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The uncertainty associated with damping in structural systems is 
identified and discussed. A second-order perturbation technique is 
utilized to examine the effects of damping variability on the transient 
and steady-state dynamic response of structural systems. The results 
demonstrate that the uncertainty in damping indeed influences the 
system response. The effects are more pronounced for higher variability 
of damping values. 

Keywords:  damping, uncertainty, random vibration, perturbation, se- 
ismic, wind, waves, buildings 

Quantification of damping is by far the most vexing 
problem in structural engineering: Unlike the inertial and 
stiffness properties of a structural system, damping does 
not refer to a unique physical phenomenon:, increasingly, 
it is recognized as an important factor in the design of 
structures that are sensitive to wind, waves or earthquake 
loading, singly or in combination. Damping is of particu- 
lar interest to the designers of high-rise buildings, where 
it plays an important role to help meet serviceability limit 
states from human comfort considerations. The estimates 
of damping in a structural system have intrinsic variabi- 
lity as a result of the complexity of damping mechanisms. 
The ability to estimate damping values accurately, at the 
design stage, would certainly alleviate a major source of 
uncertainty from the design of dynamically sensitive 
structures. 

The objective of this study is to investigate the in- 
fluence of damping uncertainty on the system dynamic 
response. Following a brief discussion of fundamental 
damping mechanisms and their mathematical modelling 
features, a probabilistic description of the system re- 
sponse in terms of the second-order statistics of the 
variability of damping is presented utilizing a perturba- 
tion-based approach. A numerical example of a disere- 
tized structural system is presented to illustrate the 
significance of damping uncertainty on the system re- 
sponse. 

Background 

Damping is a measure of structural capacity to dissipate 
energy in order to reach a quiescent state. The damping 
capacity may be defined as the ratio of the energy 

*Current address: Lockheed Engineering & Management Service 
Company, Houston, TX 77258, USA. 

0141-0296/90/010002-07/$03.00 
© 1990 Butterworth & Co (Publishers) Ltd 
2 Eng. Struct. 1990, Vol. 12, January 

dissipated in one cycle of oscillation to the maximum 
amount of energy accumulated in the structure in that 
cycle. There are as many damping mechanisms as there 
are modes of converting mechanical energy into heat. 
The important damping mechanisms are material damp- 
ing and interfacial damping t'z. 

The material damping contribution comes from com- 
plex molecular interactions within a material, and so the 
total damping of the structure is dependent on the type of 
material, method of manufacturing and final finishing 
process. The complexity of the situation is increased by 
the simple reality that material properties often differ 
from sample to sample, resulting possibly in significant 
differences in energy losses among members of a struc- 
tural system. The equations of motion in structural 
dynamics usually describe macroscopic behaviour, while 
material damping processes arise from microscopic phe- 
nomena. It is for this reason that phenomenologicai 
theories are being utilized for achieving satisfactory 
representation of energy dissipation in dynamical sys- 
tems. 

The interracial damping mechanisms arise from cou- 
lomb damping in the form of a frictional interface be- 
tween members and connections of a structural system. 
Welded connections tend to reduce the contribution of 
interracial damping compared with bolted connections. 
The soil-structure interaction may contribute towards 
the overall damping 3. 

A structure vibrating in a fluid is subjected to fluid 
dynamic forces which may tend to dampen the vibration 
resulting from the viscous action of the surrounding fluid. 
This damping contribution is generally small compared 
with mechanical damping in aerodynamic applications 
whereas in hydrodynamic situations, for example, de- 
pending on the magnitude of the drag coefficient, a 
tension leg type platform may experience large hydro- 
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dynamic damping forces*. It is also noted that for some 
structures with certain shapes the fluid dynamic forces 
may tend to enhance the oscillations by synchronizing 
with the structural motion, or in other words result in 
negative damping s'6. The effects of negative aerodynamic 
damping are often significant and may cause severe 
structural damage. 

An element in the damping coefficients matrix, C~i, 
may be defined as a force developed at coordinate i due 
to unit velocity atj. A consistent damping coefficient may 
be formulated if the distributed damping coefficient per 
unit length is known. The overall system damping matrix 
may be assembled from the element damping matrices. In 
the case of utility plant structures which are fabricated 
from a variety of materials and components fastened 
together by means of several complex joints, such local 
damping mechanisms can vary significantly in different 
parts of the structure, and are difficult to quantify ~. In 
practice, evaluation of the distributed damping coeffi- 
cient is generally impractical, and this has led to the 
customary practice of expressing damping in terms of 
measured damping ratios. 

The assumption of proportional damping is often 
invoked to utilize modal superposition techniques which 
facilitate decoupling of the equations of motion with the 
aid of modal matrices associated with the undamped 
system. The most general proportional damping model is 
given by 

[C] = [M] ~ a,(EM]-L[K])~ (I) 
i 

in which i may range from - o o  < i < oo and the sum- 
mation may include as many terms as desired. For i = 0 
and i = I in the previous equation, one obtains the 
Rayleigh damping. In the casc of combined systems 
where proportional damping is generally not possible, 
decoupling may be accomplished utilizing a state-vector 
approach s. 

The selection of an appropriate damping value is a 
controversial subject. Although it is a general consensus 
that damping values change with amplitude of motion, 
their functional descriptions are rather limited 9-~3 
Besides the complex nature of damping, the methods 
employed to ascertain damping of full-scale structures 
and the analysis and interpretation of data introduce 
additional uncertainty. Information available from full- 
scale measurements for analysing the variability of 
damping has been assembled by Haviland t4, Jeary and 
Ellis 13, Yokoo and Akiyama 12, and Davenport and 
Hill-Carroll ~°, among others. Haviland t4 reported a 
wide range of data for different response amplitude levels, 
structural systems and building heights. This study 
showed that log-normal and Gamma distributions pro- 
vided the best fit to the data. The coefficient of variation 
(COV) of damping values varied between 42 and 87 ~. In 
a more recent study by Davenport and Hill-Carroll, the 
variability of damping was analysed by carefully selecting 
data obtained from available full-scale studies ~°. A 
regression analysis in their study suggested that the 
expected value of damping could be expressed as 

= A ~ (2) 

in which (A/H) is the ratio of the RMS amplitude in 

millimetres to the building height in metres, and A and 
n are constants (A = 0.02-0.03; n = 0.075-0.11) that de- 
pend on the building height and the type of building (e.g., 
steel or concrete). Although the COV of damping esti- 
mates based on the available data ranged from as low as 
33 % to as high as 78 %, they suggested a value of 40 %. 
The log-normal distribution was found to suitably de- 
scribe the variability in damping. Based on a selected 
group of measurements, meeting sufficient quality cri- 
teria, Jeary has proposed a theoretical model that pro- 
vides damping values which are in good.agreement with 
measured values 9. The damping at any structural re- 
sponse amplitude, XH, may be estimated by the expres- 
sion 

IX.] 
= Go + ~! y (3) 

in which ~o =fo, Ioglo~l = x/~/2; D = building 
dimension 9. A similar expression is also suggested in 
ESDU 11. 

The level of damping is being currently augmented in 
structural systems directly by means of viscoelastic 
dampers, or in some cases indirectly through active or 
passive dynamic vibration absorbers or tuned mass 
dampers (TMDs) 's-z°. A viscoelastic damper is a pas- 
sive discrete damping device that is capable of dissipating 
large amounts of energy in shear. However, the viscoelas- 
tic material properties are a function of frequency and 
temperature, which requires that these features be includ- 
ed in the performance evaluation of such a system. 
Currently, viscoelastic dampers have been successfully 
used in the World Trade Center, New York and Colum- 
bia Center Building, Seattle '~.ls. The current use of 
viscoelastic dampers has so far been limited to non- 
structural applications; extension of the concept is possi- 
ble to include their contribution to the stiffness of the 
system. Base isolation is being extensively used to isolate 
buildings from earthquake-induced ground motion by 
means of multilayer elastomeric bearings z°. In another 
application, the response of structures with liquid-con- 
taining appendages is mitigated when one of the sloshing 
modes of the secondary fluid appendage is tuned to the 
fundamental mode of the primary system '9. Incorpora- 
tion of any of the foregoing damping devices introduces 
additional uncertainty in estimates of damping available 
to the system. 

The uncertainty associated with damping introduces 
variability in representing the response of a system. The 
damping uncertainty may be expressed in terms of the 
constants in equation (1), or alternatively uncertainty 
may be assigned to the critical damping ratios. For 
proportional damping, the damping matrix can be de- 
coupled by the normal mode approach in terms of 
damping ratios. On the other hand, if the damping ratios 
are known, one can obtain the damping matrix 7's. The 
variability of damping can be expressed in terms of the 
damping ratio or the damping matrix as stated earlier. 
However, in the event of the damping matrix being non- 
proportional, one has to invoke a second-order perturba- 
tion technique to represent the uncertain response and 
thereby facilitate a convenient solution. Even in this 
situation, the analysis requires that the mean part of the 
damping matrix be proportional, otherwise one needs to 
resort to alternative techniques such as recasting the 
problem in 2N state variables s. In view of the impractica- 
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lity of determining damping coefficients and the general 
engineering practice of expressing structural damping in 
terms of the critical damping ratios, the formulation in 
this study is based on uncertainty of damping expressed 
in terms of mean and fluctuating damping ratios. 

Despite the importance of variability of damping, one 
should not overlook other sources of uncertainty in the 
characteristics of a structural system. The stiffness and 
mass of a structure have intrinsic variability due to a 
variety of reasons. Their influence on the eigenproperties 
has long been a subject of interest to researchers in 
applied mathematics as well as engineering mechanics. 
More recently the need to investigate the influence of 
these uncertainties on the system response has become a 
topic of considerable interest that is directed toward the 
development of a probabilistic structural analysis metho- 
Iogy. 

Propagation of uncertainty 

The probabilistic dynamic response of uncertain systems 
is expressed in terms of uncertain parameters associated 
with structural characteristics and load effects. Uncer- 
tainties associated with each basic variable are propa- 
gated through the functional relationships that relate 
them to the response for determining the uncertainty of 
the dynamic response estimates. In the framework of 
probabilistic or stochastic finite element analysis, analyti- 
cal and computational concepts such as first- or second- 
order Taylor series expansions, perturbation techniques, 
random fields, Neumann expansions and simulation 
techniques may be employed for the propagation of 
uncertainty. Some of these techniques are currently in the 
development stages. Literature related to these studies 
may be found, for example, in References 21-28. Many of 
these studies have focused on the treatment of uncertain 
stiffness of the system. The implementation of uncer- 
tainty of damping in the dynamic analysis has been 
addressed in References 21, 28-30. In this study, the 
uncertainty of damping is propagated by means of a 
second-order perturbation technique in both time and 
frequency domains to investigate its influence on the 
transient and steady-state vibrations. 

Formulation 

The equations of motion of a discretized system sub- 
jected to an external and a base excitation, respectively, 
are given by 

M~ + CX + KX = F(t) (4) 

M~ + C~ + KX = -Mlg , ( t )  (5) 

respectively, in which M, K are assembled deterministic 
mass and stiffness matrices, C is a proportional uncertain 
damping matrix, X is a response vector which represents 
relative displacement in the case of base excitation (equa- 
tion (5)), F(t) is external excitation (e.g., wind or wave 
loading), gg(t) represents base acceleration and ! is an 
identity vector. Employing the standard transformation 
of coordinates involving undamped eigenvectors of the 
system offers the following uncoupled equations corre- 
sponding to equations (4) and (5) 

~[i + 2~i¢oidll + ¢o2qi = Pi(t) (6) 

~]i + 2~i¢Oifll q- ¢02qi = Fi,~(t) ( 7 )  

in which pi(t) = O~F(t), Fi = O~(-M)I ,  and X = Oiq ,. 
The uncertain damping ratio that corresponds to the 

ith mode in the previous equations may be expressed in 
terms of the mean and perturbed values 

~i = ~°(1 + :ci) (8) 

in which ~ is the mean value of damping ratio, and ~, is a 
small Gaussian fluctuation. In certain physical situations 
such as parametric systems, it is possible to experience 
random fluctuation as a function of time; e.g., in aeroelas- 
ticity applications 2s. Uncertainty in damping, repre- 
sented by equation (8), is propagated in this study using a 
second-order perturbation technique. The higher-order 
perturbations would require moments of order higher 
than fifth, which may require extensive computations. 
Therefore, the analysis here has been limited to second- 
order only to demonstrate the methodology, which can 
be further refined, if so desired. 

Following the perturbation approach, the modal re- 
sponse is expressed in terms of the mean and perturbed 
values 

, - 2 qi = qO + qiai -t- q ,  ~ i  (9) 
in which q~', q'i and q~ are various orders of perturbation. 
Substituting equations (8) and (9) into equations (6) and 
(7) and equating the same powers of ~ offers the follow- 
ing zcroth-, first- and second-order equations for exter- 
nally and base excited systems, respectively. 

Zero th -order  

q? + 2?,?will? + w•q? = Pi(t) (10) 

#? + 2¢°~i47 + ~ q ?  = r l g ,  (11) 

Firs t -order  
-t o * t  . o  ql + 2~icoiqi + co,2q '̀  = -2~,c°iqi (12) 

Second-order  

# ' , ' +  2~°~.i0;  ' + w{q;' = -2~,~,~; (13)  

The equations corresponding to the first-order and sec- 
ond-order perturbations are similar for both types of 
excitations considered, except in the interpretation of q~ 
as stated earlier. 

The transient and steady-state modal response at each 
order may be obtained following the procedures of 
random vibration theory. The transient modal response 
under zero initial conditions, i.e., {x(t = 0)} = 0 and 
{.~(t = 0)} = 0, is given by 

Ii q~(t) = h(~)pi(t - r)d~ (14) 

q~(t) = F i h(~)X , ( t  - z)dz (15) 

in which h(~) represents the impulse response function. 
The external excitation p,(t) can be due to wind or wave 
load fluctuations on structures, whereas the base excita- 
tion may result from earthquakes. In either case the 
loading conforms to a filtered white noise characterizing 
the corresponding load effects 3n -3,~. The implementation 
of filtered white noise adds to the computational effort 
considerably. Symbolic manipulation by means of MAC- 
SYMA may help to reduce the overall computations 35. 
However, in this study, for the sake of illustration, the 
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excitation is assumed to be represented by a Gaussian 
white noise; even though this idealization may not accu- 
rately reflect the features of the physical random event 
over the entire spectrum, it has been widely used to 
represent physical random events. In the following analy- 
sis, for the sake of brevity only, the formulation is 
restricted to the base excitation. Extension to the external 
excitation is straightforward. The zeroth-order velocity 
response is given by 

Io 0~'(t) = /~(OriX.(t - ~) dr (16) 

in which/~(~) represents the impulse response function for 
a velocity component of response. The mean square 
value of the zeroth-order displacement response is given 
by 

f Io q T ~  = F2 h(O~,(t  - O,t',(t - ~')h(f)cl~' d~ (17) 

By virtue of ,it' being represented by a white noise 

process, ,t~=(t),~s(t + r) = 2nS.6(~), where S o is the inten- 
sity of white noise. This reduces equation (17) to the 
following form 

Io o q ~  = 2 n s . r  2 h(06(~ - Oh(~')ch dT' (18) 

Io ~ - -  2~Sor~ h2(~t~ (19) 

Similarly, the first-order displacement and velocity re- 
sponse components are given by 

q;( t )  - -  - 2 ~ 7 c o l  Fi  h(~  f ) ~ = ( t  - ~ - ~')d~' d~  

( 2 0 )  

IiIo-' O;(t) = - 2~'~0 i r~ h(O/~(~')X=(t - ~ - ~')d~ d~' 

(21) 

The time-dependent mean square value of the first-order 
displacement may be given by 

fl "F~" x h(~)/l(r')h(7)h(~ -- z' - 7)d 7 d~' d~(22) 

The nonstationary second-order displacement compo- 
nent is given by 

f o f o  - '  r ' - ' - ~  q;'(t) = 4~*'to~ZF~ Jo h(r)/~(~) 

x f~(r')X.(t - ¢ - r - 7'Rt;" de dr (23) 

The mean square value of the second-order terms can be 
obtained from equation (23). 

For time t approaching infinity, the previous equa- 
tions provide the statistics of the steady-state response at 
various orders. 

The modal response of a system with uncertain damp- 
ing subjected to random initial conditions may be eva- 
luated following the foregoing procedure. 

In the frequency domain, the mean square modal 
response is obtained through the integration of the power 
spectral density (PSD) function of response, which is 
given by the product of the system transfer function and 
the PSD function of the excitation, for example 

2 :o° aq!,, = IHq!.,(Q) IzS(Q)dQ (24) 

2 is the variance of the rth-order modal in which aq~,, 
response in the ith mode, IHq(,,(Q)I z is the squared 
modulus of the system transfer' function, and S(Q) is 
the excitation PSD. Generally, the integration in the 
preceding equation is performed numerically; however, 
for white noise excitation and a class of filtered white 
noise excitation closed form integrals are available 36- 3a. 
Alternatively, numerical quadrature or symbolic mani- 
pulation may be utilized to integrate equation (24) 3s. 

The transfer functions corresponding to equations (8), 
(9) and (10) are given below. 

Zeroth-order 

H~,(Q) = Villi(Q) (25) 

1 
HI(Q) = £22 + co2 + 2jQ~i~' (26) 

First-order 

H , = ( Q )  = - 2~%ijQrinT(Q) (27) 

Second-order 

Hq;.(Q) = - 2~*¢ojQHq;(Q)Hi(Q) (28) 

By idealizing the base-excitation spectra with a white 
noise process, the variance of the modal response in the 
various orders of perturbation may be obtained follow- 
ing the residue theorem 3s'36 

Zeroth-order 

2 F~nS. 

First-order 

(29) 

2 = AaB~t 
aq~ AI (AzA  a _ AtA4 ) _  AoA] 

Second-order 

(30) 

in 

az nSoaoba(aoa3a5 + aZta6  - -  a,a2as) 

q,, = ao(a~a ~ + . . . .  ata2a3a4as) 

which 

( 3 1 )  

B ,  = - 2~'oJi Fi 

A 0 = o.I 3 

A t = 4~°c°/3 

A z = 2to~ + 4co/2¢/2 

A 3 = 4coi~* 

A4-----.I 

b 3 = (4~7'o9/2Fi) 2 

a o =  1 
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gO 2 
a t = 6%i ¢oi 

a z = 3~;Z(l + 4~ °:) 

a 3 = 4~;~o~(2~i z + 3) 

a,= = 3e~(l + 4~ °:) 

4 5  = 6 ~ i ~ i  

a 6 = ¢o 6" 

In the preceding section, both the time and frequency 
domain modal response analyses are presented. The 
response in the physical coordinates at the nth node is 
given by 

M 

X.(t) = ~ ¢b.iqi(t) (32) 
/ = l  

in which ~.~ denotes the nth element of the ith mode 
shape. In view of equation (9), X.(t) may be expressed in 
matrix form as 

X.(t) = q~rO (33) 

in which ~ r =  [ ~ r  o r  ~ r ]  and 0 = [q° =q= 0tZq"] r. 
The covariance of X. is expressed as 

~x .  = ~ r  ~o,,~ (34) 

in which the covariance matrix.z~oo i s given by 

'[b'(q°q"')] I[E(q°0tq'r)] I [F(qOotZq"'r)] ] 

E,,,, I [E(otq'aq'r)] l [E(=q'=Zq"r)] 
l 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . .  - :  . . . . . . . .  I 
[Symmetrical I i [E(a2q 0t2q"r)]] 

(35) 

in which the operator E( ) denotes expected values. In 
view of the implicit independence of r,~ and q~ and its 
components, and utilizing relationships for the higher- 
order moments of Gaussian processes 39"'*°, the terms in 
the preceding equation can be evaluated. Some of these 
terms vanish by virtue of Gaussianity. The contribution 
of off-diagonal terms is relatively small in relation to the 
main diagonal terms. As an approximation, by ignoring 
them, the mean square value of the response at the nth 

node is given by 

M 
2 2 2 2 2 4 ~ .  = ~ ~.,[crq~ + ~q~,, + 3~rqr~., ] 

i 
(36) 

in which a 2 with a subscript denotes the mean square 
value of the prescribed variable. 

Example  

A numerical example utilizing a five-storey building 
modelled as a lumped-mass system is considered to 
illustrate the methodology presented herein and to exam- 
ine quantitatively the influence of uncertainty level in the 
damping on the overall system response to white noise 
base excitation. Applications to wind- or wave-induced 
loading are straightforward. However, for filtered white 
noise representation, numerical quadrature or symbolic 
manipulations are necessary. The lumped mass at each 
floor, m t = m z . . . . .  m s = 41.67 lb-sZ/in and interstorey 
stiffness between each level is equal to k t = k z . . . .  , k s = 
96 049 Ib/in. The intensity of white noise excitation is 8.0 
inZ/s 3. The mean value of the critical damping ratio in 
each mode was assumed in this study to be equal, 
although a different value for each mode may be used as 
an input. The mean values of the modal damping ratio 
examined in this study are 1%, 3 % and 5 %. Each value 
of the modal damping was assigned a COV that varied 
from 10 to 40% with uniform increments of 10%. In 
Tab& !, the variance of the displacement at each node is 
presented in terms of the zeroth-, first-, and second-order 
perturbations for ¢ = 5 %. The results suggest that the 
second-order contribution is insignificant for small 
values of the COV of damping. However, its contribution 
increases with an increase in the COV of the damping 
ratio (Figure 1). The building response at node 5 for 
different values of the mean and COV of damping are 
plotted in Figure 2. 

Concluding remarks 
The uncertainty associated with damping in structural 
systems is identified and discussed. A second-order per- 
turbation technique is utilized to examine the effects of 
damping variability on the transient and steady-state 

Table I RMS displacement response of a building with uncertain damping (C o = 5%) 

Node 

1 2 3 4 5 f l  c 

Zeroth-order 0.11 36 0.2159 0.3003 0.3611 0.3935 
First-order 0.1152 0.2191 0.3046 0.3663 0.3954 10% 
Second-order O. 1152 0.2192 0.3047 0.3664 0.3993 

First-order 0.1201 0.2283 0.3162 0.3816 0.4158 20% 
Second-order O. 1205 0.2291 0.3184 0.3830 0.4173 

First-order 0.1276 0.2426 0.3373 0.4058 0.4422 30% 
Second *order O. 1297 0.2467 0.3429 0.4124 0.4494 

First-order 0.1376 0.2615 0.3636 0,4373 0.4765 40% 
Second-order O. 1437 0.2732 0.3794 0.4567 0.4978 

6 Eng. Struct. 1990, Vol. 12, January 



1.2 

Dynamic response of structures with uncertain damping: A. Kareem and W.-J. Sun 

1.0  

"c 0.8  [ 

u 

~ 0.6 

, I i I , I t I ] 0 .2  

= ~ n g  ratio 

-Ill- 5~ 

o t 0 20 30 qo 5o 

COV damping ratio (t) 

Figure I Displacement at node 5 in terms of first- and second- 
order perturbations (damping ratio 5%) 
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Figure 2 Response of building with uncertain damping (node 5) 

dynamic response of structural systems. The formulation 
also permits the evaluation of the system response to 
random initial conditions. In the analysis presented in 
the paper, the excitation is assumed to be represented by 
a Gaussian white noise. This representation permits a 
closed-form solution to the problem. However, the pro- 
cedure is equally applicable to wind, wave and earth- 
quake-type loading, singly or in combination, which are 
characterized by a filtered white noise process, in this 
case, a numerical quadrature or symbolic manipulations 
may become necessary. The results demonstrate that the 
uncertainty in damping indeed influences the system 
response. Depending on the mean value of the damping 
ratio, the effects are more pronounced for higher variabi- 
lity of damping values. 
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