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The discussers wish to commend the authors on this effort
in the field of frequency-domain analyses of offshore struc-
tures. The discussers, however, wish to dispel some miscon-
ceptions about their own work in this area, which seems in-
completely and inaccurately cited by the authors in the
literature review found in their introduction.

In the authors’ treatment of the history of quadratization,
they mention a technique introduced by Kareem and Zhao
(1994) whereby a nonlinearity was replaced by the sum of
linear and cubic polynomials. In fact, this was a form of cu-
bicization, not quadratization, the development of which was
prompted by the discussers’ recognition that statistically sym-
metric nonlinearities, i.e., nonlinearities whose odd-order cen-
tral moments are zero, cannot be treated by quadratization
methods for reasons noted by the authors. This technique was
employed specifically in cases where a statically symmetric
nonlinearity was present, e.g., Morison drag force without cur-
rent, and not in cases of statistically nonsymmetric nonlinear-
ities where, in fact, quadratization was used by the discussers.

The introduction suggests that the authors incompletely un-
derstand the approach of Kareem and Zhao (1994), which uti-
lizes separate quadratization analyses for offshore platforms
subjected to Morison drag force when nonzero current is pres-
ent. This quadratization technique is outlined in that paper as
well as in Kareem and Zhao (1993, 1994b), Kareem et al.
(1995), and Tognarelli et al. (1995), and is applicable in such
scenarios. Though the quadratization and cubicization ap-
proaches of the discussers are not used in tandem, they have
been shown in the aforementioned references to be very ef-
fective tools, separately, in predicting extreme statistics of re-
sponse with the same limitations noted by the authors.

Although available elsewhere, a brief synopsis of the dis-
cussers’ work is given here to provide a complete presentation
for the readers of this journal. The following is a comparison
of the discussers’ quadratization and cubicization techniques
for the particular case of Morison drag force with and in the
absence of current. Consider the following single-degree-of-
freedom nonlinear system model for the surge response, x(¢),
of a tension leg platform (TLP):

Mx(t) + Cx(®) + Kx(@@)
= Kau(t) + KjJu(@® + U — x(®Ollu@) + U — x| (114)

where M, C, and K = structural mass, damping, and stiffness,
respectively; K,, = added mass coefficient; K, = drag coeffi-
cient; U = current velocity; and u(f) = water particle velocity,
which is assumed stationary and Gaussian. The surge response
of the TLP is also assumed stationary, but not, in general,
Gaussian. If U # 0, x(z) is expressed as a Volterra series:
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x(t) = xo + f h(T)f(t — 1) dr

+ f f hy(t, o) f(t — Tf(t — o) dv do

(SR

(115a)

x(t) = xo + x,(1) + %xz(t) (115b)
where f(¢) = input process; and h,(1) and h,(T, o) = first- and
second-order response functions, respectively. If, on the other
hand, U = 0, x(¢) is expressed as

x(t) = f h(T)f(t — 7) dr

+ %f f f hs(x, &, B)f(t — T)f(t — G)f(t — 8) dr do do
T (116a)

x(H) = x,(¢) + éx;(t) (116b)
where h;(1, 0, 0) = third-order response function. The argu-
ment ¢ will be dropped hereafter for convenience.

The right-hand-side nonlinearity is first expanded as a Tay-
lor series as follows, depending on the type of nonlinearity
considered:

e +U—du+U—-—%=lu+U=-xfJu+U-—3%)

X
- 2E[u + U — %] 3’ a1

or
fu — x| — %) = |u = &) — %) — 2E[|u — x1|]% (118)

where E[‘] denotes the expectation operator. Note that X, is
Gaussian since it is the response velocity for a linear system
with Gaussian input. It is assumed as well that the second-
order and third-order response velocities are small compared
to the first-order response velocity and terms involving their
higher-order powers may thus be neglected. By expanding as
in (117) and (118), a nonlinear function of Gaussian processes
remains along with an additional damping term.

Since the nonlinearities in the right-hand sides of (117) and
(118) are not cast in polynomial forms and as such are not yet
tractable by the Volterra approach, the quadratization or cu-
bicization procedure is now invoked to approximate them in
terms of the relative fluid-structure velocity as follows:

|u+U—xll(u+U—xl)~ao+a,(u—xl)+%(u—x,)2

(119)

or
e — &) = %) ~ oy — %) + % W - %) (120

The polynomial approximations of (119) and (120) may then
be tailored by minimizing the mean-square of one of the fol-
lowing error terms:

Eua = [ + U — %|(u + U — %) — ag — ay(u — %)
% o
7 W %) (121)
or
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B = [ — Bl — ) — u — 1) — L@~ %) (122)
The minimization of E[€2,.] produces a system of three equa-
tions for the unknowns, a,, if the current is nonzero (i.e., using
quadratization)

1 0 o o
O 0'2 0 [+ 3]
or 0 30*) Lay2

Efju + U — &|@u + U — )]
= | El(u — a)lu + U — 4|(w + U — 1))

El(u — %) u + U = &ij(u + U — 1)) (123)
which, when solved, yields
oo = 2Uc(rb, + by); «,=40(b, + by); «a,=4b, (124a-c)
where

1 [ ¥\ 1 r\ U
b = oy oexp< 2>dy, bz-\/z—wexp( 2), r—a,

and o = E[(u — %)]

If the current is zero (i.e., using cubicization), only a two-by-
two system must be solved to minimize E{e2,] for the coef-
ficients, o,. This yields o, = /2/7 and o = o~ '\/8/7. Turn-
ing attention back to the system (123), an important advantage
of the present techniques may be noted in the fact that all of
the expected values taken involve only Gaussian quantities and
functions thereof.

Now, the equations of motion for wave excitation when U

# 0 can be expressed as
M + (C+ a)iy + Kxy =K, u + au (125a)
MX; + (C + al)x.z + K.xz = az(u - xl)z (125b)

where a; = K, 00, a, = K5 and a, = K,a,. The static response
of this system may be given as x, = ay/K.
Similarly, when the current, U, is zero, one has the system

(126a)
(126b)

MX', + (C + a;)x'l + le = K,,,u + a\u
Mz, + (C + 2a)%; + Kx; = as(u — %,)°

where a, = K,a,; a, = K,a;; and because of the statistical
symmetry of the nonlinearity, there is no static offset, x,.

It is then desired to characterize the time-varying system
response in the frequency domain. Thus, the following transfer
functions are developed which correspond to the system (125),
where the discussers have applied quadratization, for the sta-
tistically nonsymmetric case when U # 0. These relate x,, (u
— %), and x,, respectively, to the input water particle velocity
spectrum:

HP(w) = (Kniw + a)H(w) (127)
H(w) =1 — ioH (w) (128)
H?)(wn W;) = aH(w, + w)H (w)H (w;) (129)

where H(w) = [K — oM + io(C + a)]™".
Likewise, for the system (125), where cubicization has been
applied,

HP = (Knio + a)H(w) (130)

Hia)(wh Wy, ;) = a3 Hy(w, + w, + wy)H (w)H (w)H (ws3)
(131)

where H, () = [K — oM + io(C + a)]™"; and Hy(w) = [K
- o’M + in(C + 2a)]™".
As the response distribution is no longer Gaussian, higher-
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order moments or cumulants are necessary to describe the re-
sponse statistics. The response statistics are considered in
terms of the response cumulants, k;, rather than the moments.
The first-order cumulant is the mean of the response, and the
second-order cumulant is equal to its variance. The third- and
fourth-order cumulants are descriptors of the skewness and
kurtosis, respectively, of the process, quantifying its departure
from Gaussianity. The skewness and kurtosis are given by vy,
= ky/k3? ; and v, = k,/k%, where both quantities are zero for a
Gaussian process. Frequency domain expressions for the
power spectral density of the response and its first four cu-
mulants based on Bedrosian and Rice (1971) can be obtained
for each system. These expressions involve the transfer func-
tions outlined herein and are given in detail in the references
to this discussion. Due to truncation of the expression for the
fourth-order cumulant associated with the discussers’ cubici-
zation technique, this procedure exhibits a wider range of ac-
curacy in predicting the second-order cumulant than in pre-
dicting the fourth-order cumulant,

Having this statistical information, an estimate of the prob-
ability density function of the response may be made by
choosing an appropriate model. In the past, the discussers have
had much success employing the moment-based Hermite
transformation model given by Winterstein (1985), which has
been modified slightly to more accurately refiect the desired
response statistics.

The discussers’ techniques accurately predict the response
of offshore systems to Morison wave loadings when current
is present as well as when it is not. Further, they introduce
additional computational ease as nonlinear terms are expressed
as functions of Gaussian stochastic processes. Thus, they rep-
resent a contribution that has not been made by other authors
in this field and which seems unclear to the authors of this
particular paper. It is hoped, therefore, that the material pre-
sented above will serve to clarify both the development and
the intent of the separate approaches to both quadratization
and cubicization introduced by the discussers.
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Closure by Ser-Tong Quek’

The writers wish to thank the discussers for their interest in
the paper. With the accompanying synopsis given by the dis-
cussers, the issue of the suitability of quadratization and cub-
icization for representing statistically symmetric and nonsym-
metric nonlinearity is exemplified. The ease with which the
Volterra series solution can handle the presence of current ve-
locity is well demonstrated.
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