ( fFr /g )e ' n ° l eaZ~"emtdG(O)  

+ A.ng~(a~r/#) e ~n° en2~/" e ~a' d t~( l l ) .  (30) 

The final condition which ~I  1) is required to satisfy is the no-flow condition on the 
cylinder surface, namely 

- o n r =  a .  

Or Or 

From Equations (20) and (30), one may obtain on r = a 

Or - Jo  - g  ~ B"H~2)' (l~2a/g) ei"° en2=/geln' d~(l~) 

2 aa 

+ I~2 ~ A.H~')'(gl2a/g)ei"een2~/seintdg~(fl) (32) 

and 
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O~ (~l - fo  ioa inJ'(to2a/g) e in° e°2~/" e -i°t d~(o~) 
n ~ - - ~  
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where the primes indicate differentiations taken with respect to the arguments. It 
follows from Equation (31) and temporal equivalence in Equations (32) and (33), that 

and, so 

= - ~, (34a) 

d ~ ( a )  = d~(-co). (34b) 

Also, the coefficients An and Bn are given by 

A,, = gin+ ~J" (°°2a/g) (35) 

toH(1)' ( toZa/ g) 

Consequently, ~(1) can be expressed as 

qb(1) = ~ ~ sgn(co)[isgn(co)ln Mn(ofla/g)Cn(o~2r/g) e,Sg-(o,)%(o,) • e in0 
n 

e °zz/g e -g°' d~(to), (36) 

where sgn(-) denotes the sign function, 

Mn(co2a/g) = [J'(co2a/g) 2 + Y'(co2a/g)2] -1/2, 

] 
an(o~) --- tan -1 [ ~ j  and 

Cn(tO2r/g) = Y'(to2a/g)Jn(oflr/g) - J'(toZa/g)Yn(coer/g) for n -> 0. (37) 

For n < 0, the following relationships may be used: 

Mn(') = ( -1)nM-n(- ) ,  an( ' )  = a -n ( ' )  and Cn(') = C_~(-). (38) 

From Equation (9), the free-surface elevation on the cylinder surface may be expressed 
by 

rl(~)(a,O,t)=f~ i{n~=_ sgn(°a)[isgn(°~)]nMn(c°2a/g)Cn(°fla/g) e-i[sgn(~°)~(°)l'ei'°} 

e ~'2",* e - ' ° '  d~(eo). (39) 

This expression will subsequently be required in the development of the second-order 
diffraction force. 

- io~ ~ (-i)nJ~(o~2a/g)e'n°eJZ/ge-i'°td~(~o), (33) 
o o  n =  - - ~  
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SECOND-ORDER SOLUTION 

Before determining qb~2), it is desirable to simplify Equation (13) by utilizing the 
expression for ~ ) .  For deep water, the first term on the right-hand side of Equation 
(13) is identical to zero as Equation (12) is satisfied for all values of z. not only for 
z = 0. Substituting ~ as given in Equation (36) into Equation (13) leads to 

~ f 2 ) + g ~ e , = f ~  f ' ~  Z Z f ' ° ~ & r ' e m ° e  i ~ o " " t d ~ ( ° ~ ) d ~ ( t b ) , J , , , , , ,  , , , 

(4(I) 

in which 

fn,m(tO,CO,r) = in+l(tO+tO) tO ~ sgn(~o) " ' ~  sgn(6~) . . . . . .  : 

• M~(to2a/g) M,, m((oZa/g) e ilsgn("~)e',,,('°) + sgn(d 'J(G . . . .  (d~)] 

• C ' ( k l r )  C~,_m(k2r)-  ) C m ( k ~ r ) C , , . , , ( k 2 r J + C , , ( k l r ) C , , . , ~ ( k e r )  . (41) 

The second-order velocity potential, (1)(2), may be considered to consist of a homo- 
geneous solution, which satisfies the homogeneous form of Equation (40), and a 
particular solution. In view of the boundary condition Equation (15), the deepwater 
homogeneous solution admits no radial evanescent modes, and so can be represented 
by outwardly propagating waves only. This fact suggests that in the present case the 
homogeneous and particular solutions may be treated together. Therefore, the total 
second-order velocity potential is expressed as the following Fourier-Bessel integral: 

dP(Z)(r,O,z,t) = A ...... ( l l , k )  C,,(kr) e kklz i,~ i~z, e e dkd~2(fi),  
" t r l  ; =  r 

(42) 

in which f~ is the circular frequency, ~2(~) is a random process with uncorrelated 
increments, d~2(~), A ..... (•,k) denote unknown coefficients and C,,(kr) is a cylinder 
function, given by 

C,,(kr) = Y ' ( ka )J , , ( k r )  - J ' ( k a ) Y ~ ( k r )  . (43) 

Alternatively, ~c2) can be rewritten as 

~(2~(r,O,z,t) = G ...... ( a , k )  C,,(kr) 

• e k-" e i''° e ix~' dk d~2(O), (44) 

in which the G , , m ( ~ , k )  [which may be related to the A,,.m(O,k)], are coefficients to 
be determined and use has been made of the identity, C ~ ( - k r )  = - C,,(kr) for k > 
0. It can be shown (see Appendix) that ~(2) in this form satisfies Equations (14)-(16). 

Substituting ~(2) from Equation (44) into the left-hand side of Equation (13) leads 
to 
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--tt(1)(2) + g (I) (z 2) = ( _ ~ 2  + gk) Gn,m(l),k)Cn(kr) 

• e ~° e ifl' dk d{2(~)  • (45) 

Comparing Equation (45) to Equation (40),  it follows from temporal equivalence that 

a = -(o~ + `5), (46) 

and, therefore, one obtains 

d~2(~) = d~(o~) d~(`5) (47) 

and 

f,,,,,,(~o,&,r) = [gk - ~2]G ..... (~,k)  C~(kr) dk 

f ~  [gk  - (0.)+(;.)) 2] Gn,rn(O), o.)-, k) Cn(kr ) dk. (48) 

In a manner similar to Hunt and Baddour (1981) and Hunt and Williams (1982), the 
coefficients Gn.m(¢O, ̀ 5, k) in Equation (48) may be determined using a modified form 
of Weber's Integral Theorem, according to which any function f(r), satisfying certain 
conditions (Griffith, 1956, 1957), can be expressed as 

f ( r )  = , [j;(ka)2 + y;(ka)2] k dk Cn(ku) uf(u) du. (49) 

The solution to Equation (48) is therefore formally 

I ~ C,,(kr) rfn.m (~0, `5, r) k dr 

G ..... (~, `5, k) - [gk -J"(~o + ,5) 2] [J'(ka) 2 + Y'(ka)q" (5O) 

Utilizing Equations (46) and (47), q~(2~ in Equation (44) can thus be rewritten as 

(D(2) : E G ..... (~, `5, k) Cn(kr) 
oa ae n = - ~  ~l~ 

• e ~z dk e in° e -i(~°+ ~)' de(m) de(`5). (51) 

The integral in Equation (50) may be explicitly determined using Equation (41). 
Integrating by parts and employing Bessel's equation, leads to 

f / C . ( k r )  dr ~n'm(°') '  `5, a )  [ ( k  l ~- k2) 2 -- k21 r fn,m (~, `5, r) 
2 klk2 

• Cn(kr) Cm(klr) Cn+.,(k2r) r dr, (52) 
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where 13,,,,,(o, 6, a) denotes the r-independent component of fn,m(tO , 6, r). If interest 
is focused on the diffraction forces in the x-direction (along 0 = 0), then it is necessary 
to compute Gn,m(tO, ~o, k)  for n = - 1  and 1 only (Hunt and Baddour, 1981; Hunt 
and Williams, 1982). 

NONLINEAR DIFFRACTION LOADING 

The total diffraction load on the cylinder results from the net effect of the fluid 
pressure over the entire wetted surface of the cylinder. The pressure at any point in 
a fluid of density p is given, to the second-order, as 

p = -epC~'D - c2p {dp~2) + ~ [V~(1)]21- pgz, (53) 

and the diffraction force on the cylinder in the x-direction is 

F~(t) = a [p]~=~ cos(vr - 0) dz dO. (54) 

The diffraction force can be formally expressed as a sum of the first-order and second- 
order parts, namely 

F.(t) = ¢F~xl)(t) + ¢2F~2)(t), (55) 

where 

and 

F ( l ) ( / )  = - a p  [(I)~l)]r= a COS (~ -- 0) dz dO (56) 

?t? Fx(2)(/) = - a p  [ ~ ' )  + gz] dz 
dO ( J0  

+ [qb~2) + (.~.))2 + 2 ~  (.~0.))21 dz cos (-rr - 0) dO. (57) 
- - ~  r = a  

Substituting for ~(~), .qo) and ~(2) from Equations (37), (39) and (51) into Equations 
(56) and (57), and carrying out the z-integrations and 0-integrations analytically, leads 
to 

F~)(t) = 2ap~rg 2 o~-2Ml(toea/g) Cl(tOZa/g) e--isgn~'°)'~ ~') e -i~t d~(o), 

F ~ 2 ~ (  t )  = _ _  ap~rgf_' I~ ~ ~ { [ co(o 
2 X.,m(o,,~,a) 1 + (~o--~ 6--~) - 

oc ~ n = - - I  m = _ ~ c  
(n~0)  

m(n - m)g 2 ] 
a2tot~(o~ 2 + tO 2) J 

I~4i(~ + 6 )  I 
- Gn.m(co,&,k) dk[ e-'(~°+~'~t d~(o) d~(&), Jo ag k2 J 

(58) 

(59) 
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where use has been made of the identity, Cn(ka) = 2/~rka, and 
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X.  m ( ~ , ~ ,  a )  = 492 
, w Z a 2 ~ ( ~ + ~  ) ~ . ,m(~ ,6 ,a) .  (60) 

For convenience, the second-order diffraction loading in Equation (59) is rewritten as 

ap~rg [" f~ o, Fx(2)(t) = - 2 - J _ . ,  E [Kq(IO,(o,a) - Lq(oa,(o,a)] 
q=O 

• e -i(`°+c°)t d~(co) d~(6J), (61) 

where 

Kq(tO,do,a)=2i[-sgn(to)sgn((o)]q( 2g i2[ to~ q(qL1)¢ ] 
\a~w~/ 1 + (o~2 + &2) + a2to6~(co2 + cb2)j 

• {sgn(~o) Mq(co2a/g) mq+l(Co2a/g) e-i[sgn(,o)Otq(tO) + sgn(~)Ctq+l(tb)] 

+ sgn(60 Mq+l(to2a/g)Mq((02a/g ) e-ilsgn(,o)%+1(,o) + sgn(,~)aq(Cb)] } (62a) 

fo  8i(co + 60 
t q ( t O , ~ , a )  = a g k ~ [ g k  - ( t o + ( o ) 2 ] [ j ~ ( k a )  2 + y ~ ( k a ) 2 ]  

{fa Cl(kr)[fl'-q(t°'c°-'r) + fl"q+a(°°'(°'r)] rdr} dk.  (62b) 

It is noted that the wave-wave interaction kernels Kq(...) and t q ( . . . )  depend on the 
wave frequencies, but not on the wave amplitudes• The t e r m  Lq(. . . )  essentially results 
from the second-order velocity potential, and 

Kq( (O,co,a ) = Kq( tO,&,a ), tq(  (O,to,a ) ----- t q (  tO,(o,a ), 

Kq(-to,oo,a) = Kq(cO,-co,a) and Lq(cO,-co,a) = tq(-to,to,a) -- 0. (63) 

As the nonlinear diffraction force from Equations (55), (58) and (61) is a random 
quantity, it is appropriate to study its statistical and spectral content• The mean of the 
nonlinear diffraction force may be expressed as 

E[Fx(t)] = E[F~I)(t) + F~Z)(t)] 

= 2apwg 2 to-ZMl(toZa/g) Cl(coZa/g) e-isgn(', ')C,l(,O e-iO, tE[d~(to)] 
oo 

ao g l" (" " 
+ 2 ]_ .  J_.  ~ [Kq(o~,(o,a) - Lq(tO,(a,a)] e-i('°+~') t E[d~(¢o) d~(tb)] (64) 

q=0 
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Invoking the probabilistic characteristics of {(o~) described in the first-order solution 
and the identities in Equation (63), then Equation (64) becomes 

E[C.(t)] = E[F~.2~(t)] 

= aoTrg Kq(o~,-o3.a) S~,(~o) dco 

8pg3 ~ [1-q( iq .+~!  ' 2  ][J ' uY : , , , - J : , , , Y ' q '  

a'rr , , , , ,  to4lj;e + y.zl[y;,e + y:~,,] 

where the arguments of the Bessel functions are to2a/g, and Snn(m ) denotes the incident 
wave spectrum (two-sided). It is noted that the mean of the nonlinear diffraction 
loading represents the drift force, and it is independent of the second-order velocity 
potential. The covarianee of F~(t) is defined as 

cov[F,~(t),Fx(t+'r)] = E{F~')( t)  + F-(,2)(t)][F~ ) )(t+'r) + F{.2)(t+1")]} - E2{JY,(t)} 

= E{F~l)(t)F~')(t+'r) } + E{ F{ I ~(t) F{Z)(t+'r) + F~2)(t) F~ -~ ~(t+'r) } 

+ E{F~2'(t)F~ 2) (t+'r)} - Ee{F}~e)(t)}. (06) 

The first expectation term in Equation (66) is given by 

RF(xl)F(xl)(,r) = (2ag2o,rr)2 f'- f ] (co(o)2Ml(m2a/g)Ml(6a2a/g)Cl(Oa2a/g)Cl(d~aa/g) 

• e _ / l ~ g ~ ( . o ) ~ , ( ~ o )  , ~ g . ; ~ . , , . , ( a , ,  , .... ~ ° "  ' "-'q E [ d ~ ( o ~ )  d¢(6)1 

= (2ag2p.rr)2 ( M~( t° a!g) el  (to a/g) e~.,s~(oa) do~ 
~_ O} 4 

= 1602g 6 f~ ~ ~o s[J~(m2a/g)e + Y'~(o~2a/g)e] -~ e'"'; Snn(to) dto (67) 

in which RF~DF(~I)("r)  = E{F~1)(t) F!~l)(t+'r)} and represents autocorrelation of F~l)(t) 
force. The second expectation term in Equation (66) is identically zero Since the 
product of the first-order and second-order forces includes a third-order joint moment 
of Gaussian random variables, that is, d~(co~) d~(tOe) d~(to3). A combination of the 
third and fourth terms in Equation (66) gives the covariance of the second-order 

diffraction forces, namely 

cov[F(v2)(t), F~2)(t+r) ] = Rr~z,v~Z~(T ) __ E 2 [ F ~ ( t ) ] .  (68) 

Since an expression for E[F~2)(t)] has been given in Equation (65), and 
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2 "~ 

R~21~2) ( , r  = • x -x - ) E [ K m ( ° l ,  ° 2 ,  a) Kn(t03,0~4,a) 
. m = O  n = O  

- Km(o,,o2,a)Ln(o,, 02,a) -- Lm(o,,02,a) K,,(03,04,a) 

+ L,,,(o, ,02,a) L,,(o, ,o2,a)] e -i1('°, +'~:+°~+~'4)' + (-,3' 'o4~TI 

• E[d~(to,) d~(02) d~(03) d~(04)], (69) 

it follows, after substituting for E[d~(oh) d~(o2) d~(o3) d~(o4)] in terms of lower- 
order joint moments, that 

Cov[F(2)(I), F~? ) (t+T)] = rr 2 ~ ~ [Km(o,h-o ,a)  K. , ( -o ,o -h ,a )  

+ Km(o,h-o,a)  K . ( o - h , - o , a )  - K,. (o ,h-o ,a)  L . ( - o , o - h , a )  

- Km(o ,h-o ,a )  L . ( o - h , - o , a )  - Lm(o,X-o,a)  K , , ( - o , o -Ma)  

- Lm(o,X-o,a)  K ~ ( o - X , - o , a )  + Lm(o,h-o,a)  L n ( - o , o - h , a )  

+ L.,(o,X-o,a) L,,(o-X,-o,a)]e~X~S~.(o) S. , (X-o)  de dX. (70) 

From Equations (66) and (68), the covariance of the nonlinear diffraction force Fdt) 
can be expressed symbolically as 

cov[G(t), G(t+'r)] = cov[F~' ~(t), F~')(t+'r)] + cov[F~(t) ,  F~Z)(t+.r)]. 

The corresponding power spectral density, 
Wiener-Khinchine relation, is given by 

SFxF~(h ) = SF(l)F[xl)()k ) -~- SF~2)Fx(2)(~.), 

where 

(71) 

which can be derived through the 

16 p2g6Sn.(X ) 
SF?'F]'~(K) = hs[j~(h2a/g)2 + y[(h2a/g)2 ] 

(72) 

(73) 

and 

~ -~ . . = ~ ~ [ K m ( o , X - o , a )  K.(-~,o-X,a) 
m=0 n=0 

+ Km(o,h-o,a)  K ~ ( o - X , - o , a )  - Km(o,X-o,a)  L , , ( - o , o - X , a )  

- K. ,(o,h-t0,a)  L , , ( o - h , - o , a )  - L ,n(o ,h-o ,a)  K. , (-e0,o-h,a)  

- Lm(o,X-o,a)  K.,(0~-h,-o,a) + Lm(o,h-o ,a)  L , , ( - o , o - h , a )  

+ t m ( O , h - o , a )  Z n ( o - h , - o , a ) ]  Sn~q(t0 ) S . n ( h - o  ) d e .  (74) 

Subsequently, the standard deviation of Fx(t) can be readily obtained from the following 
expression: 



142 A. KAREEM et al. 

cr2F= f~- SFxFx(h) dh 

~ SF(xl)F(xl)(h) d X  + SF(2)~(2)(h) d h .  -~c ~ x - x  x z (75) 

COMPUTATIONAL CONSIDERATIONS 

In the above, the first-order solution presents no computational difficulty whereas 
the second-order solutions require significant computational effort. As shown in Equ- 
ation (74), the power spectral density of the second-order diffraction loading involves 
a complicated multiple convolution integral of the incident wave spectrum and highly 
oscillatory wave-wave interaction kernels. Numerical methods are utilized to evaluate 
this integral• One approach is to approximate the incident wave spectrum by band- 
limited white noise with appropriately determined amplitude at various discrete fre- 
quencies that may practically represent the dominant wave components of a random 
wave field• As such, the continuous incident wave spectrum may then be visualized as 
composed of a finite number of monochromatic wave trains of different frequencies. 
Then 

-//~ {6(to-to;) + 6(to+toi)}, (76) Snn(to) = ~-~'1 16 

where 8(.) denotes Dirac delta function, coi and Hi represent, respectively, the wave 
frequency and the wave height of the ith wave train, and are given by 

toi = iAto (77a) 

H i = 4x/S~.o(toi) Ate, (77b) 

in which Ato is a suitable frequency band width, S~,~(toi) the ordinate of the original 
incident wave spectrum at frequency to~, and A& a small frequency band width (which 
may or may not be made equal to Ato). Equation (77b) is based on the premise that 
the energy of random waves within a very small frequency band centered at o~i is 
equivalent to that of a monochromatic wave train of that frequency. Substituting the 
discretized form of the wave spectrum given in Equation (76) for the wave spectra in 
Equation (74) results in 

SF(x2)F(2)(~k ) = \ Z / d_ ~ i = l  1=1 162  rn=O n=OZ ~ m , n  ( to,~k--to,a) { 6 ( 0 o - - o ) i ) 6 ( ) k - - 0 0 - - o J j )  

+ 6(to- o,i)6(x- 0.+..;) + ~(o,+ to,)6(x- o,- o,j) + 6(o,+to,)a(x-to+ to~))do. 

~=1 j=l 162 ~'~--o ~zT'=o {XItm'n(toi'X--toi'a)6(X--toi--toJ) q- XItm'n(toi'h-6°i'a) 

• 6(X-- tO i + tOj) + x lZ tm,n( - to i ,h .+to i ,a )6(h- t - to i - to i )  

+ V,,,.n( - toi,X + toi,a)6(X + ~i+ toj) }, (78) 

where ~,,,,,,(...) denotes the square-bracketed term in Equation (74), consisting of the 
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interaction kernels, Kin(...), K,(. . .) ,  Lm(...) and L~(...). By substituting pAto, where 
p is an integer, for X in Equation (78), the power spectral density can be expressed 
a s  

w i t h  

H~Hf ~, ~, ~Fm~(iAo~,j&o,a) 
162 m = O  n = O  

+ u H]H]16 2 *,,,,,,(/Am, -jAto,a) 
i ~ l  . j ~ l  m = 0  = ) 
w i t h  t - - / = p  

+ 
i = l  . j= .  I m = O  n = O  
w i t h  ] - t = p  

+ 2N EN H~H 2 ~ *~,,,(-iA~o,-j2~,a)}. (79) 

w i t h  

It is noted that the power spectral density represented by Equation (79) takes nonzero 
values at discrete frequencies only. Utilizing Equation (63), it can be shown that 

*m,,,( i&o, -jAm,a) = 't~,n,,,(- i2~oa, j 2~va, a ), (80) 

and, therefore, the power spectral density in Equation (79) may be rewritten as 

w i t h  

N N 

+ E E  
i = l  . ] ~ 1  
w i t h  l - J ~ P  

H]H~. ~, ~ 2q ~ ..... (iAo~,-jAoo,a) 
162 m=O n=o 

N N 

+E E 
w i t h  

} 162 ~ ~] qL~,n(-i&o, -jAo~, a) , 
m = ( )  n = 0  

(81) 

It is noted from Equation (81) that the first term (for p > 0) or the third term (for 
p < 0) provides the spectral value at the sum frequency of the interacting wave 
components, and the second term the spectral value at the difference frequency of the 
interacting wave components. It is apparent that the evaluation of qsm,~(...) in Equation 
(81) represents the major computational task in obtaining the power spectral density 
of the second-order diffraction forces. Based on the discretization scheme of the wave 
spectrum described above, computations are carried out for some numerical examples 
to demonstrate the spectral content of the first-order and second-order diffraction 
forces. It is worth pointing out at this point that although Equation (81) provides 
spectral values of the second-order diffraction forces only at various discrete frequencies 
(as a result of the discretization of the incident wave spectrum), many features of the 
power spectral density of the second-order diffraction forces can still be observed. By 
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increasing the number of discrete wave components, a finer resolution of the power 
spectral density of the second-order diffraction forces may be obtained. 

As the r-integral included in the double integral Lq(  . . . . .  ) defined in Equation (62b) 
has a highly oscillatory integrand, special consideration has to be given to the numerical 
integration of this term. Herein, the numerical evaluation of r-integral is carried out 
in a way similar to that applied by Hunt and Baddour (1981) and Hunt and Williams 
(1982). Thus, three terms of the asymptotic behavior of Cl (k r )Cq(k~r )Cu~  l(k2r)  are 
subtracted from the integrand, integrated by parts, and evaluated explicitly in terms 
of Fresnel integrals. The remaining integral, which tends to zero monotonically as r 
approaches infinity, is then evaluated by a series of Gaussian quadratures over an 
interval [a,R] where R / a  is large but finite, and R depends on the values of k, k~, k2, 
and q. For kl ~ k2, the r-integration results in two weak singularities in the k-integrand. 
One weak singularity, which behaves as Ik - (k j  + k2)l -~/2 near k = k~ + k2, is 
removed by the factor [k 2 - (kl + k2) 2] in the k-integrand; the other, which behaves 
as Ik  - I k l  - kzll  - a ' z  near k = Ik~ - k21, is integrabte by a change of variables in the 
integrand. For k x = k 2 ,  the two weak singularities are reduced to one, which behaves 
as Ik - 2kl1-1/2 near k = 2kl, which was removable as reported previously by Hunt 
and Baddour (1981) and Hunt  and Williams (1982). For the k-integral, a singularity 
also occurs at k = k s = (~o~ + oJ2)2/g. Near k = k s ,  the integrand behaves as 
lk - ksl -~ and results in a Cauchy principal value. 
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N U M E R I C A L  R E S U L T S  A N D  D I S C U S S I O N S  

An example vertical circular cylinder having a diameter of 30 ft is selected for the 
numerical computations, and the incident wave spectrum is represented by a super- 
position of band-limited white noise processes, as given in Equation (76), centered at 
frequencies greater than or equal to 0.2 Hz, for which wave diffraction becomes 
increasingly significant. The value of 2~o in Equation (77a) is chosen equal to 0.1 Hz. 
The incident wave spectral amplitude is determined from Equation (77b) based on the 
condition that each wave train has a wave steepness of 0.1 and A~ = 0.0628 rad/sec 
(=  2~r x 0.01 Hz); therefore 

H 2 

S ~ ( 2 7 r f ~ )  - 16 x 0 .0628  

(0.1 Li) 2 
- 16 x 0.0628 (82) 

where Hi and Li denote,  respectively, the wave height and wave length of a monochro- 
matic wave train of wave frequency fi, and Li can be obtained from the linear deepwater 
dispersion relation. For convenience, in the following the spectral figures are one-sided 
and the wave frequency in the figures is given in hertz. 

Figure 2 presents the spectral representation of an incident wave field consisting of 
four dominant wave components of 0.2, 0.3, 0.4 and 0.5 Hz, based on Equation (82). 
Figure 3 illustrates the spectral description of the first-order diffraction forces in such 
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a random wave field. Several results for the power spectral density of the second-order 
diffraction loading may be obtained by taking combinations ( two,  three or four, 
respectively) o f  the incident wave spectral amplitudes shown in Fig. 2. 

In obtaining the spectral content of  the second-order diffraction forces, the infinite 
summation in Equation (81) was truncated after a finite number of  terms. This number 
was determined by numerical testing so as to ensure that the computed results were 
accurate to two significant digits. Generally,  more terms are required for the spectral 
contribution introduced by self-interaction of  the individual wave components  than that 
for the spectral components  contributed by interactions between wave components  at 
different frequencies.  In addition, among the spectral contributions due to interactions 
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between wave components at different frequencies, the number of terms required to 
compute interactions between two waves at relatively close frequencies is larger than 
that required for two wave components with a large difference in their frequencies. 

A progressively finer mesh of Gaussian points with increasing q in the r-integration 
is applied to ensure monotonic decrease in the k-integrand as the value of k increases 
(Hunt and Williams, 1982). Typical k-integrands for the first two orders (0 and 1) 
corresponding to different wave frequency conditions are illustrated in Figs 4(a)-6(b) .  
Figure 4(a) and (b) presents profiles of the k-integrand at a double frequency corre- 
sponding to an individual wave at 0.2 Hz. It is noted that there is a singularity at 
k = 0.19651, which results in a Cauchy principal value, and the k-integrand decreases 
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rapidly for larger values of k. Figure 5(a) and (b) presents the k-integrand at a sum 
frequency corresponding to a wave pair at 0.2 and 0.4 Hz. It can be seen from the 
figures that a weak singularity occurs at k = 0.14734, and a further singularity is present 
at k = 0.44203. Figure 6(a) and (b) presents the k-integrand at a difference frequency 
corresponding to a wave pair at 0.2 and 0.4 Hz. A singularity is present at k = 0.04911 
and a weak singularity exists at k = 0.14734. The numerical integration for the k- 
integral in the present work was carried out by use of Gaussian quadrature. From the 
figures, it can be seen that the value of the k-integrand is negligible at large values of 
k. Extensive numerical testing has showed that when kl = k2 (the case of double 
frequency),  the major contribution results from values of k < ks; when k~ ~ k2, the 
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major contribution results from values of k < 1.5ks for the case of ks > Ikl - k 2 I  

(the case of sum frequency),  and from values of k < 2]kl - k21 for the case of 
ks < Ik l  - k2] (the case of difference frequency). These values may be used as guidelines 
to specify a finite k-interval in any future work. 

Figure 7 presents the spectral representation of the second-order diffraction forces 
resulting from an incident wave field at two wave frequencies, 0.2 and 0.3 Hz. It is 
noted from the figure that spectral contributions occur, as a result of self-interaction 
of individual random waves, at zero and double frequencies (i.e. at 0.0, 0.4 and 
0.6 Hz),  and as a result of interaction between random waves of different frequencies, 
at 0. l  Hz (difference frequency) and 0.5 Hz (sum frequency). The spectral value at 
0.1 Hz is about 83% of that at 0.0 Hz and the spectral amplitude at 0.5 Hz is about 
80% of that at 0.6 Hz, indicating that the spectral contribution from the interaction 
of waves of different frequencies can be significant. Figure 8 shows spectral amplitudes 
of the second-order diffraction forces in a wave field consisting of three random waves 
of 0.2, 0.3 and 0.4 Hz. In comparison with the previous case (Fig. 8), it is noticed 
that as a consequence of interaction between random waves of 0.3 and 0.4 Hz, the 
spectral amplitude at 0. l  Hz (difference frequency) has an increase of approximately 
4% and a new spectral contribution appears at 0.7 Hz (sum frequency). In addition, 
due to the interaction between random waves of 0.2 and 0.4 Hz, the spectral ordinate 
at 0.6 Hz (sum frequency) is increased again by approximately 4% and a new spectral 
contribution occurs at 0.2 Hz (difference frequency). It is also observed that at either 
sum or difference frequency, the interaction between random waves of 0.3 and 0.4 Hz 

FIG. 7. Power spectral density of the second-order diffraction forces due to an incident wave field consisting 
of waves at 0.2 and 0.3 Hz. 
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gives rise to a smaller spectral impulse than does that of 0.2 and 0.3 Hz, which can 
be attributed to the fact that the incident wave spectral amplitude at 0.4 Hz is only 
6% of that of 0.2 Hz. Moreover, it is found that spectral amplitude at sum and 
difference frequencies arising from wave frequencies of 0.2 and 0.3 Hz are, respectively, 
21.7 and 12.5 times greater than those at the sum and difference frequencies arising 
from waves at 0.2 and 0.4 Hz although the incident wave spectral amplitude at 0.3 Hz 
is no more than 3.2 times greater than that at 0.4 Hz. This suggests that the greater  
the frequency difference between the two wave components, the less intense is the 
interaction between them. 

The above-stated trend can be confirmed by considering the case of an incident wave 
field consisting of four wave components, as shown in Fig. 2. Figure 9 presents the 
spectral description of the second-order diffraction loading in such an incident wave 
field. It is noted that interactions between the wave pair at 0.2 and 0.5 Hz result in a 
spectral contribution at 0.3 Hz (difference frequency) and a 14.5% increase in the 
spectral value at 0.7 Hz (sum frequency). Also, it is found that the spectral contributions 
at the sum and difference frequencies by the wave pair at 0.2 and 0.4 Hz are, respect- 
ively, 5.7 and 125.3 times greater than those induced at the sum and difference 
frequencies by the wave pair at 0.2 and 0.5 Hz although the incident wave spectral 
impulse at 0.4 Hz is only 2.4 times greater than that at 0.5 Hz. Aside from the 
interaction of waves at different frequencies, the results from Figs 3 and 9 suggest that 
the intensity of the self-interaction of the individual wave components increases with 
increasing wave frequency, as evidenced by the ratio of the spectral amplitude of the 
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second-order diffraction forces at the double frequency to that of the first-order diffrac- 
tion forces at the incident wave frequency. This ratio rises from 1.8 to 18.4 to 71.4% 
and finally to 153.3% as the incident wave frequency varies from 0.2 to 0.5 Hz in 
0.1 Hz increments. It is also noted from Figs 3 and 9 that the spectral amplitudes of 
the second-order diffraction forces at 0.4 and 0.5 Hz are about 9 times greater and 23 
times greater, respectively, than that of the first-order diffraction forces at the corre- 
sponding frequencies, and the spectral impulses of the second-order diffraction force 
at frequencies higher than 0.5 Hz are greater or comparable to that of the first-order 
force at 0.5 Hz, emphasizing the significance of second-order effects in shaping the 
spectral content of the nonlinear diffraction force in the high frequency range. 

CONCLUDING REMARKS 

A theory of nonlinear diffraction of random waves by a vertical uniform circular 
cylinder in deep water has been presented, with emphasis on the spectral description 
of the second-order diffraction forces. From the numerical results shown herein, it is 
clear that the spectral density of the second-order diffraction forces in a random 
incident wave field is influenced not only by the self-interactions of the individual wave 
components, but also by the interactions between the different wave components. The 
present approach provides a complete spectral description of the second-order diffrac- 
tion forces, and illustrates the significance of wave-wave interactions in yielding spectral 
densities at the sum and difference frequencies. 
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A P P E N D I X  

In this appendix the total second-order velocity potential will be shown to satisfy Laplace's equation and 
two boundary conditions prescribed in Equations (14)-(16). Formally, the total second-order velocity 
potential can be expressed as 

~(2)(r,O,z,t)=f" f ~ ~ A,,.,~(lLk)C,(kr, ei~4-e'"°e'~Udkd{2(~,. IAl)  
n = :  • m =  , 

From the following identities 

J~(-x)  = ( - 1 )"Jn(x) and Y,,(--x) -- ( - 1 )'[ Y~(x) + i 2J,,(x)]. (A2) 
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valid for x > 0, it follows that for k > 0, 

C, , ( -kr )  = - C.(kr).  (A3) 

Therefore,  the k-integral in Equation (A1) can be expressed as 

f • . . , (~ ,k)C.(kr)  (~ ~o . 
F 

a'o A., elklzdk = j, .  A..,.,(12,k) C.(kr)  ek~dk + A,, ,.,(l~,k) C.(kr)  e kzdk 

= f ~ m ~ m ( " k ) C . , ( k r ) e k ~ d k + I ? g . , . . . , ( ~ l , - k ) C , l ( - k r ) e k ~ d k  

(~ G., ..,(1~ k) C,,(kr) ekz dk, (A4) 
Jo 

where 

Gn.m(ll,k) = A. , . . , ( ILk) - A.,.m(fL k), (A5) 

Subsequently, qb ~z) can be written as 

* ( 2 ' ( r , O , z , t ) = f _ ~ f  7 ~ ~ G. , . , (~ lk )C. , (kr )eaze ' °e '~ 'dkd{z( l l ) .  (16 )  

It can be proven that this form for ~<z~ satisfies Laplace's equation. Let h..m(r,O,z,k) be defined as follows: 

h,,.m(r,O,z,k ) - C.,(kr) ekze *'°. (A7) 

Substitution of h..,,,(r,O,z,k) into the Laplacian operator in cylindrical coordinate system leads to 

V2h,, . ,(r O,z k) = k2Cj(kr) + r C'(kr)  - r2 C.,(kr) + k:C,(kr)  e k~ e ~". (AS) 

Since the Bessel functions satisfy the following recurrence relations [see. for example, Watson (1952)], 

2v 
Do ,(~) + Do+~(z) = ~ Do(~), 

D~ ,(z)  + D.+,(z)  = 2D'~(z) and 

D,, 2(z) - 2D~(z) + D.+2(z ) = 4D"(z), (A9) 

where D~(z) denotes the cylinder function, it follows that 

k 2 C , , ( k r ) = k 2 { y . ( k a ) [ ~ j n  2(kr) l 1 ~J,,(kr) + J,,+~(kr)] 

k 2 

k 2 
+ 4(n + 1) {J/,(ka)[Y.(kr) + Y.,+:(kr)] - Y'(ka)[J,,(kr) + J,,+2(kr)l }, (A10b) 

n 2 F/k 2 
- ~  C.,(kr) - {J'(ka)[Y,,  2(kr) + Y., (kr) ] -  Y',(ka)[J,, 2(kr) + J,,(kr)]} r- 4(n - 1) 

nk 2 
+ 4(n + 1) {J';(ka)[Y"+z(kr) + Y,,(kr)] - Y'(ka)[J.,+z(kr ) + J,,(kr)]} (A10e) 

and 

kzC,,(kr) = kz[Y/,(ka)J,,(kr) - J',(ka)Y,,(kr)]. (AlOd) 
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Summing Equations (A 10a )--(A llld ) leads to 

k l /  4 n-llj 1 k2C"(kr) + rC,;(kr} - ~ (',,(kr) ~ k : ( ' , , ( kr )= 

k~ ~ k' nk: . k  k: 
{Y ' (ka)J , ,  z ( k r ) - J ' , ( k a ) Y ,  e(kr)} + ~ 4(n- 1} 4 ( n + l ) - 4 ( n  I }  401+!1 ~ 

{Y ' (ka)J , , ( kr )  J , ; (ka)Y. (kr)]  ~ 1~4 ! 
k- 

- 4(n4 1) 4 1 n ! l ) i  

{Y',(ka)J, ,~2(kr) J ' , (ka)Y , , ,~Jkr)} .  ( A l l )  

It is noted that each of the coefficients (in square brackets) in Equation (AI  1) is identically zero. l 'herefore,  
it can be concluded from Equations (A6) to (A8) and ( A l l )  that 

V2dp~21(r,O,zd) - 0. { A12 

Furthermore.  since 

OC,,(kr) = k{ Y, ; (ka)J ' (kr)  - J ' ( ka )Y ' , ( k r ) }  [ = O. 
[ J r  !~= , ,  I ,  , ,  

it follows that 

O¢~2~(r,O,z,t) 
. . . .  O. tA13) 

ar 

Finally, from Equation (A6),  since qb~2) contains the depth-ciecay factor e k:. 

OdP!Z!(r:O?z't)-~O as z --+ "~. (A /a !  
3z 


