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Abstract

This paper addresses the analysis, modeling and simulation of measured full-scale wind
pressure and velocity data. The records exhibit both non-Gaussian and non-stationary features,
and are ideal for the application of a number of contemporary methods for handling the types
of problems associated with these characteristics. Modeling the probability density function
(pdf) of non-Gaussian pressure is first addressed, followed by the simulation of pressure data
through new static transformation techniques. The non-stationary portion of the pressure data
is isolated and decomposed into a set of localized basis functions using wavelet transform
techniques.Wavelet analysis is used for the identification of energy flux in time and for
simulation of the non-stationary wind velocity records.

Keywords: Random processes; Non-Gaussian; Probability; Wavelets; Wind; Non-stationary;
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1. Introduction

The assurance of the safety and reliability of structures subjected to environmental
loads requires the consideration of their extreme response. Of particular interest is the
prediction of structural response due to severe loads, where the statistical description
differs significantly from Gaussian, e.g. wind pressure fluctuations on building envel-
opes, and non-linear structural response. Highly non-Gaussian localized wind loads
are often encountered on structures, particularly in separated flow regions, which may
lead to increased expected damage on glass panels and higher fatigue effects on
building envelope and cladding components. This paper presents methods applicable
for the prediction of structural behavior under non-Gaussian loading, with emphasis
on atmospheric wind loading. Some approaches to probability density function (pdf)

* Corresponding author.

0167-6105/97/817.00 :(: 1997 Elsevier Science B.V. All rights reserved.
PII S0167-6105(97)00195-5



658 K. Gurley, A. Kareem/J. Wind Eng. Ind. Aerodyn. 69--71 (1997) 657669

modeling are first discussed, including new models based on existing maximum
entropy and Hermite transformation formulations. Next, we present a new technique
to simulate non-Gaussian wind and pressure fields to predict non-linear structural
response to non-Gaussian wind loads for time domain integration schemes. Finally,
wavelet analysis is used as a tool for both analysis and simulation of structural
response and non-stationary wind data.

2. Probability density function modeling

In the context of reliability analysis and fatigue, an accurate probabilistic repres-
entation of input forces and structural response in the extreme region is essential for
meaningful results. The log-normal distribution has been used in the literature to
model pressure data as the tail of the distribution is higher than that of the normal
distribution. This often provides values close to the observations, but may fail to
predict the occurrence of values far from the mean. Two approaches to modeling the
pdf of non-Gaussian pressure records concerning separated regions are considered
here. Models based on maximum entropy and a Hermite transformation approach
are applied to a pressure record utilizing measured moment values from the data to
determine model parameters. Further motivation for improved pdf modeling will be
presented in Section 3.

2.1. Maximum entropy method

The maximum entropy method (MEM) maximizes the Shannon entropy func-
tional subject to constraints in the form of moment information. The pdf
which maximizes the entropy functional is the least biased estimate for the
given moment information. The Lagrange multiplier method is applied to solve
this variational problem, and provides the joint pdf of higher-order systems dir-
ectly. A brief outline of MEM is presented here. Complete details can be found in
Refs. [1, 2].

The available information for a process y(r) can be expressed as joint moments

E[yiyvy ... = j j'vrl‘yrz’ yeppdy =m, ., (1)

where n is the order of the system, r; = 0,1,2, ... ,M, where M is the maximum order or
correlation moment, p(y) is the joint pdf, and m, _, is the value of the joint moment.
The preceding integral is n-fold. One possible pdf of the process y(f) maximizes the
entropy functional,

H= - jp(y)ln(p(y)) dy, (2)

subject to constraints from the moment information.
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After application of the Lagrange multiplier method, the resulting description of
p(y) for an n-dimensional case is

M

p(y) = expl — 2o — 1)3XP( D s V) (3)
+r,I

Fot o

Substitution of Eq. (3) into the moment constraints and an additional normalization
constraint {p(y)dy = 1 gives the following system of equations:

" M
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This system of non-linear integral equations is solved numerically for 2, ., , and the
results yield the least biased estimate of the system joint pdf under the given moment
constraints using Eq. (3). The moment information which constrains the maximum
entropy functional may be in the form of moment equations rather than moment
values as presented above. Details are omitted here; interested readers may refer to
Ref. [1].

The MEM pdf based on higher-order moment constraints is expressed as the
exponential of a polynomial, typically of fourth order or higher. In many cases, this
leads to poor estimates in the tail region where the higher-order terms dominate.
When data records are available, the tail limitations may be alleviated if one extracts
process information other than higher-order moment values. This study makes use of
the fractional and negative integer moments as constraint information for non-
Gaussian pressure data, and shows significant improvement over the use of the first
four moments as constraints. MEM using constraints in the form of the first
four moments and negative integer moments are referred to herein as MEM I and
MEM 11, respectively. An example follows the next section.

2.2. Hermite moment method

This approach is based on a functional transformation of a standardized non-
Gaussian process, x(f), to a standard Gaussian process, u(f) (e.g. Ref. [3])

x(t) = (X(1) — X)/ox = glu(t)]. (6)

A cubic model of g(u) offers a convenient and fairly accurate representation [4].
Accordingly, the pdf of x(r) is given by Refs. [3, 4]

2‘., d 3 |
px(x) = %exp'i u (\)] u(x) ;
V2

2 dx’

u(x) = [/Ex) + ¢ + Ex)]'° — [VEX) + ¢ — &x)]'? —a, (8)
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where
X h 1
V« :15b - 3, :—3, b:— _—:b—]__ 23
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and y; and y, are the skewness and kurtosis of the fluctuating process, which reduce to
zero for Gaussian.

An improvement to this model is suggested by using the expressions for A5 and
h, given previously (which are approximations) as initial conditions for solving the
following pair of non-linear algebraic equations [5]:

vy = o (8h3 + 10843A2 + 36h5h, + 6h3), 9
ve + 3 = o (60A3 + 3348A% + 2232h%h3 + 60R3
+ 25203 + 1296h3 + 576h%h, + 24h, + 3). (10)

These equations have been derived by setting the third- and fourth-order central
moments of g[u(t)] equal to the known central moments of x(¢). This yields new
coefficient values which exactly match the statistics up to the fourth order of the
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Fig. 1. Pressure data, MEP I, MEP 1I, and log-normal pdf estimates.
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Fig. 2. Pressure data, Hermite, modified Hermite, and log-normal pdf estimates.

modeled non-Gaussian process. This is referred to herein as the modified Hermite
method.

The transformation above is for the case when x(¢) is a softening process, e.g. the
response of a linear system subjected to wind loads. A transformation for the case in
which x(t) is a hardening process is also available in the literature [4].

2.3. Pdf estimate example

Fig. 1 is the histogram of a measured pressure record, a log-normal fit, and two
MEM fits. The MEM 1 fit demonstrates poor behavior in the tail, while the MEM II
fit shows excellent consistency with the histogram in the mean as well as both tail
regions. In this example the MEM Il fit uses constraints in the form of
E[x], E[x "], E[x"*], E[x™*].

Fig. 2 compares the same pressure data with a log-normal fit and standard and
modified Hermite fits. Both the log-normal and modified Hermite fits are acceptable,
while the standard Hermite fit gives a poor estimate in the left tail region. Chi-squared
goodness of fit tests confirmed these observations.

Fig. 3 shows the data from a different pressure record and the pdf estimates using
normal, log-normal, and modified Hermite estimates. A Chi-square test places the
modified Hermite estimate within a 5% significance level, and the log-normal estimate
well outside that range.
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Fig. 3. Pressure data, Gaussian fit, log-normal fit, and modified Hermite fit.

3. Simulation of non-Gaussian pressure using static transformation

Among a host of techniques developed for the analysis and prediction of non-linear
structural response, simulation methods are gaining popularity as computational
efficiency increases. Implementation of time domain methods require simulated load
time histories with case-specific statistical and spectral characteristics. When the
assumption of Gaussian wind loading is inappropriate, e.g. cladding components
and glass panels, techniques for simulating non-Gaussian loading must be sought.
A method with wide utility will allow the user to specify non-Gaussian statistical
parameters and the frequency content of the desired process.

3.1. Modified direct simulation with Hermite polynomials

An earlier study [6] presents the development of the so-called modified direct
transformation for the simulation of non-Gaussian processes. This work focussed on
the simulation of processes for which a sample is available, and is not capable of
simulation based on a target spectrum and pdf. A non-Gaussian process is trans-
formed to Gaussian using an iterative Hermite transformation which optimizes the
transformation parameters to produce signal with Gaussian skewness and kurtosis.
The power spectrum of this underlying Gaussian process is used to simulate indepen-
dent Gaussian realizations, which are then transformed back to the non-Gaussian
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domain as independent realizations of the original signal. The modified direct simula-
tion method is of limited use, as a sample signal is not always available during the
design process as a basis for simulation. Further, the method is restricted to the
non-Gaussian parameters and frequency content present in the sample. Next we
consider a method which overcomes these shortcomings.

3.2. Spectral correction simulation

Spectral correction is a new method developed for simulation which is far more
robust than the modified direct method. The user specifies non-Gaussian character-
istics and frequency content in the form of the desired first four moments and a target
power spectrum, respectively. The target moments and power spectrum may be based
on measurements from a sample process, or derived through analytical means.
Alternatively, the user may choose to define non-Gaussian characteristics through an
analytical pdf.
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Fig. 4. Schematic of the spectral correction method, options one and two.
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A schematic of the method 1s shown in Fig. 4, and uses both a moment correction
and spectral correction transformation. Following option 1 {the top schematic in
Fig. 4), the target spectrum St 1s used to produce a Gaussian process u. u is sent
through a moment correction transformation, consisting of a back transformation to
yield a Gaussian process u,, then a forward transformation to yield a process x which
matches the desired higher moments. The non-Gaussian process x has a power
spectrum S, which no longer matches the target spectrum Sy. The process x is sent
through a spectral correction to produce x, which fits the target spectrum Sy, and
maintains the phase in x. The spectral correction transformation from x to x, distorts
the target moments in x. Thus, the second iteration begins by sending x. back to the
top of the loop to the moment correction.

The iterations continue until either the distorted moments of x. converge to the
target moments within a set tolerance after the spectral correction transformation
{option 1), or the distorted spectrum converges to the target spectrum within a set
tolerance after the moment correction transformation (option 2). When option 1 is
chosen, the spectrum of the resulting simulated process will always match the target,
and the higher moments will be within user-specified tolerance. When option 2 is
chosen, the moments will match the target, and the spectrum will be within a specified
tolerance. In option 2, the moment correction section of the iteration may be replaced
with a cdf-type transformation [3], giving the user the option of describing the
non-Gaussian characteristics of the desired process with either the first four moments,
or an analytical pdf. This provides further motivation for the accurate modeling of
pdfs presented in Section 2.
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Fig. 5. A measured pressure record (top); spectral correction simulation (bottom).
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3.3. Simulation example

An example uses the spectral correction method to simulate the measured pressure
trace used previously. This is a practical example of a highly non-Gaussian process
which is encountered in wind engineering. The spectral correction method matches
the target power spectrum, with skewness and kurtosis within a user-specified error.
The measured data has skewness and kurtosis values of — 1.39 and 5.17, while the
resulting simulation has corresponding values of — 1.36 and 5.08, respectively.
A portion of the measured pressure data and a realization using spectral correction
are shown in Fig. 5. The characteristics of the target signal (e.g. occurrence rate,
magnitude and grouping of extremes) are well represented in the simulation. The
spectral correction method has recently been extended to multivariate and condi-
tional non-Gaussian simulation [7].

4. Wavelet transform applications to stationary and non-stationary data

All the frequency domain techniques thus-far discussed contain the assumption of
stationary behavior. Some pressure data under consideration in this study exhibits
non-stationary or transient behavior, and requires methods to extract otherwise
hidden information. The inability of conventional Fourier analysis tools to preserve
the time dependence and describe the evolutionary spectral characteristics on non-
stationary processes requires tools which allow time and frequency localization
beyond customary Fourier analysis. One type of local transform is the recently
developed discrete wavelet transform (DWT). Various dilations and translations of
a parent wavelet are joined to form a family of basis functions which permit the
retention of local signal characteristics beyond the capabilities of the harmonic basis
functions. The dilations and translations of the parent wavelet are represented by the
wavelet coefficients, analogous to the Fourier coefficients. The wavelet coeflicients
lend themselves to the analysis and simulation of the non-stationary pressure data
through a variety of techniques, several of these methods are demonstrated by
example in this study.

4.1. Scalogram

The local character of the wavelet coefficients provides the scalogram, which is
a view of the coefficients on the time and frequency axis, and facilitates the identifica-
tion of time-frequency energy flux and spectral evolution. The scalogram has been
applied to the performance monitoring of structures with great success, e.g. distin-
guishing response due to impulsive-type loading events from large steady-state input,
the identification of structural degradation, and the occurrence of non-ductile events.

Wavelet analysis of hurricane wind time histories, which contain significant contri-
butions from convective turbulence, provides useful information regarding the distri-
bution of energy content as a function of time. The response of a slender structure to
wind may contain contributions from the fundamental mode and any number of
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higher modes depending on how the turbulent structure of the wind changes in time.
The relative contribution of each mode may vary significantly or total building
response may suddenly increase for apparently the same mean wind speed due to
instantaneous changes in the distribution of energy at different frequencies. Such
a response behavior cannot be identified through classical spectral techniques, while
wavelet analysis is ideal for such an analysis.

As an example, 600ft tall 100 ft square building is modeled with five degrees of
freedom, and subjected to high (100ft/s at 30ft) wind as correlated point loads along
its face. Fig. 6 is a scalogram of the response at the top floor of the building for two
input cases. The scalogram, using Daubechies eighth-order wavelets, plots energy
with respect to time (x-axis) and scale (y-axis), where the scales are marked as levels.
The levels 1--5 are five frequency bands, with level 1 containing energy from one half

Building top floor response
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Fig. 6. Top floor building response to hurricane wind {top), scalogram of top floor response to stationary
wind (middle), and scalogram of top floor response to wind with transient high-frequency fluctuations

(bottom).
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the cutoff frequency up to the cutoff. Level 2 contains energy from § to 5 of cutoff, and
so on. Levels 2-5 contain all five modes of building response, with the fundamental
mode in the fifth level, the second mode in the fourth level, and third and fourth modes
in level 3, and the highest mode in level 2. The middle picture in Fig. 6 shows the
response when the wind input is stationary, and the top plot is the response at the fifth
floor for this input. The fundamental mode is represented by the darkest band seen in
the fifth level, while the fifth mode at level 2 is hardly visible. The bottom picture is the
top floor response when the wind input contains a transient burst of high-frequency
fluctuations which stimulates the fifth mode for a short duration, visible as level 2
darkens then lightens with time. The response with transient energy in the fifth mode
is indistinguishable from the response to stationary wind using Fourier methods or
viewing the time histories, while the wavelet transformation clearly brings out the
transient characteristics.

A very instructive potential application of wavelet decomposition on measured
data can be seen in Ref. [8], addressing the response behavior of a bridge due to
vortex shedding. In their paper the authors have noted that spectral methods of data
analysis are not very helpful due to non-stationarity of the measured data. Also, to
understand the behavior of the system the transition between regular and large
amplitude response needs to be investigated. The spectral methods with constant
bandwidth schemes do not permit zooming in time without losing resolution in
frequency. Their investigation of response analysis can be best obtained through
wavelet analysis as their data suggest changes in turbulence intensity and switching of
response from one mode of oscillation to another during their measurements. Gurley
and Kareem [7] have tried to overcome the shortcomings of the spectral approach by
decomposing energy into different structural modes. We have demonstrated the
effectiveness of wavelet-based analysis on this data in Ref. [9]. Wavelet analysis can
serve as a more flexible tool for analyzing full-scale data with non-stationary features.

Intermittency of certain wavelengths in the approach flow may very well also
explain unusual pressure fluctuations observed in full scale. These can be clearly
identified using wavelet analysis [9].

4.2. Simulation

The retention of both time and frequency information makes wavelets a useful tool
for the simulation of non-stationary signals. The simulation of non-stationary data
may be done using either a sample non-stationary record directly, or a target
spectrum and family of modulating functions. A non-stationary wind velocity record
is decomposed using wavelet transforms to define a bank of envelope functions which
describe signal modulation in time with respect to the desired frequency bands. This
bank of modulators is then used to produce a new set of wavelet coeflicients.
A stochastic manipulation of these coefficients provides a realization statistically
similar in both time and frequency characteristics to the sample non-stationary
velocity record. Fig. 7 shows a measured non-stationary wind velocity record, and
a simulated realization using the wavelet transform. Statistical comparisons between
the target and simulated records, including spectra, the first four moments, and the



668 K. Gurley, A. Kareem/J. Wind Eng. Ind. derodvn. 6971 (1997) 657—669

50 T T T T T T T T
40t .

3ot | W 1

10t .

0 1 1 1 1 1 i L 1
0 50 100 150 200 250 300 350 400 450

50 ; . , . ' , . :

40 " | .
30 1
20 "l | | y

10 b

0 . . L 1 . L L L
0 50 100 150 200 250 300 350 400 450

Fig. 7. Measured hurricane wind velocity record (top). wavelet simulation (bottom).

non-stationary trend in mean value are found to be good. A more detailed treatment
will be included in a future publication.

5. Conclusions

This study presents several new methods for the modeling, analysis and simulation
of non-Gaussian-measured wind and pressure records. Two new pdf models are based
on earlier work using maximum entropy and Hermite transformation, and show
potential for tremendous improvement over the commonly used log-normal distribu-
tion. An iterative method is presented for the simulation of highly non-Gaussian
pressure given a target power spectrum and higher moments. Discrete wavelet
transforms are used to delineate hidden information in the higher modes of response
of a tall building in a wind storm like a hurricane wind field embedded with transient
turbulent gusts of varying frequency content. Wavelets are also applied to the
simulation of non-stationary wind velocity records. Examples are provided for each of
the methods presented.
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