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1. INTRODUCTION

While the Fourier transform has reshaped the manner in which engineers interpret signals,
it becomes evident that by utilizing a series of in"nite basis functions, time-varying features
cannot be captured. The realization that non-stationary features often characterize
processes of interest led to the de"nition of alternative transforms that rely on bases of "nite
length, one of the most popular of which is the wavelet transform.

1.1. WAVELET THEORY

The wavelet is a linear transform that decomposes an arbitrary signal x (t) via basis
functions that are simply dilations and translations of the parent wavelet g (t) through
a convolution operation,

=(a, t)"
1

�a �
�
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x (�)g*�
t!�
a � d�. (1)

Dilation by the scale a, inversely proportional to frequency, represents the periodic nature
of the signal. By this approach, time}frequency localization is possible, since the parent
wavelet serves as a window function. Just as in Fourier analysis, an indicator of the signal's
time-varying energy content over a range of frequencies can be generated by plotting the
squared modulus of the wavelet transform as a function of time and frequency to generate
a scalogram [1].

1.2. MORLET WAVELET

As it is quite natural to view information in terms of harmonics instead of scales, the
Morlet wavelet [2] has become a popular choice for analysis, as given by

g(t)"ei�����e�����"e�����(cos(2� f
�
t)#i sin(2� f

�
t)). (2)

The dilations of this temporally localized parent wavelet then allow the e!ective frequency
of this sine}cosine pair, oscillating at central frequency f

�
, to change in order to match
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harmonic components within the signal. As a result of obvious analogs, the wavelet scale is
uniquely related to f, the Fourier frequency: a"f

�
/ f.

2. END EFFECTS THEORY

The presence of end e!ects in wavelet-transformed data has been noted in a number of
applications, e.g., reference [3]. In many cases, the a priori knowledge of the signal
characteristics allows anomalies to be qualitatively distinguished and neglected in
subsequent analyses. However, this is, in general, not possible as it requires a quantitative
guideline to establish as to what portions of the wavelet-transformed signal are accurate.
By examining the convolution operation in equation (1) in light of the parent wavelet in

equation (2), it is evident that, although the wavelet is focused at a given time and represents
the signal content in that vicinity, the window extends equally into the past and future.
Though the span of this analysis window is dependent on both the parent wavelet and scale
being analyzed, near the ends of the signal, the wavelet's analysis window may extend
signi"cantly beyond the length of data. Thus, the resulting wavelet coe$cients in these
end-e!ects regions are based on incomplete information and have questionable accuracy.

2.1. END EFFECTS CRITERION FOR MORLET WAVELET

For the Morlet wavelet, the use of a Gaussian window on the Fourier basis functions
makes the precise de"nition of temporal duration impractical. Instead, Gabor [4] proposed
a mean square de"nition to establish e!ective durations in time and frequency. Using this
approach, an e!ective temporal duration �t

�
for a scaledMorlet wavelet at frequency f

�
can

be de"ned as the product of that scale and the duration of the Morlet's Gaussian window
[5], given by

�t
�
"

1

�2

f
�
f
�

. (3)

By this de"nition, the Morlet wavelet is assumed to e!ectively span 2�t
�
in the time domain,

or one standard deviation of the Guassian window. As shown in Figure 1, there is
a considerable portion of the window beyond one standard deviation of the mean value.
A stricter interpretation would de"ne the e!ective temporal duration of this wavelet as
several standard deviations of the Gaussian window. Dependent on the desired level of
Figure 1. Real component of Morlet wavelet enveloped by the Gaussian window. Various temporal duration
measures are marked by vertical bars.



Figure 2. Scalogram of sine wave at scale associated with 1Hz: ))))) denotes theory and ** is the calculated
result. Vertical bars demarcate end-e!ects regions, ��t

�
, for �"1}5.
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accuracy, an integer multiple � of the measure in equation (3) can be imposed to quantify
the usable region within a set of wavelet-transformed data of length ¹, according to

��t
�
)t

�
)¹!��t

�
. (4)

2.2. EXAMPLE 1: INFLUENCE OF END EFFECTS ON SPECTRAL AMPLITUDE

For a simple illustration of the implications of end e!ects on spectral amplitude, consider
a sine wave with frequency f

�
(taken as 1Hz). In theory, theMorlet wavelet transform of this

signal yields a scalogram that is constant with time. At each time ordinate, this yields an
instantaneous power spectrum, according to

�=(a, t) ��"2��ae�������������. (5)

In contrast, the Morlet wavelet transform ( f
�
"2Hz) of this signal yields a time-varying

scalogram, as evidenced by plotting the skeleton or wavelet maxima at each time. This
result, shown in Figure 2, displays a rounding of what should be a constant scalogram
coe$cient. The degree of deviation from the theoretical result, shown as the dotted line,
becomes less marked in the interior of the signal. The vertical bars denote the end-e!ects
regions de"ned in equation (4) for various values of � and indicate that the calculated
wavelet transform will more accurately approach the theoretical result for �'2.
Further, Figure 3 illustrates the rami"cations of analyzing instantaneous power spectra

taken from end-e!ects regions. The calculated instantaneous spectra at each time are
plotted one atop the other, essentially collapsing the scalogram in time. The theoretical
result in equation (5) is also plotted atop these data for reference. According to equation (5),
there should be no variation among them; however, by including the spectra from
end-e!ects regions (�"0), there is considerable variance in the plot. Note that the
deviations are more marked on the high-frequency side of the spectrum, a result of the
lessened frequency resolution at lower scales. Through a more stringent condition,
increasing � in equation (4), the neglected regions lengthen and the variance among the
spectra is reduced. Note that even the commonly used de"nition of wavelet temporal
duration (�"1) is an insu$cient measure of the end-e!ects region producing these deviant
spectra. Unfortunately, the use of larger � values reduces the amount of usable transformed



Figure 3. Deviations of simulated instantaneous spectra (gray) from theoretical result (black) as end-e!ects
regions are progressively neglected: (a) �"0, (b) 1, (c) 2, (d) 3, (e) 4.
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data. Thus, while �"4 produces a su$ciently accurate means to quantify end-e!ects
regions and separate deviant spectra, �"3 was shown to be su$cient for most analyses in
terms of capturing accurately the spectral amplitude [6].

2.3. EXAMPLE 2: INFLUENCE OF END EFFECTS ON BANDWIDTH ESTIMATION

As a consequence of the windowing applied by the Gaussian function in the Morlet
wavelet, the bandwidths of the resulting wavelet instantaneous spectra are larger than their
Fourier equivalent. This can be shown by considering the Morlet wavelet expression in the
Fourier domain, given by

GK ( f )"�2�e�����������. (6)

The half-power bandwidth (HPBW) is then used to provide a simple measure of the
bandwidth contributed by the Morlet wavelet. Since the resolutions of the wavelet
transform are merely scaled versions of the parent wavelet, the half-power bandwidth of the
Morlet wavelet in equation (6) can be similarly scaled to determine the wavelet bandwidth
contributions to a simple sine wave, evaluated at the ridge or instantaneous frequency of the
system. This operation yields

HPB=
�	

"

�ln(2)

2�
f
�
f
�

. (7)

As discussed in the previous example, deviations in terms of amplitude of the instantaneous
spectra were su$ciently mitigated by neglecting those spectra which were generated in the



Figure 4. Improvements made in half-power bandwidth estimates by successively neglecting larger end-e!ects
regions. Theoretical prediction (} } }) and calculated result ()))))): (a) �"0, (b) 4, (c) 6.
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end-e!ects regions, de"ned by assuming �"4. However, the implication of end e!ects on
more sensitive spectral measures such as bandwidth is not completely remedied by
neglecting this region, as shown in Figure 4. The calculated half-power bandwidth deviates
signi"cantly at the ends of the signal from the theoretical result denoted by the dashed lines.
Using the criteria of �"4 to neglect regions de"ned by equation (4) improves the result,
though the deviations from theory are still quite evident in the tails. By selecting more
stringent conditions on �, the deviations from theory are minimized and the bandwidth
estimated in the simulation takes on a constant value. For �"6, the deviation between
theory (HPB=

�	
"0)0530) and simulation (HPB=

�	
"0)0531) is a mere 0)1887% and

arises from a number of approximations made in determining equation (7). Though the
deviations in Figure 4 are easily explained by the end-e!ects phenomenon, simply
neglecting these regions in analysis yields to a considerable loss of data, especially in the
case of bandwidth estimation, where for �"6, only one-third of the transformed signal is
deemed reliable.

3. END-EFFECTS MELIORATION: SIGNAL PADDING

The loss of considerable regions of a signal is the unfortunate consequence of end e!ects.
Particularly for more sensitive measures like bandwidth, the loss of usable transformed
signal can be quite signi"cant: approximately 10 times the e!ective duration of the lowest
frequency component of interest. One possible solution to this problem would be to pad the
beginning and end of the signal with surrogate values. This elongation places the true signal
of interest at the center of the transformed vector and leaves the virtual values at the tails to
be corrupted by the end-e!ects phenomenon. It should be reiterated that the wavelet
considers both past and present information at each time step. Though the greatest
contribution to a wavelet coe$cient at that point in time comes from the signal immediately
surrounding that point, data displaced further in time are also considered to an extent.
Therefore, the regions should locally preserve the frequency and bandwidth characteristics
of the signal. This local preservation can be achieved by merely re#ecting the signal's
negative about its beginning and end.
Figure 5 illustrates an arbitrary signal and the shaded regions are those potentially

corrupted following the wavelet transform. Depending on the level of � and f
�
selected,

these regions can consume two-thirds or more of the signal. In the padding operation, the
signal is elongated by 2��t as the signal is negatively re#ected about the start and end of
the signal. Now, the two shaded regions envelop the virtual re#ections of the signal, while



Figure 5. Signal padding concept: (a) original signal, (b) padded signal.
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the entire duration of the true signal is conserved and can be analyzed with little
contamination from end e!ects.
To do so, the temporal duration of the analyzing wavelet is then determined using

equation (4) for all frequencies being analyzed. As the lowest frequency being considered in
the analysis ( f

	
) will yield the largest duration �t

	
, it dictates the maximum end e!ects

anticipated. � is then selected based on the desired accuracy of the resulting spectra, and the
time ordinates of the sampled time vector t"[t

	2
t


] closest to the termination of the

end-e!ects regions are then identi"ed by

t
�
"min [t'��t

	
] and t

�
"max[t((t



!��t

	
)]. (8)

The modi"ed signal x
��

is constructed by re#ecting the negative of the signal for the
duration of ��t

	
about t

	
and t



, according to
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where x
�
and x

�
are the values of the sampled data at t

�
and t

�
. Following the wavelet

transform of x
��

, the coe$cients calculated from the padded regions are simply neglected,
and only the coe$cients of the true signal are retained.

3.1. PADDING EXAMPLE

As sine waves are represented by wavelets in a very simplistic form, they are now used to
illustrate the e$cacy of the proposed padding scheme. Recall that the wavelet instantaneous
spectrum of a simple sine wave does not vary in time. Deviations from that constant were
shown to be the hallmark of end e!ects in the wavelet transform. Thus, any signal composed
of a series of M sine waves should yield a scalogram containing M constant ridges in the
time}frequency domain. The values of the scalogram along each ridge can be individually
examined for deviations from the theoretical result. Fortunately, though sine waves are
simply analyzed in the wavelet domain by virtue of its inherent bandpass "ltering, this same
summation of sines is capable of generating complicated time series, which will be subjected
to the proposed padding operation to examine the validity of this remedy.
A summation of sine waves at frequencies of 0)28, 0)5, 0)7, 1)0, 1)4, 1)65, 1)9, 2)25, 2)7 and

3)25Hz was simulated for 10min, sampled at 10Hz. To enhance the frequency resolution
and separate closer spaced higher frequency content, a central frequency of 10Hz is chosen
for the analysis. Following the calculation of the wavelet transform, 10 ridges are extracted



Figure 6. Superposition of instantaneous spectra over all time calculated using wavelet and theoretical predic-
tion: (a) without padding operation, (b) with padding operation.
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from the resulting scalogram. Though omitted for brevity, these plots display
a characteristic rounding as previously observed in Figure 2. It is evident that the
end-e!ects regions, even for such a large central frequency, decrease signi"cantly with
increasing frequency, as indicated by equation (4). This may be the reason that previous
studies did not encounter signi"cant manifestations of end e!ects, as most wavelet analyses
have been concerned with higher frequency mechanical systems and not low-frequency
oscillations common to many civil engineering structures. The overlaying of the theoretical
result and the calculated instantaneous spectra at each time demonstrates the deviations
that occur in these end regions, as shown in Figure 6(a). First note that the spectra again
have a variable bandwidth that decreases with frequency, as discussed previously. Also note
that the deviations are more marked for the high-frequency components due to the lack of
frequency resolution. Although the end-e!ects regions for the higher frequency modes are



Figure 7. E$cacy of padding operation to reduce end e!ects in wavelet bandwidth measures, theoretical
prediction (} } }) and simulation (**): (a) "rst mode half-power bandwidth without padding, (b) "fth mode
half-power bandwidth without padding, (c) tenth mode half-power bandwidth without padding, (d) "rst mode
half-power bandwidth with padding and �"6, (e) "fth mode half-power bandwidth with padding and �"6
(f ) tenth mode half-power bandwidth with padding and �"6.
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not as lengthy, the deviations of the few spectra taken from these regions are considerable,
especially in the case of the 10th component. Note that the quality of Figure 6(a) could have
been enhanced by simply neglecting the spectra that were derived from end-e!ects regions,
as shown in Figure 3, however that results in a loss of a signi"cant amount of data.
The success of the proposed padding operation is gauged in Figure 6(b). In this case, an

overlay of theoretical and simulated wavelet spectra at each time is considered for the
modi"ed signal in equation (9). Only spectra obtained from the true signal are plotted and
all those determined from the virtual values of the padded signal are discarded. Note that
there is no discernable di!erence between the predicted and calculated results when
assuming �"4. In terms of bandwidth estimates, the half-power bandwidth's accuracy is
enhanced in these end regions when the padding scheme is employed. For brevity,
a demonstration is provided using only three of the modes. Figure 7(a)} (c) displays the
unpadded bandwidth measures, demonstrating the characteristic trademark of end e!ects.
Note again that the portions of the signal lost due to end e!ects is more marked at lower
frequencies, where nearly one-third of the values have been compromised. As demonstrated
in Figure 4, �"6 is a necessary condition to remove all traces of end e!ects in the
bandwidth measure. Using this condition in conjunction with the padding operation,
a precise de"nition of the half-power bandwidth is maintained over the entire duration of
the signal, as shown in Figure 7(d)} (f ). The stimulated bandwidth measure is(0)2% of the
theoretical prediction for all of the modes in this example.
Although padding the signal with itself insures that the spectral content of the surrogate

regions locally matches that of the true signal, this should not be viewed as a way to defeat
the Heisenberg uncertainty principle. It should be reiterated that the end e!ects are merely
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a physical manifestation of the wavelet's inherent analysis windows, which lengthen as f
�
is

increased. Although the end e!ects can be repaired, the larger temporal analysis windows
imply that changes in the system that occur in shorter time intervals than this window may
be completely obscured. Thus, the central frequency should be kept to the smallest value
possible to provide the required frequency resolution without compromising the ability of
the wavelet to detect non-linear and non-stationary phenomenon.

4. CONCLUSIONS

Although the presence of end e!ects had been previously noted, these regions were
customarily neglected in an ad hocmanner. However, as shown in this study, these e!ect can
compromise the accuracy of wavelet scalograms and have even more marked e!ects on
bandwidth measures. In light of the mean square de"nition of the duration of the Morlet
wavelet, the span of end-e!ects regions was quanti"ed through a #exible criterion that
balances the desired quality of the resulting scalogram with the amount of data lost.
Recognizing the signi"cant losses possible for low-frequency systems, a simple padding
scheme was proposed to extend the length of the signal at both ends. The extended region,
being a re#ection of the actual signal in that local, preserves the locale spectral content,
permitting the end e!ects to consume the surrogate values while leaving the actual signal
unscathed. The wavelet coe$cients obtained from these augmentations can then simply be
neglected in analysis and the true signal is maximally analyzed by the wavelet. It should be
stressed that despite the ability to repair these end e!ects, the central frequency should still
be kept to the smallest value possible to minimize temporal analysis windows. As a result of
these larger windows, changes in the system that occur over shorter time intervals may be
completely obscured, compromising the wavelet's ability to track non-linear and
non-stationary characteristics.
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