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Abstract 
A flow field over a rigid wavy surface is numerically generated. The general concept of 

the large eddy simulation that captures the large scale flow structure is utilized. A coordinate 
transformation scheme is developed to transform any wavy surface to a flat surface. The 
numerical computations are carried out in the co - ~ domain. The subgrid scales are resolved 
by utilizing a Smagorinsky subgrid model. The fourth-order central difference and the third- 
order upwinding schemes are used for the diffusive and convective terms, respectively. 
Adams-Bashforth and Dufort-Frankel schemes are used to solve the equations of the fluid 
motion. The computational scheme ensured a non-penetration and a no-slip boundary condi- 
tion. The velocity profile, and the separation and reattachment locations are found to agree 
well with an experimental investigation. 

1. INTRODUCTION 

Applications of flow over wavy surfaces span many areas of interests that include genera- 
tion of water waves, development and migration of sand dunes in deserts and sediment dunes 
in rivers. In this study, to improve our understanding of the flow over fully developed sea 
states, the simulation of wind flow over a rigid wavy surface is conducted. The compliant 
nature of offshore drilling platforms, being developed for deep water drilling, has increased 
their sensitivity to the dynamic effects of fluctuations in the wind loads. Limited full-scale 
information concerning the wind field characteristics over the ocean has prompted the exten- 
sion of onshore practice for the wind field analysis to offshore practice. However, there exist 
major differences that concern the variable nature of the sea surface which translates and 
deforms. Locally, the wind profile may be influenced by the changes in the sea surface and 
may also influence the turbulence structure. Many previous studies have addressed the topic 
of wind-wave interaction, but the focus has been in the interaction, wave momentum flux and 
pressure on the wave surface. Most of the theoretical investigation of wind-wave interaction 
are based on work by Miles (1957 and 1959), and Benjamin (1959). Most recent studies 
include modelling of wave boundary layer, based on the nonlinear Reynolds equations in a 
curvilinear system of coordinates (Chalikov and Makin, 1991). These studies are primarily 
focused on developing wave boundary layer models for input to wave prediction models. 
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The numerical simulation of flow over wavy surfaces has been accomplished earlier 
utilizing Reynolds averaging in conjunction with eddy viscosity and mixing length modelling 
of turbulence (McLean, 1983; Sengupta and Lekoudis, 1985; Patel, et al., 1991). Britter, et al., 
(1981) have examined airflow over a two-dimensional hill from analytical considerations. 
Experimental studies are reported by Hsu et. al., 1981. The present study involves simulation 
of wind velocity profiles and other flow characteristics over fully developed waves. The first 
phase, which is reported here, concerns simulation of wind flow over rigid wavy surfaces. 
This model will be expanded subsequently to include propagating waves. 

Among the current simulation methods, the Reynolds Averaged Navier-Stokes (RANS) 
method and Large Eddy Simulation (LES) method are most popular (e.g., Krettenauer and 
Schumann, 1992, Liu & Kareem, 1992. Ferziger, 1990; and Murakami, et. al., 1989). Both 
approaches involve approximating: i) averages of the nonlinear terms, i.e., turbulence model; 
ii) domain discretization and; iii) solution of the discretized equation. LES is less sensitive to 
errors inherent in modelling as compared to RANS, hence, the quality of results is less depen- 
dent on modelling accuracy. Although, this advantage is not without the penalty concerning 
additional computational effort. 

2. GOVERNING EQUATIONS 

The governing equations of motion for wind flow over two-dimensional waves are given 
by the following averaged Navier-Stokes equations (space-average) 

Ot~ _ ~  _ ~  1 OP ~ + ~_ 
-~  + u-~ + v-~ = - -~-~ + ~ (2VSxx- Rxx) ~y (2vSxy -Rxy) 

~)--~ + u~--~ + v ~  = - ~ - ~  + ~-~ (2VSxy -Rxy ) + ~ (2vSyy -Ryy) 

(1) 

(2) 

where g and ~ are the mean air velocities in x and y directions v and p are the air kinematic 

viscosityandairdensity, respectively. Sij= 1 , 2 ( ~ + ~ i  ) is the strain rate, P is themean 

pressure, and its fluctuation is neglected. The Reynolds stress, Rij  = U'iU' j, is assumed to be 

related to the mean strain rate Sij by 

+2 2~ 
Rij = -2VsasS q ~q °ij (3) 

where i,j = x, y directions, q and 8ii are the turbulent intensity and the Knonecker delta. 
Vsa s is the eddy-viscosity which norhaally depends on the Reynolds number and the mean 
strain rate (e.g., Aldama, 1990). Smagorinsky (1963) proposed the following eddy-viscosity 
expression with only one empirical constant that now is known by his name: 

VSG S = (CA) 2 (2SijSij) 1/2 (4) 

The subgrid coefficients can be adjusted between 0.1 and 0.2 depending on the boundary ge- 
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ometry, flow field and the Reynolds number, and A is the mean grid spacing. 
The corresponding governing equations in the co - ¥ formulation are given by 

bco b~&o  byb to  ( b  2 b 2 )  
bt = by bx ~-2~-~ + Tx 2 + 7 y  2 (vr°~) 

b2vb2vr b2vb2vr) -2 (-~F ~-~y 2 ~ b2v b2vr 

b2~ t + b2W 

tO = ~ x  2 bY 2 

in which v T = v + Vsa s is the total kinematic viscosity. 

(5) 

(6) 

3. COORDINATE TRANSFORMATION 

There are several possible schemes to convert the wavy surface to a flat surface. 
However, for computational convenience a transformation scheme is chosen such that Poisson 
equation in the transformed coordinates (namely curvilinear coordinates) retains its general 
form. The coordinate transformation is derived here for application to any boundary surface, 
that is continuous and two-dimensional. 

We will use x and y here to represent the Cartesian coordinates and n and s for curvi- 
linear coordinates. On the curvilinear coordinate system, the boundary surface y = f (x )  is 
flat, i.e., n = O. The relationship between the two coordinates is given by 

x = x (s, n) (7) 

y = y (s, n) .  (8) 

Assuming the transformation Jacobian 

bx by bx by 
J =  

bs On On bs" 
(9) 

is not zero, the first-order and the second-order derivative operators can be achieved and are 
thus applied to the Poisson equation (6). To guarantee that the Possion equation retains its 
form, the transformation equations are given by 

~y bx 
b--n - bs (10) 

by bx 
b-~ = - b"-n" (11) 

Accordingly, the orthogonal coordinates x and y are transformed to the orthogonal coor- 
dinates s and n, based on the above grid transformation equations. For brevity, the details are 
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omitted here. 
The relation between x - y  and s - n are solved by equations (10) and (11), given the 

following boundary conditions: boundary condition on n = 0, periodical boundary condition 
on the side walls of the flow field and the free-stream boundary condition, i.e., Oy/On = 1.0, 
on the top of the flow field. For example, to get an expression for y, the following Poisson 
equation 

02Y + 02Y 
Os---- i ~ n  2 = O, (12) 

is solved together with the boundary conditions 

Oy f ' (x)  
- ( 1 3 )  

0S ~/1 + r  2(x) 

Oy 1 
- , ( 1 4 )  

On ,]1 + f '  2(X) 

at n = 0. The above boundary condition is based on the assumption that s is the length of the 
boundary surface from x = 0 to x, i.e., 

X 

s = I,Jl +f,2(~)d~, (15) 
o 

because the boundary is a two-dimension surface. Therefore, the preceding equations in the 
curvilinear coordinates s and n (parallel and normal to the wavy surface, respectively) are 
given by 

0-7 = 2 ~  Os d as On v 7 7 s  2 + ~n2 (vr°)  

(02~ 02VT 02lit ~2V r 02\!/02VT) 
(16) 

(17) 

where J is the transformation Jacobian. 

4. COMMENTS ON NUMERICAL SIMULATION 

The diffusive and advective terms in the preceding equations are evaluated using fourth- 
order finite difference and third-order upwinding schemes, respectively, by taking into consid- 
eration the accuracy and the feedback sensitivity (Leonard, 1981). The overall computational 
scheme involves Adams-Bashforth method, combined with DuFort-Frankel method for the 
diffusive term (Pinelli and Benocci, 1989; Roche, 1976). The time step is determined by the 
advective and diffusive Courant-Friedrich-Levy number. The computation is basically 
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conducted over a sinusoidal wave under the periodical boundary condition. At the rigid wavy 
boundary both non-penetration and no-slip conditions are satisfied following the work by 
Israeli (1970). The initial condition is set to be the state of  zero vorticity superimposed by a 
small perturbation. It 's reported that the perturbation is required to sustain the steady airflow 
at a proper energy level (Pinelli and Benocci, 1989). 

5. RESULTS AND DISCUSSION 

Airflow at different Reynolds numbers are investigated by numerical simulation over a 
periodic, stationary wave. Different wave amplitudes and wavelengths are investigated. Here, 
as an example, the coordinate transformation is done for a sinusoidal wave 
y = A cos (2~rx/~.), where the wave amplitude, A, is 1.0 m and the wavelength, ~., is 10.0 
m. The curvilinear coordinate s - n mesh 65 × 65 is constructed over one sinusoidal wavy 
surface. The mesh was denser in the flow field close to the wave crest and coarser in the flow 
field close to the wave trough (Fig. 1). 

CURVILINEAR COORDINATE SYSTEM OVER WAVY SURFACE 

i i i i i ! ! ! ! ! : i ; i i i i i i ' i i i i i i ~ i i i i i ~ ' ~ E i ~ q ! i ! ~ i ~ i i ! ! ! ! ' ! ! ~  
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1 2 3 4 5 6 7 8 9 10 

X Coordinate (meter) 

Fig. 1.A curvilinear mesh over a sinusoidal wavy surface. 

Simulations of  the airflow over the sinusoidal surface are conducted on the s - n mesh 
described above at Re  = 3, 000 - 300, 000. The free-stream velocity is u = 45 cm/sec  and 
the time step is equal to 0.001 ~./u. The time sequence plots of  the flow parameters show that 
the separation is originally noted on the leeward side of the wave crest at the 1000th time step, 
it moves to the wave trough at the 15()0th time step, and subsequently moves to the windward 
of  the wave crest and shrinks there at the 2000th time step. The separation moves back to the 
wave trough at the 2500th time step, and later continues to shift back to the leeward side of  the 
wave crest at the 2800th time step, and stays in the leeward of  the wave crest and strengthens 
itself at the 3000th time step (Fig. 2). Correspondingly, the movement of  the vortieity core is 
observed (Fig. 3). In this study it is observed that the evolution time for a mature separation on 
the leeward side of  the wave crest takes about 3~./u. 
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Fig. 2. Streamlines over a sinusoidal wavy surface at different tame steps. 
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Fig. 3. Vorticity contours of  airflow over a sinusoidal boundary at different time steps. 
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Fig. 4. Streamlines of flow over wavy surface. 

To check the validity of our numerical model, another run is made for the air flow 
u = 51 cm/sec over the stationary wavy surface, y = A cos (2xx/~,),  where 
A = 5.08 m m  and ~, = 50.8 m m ,  and results from our simulation are compared with the 
experiment conducted by Buckles, et. al. (1989). The contour of  the stream function in Figure 
4 shows that the separation is at x/~, = 0.1 and the reattachment is at x/~. = 0.8, which 
agrees well with the observed values reported by Buckles, et al., in a water tunnel. Compari- 
sons of  the horizontal velocity profiles between our model and the experiment by Buckles, et. 
al. at different horizontal locations are shown in Figure 5. The results indicate that the simula- 
tion is in good agreement with experimental results. This work is being continued and the 
fluctuating flow field characteristics are being evaluated. The next phase of  this study would 
involve 3-D simulation of flow field over waves. 
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