FREQUENCY-DOMAIN ANALYSIS OF OFFSHORE PLATFORM
IN NON-GAUSSIAN SEAS

By Ahsan Kareem,' C. C. Hsieh,” and M. A. Tognarelli®

ABSTRACT: A frequency-domain solution approach for the response of a system whose inputs are nonlinear
transformations of non-Gaussian (nonlinear) wave kinematic processes is introduced. Particularly, this paper
compares the probabilistic response characteristics of jacket-type platforms in deep water that are subjected to
both Gaussian and non-Gaussian random wave loadings. Unlike earlier analytical treatments of this class of
system, a statistical description of the wave forces is first developed to reflect nonlinearities and associated non-
Gaussianity in the wave field kinematics. The kinematics are derived from Laplace’s equation and nonlinear
boundary conditions using a second-order Stokes’ perturbation expansion. The deck response resulting partic-
ularly because of the effects of the second-order contribution to the loads on an idealized platform is computed.
Consideration is given to the importance of the spacing of the legs to the response of the structure. The impact
of swell in addition to locally wind-generated waves also is assessed. Ignoring the nonlinearity of the waves
results in underestimation of the response level for all scenarios considered.

INTRODUCTION

Deepwater drilling efforts expose offshore platforms to an
increasingly more hostile ocean environment. For jacket-type
platforms designed for deep water, static or quasi-static anal-
ysis is not as realistic as it is for shallower depths. Reliable
response analysis and design of these platforms can be ensured
only through an improved understanding of environmental
load effects, especially those resulting from wave hydrody-
namics. Most studies on the dynamic analysis of offshore
structures in deep water have been based on linear wave theory
because it provides a satisfactory approximation to the wave
kinematics of a Gaussian random sea state. Nevertheless, de-
parture of the free-surface elevation from Gaussianity, reflect-
ing the nonlinearities of the sea waves, has been observed
(e.g., Spidsge and Hilmarsen 1983; Marthinsen and Winter-
stein 1992). This paper employs previously developed statis-
tics of non-Gaussian wave kinematics derived from second-
order Stokes’ random wave theory in, e.g., Kareem and Hsieh
(1991); and Kareem et al. (1994, 1996) and investigates their
effect on platform root-mean square (RMS) response statistics
using the relative motion form of the Morison drag force,
which is nonlinear in terms of both platform and water-particle
velocity, as the system input (Chakrabarti 1987). JONSWAP
and Ochi-Hubble spectra are used to model the linear random
wave fields. Although both models include the effects of lo-
cally wind-generated waves, the Ochi-Hubble spectrum addi-
tionally includes the effects of low-frequency swells. Tayfun
(1990) has suggested that the high-frequency attenuation of
these spectra indicates that they include nonlinear effects and
that a filtering approach should be used to arrive at more ap-
propriate linear wave field spectra. This will be a subject of
future consideration within the framework outlined here. The
dynamic response analysis of the jacket-type platform is per-
formed utilizing a frequency-domain approach, which offers
computational efficiency.

Initially, the nonlinearity of the drag force precluded devel-
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opment of a frequency-domain-based analysis procedure to an-
alyze the random wave load effects on jacket-type platforms,
even in the case of a linear wave field. Borgman (1967) intro-
duced enhancements to linearization and made it possible to
establish a spectral description of the drag force by a series of
convolutions involving water-particle velocity spectra. Inves-
tigations of the dynamics of jacket-type offshore platforms in-
dicated that the quadratic dependence of the drag force on the
water-particle velocity led to significant excitation near one of
the platform resonant frequencies (for the platform in question,
three times the dominant wave frequency) and thus caused an
appreciable increase in the platform response—a phenomenon
that is ignored within the framework of the stochastic linear-
ization technique (Eatock-Taylor and Rajagopalan 1982; Ra-
jagopalan and Eatock-Taylor 1982). Several others have pre-
sented different schemes to address the nonlinearity of the drag
force as well as effects of intermittent wave action (e.g., Tung
1975; Borgman 1982; Gudmestad and Connor 1983; Deleuil
et al. 1986; Lipsett 1986; Spanos and Donley 1990; Kareem
and Li 1992; Kareem and Zhao 1994; Kareem et al. 1995;
Tognarelli et al. 1997; Naess and Yim 1996).

The leg configuration of a jacket-type platform and the in-
cident wave field can be such that the wave forces on the legs
nearly cancel one another, resulting in minimal dynamic re-
sponse. In the real ocean environment, the randomness of
waves makes it difficult to evaluate the effectiveness of wave
force cancellation in a straightforward manner. Here, then, it
is desirable to examine the level of wave cancellation in a
random wave field.

STATISTICS OF WAVE FORCE

Under general conditions in deep water, the statistical dis-
tribution of the wave surface elevation appears to be Gaussian.
However, wind-generated waves exhibit inherent nonlineari-
ties, evident in the form of sharper crests and more rounded,
shallow troughs. As a result, nonlinear wave theories were
developed to address these types of conditions. Most such the-
ories dealt only with deterministic waves; however, one pre-
dominant random nonlinear wave theory has been studied ex-
tensively. Commonly known as second-order random wave
theory, it is based on a Stokes perturbation expansion solution
of the governing equations and the Fourier-Stieltjes spectral
representation theorem for random processes. It has been pre-
sented by Tick (1959) and more recently studied by, among
others, Kareem and Hsieh (1991) and Kareem et al. (1994,
1996). Here, the non-Gaussian wave kinematics are based on
this theory, which is elaborated on in greater detail in the
aforementioned papers and their references. A brief description



of the approach by which these kinematics are cast in forms fit
for analysis in the present framework is given in Appendix L

According to the Morison equation, the wave force per unit
length on a cylinder is composed of drag and inertia forces
according to

f&x, z, 0 = KV(x, 2, )|V(x, 2, D] + K,A(x, 2, 0) ¢))

where V(x, z, ©) and A(x, z, t) = non-Gaussian water-particle
velocity and acceleration, respectively. The hydrodynamic co-
efficients K, and K, are given by K; = 0.5C,pD and K,, =
C,.pVp = (1 + CpVp = K, + pVp, in which p is the fluid
density; D and V), are, respectively, the projected frontal area
and the displaced volume of the member; C,, C,, and C,,
respectively, denote the drag coefficient, the inertia coefficient,
and the added mass coefficient; and K, = C,pVp. The coeffi-
cients C;, C,., and C, are generally dependent on Reynolds
number and Keulegan-Carpenter number, which will be as-
sumed constant along the water depth.

To develop the power spectral density (PSD) of the force,
we must first compute its cross-correlation. Let f; denote the
wave force at (x;, z, t;). Direct evaluation of the cross-corre-
lation of wave forces acting at two locations E[f, f;], where
E[-] is the expectation operator, becomes prohibitively com-
plicated as it requires information on the joint probability den-
sity function of the fluid kinematics, which is non-Gaussian.
Nonetheless, the evaluation will be carried out here by using
Taylor series expansion and Price’s theorem for Gaussian pro-
cesses (Price 1958; Papoulis 1965; Borgman 1967). Thus, we
express the non-Gaussian water-particle kinematics in terms of
Gaussian processes as V(x, z, 1) = g, (2)W(Uy) and A(x, 2, ) =
G 4(2)Y(U,), using a functional transformation (Grigoriu 1995;
Winterstein 1985)

WU,y) = Up(x, 2, D + op@IUVx, 2z, D — 1] Qa)
Y(U,) = U, z, H{1 + ax@)[Uix, 2, — 3]} (2b)

where Uy (x, z, 1) and U,(x, z, t) = standardized forms of the
first-order water-particle velocity and acceleration, respec-
tively; oy and o4 = standard deviations of the water-particle
velocity and acceleration, respectively; ay(z) is related to the
skewness of the water-particle velocity; and oi(z) is related to
the kurtosis of the water-particle acceleration (see Appendix
I). We have assumed here that the kurtosis of water-particle
velocity is negligible to facilitate computations; however, be-
cause the skewness of water-particle acceleration is zero, we
must retain its kurtosis so that the functional transformation in
(2) does not revert to a Gaussian representation. Then, the
cross-correlation is

Elfif) = Kazia%/(zl)o'g’(ZZ)E[Wlwllwl Wzl]
+ KdKMU%/(ZI)GA(ZZ)E[WIIWI|Y2]

+ KmKdUA(Zl)O'f/(ZZ)E[WZIWZIYI] + Ki.UA(Zl)O'A(Zz)E[Ylyz] 3)
where the subscripts of W, and Y, (i = 1, 2) identify their
focation (x;, z;, t;). For convenience, let G,(*yyy) be defined as

Gl('Yw) = E[Wl WZIWI Wzl] = E[h(Wx)h(Wz)] 4)

where vyyy = covariance between U,(x,, z,, t;) and Uy(x2, 22,
t.); and (W) = W|W|- Gi(ywv) is a function of vy; therefore,
it can be expanded in a Taylor series at vy, = 0. By invoking
Price’s theorem to evaluate the various derivatives of G,(yvy),
it can be approximated up to y}y as

8op()av(za) | 8
k13 ™

Gi(yw) = 1+ %[aé(zl) + a%(z;)]} Yov

200 8 1
+'EE iz (z) vy + I {1 —5 [ad(z) + a§(22)]} iy
6]

Similarly, the remaining expectation terms in (3) are, respec-
tively

1
Gy(yw) = V8/w {[1 + E 0’-3‘/(21)] Yva t aA'(ZZ)'Y?/A} ©)

1
Gi(yav) = V8/w {[l + 3 01-37(22)] Yav T aj(ll)yiv} @]

with vy = Cov[Uy(xy, 21, 1)), Ua(xz, 22, 13)], Yav = Cov[U,(x,,
zi, 1), Uv(xz, 22, t5)]. The last expectation term in (3) can be
determined using a direct integration scheme as

Ga(Yaa) = Yan + 60‘2(21)0‘,4‘(22)73A ®)

where a4 = Cov[Ulxy, 21, 1), Us(x2, 22, 12)]. As a result, (3)
can be rewritten as

Elfifl = K%JU%/(Zl)U'%/(Zz)Gl(’YVV) + KdeU%'(Zx)O'A(Zz)Gz('YVA)
+ KmKdU’A(Zl)U%/(Zz)Gs('YAV) + K?ncA(zl)UA(z2)G4(YAA) ®

DYNAMIC WAVE LOAD EFFECTS

The jacket-type platform here is idealized by a candelabra
configuration in which a rigid deck is supported by an assem-
blage of identical supporting cylindrical legs, which extend
vertically from the seabed up through the water surface to its
underside, as illustrated in Figs. 1(a-b). The choice of this
configuration is made because wave forces acting on a vertical
segment of an offshore tower may differ from those evaluated
customarily using line structures. The platform spatial config-
uration governs the overall loading. Although for survivability
considerations, the line structure approximation holds because
the design waves have very long wavelengths; this may not
be the case for other design considerations, e.g., fatigue, be-
cause seas characterized by relatively shorter wavelengths as-
sume greater importance. Thus, this model is adopted to de-
scribe deck motion and its sensitivity to leg configuration. The
governing equation of the deck motion is given by

mXp(t) + cXp(D + kXp(®) = F() (10)

where X, = horizontal displacement of the deck in the direc-
tion of wave propagation; m, ¢, k, and F(f) = generalized mass,
viscous damping, and stiffness of and wave forces on the
structural system, respectively. The mode shape g(z) = 1/2(1
— cos{[m(z + d))/L}) satisfies necessary platform boundary
conditions, where d denotes the water depth and L is the height
of the platform measured from the seabed up to the underside
of the deck. Consequently, the horizontal displacement of the
legs y(z, 1) = g(2)Xp(D).

The hydrodynamic force per unit length on the cylindrical
platform legs is described by the relative motion form of the
Morison equation (Chakrabarti 1987)

foz =KV -V -3 +K,A—- K.y an

where the arguments of the variables have been omitted for
brevity. It should be further noted that for a particular leg, the
horizontal coordinate x is considered fixed. For y << V, the
terms of order y* or higher are negligible and (11) may be
approximated by replacing the drag term with a truncated Tay-
lor series about y = 0 as follows:

Fx, 2.0 = KJVIV| = 2JV|y] + K.A — K, (12)
Subsequently, the generalized wave force on the deck defined
in (10) can be given explicitly by

N
Fo =D, | f, z De( dz (13)

nal L_f
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where N indicates the number of platform legs; the subscript
n identifies the wave force on the nth leg; and L, denotes the
integration range in which wave force is considered effective.
Substituting F(¢) into (10) and rearranging leads to

MgXD(t) + C,XD(t) + kX,(1) = F(t) (14)
where
m,=m+ Nj K,,gz(z)dz, c.=c + ¢,
L

with

N

o= | 2KV} 8@ dz

n=l L,

and

Fi) =, f {(KAVIV + KnA)er8(2) dz
Ly

nm=l

Note from the foregoing expressions that additional damping
results from the relative motion of legs with respect to the
fluid, which aids in reducing the platform response. Employing
the closure approximation that water-particle velocity and deck
velocity are uncorrelated (e.g., Sigbjornsson and Morch 1982),
the averaged dissipated energy per unit time due to ¢, may be
related to an equivalent damping coefficient, namely, (Kareem
and Hsieh 1991)

E[cX3] = E[c\JEIX}] = ¢ E[XD) (15)

Ceq = V8/MNK, f {1 + %ofv(z)} ov(2)g’@) dz  (16)
Ly

Hereafter, we will use c,, to quantify hydrodynamic damping.
This procedure removes time dependency from the damping
coefficient.

GENERALIZED FORCE AND RESPONSE SPECTRA

The evaluation of the integral wave force on a jacket-type
platform is complicated by the fact that the platform-sub-
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Schematic of Model Jacket-Type Structure: (a) Side View; (b) Top View

merged area fluctuates in time. The intermittent wave forces
on a jacket-type platform introduced by taking into consider-
ation the instantaneous wave surface elevation are regarded as
second-order wave forces. This is in addition to second-order
contributions of wave forces that result from wave-wave in-
teractions. The present study is directed primarily toward
quantifying the effects of the nonlinear, non-Gaussian water-
particle kinematics on the wave forces and platform response.
The contributions of the force above the mean water level also
can be included in the analysis with the addition of sizeable
computational complexity, which is a subject of a current in-
vestigation. Hence, instead of extending the wave kinematics
up to the free surface, the generalized wave loading described
in (14) is evaluated by integrating wave forces only from the
seabed up to the mean water level, namely

N
Fo=),

n=1 -

0

Ju(z, g(2) dz an
d
where f,(z, #) represents {K,|V|V + K,A},..,. Accordingly, the
mean and autocorrelation function of the generalized force F()
are

0
E[F(n] = V8/mNK, J’ ay(2)o7(2)g(2) dz (18)
-d
and
N N 0 0 1
RFF(‘T) = E E J‘ j 5 [Rf/f/(Z’ Z’, 1_)
= = Jead-a
+ Ryy(2', 2, Mg2)g(z") dz dz’ (19)

where R, (z', z, T} = E[fiz', )f(z, t + T)]. Substituting the
autocone{ation function of wave forces from (9) into (19) and
simplifying, the autocorrelation function of the generalized
force becomes

N N 0 0
Res(M = D) D, {(K203()%(2)Gi(yw)
=l jul J-d J-a

+ KLoA(R)0a(2)Ga(Van)}8(2)8(2) dz dZ’ (20)

where it should be recalled that yyy and v, are functions of



spatial location and 7, though the arguments have been omitted
for brevity. It can be shown (Kareem and Hsieh 1991) that the
cross-terms involving vy and v,y cancel. The corresponding
PSD is given by

] 0
See(f) = 8(fIN? f f P\(z, 2')8(2)g(z’) dz d7’
~d J~d

N N 6 po
+ 2 2 f {P2(xy 2, %5, 2, f)
iw Jml J—d J-d
+ Py(x;, 2, X3, 2, £)}8(2)8(2") dz dZ’ 193))
where

P = % Kiap(2av(@ Yo z)o}(z") (22)
Py(xy 2, %, 2, f)

8 |2+ al@ + ol
= Kioy@oi(z) {;[ aV(Z; @)

] gvv Xis Ty Xjs 2 f)
100
+— o (@a(z)S ¥ (x 2 x5, 20 f)

2 "
+ - 2 — ai@ — &ENISHG, 2, X, z',f)}

(23)
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FIG. 2. Schematic of Drag Transformation for Linear/Nonlin-
ear Waves

Ps(x1, 2, %, 2, f) = K20 u(2)04@ M Saaxir 2, x5, 2, )
+ 6ai(2)oiz SN X 7 % 2, )} (24)

where the superscripts *2 and *3 = second- and third-fold
convolutions of the standardized PSD, respectively. The stan-
dardized PSDs of the water-particle kinematics are given as
follows:

Svv(xis 2, %, 2', ) = Syanar(xi, 2, %3, 2, F )l oy DTy )] (25a)
SM(x,», 2, X%, 2', ) = Sama(x3, 2, %5, 2', f)oan(@)0a0(2')]  (25b)

where Syayo(x;, z, x5, 2, f) and Saoue(x;, 2, X, 2, f) = the
power spectral densities of the water-particle velocity and ac-
celeration based on linear wave theory, respectively (Kareem
et al. 1994). If ay(z) and ai(2) are considered negligible, the
PSD of the generalized force reduces exactly to that of Borg-
man (1965) for linear waves, which contains only linear and
third-order terms. A schematic of the nonlinear drag transfor-
mation is shown in Fig. 2. The figure indicates that for linear
waves, the nonlinear drag term is statistically symmetric (odd-
order central moments are zero); therefore, the nonlinearity
could be approximated appropriately by a sum of linear and
cubic terms (e.g., Tognarelli et al. 1997) but is not quadratic
in nature. If a nonzero current had been assumed, the non-
linearity would be asymmetric and quadratic terms also would
be present for linear wave input (Spanos and Donley 1990;
Kareem and Zhao 1994; Kareem et al. 1995; Tognarelli et al.
1997). For a compliant structure like a tension-leg platform,
if the platform displaced position is taken into consideration
in the force expression, a quadratic term also will be admitted
even though the form of the nonlinearity remains symmetric
(Li and Kareem 1992). On the other hand, when the waves
are nonlinear, a quadratic interaction also is introduced be-
cause of the nature of the higher-order terms in the kinematic
expressions themselves [see (23)].

In this study, the primary interest is the standard deviation
of the deck displacement of a jacket-type platform for several
leg spacing configurations in a nonlinear random wave field.
Having the mean and power spectrum of the generalized force,
second-order response statistics can be acquired via random
vibration analysis.

NUMERICAL RESULTS AND ANALYSIS

An idealized jacket-type platform situated in water of 304.8
m (1,000 ft) depth [Fig. 1(a)] is used to demonstrate the meth-

450 T T i

A400F - e ' ......... e e :

350k l| ......... ............ ............ .......... :;=:.-,Seast;ate3u‘. <3500

T T T 4500
ereveaeiaia .......... %"’"‘SB&E{S‘O-Y”- -14000
: + - Seastate 2

PSD of Wave Elevation [ft%/Hz] Seastate 2

PSD of Wave Elevation [ft%/Hz] S eastates 1 and 3

f [Hz}

FIG. 3. Linear Wave Elevation PSDs Used in Examples
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odology presented here. The dimensions of the platform and
the leg configuration are illustrated in the top view given by
Fig. 1(b), where S denotes primary leg spacing, which will be
used as a parameter and nondimensionalized by a reference
length in the numerical results of the random response of the
deck. The reference length is S, = 7g/w?, where w, denotes
the natural frequency of the platform system in rad/s and g =
9.81 m/s* (32.2 ft/s®). Thus, S, is half the wavelength of a
monochromatic wave train in deep water with frequency equal
to the natural frequency of the platform system. The platform

considered has eight cylindrical legs each 313.94 m (1,030 ft)
long and 0.50 m (1.64 ft) in diameter. For the sake of illus-
tration, the inertia and drag coefficients C,, and C, of the legs
are chosen to be 1.7 and 1.0, respectively. The weight of the
effective mass m, of the platform system is 17,792.8 kN (4,000
kips); the stiffness of the platform system is such that the sys-
tem natural frequency is 0.167 Hz [so, for this platform, S, =
28.0 m (91.9 ft)] and the viscous damping ratio of the platform
system is 5%. In addition, the hydrodynamic damping based
on (16} is included in the numerical computations. Three dis-

0.20
~~—=—  inertia force
—ar—  nertin & lincarized drag forces
Lowry] ——e—  inertin & drag forces
=
[nanl]
E 0.15
8
=
&
a
0.10
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Q
a |
Yy
[}
|22]
2 o)
9
%0 1.0 2.0 3.0 4.0
(a) S/S,
0.45
—-—w—= jnertia force
—ar— jinertia & lincarizcd drag forces
—— inertia & drag forces
0.35

RMS of Deck Displacement [ft]
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2.0 3.0 4.0

S/8

n

FIG. 4. (a) RMS Deck Displacement (Linear Waves, Sea State 1); (b) RMS Deck Displacement (Linear Waves, Sea State 2); (c) RMS

Deck Displacement (Linear Waves, Sea State 3)
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tinct sea states are considered (Fig. 3). The first is character-
ized by a JONSWAP spectrum with peak wave frequency of
0.167 Hz and peakedness of 7.24 [H, = 2.39 m (7.84 ft)]; the
second also is characterized by a JONSWAP spectrum with
peak wave frequency of 0.0557 Hz and peakedness of 3.78
[H, = 12.12 m (39.77 ft)]; the third is characterized by an
Ochi-Hubble six-parameter spectrum with peak wave frequen-
cies of 0.0557 Hz and 0.167 Hz, significant wave heights of
3.66 m (12 ft) and 3.96 m (13 ft), and shape factors of 2.0
and 1.0 (Chakrabarti 1987). Although the first two sea states
are typical representations of locally wind-generated waves
only, the third additionally incorporates the effects of low-
frequency swell.

Results Based on Linear Wave Theory

Deck displacement statistics for three sea states, based on
linear wave theory, are presented in Figs. 4(a~c). Illustrated
in Fig. 4(a) is the variation of the RMS of the deck displace-
ment with respect to the leg spacing ratio (LSR) S/S, in sea
state 1, for analyses considering the inertia force alone, the
inertia force combined with linearized drag force, and the in-
ertia force combined with nonlinear drag force. To obtain the
linearized drag force spectrum for linear waves from the gen-
eralized force spectrum given in (21)-(24), oy = a4 = 0, by
virtue of the linear waves, and the remaining higher-order con-
volution terms are neglected in the computations to linearize
the force expression itself. Note that the response is caused by
predominantly the inertia force because the combined forces
give rise to a small increase in the response level. However,
it should be noted that the response level of the deck changes
significantly with respect to the LSR; it attains relatively lower
values at LSRs ranging from approximately 1.0 to 3.5 and
relatively higher values at other LSRs. This variation can be
attributed to the wave phase effects, under the influence of
which, at LSRs of very small values, all legs experience nearly
the same wave force from the dominant wave of 0.167 Hz at
the same instant; otherwise, legs are subjected to the wave
force, at different phases, from the dominant wave. Local max-

S/S

n

(Continued)

ima at LSRs of 2.0 and 4.0 correspond to the case where inputs
at the dominant wave frequency are in phase on two and four
pairs of platform legs, respectively. Similarly, Fig. 4(b) indi-
cates the variation of the RMS of the deck displacement with
respect to the LSR in sea state 2. This figure shows that the
drag force induces a response that is twice as large as that
induced by the inertia force, and linearization leads to under-
estimation of the response level by 3—9%, depending on the
LSR. Unlike the case of sea state 1, the RMS of the deck
displacement in sea state 2 decreases monotonically with the
LSR, which can be attributed to the fact that the dominant
wave of 0.0557 Hz has a relatively long wavelength such that
for leg configurations of interest, wave forces on legs cancel
each other gradually in accordance with the LSR. Fig. 4(c)
shows the variation of the RMS of the deck displacement in
sea state 3. These response patterns are similar to those ob-
served in sea state 1, indicating that the forces caused by
waves having a spectral peak of 0.167 Hz are relatively dom-
inant over those for waves having a spectral peak of 0.0557
Hz and thus the inertia force dominates over the drag force.
Indeed, the inertia force is responsible for nearly 80% of the
displacement level of the deck. In obtaining these response
statistics, the hydrodynamic damping ratios, which are 0.48,
4.75, and 1.75%, respectively, in sea states 1, 2, and 3, have
been included in the analysis. Overall, as seen in Figs. 4(a—
c), the displacement level of the deck varies significantly with
respect to LSR, suggesting that the wave phase difference in-
deed can be used to minimize the motion of a jacket-type
platform in random waves, a fact noted by naval architects for
deterministic waves. Furthermore, the linearization of the drag
force has been shown to result in a nonconservative estimate
of the deck displacement and thus may have implications con-
cerning the fatigue life prediction of a platform.

Fig. 5 illustrates the PSD of the deck displacement for an
LSR of 2.0 in sea state 2, When nonlinearity of the drag force
is included, the PSD has a nonzero value at zero and low
frequencies and an enhanced secondary peak near the natural
frequency of the platform. Even for linear waves, the nonlinear
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TABLE 1. Wave Cancellation/Amplification Effects
LSR =4.0; S=110.3m (367.5ft) | LSR=20; $=55.13m (183.8 ft)

f 1N f A
(Hz) (m/ft) o) (Hz) (m) i/O
(1) (2) (3) (4) (5) (6)
0.0835 | 220.5 (735.0) 0.1181 | 110.3 (367.5)
0.1181 | 1103 (367.5) 0.1670 | 55.13 (183.8)
0.1446 | 73.50 (245.0) 02045 | 3675 (122.5)
0.1670 | 55.13 (183.8) 02362 | 27.56 (91.88)
0.1867 | 44.10 147.0) 02641 | 22,05 (73.50)
02045 | 36.75 (122.5) 02893 | 18.38 (61.25)
02209 | 31.50 (105.0) 03124 | 1575 (52.50)
02362 | 27.56 (91.88) 03340 | 13.78 (45.94)
02505 | 24.50 (81.67) 03543 | 1225 (40.83)

O—0~QO0=0—~0~0—=0~0~0—=0=0
O—-0—=-0=~0~0~0—~0—=0—~0—~0~=0

0.2641 22.05 (73.50) 0.3734 11.03 (36.75)

0.2769 20.05 (66.82) 0.3917 10.02 (33.41)

0.2893 18.38 (61.25) 0.4091 9.188 (30.63)
0.3011 16.96 (56.54) 0.4258 8.481 (28.27)
0.3124 15.75 (52.50) 0.4418 7.875 (26.25)
0.3234 14.90 (49.00) 0.4574 7.350 (24.50)
0.3340 13.78 (45.93) 0.4724 6.891 (22.97)
0.3443 12.97 (43.24) 0.4869 6.485 (21.62)
0.3543 12.25 (40.83) 0.5010 6.125 (20.42)
0.3640 11.61 (38.68) 0.5147 5.803 (19.34)
0.3734 11.03 (36.75) 0.5281 5.513 (18.38)
0.3827 10.50 (35.00) 0.5412 5.250 (17.50)

drag transformation introduces spreading of the energy outside
the frequency range of the input water-particle velocity spec-
trum, a phenomenon that is lost by linearization. Clearly, lin-
earization of the drag force also may yield inaccurate estimates
of such response statistics as RMS of the deck displacement
and velocity, which are in turn likely to influence fatigue life
estimates.

The cancellation/amplification effects, which introduce ad-
ditional spectral peaks, are studied here by introducing varia-
ble leg spacing on the platform. This approach has been
adopted over using a fixed spacing or merely a single column,
as commonly reported in the literature, because the behavior
of a section of an offshore structure consisting of several mem-
bers can vary significantly based on its spatial layout and a
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basic multiple-legged structure, while maintaining simplicity,
more closely approximates a practical platform section than
does a single submerged column. Additional peaks in Fig. 5
and subsequent figures may be explained more clearly by re-
ferring to Table 1, which indicates frequencies at which inputs
are in phase or out of phase at the front and rear legs of the
model platform. The left side of the table pertains to the case
where the LSR is 4.0 [(S = 108 m (367.5 ft)] and the right
side pertains to the case where the LSR is 2.0 [(S = 54 m
(183.8 ft)]. The table indicates frequency components in the
input spectrum, which have wavelengths that correspond to
SN(n + /2], n=0,1, ..., 20. That is, for these input com-
ponents, an integer number of cycles or an integer number
plus one-half cycle is equal to the front-to-rear spacing for the
platform configuration considered. In the former case, such an
input is in phase (I) at the front and rear legs of the platform.
In the latter case, the frequency component of the input is out
of phase (O) at the front and rear legs of the platform. Refer-
ring to the right side of the table and Fig. 5, notice, for ex-
ample, the spectral peak at 0.2362 Hz and the approach to a
spectral trough at 0.3124 Hz due to phase considerations. The
case of an LSR of 0.2 [(S = 5.4 m (18.38 ft)] has not been
tabulated. This is because the legs are packed so tightly that,
for the long input wavelengths considered in this study, min-
imal cancellation or amplification caused by wave phase ef-
fects is observed.

Results Based on Nonlinear Wave Theory

In the following discussion, the generalized wave force and
the response of the platform deck based on a nonlinear wave
theory are presented. For all of the following cases, a nonlinear
form for the drag term also is employed. The second- and
third-order dependence of the force spectrum for nonlinear
waves on the kinematics’ spectra [see (21)—(24)] introduces
energy at sum and difference frequencies and spreading of the
energy about the first-order peak wave frequency, increasing
both the RMS of the force and response as well as their PSDs
across the range of frequencies considered. Fig. 6(a) exhibits
the relationship of the RMS of the generalized force on the
deck to the LSR in sea state 1. Though hardly noticeable in
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the figure, model data indicates that the level of the general-
ized force is increased by the wave nonlinearity by 1.4-1.9%,
depending on the LSR. Fig. 6(b) shows the PSD of the gen-
eralized forces on the deck for an LSR of 0.2 in sea state 1.
The PSD is increased slightly because of wave nonlinearity,
with an increase of 2.7% at the spectral peak of 0.167 Hz. No
additional peaks are evident in the PSD because of wave can-
cellation caused by the tightness of the leg spacing for this
case. Fig. 6(c) shows the PSD of the generalized forces on the
deck for an LSR of 2.0 in sea state 1. From this, it is seen

that because of wave nonlinearity the PSD increases by 2.6%
near the spectral peak of 0.167 Hz and shows an overall slight
increase over frequencies of interest. Moreover, by comparing
results between Figs. 6(b and c¢), it is clear that the shape of
the PSD of the generalized force on the deck is related to the
leg configuration. Amplification and cancellation effects are
evident in the additional peaks and troughs in Fig. 6(c) which
may be related to in-phase and out-of-phase frequency com-
ponents noted on the right side of Table 1. Fig. 6(d) shows
the RMS of deck displacement as it varies with the LSR in
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sea state 1. This figure shows that the nonlinear result is 1.2—
1.6% larger than the linear result depending on the LSR.

Fig. 7(a) shows the variation of the RMS of the generalized
force on the deck with respect to the LSR in sea state 2. In
this figure, the level of the generalized force on the deck is
increased, because of wave nonlinearity, by approximately
1.5% for an LSR of 4.0 and up to 2.3% for an LSR of 0.2.
Because of the large wavelength of the dominant wave, sig-
nificant maxima and minima are not evident over the range of
leg spacing considered. Fig. 7(b) illustrates the PSD of the
generalized forces on the deck for an LSR of 0.2 in sea state
2 using linear and nonlinear waves, respectively. The figure
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indicates that the nonlinear result is generally higher than the
linear one, as reflected by an increase of 2.1% at the spectral
peak of 0.0557 Hz and an increase of 10% or more at fre-
quencies higher than 0.167 Hz. Fig. 7(c) shows the PSD of
the generalized forces on the deck for an LSR of 2.0 in sea
state 2. This shows that an increase of 2.1% above the PSD
based on the linear theory is induced near the spectral peak of
0.0557 Hz by the wave nonlinearities, and the PSD is, in gen-
eral, increased, most significantly at higher frequencies. Com-
parison of the results between Figs. 7(b and c) shows that the
effects of wave phase difference become clear at the larger
LSR in terms of significantly reducing the value of the spectral
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peak in the neighborhood of the platform natural frequency,
0.167 Hz. The more pronounced nature of this peak in Fig.
7(c) as well as the surrounding troughs at 0.1181 and 0.2045
Hz and several peaks and troughs located in the range of
higher frequencies are attributable to the leg spacing according
to Table 1. Fig. 7(d) shows the relationship of the RMS of the
deck displacement to the LSR in sea state 2. Here, note that
the response based on nonlinear analysis is higher than those
based on linear analysis for any leg configuration. The differ-

ences between the two estimates are 4.2 and 2.5% at LSRs of
0.2 and 4.0, respectively.

The dependence of the RMS of the generalized force on the
deck on the LSR in sea state 3 is given in Fig. 8(a). Observe
here that nonlinear wave analysis exhibits an increase in the
RMS of the generalized force of 9.7% at LSR of 0.2. This
increase diminishes to 6.1% at an LSR of 1.0 and then grows
monotonically up to 8.4% at an LSR of 4.0. The overall trends
in Fig. 8(a) appear to be a combination of those found in Figs.
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6(a) and 7(a), which may be expected because the wave field
is represented by a PSD with peaks at both 0.0557 and 0.167
Hz. Fig. 8(b) presents PSDs of the generalized force on the
deck at an LSR of 0.2 in sea state 3. From the figure, it is
noted that the nonlinear analysis admits larger PSD values rel-
ative to the linear analysis, with discrepancies of 4.7% at the
spectral peak at 0.0557 Hz and 25.6% at the secondary spectral
peak at 0.167 Hz. However, because of the tightness of the
leg spacing no other spectral peaks are evident other than at
the dominant wave frequencies because there are no significant
cancellation or amplification effects. By comparison, Fig. 8(c)
shows the PSD of the generalized forces on the deck at an
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LSR of 2.0 in sea state 3. Note here that because of the wave
nonlinearities, the two spectral peaks, located at 0.167 and
0.236 Hz, are increased by 26.1 and 40.2%, respectively, and
an increase of 4.4% occurs at the major spectral peak fre-
quency of 0.0557 Hz. Further, Fig. 8(d) presents the PSD of
the generalized forces on the deck at an LSR of 4.0 in sea
state 3. As in the case presented for an LSR of 2.0, there is
an overall increase in the PSD of the generalized force on the
deck when the wave nonlinearities are included. Comparing
Figs. 8(c) and (d) and referring to Table 1, note that because
of differences in leg configuration, the positions and magni-
tudes of peaks in the PSDs of the generalized force on the



10
—_— 1 4

T e linear random waves
(=9

e o[

d

!

5

B

] st

g

Q

=

CR &

Yt

=}

%

1 ﬁ\\_‘\-\
50.0 1.0 3?0 4.0
104
leg spacing ratio = 0.2 —_— " a

103

102

PSD of Generalized Force [kipsZ/Hz]

linear random waves

109 M A
0.0 0.1 0.2

(b) f [Hz]

FiG. 8. (a) RMS Generalized Force (Sea State 3); (b) PSDs of Generalized Force (Sea State 3, LSR = 0.2); (c) PSDs of Generalized
Force (Sea State 3, LSR = 2.0); (d) PSDs of Generalized Force (Sea State 3, LSR = 4.0); (e) RMS Deck Displacement (Sea State 3)

deck are distinct from each other. Note, for example, a peak
in the PSD at 0.3124 Hz for an LSR of 4.0 and a trough at
the same frequency for an LSR of 2.0, because, as indicated
on Table 1, inputs at this frequency amplify one another in the
former case but cancel one another in the latter case. In par-
ticular, the major spectral peak at 0.0557 Hz for an LSR of
2.0 is approximately 10% greater than that for an LSR of 4.0.
Also, the secondary spectral peak at 0.167 Hz for an LSR of
2.0 is half as large as that for an LSR of 4.0, particularly
because energy at this frequency is not only in phase at the
front and rear legs of the platform for an LSR of 4.0, but also

nearly in phase at the center legs as well because its wave-
length is equal to half the leg spacing (see Table 1). These
major differences, on the other hand, may account for the fact
that the RMS of the generalized forces on the deck, corre-
sponding to LSRs of 2.0 and 4.0, respectively, are approxi-
mately of the same order, as shown in Fig. 8(a). Although the
RMS of the generalized forces on the deck are nearly the same,
the response level of the deck at an LSR of 4.0 can be ex-
pected to be higher than that at an LSR of 2.0, considering
that the natural frequency of the structure system is 0.167 Hz
and the input energy at this frequency is significantly larger
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for an LSR of 4.0. Indeed, as shown in Fig. 8(e), the RMS of
deck displacement at an LSR of 4.0 is nearly 50% greater than
that at an LSR of 2.0. Furthermore, Fig. 8(¢) indicates that the
nonlinear analysis provides higher estimates than the linear
one. These differences depend on the LSR and vary from 9.1
to 11.7%. Although sea state 3 is not as severe as sea state 2,
the magnitude of the deck displacement at any leg configu-
ration based on nonlinear analysis experiences a larger in-
crease in sea state 3 than in sea state 2. This is because the
wave nonlinearity produces a larger percentage increase in the
RMS of the water-particle velocity for sea state 3 than for sea
state 2 (Kareem et al. 1994). In addition, the multimodal nature

680/ JOURNAL OF ENGINEERING MECHANICS / JUNE 1998

of sea state 3 increases the significance of the convolution
terms in (21)—(24) in the overall response to nonlinear waves.
These factors lead to a more significant percentage increase in
the RMS of the generalized force on the deck in sea state 3.

CONCLUDING REMARKS

A frequency-domain solution approach for the response of
a jacket-type platform whose inputs are Morison forces rep-
resented by nonlinear transformations of non-Gaussian wave
kinematics has been discussed. It has been shown that this is
a more general approach to solution for which the results re-
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duce, for Gaussian seas, to results published previously. The
numerical results indicate that linearization of the drag force
may lead to underestimation of the response of the deck in
random waves, which reaffirms previously reported studies.
Furthermore, it is demonstrated that the displacement level of
the deck in nonlinear random waves, for any leg configuration,
is larger than for the linear wave theory. This suggests that
neglecting wave nonlinearities by utilizing linear wave anal-
ysis may result in nonconservative estimates of response sta-
tistics, especially in severe seas, or in seas characterized by a
combination of low-frequency swells and locally wind-gen-
erated waves. Although the contributions of higher response
modes are not treated in this study, it is important to note that
their possible significance will depend on platform character-
istics and design sea states. As a final note, it can be concluded
that in addition to the wave theories chosen and the treatment
of drag nonlinearity, platform leg configuration is an important
parameter that influences the deck motion and, thus, when
practical, should be selected to take maximum advantage of
wave cancellation effects.

APPENDIX . SPECTRAL AND PROBABILISTIC
DESCRIPTIONS OF NONLINEAR WAVE KINEMATICS

Spectral Description of Nonlinear Wave Kinematics

To facilitate the response analysis of an offshore platform
in the frequency domain, it is necessary to determine the sta-
tistical and spectral contents of the nonlinear wave kinematics.
The free-surface elevation is expressed up to the second order
as (e.g., Tick 1959; Kareem and Hsieh 1991; and Kareem et
al. 1994)

N ) =Pk 0 + N, 1) (26)

using Stokes’ perturbation to solve the governing Laplace’s
equation with nonlinear boundary conditions and the Fourier-
Stieltjes spectral representation theorem to represent the ran-
dom processes (e.g., Kareem et al. 1994, 1996). Its autocor-
relation may then be given by

Ron(?) = E{(n"(x, ) + n°(x, ]

'S0 (0) dow

—

Pt + 1)+ P, ¢ + 1) =f

27

where H(w, &) = (0 + ®)G(w, &) + 1/2[|o|lo + 0d ~ (0?
+ @9)], G(w, ®) = (0 + d)wd — |wd|)/[(w + &) — Jlolo
+ |®|®|], and E[-] is the expectation operator. The convenient
features of expectations of products of Gaussian random var-
iables have been utilized in the foregoing equations (e.g., Is-
serlis 1918) in dealing with the products of processes repre-
sented via Fourier-Stieltjes integrals. The PSD of wave
elevation follows as:

00

(2 .
+ f f ?H’(w, B)S(@)S (D)™ dw di

-

San(N) = S50 + f %gz lolo + N — o) = )

SIS\ — @) do 28)

where S{)(N) = first-order wave elevation spectrum (i.e., the
wave elevation power spectrum we have chosen to represent
our sea state). It is worth pointing out that the free-surface
elevation (up to the second order) based on this theory is
skewed positively, which is in accordance with observations
made concerning ocean waves (e.g., Longuet-Higgins 1963).

Similarly, the first- and second-order terms, correlations, and
PSDs of water-particle velocity and acceleration can be ob-
tained (Kareem and Hsieh 1991). The cross-PSD function of
water-particle velocity may be written as

. . = \ 2, iINACY - IY /g Q1
Svv(x1, 235 X2, 225 N) = NPhamigharadieg( ()

"
D, ® = N s h-wio-wke -
+ ) e
.

-e"“"‘""'*“‘"‘"'“"“‘*‘2”‘S£,‘,)1(m)si“,’l()\ — w) dw 29)
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where D(w, &) = *(w, &) + (w, ®)I(®, ») and (o, @) =
(Jolo + |®|®@)G(w, &). When x; = x, = x and z, = z, = z, the
PSD of the water-particle velocity is given by

Svvlx, 2, M) = )\282)‘22/35':1).()\)

+ f D(‘;’; A) A zw)’zlasm( )S;Q, A — ) do

0
D(w, \) = {o
2N — W)X — 20)]

(30

A=0 and O0=sw=\
A<0 and A=0=0
otherwise

3D

The cross-PSD function for water-particle acceleration is
given by

Saalxy, 215 X2, 223 A) = A‘e'l)")‘(x‘_x’)/gexz(l'”’mSﬂ;()\)
1 lwtes +| A~ wlkz, +2;8
+ = N, A — w)e 1
o &

+ J(w, A — )0’ — 0] + A ~ 0)|w]]

. e(l]wlw-fl)\—ml()\"w)lzl+(02*(7\-w)2122)/x

+ 2|wl()\ _ w)sl(w, A — w)e[(2w2—2)‘m+)\2)z‘+Hm|(x—w)+|}\—wl(}\—-w)|22]/g
+ [mz()\ _ (.0)6 + ma()\ _ w)3|()\ _ w)l]elw2+()\—m2](zl+z;)/g}
- glelerhelo el g™ (W)S TN — w) dw (32)

where N(w, A — ) = J¥w, A — 0) + J(w, A\ — 0)J\ — o,
0); J(w, ®) = (0w + @)I(w, &). The spectrum of water-particle
acceleration at a point (x, z) can be obtained simply by setting
X, =x,=x and z; = 2, = z in (32), and the variances of both
the water-particle velocity and acceleration 03(2), 03(2) can be
obtained by integrating the respective spectra.

Probabilistic Representation of Nonlinear Wave
Kinematics

The inclusion of second-order (quadratic) terms renders the
probabilistic structure of the water-particle velocity and accel-
eration non-Gaussian. Considering the nonlinearities of waves
in deep water to be weak, the departure of the water-particle
velocity and acceleration from Gaussian will be small. Ac-
cordingly, the water-particle velocity and acceleration can be
expressed in terms of a Hermite series expansion using a func-
tional transformation (e.g., Grigoriu 1995; Winterstein 1985).
Let V(x, z, t) denote the standardized form of the water-particle
velocity process, i.c.

Vix, z, ) — E[V(x, 2, 1]

Vix, z, ) = pgr (33)
v

Utilizing the Hermite series expansion, V(x, z, 1) can be ex-
pressed as

Vi, 28 = Uyl 2, ) + % Wix 2,0 — 1]

(g —

T [U (x, z, 1) — 3Uv(x, 2, D] + - 34)
where Uy(x, z, t) = standardized form of the first-order water-
particle velocity; and coefficients a; and s, which are the
moments of V(x, z, ), are defined by oy = E[V3(x, z, ] and
a, = E[V¥(x, z, D]. The preceding series representation of V(x,
Z, ©) is truncated after the first few terms (depending on the
characteristics of the moments). For convenience in notation,
ap(z) will be used hereafter in place of a,/3! and it is given
by
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1 -
ap(z) = 3 E[V?@, z, 0]

= 2(@? — @d)evirg®
g(ri,(z) l:f J;m wi0(@; wi)e () dw, dw,

+ J J’ wloy (0} — &)™ S () (@,) dw, dw, %)

where Ar.3 = an integration area in the w, — ®, plane, bounded
by the w,-axis and the line w, = —w,; and Ar.4 = an integration
area in the same plane, bounded by the w,-axis and the line w,
= —w,. It is noticed that ay(z) remains less than zero because
the integrands in both integrals in (35) are always negative.

In a similar manner, a Hermite series representation for the
water-particle acceleration can be obtained. Let A(x, z, ?) de-
scribe the standardized water-particle acceleration. Subse-
quently, an application of the Hermite series expansion of A(x,
z, t) results in

Az, D=Un 2 1) + % Wik, 2, 1) — 1]

+ y Uix, 2, ) — 3Ux(x, 2, D] + -+ 36)
where U,(x, z, 1) = standardized form of the first-order water-
particle acceleration. It can be shown that a; vanishes, but it
is necessary to evaluate the kurtosis a,. For convenience, the
reduced kurtosis ay(z) will be used hereafter in place of (o,
— 3)/4!. Expanding the polynomial expression in the forego-
ing equation and using the derived second-order expression
for the water-particle acceleration while neglecting the higher
order term E[A®}%, yields
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where Ar.1 and Ar.2 = integration areas in the w, — w, plane,
respectively, bounded by the w;-axis and the line w, = w; and
by the w,-axis and the line w, = w,.
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